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Abstract—Building next-generation wireless systems that could
support services like the metaverse, digital twins (DTs), and
holographic teleportation is challenging to achieve exclusively
through incremental advances to conventional wireless technolo-
gies like meta-surfaces or holographic antennas. While the 6G
concept of artificial intelligence (AI)-native networks promises to
overcome some of the limitations of existing wireless technologies,
current developments of AI-native wireless systems rely mostly
on conventional AI tools like auto-encoders and off-the-shelf
artificial neural networks. However, those tools struggle to
manage and cope with the complex, non-trivial scenarios faced
in real-world wireless environments and the growing quality-
of-experience requirements of the aforementioned, emerging
wireless use cases. In contrast, in this paper, we propose to
fundamentally revisit the concept of AI-native wireless systems,
equipping them with the common sense necessary to transform
them into artificial general intelligence (AGI)-native systems. Our
envisioned AGI-native wireless systems acquire common sense
by exploiting different cognitive abilities such as reasoning and
analogy. These abilities in our proposed AGI-native wireless
system are mainly founded on three fundamental components:
A perception module, a world model, and an action-planning
component. Collectively, these three fundamental components
enable the four pillars of common sense that include dealing
with unforeseen scenarios through horizontal generalizability,
capturing intuitive physics, performing analogical reasoning, and
filling in the blanks. Towards developing these components, we
start by showing how the perception module can be built through
abstracting real-world elements into generalizable representa-
tions. These representations are then used to create a world model,
founded on principles of causality and hyper-dimensional (HD)
computing. Specifically, we propose a concrete definition of a
world model, viewing it as an HD causal vector space that aligns
with the intuitive physics of the real world – a cornerstone of
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common sense. In addition, we discuss how this proposed world
model can enable analogical reasoning and manipulation of the
abstract representations. Then, we show how the world model
can drive an action-planning feature of the AGI-native network.
In particular, we propose an intent-driven and objective-driven
planning method that can maneuver the AGI-native network to
plan its actions. These planning methods are based on brain-
inspired frameworks such as integrated information theory and
hierarchical abstractions that play a crucial role in enabling
human-like decision making. Next, we explain how an AGI-
native network can be further exploited to enable three use cases
related to human users and autonomous agents applications: a)
analogical reasoning for next-generation DTs, b) synchronized
and resilient experiences for cognitive avatars, and c) brain-level
metaverse experiences exemplified by holographic teleportation.
Finally, we conclude with a set of recommendations to ignite the
quest for AGI-native systems. Ultimately, we envision this paper
as a roadmap for the next-generation of wireless systems beyond
6G.

Index Terms—artificial general intelligence (AGI), reason-
ing, planning, common sense, AGI-native, world model, AGI-
augmented digital twins (DTs), beyond 6G.

I. INTRODUCTION

In the next decade, novel wireless use cases, such as the
metaverse and holographic societies, are anticipated. Those use
cases will largely strain the communication limits of modern-
day wireless systems due to their unique performance require-
ments, which are quite different from conventional use cases
like smartphone-centric services or intelligent transportation,
which serve as the key drivers for 5G and early 6G sys-
tems [1]. For instance, the metaverse will blend the physical-
virtual-digital dimensions. Supporting metaverse components
such as avatars and digital twins (DTs) in their ultimate
versions over future wireless networks requires meeting novel
communication, computing, sensing, and artificial intelligence
(AI) challenges. For example, endowing avatars with cognitive
abilities to faithfully embody extended reality (XR) users will
require achieving stringent end-to-end (E2E) synchronization.
Meanwhile, real-world DTs will require real-time physical-
digital interactions and human-like decisions to provide a
seamless digital world experience [2]. This, in turn, imposes
on the underlying communication network unprecedented per-
formance requirements that include real-time latency, extreme
reliability, and advanced AI capabilities. Clearly, on their
own, incremental extensions to conventional communication
technologies that have driven the evolution from 4G to 6G
(e.g., exploiting larger antenna arrays, enhancing multiplexing
schemes, etc.) are simply not sufficient to meet the aforemen-
tioned challenges of forthcoming wireless services. This is



2

Evolution of Wireless Networks in the 

Beyond 6G Era Wireless 

Enablers & 

Technologies

6G-Advanced

6G

Artificial 

Intelligence (AI)

in Networks

Sensing

Spectral Efficiency

Real-Time Latency

Data Rates

Reliability

Generalizability

Problem Solving

Planning

Reasoning

6G

6G-Advanced

Advanced AI-Native

Networks
Resilient, Robust, 

& Fully Fledged Networks

• Causal AI

• Statistical AI
(e.g., ANN)

• Neurosymbolic AI

• Intent-Driven 
• Generative AI

(e.g., LLM)

• Holographic
MIMO

• THz Bands

• Reconfigurable
surfaces• Multiplexing 

Schemes (e.g,., OAM)

• Spectrum Sharing 
(e.g., above 100 GHz)

• Semantic 
Communications

Cognitive 
Avatars

Human-like Autonomous 
Network ExperienceBrain-Level Metaverse 

Experiences

AGI-Augmented 
Digital Twins

Artificial General Intelligence 

(AGI)-Native Networks

QoNE

Optimization

AI-Native 6G Networks
(2030)

Theory of 
Mind

Abstract 
Representation

Reconstruction

• Causal AI

(2040)

Next-Generation AI Next-Generation Networks

Language

Fig. 1: Overview of the evolution of wireless networks from 6G to the beyond 6G era converging towards our envisioned, next-generation
AGI-native networks and their corresponding use cases.

because key physical enablers, technologies, and resources are
closely approaching their fundamental limits.

Thus, it is natural to ask: What is the next game-changing
technology that could potentially help wireless systems over-
come the limitations of traditional enablers? This is a question
that we will deeply explore in this paper. For example, one can
imagine an avatar experience in the metaverse as one exciting
next-generation application, and think about the new type of
wireless technologies that we should invest in to fully embody
the human in the avatar. For instance, will it be sufficient to ex-
plicitly factor in some missing assumptions in the formulated
electromagnetic laws of multi-antenna technologies, or per-
haps just exploit new sensing modalities as is being done today
for 6G? The answer is probably negative because standard
increments to those technologies will remain inherently limited
by several practical constraints and lack the adequate level of
network intelligence required to manage these sophisticated
solutions in wireless environments. This, in turn, will most
likely keep their prospective performance below the threshold
needed for supporting the new, unimaginable use cases brought
forward by next-generation wireless services like digital twins,
the metaverse, or other such use cases.

To answer the aforementioned question, we envision a jour-
ney from 6G systems towards a revolutionary next generation
of communication systems, while going through a number
of milestones and technologies as explained in the various
sections of this paper (see Figs.1 and 2).

A. Where will the current network evolution lead us to?
As shown in Fig. 1, the 6G-era evolution of wireless cellular

networks has been mainly driven by two major routes: 1) the

evolution of conventional communication technologies, and 2)
the exploration of the role of AI in communication networks
(culminating in the concept of AI-native systems for 6G). This
evolution can be further broken down into two network phases:
6G and 6G-advanced networks.

Conventionally, every generation of wireless networks since
2G has been defined by new multi-antenna and communication
technologies (e.g., holographic multiple-input multiple-output
(MIMO), reconfigurable intelligent surfaces (RISs), etc.), effi-
cient resource allocation and advanced multiplexing schemes
(e.g., orbital angular momentum), and the opening of new fre-
quency bands (e.g., millimeter wave (mmWave) and terahertz
(THz) bands) in quest for additional bandwidth. While this
path has been effective in leading us to 6G, its limitations
are rapidly becoming apparent. For example, while stacking
multi-layer meta-surfaces can enable the convergence of com-
munication and computing [3], it cannot inherently address
challenges related to antenna impedance matching. Moreover,
exploiting holographic MIMO technologies can significantly
increase communication capacity [4], however, it will not be
able to overcome the fundamental limitations posed by channel
conditions and associated near-field propagation environments.
Meanwhile, revisiting electromagnetic information theory [5]
to overcome challenges like antenna coupling will likely help
in optimizing the energy efficiency of communication systems;
however, it cannot deal with the degraded performance of
wireless systems when the assumed channel models fail to
accurately represent real-world propagation characteristics. As
evident from the previous examples, incremental extensions to
conventional technologies are not a sustainable path towards a
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truly disruptive paradigm shift in wireless networking. The
culprit is that, despite some impactful innovations, these
technologies will remain limited by the different assumptions
considered in the formulated electromagnetic theory laws (e.g.,
antenna-wavelength spacing, radiating aperture size, etc.) and
their practical application in antenna designs. Moreover, while
enhanced communication technologies such as holographic
MIMO could improve the communication efficiency and net-
work performance, the performance gains will remain bounded
by fundamental limits like the Shannon capacity and comput-
ing power which we have already approached. In addition,
the possibility of exploring new frequency bands to harness
gains will eventually become much more difficult because
most of the spectrum with sufficient bandwidth will eventually
be exhausted. In addition, achieving granular advancements
in these communication technologies is often accompanied
with computationally intensive and complex solutions that may
include impractical assumptions (e.g., perfect channel condi-
tions). Hence, asymptotically, under practical considerations,
and without discounting advances in the aforementioned fields,
we cannot solely rely on some of those existing solutions1,
as illustrated in Fig. 3. Considering these limitations, the era
of 6G becomes a central moment to question this potentially
unsustainable evolution towards next-generation wireless sys-
tems, by asking a rather existential question:

“What innovation(s) could truly disrupt wireless
technologies, allowing them to autonomously and
intelligently manage and exploit their physical com-
munication constraints and capabilities?”

The answer to this question could potentially lie in the
second, AI path that started to take shape in the 6G era, as

1We acknowledge that in the current state of wireless research, there is a
need for both: (a) developing mature technologies to meet the direct short-
term requirements of society [6], and (b) developing research visions and
roadmaps to shape the long-term evolution of the wireless landscape. Clearly,
this work falls into category (b) while naturally building on the state-of-the-
art activities of AI in 6G recommendations [7], that will play an instrumental
role to achieve this vision.

shown in Fig. 1. Indeed, from Fig. 1, we can see that 6G
ignited the alternative route of AI-native wireless systems,
whose key focus is on embedding an AI-based infrastructure
across the various layers and functions of a wireless network.2

In AI-native systems, AI becomes a central component for
deploying, optimizing, and operating communication networks
throughout their lifecycle [8]. AI-native systems can learn
and improve their performance by exploiting advanced learn-
ing techniques that enable wireless networks to gain sys-
tem knowledge and expand it into different scenarios. For
instance, the possible adoption of AI into the radio inter-
face [9] could boost its performance transforming it into a
largely autonomous, adaptive, and generalizable system that
can handle different settings and operational scenarios [10].
For example, consider a downlink multi-user scenario in which
the air interface optimizes the beamforming configuration at
the base station (BS) for a certain network environment [11].
Here, the introduction of AI into the air interface could play
a key role in enhancing resource utilization and mitigating
interference. Such uses of AI can potentially help better
manage the network’s capacity, thereby preventing it from
reaching its theoretical limits. Nevertheless, most existing AI-
native wireless systems solutions and visions can suffer from
major challenges. For instance, due to the dynamic nature of
wireless environments, a distribution shift (e.g., in the channel
gain) can occur. Consequently, this can lead to a mismatch
with the trained AI model of the air interface and possibly
deteriorate the signal-to-interference-plus-noise-ratio (SINR)
at the user side. One prominent solution to overcome this
limitation such limitation is to directly leverage the knowledge
attained by the air interface from one environment to swiftly
adapt its model for executing its beamforming strategy in
this new environment. This generalization can be done with
machine learning (ML) techniques like meta-learning and
transfer learning [12].

Despite their promising potential for solving such wireless
problems, classical AI solutions like meta-learning and trans-
fer learning suffer from multiple drawbacks that limit their
applicability. In particular, current ML models often rely on
neural networks (NNs) that tend to capture highly non-linear,
statistical relationships and, thus, remain greatly influenced
by their training data. Indeed, NNs often require frequent
re-training and adaptation of their underlying models with
every domain variation. Moreover, these models tend to lose
their effectiveness (i.e., by becoming either rigid or plastic
AI models [13]) after multiple updates. In addition, their
acquired knowledge diminishes rapidly when the respective
testing domains heavily differ (statistically) from those of the
initial training phase. Beyond constraining their generalization
capabilities, this continuous stream of model updates will also
result in significant communication and computing resource
drainage. Hence, relying on such statistical models is not the
most promising path towards generalizability as it prevent
wireless network from effectively accumulating its knowledge

2During the review process of this work, several new AI-focused initiatives
on AI-RAN native wireless systems like the AI-RAN Alliance and ATIS’s AI
Network Applications working group have appeared, further bolstering the
case for exploiting AI to disrupt wireless system research and innovation.
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– a cornerstone of truly autonomous wireless systems.
One possible way to overcome this challenge is through

the incorporation of cognitive features in the design of AI
systems. By doing so, one can build advanced AI-native
systems that can better adapt to dynamic network condi-
tions, improve contextual awareness, and enhance decision-
making capabilities, leading to more efficient and reliable
network operations [14]. In our designated 6G-advanced era
(see Fig. 1), we envision the use of advanced AI-native
networks that adopt rule-based solutions which can go beyond
statistical AI models. This approach yields new possibilities
for maneuvering the network to enhance its generalizability
and ensure its trustworthiness. One way to achieve this is
by embedding reasoning capabilities into the network’s nodes
(i.e., transmitter (Tx) and receiver (Rx)). Reasoning essentially
means allowing the network to make sense of observed
information and use inference to reach conclusions from its
acquired knowledge. Causal reasoning [15] is one notable
form of reasoning that has been proposed for enabling wireless
networks to uncover cause-effect relationships existing within
the network data and extrapolate a myriad of logical results in
the form of interventional and counterfactual operations. This
is particularly important for certain technologies such as THz
beam training [16] and semantic communications [17]. For
example, in the THz regime, due to the high susceptibility of
the signals to blockages that limit the line-of-sight (LoS), the
channel response can exhibit highly dynamic changes. Hence,
leveraging statistical ML models at the air interface level may
not be sufficient to carry out the beam selection in such a
scenario. This is mainly because classical ML models purely
rely on capturing correlations between variables. However, the
severe fluctuations in the channel response arising at THz
bands makes the correlation between the channel variables
and corresponding beam index (as an output label) highly
variable. A possible solution here could be to adopt causal AI
schemes that rely on capturing causal relationships in the data

rather than correlations [18]. In fact, we have demonstrated
in our previous work [16] that leveraging causal AI can help
reduce the amount of AI re-training needed by capturing a
more robust, generalizable relationship in the data. This is just
one illustrative example on why statistical AI/ML can fail in
real-world wireless use cases. Thereby, empowering wireless
networks with reasoning capabilities, through concepts like
causality, represents a major block on the path towards real-
izing advanced AI-native networks.

Nevertheless, advanced AI and cognitive capabilities span
more than cause-effect relationships and reasoning faculties.
In fact, the set of human cognitive skills includes several
other functions, such as planning. For instance, the planning
ability represents the essence of the problem solving skills
attributed to humans [19]. In particular, planning is the pro-
cess of instantiating a sequence of actions in an attempt to
achieve a particular goal with minimal cost. Similar to humans
closing in on a goal through coherent actions, AI systems can
also be driven to formulate plans with intermediate steps to
fulfill given objectives. This is of particular importance for
the emerging concept of intent-driven networks [20], defined
as networks that must navigate and precisely control their
resources to fulfill overarching intents [21]. One simplistic
example of an intent could be to define a goal of minimizing
network energy consumption by 5%, while still guaranteeing
a certain quality-of-experience (QoE) for the user equipment
(UE) [22]. In fact, such intent or objective-based planning
could possibly be handled and incorporated with generative
AI tools like large language models (LLMs) such as in [23]
and [24]. In our example of minimizing energy consumption, a
sequential planning of steps may include the design of efficient
precoding schemes, followed by optimizing the response of the
RISs in the network, and subsequent optimization of downlink
communication resources.

Eventually, the convergence of intent-based networking,
reasoning, and planning will help to establish fully autonomous
zero touch networks driven by their intents and objectives. This
can facilitate automating the network deployment and adapta-
tion. In other words, such networks must continuously adapt
their real-time performance with limited human intervention,
and in a standalone fashion. It is thus expected that these
autonomous networks can exhibit intelligent responses and
decisions that resemble those of humans. As shown in Fig. 1,
as we continue to equip the network with more reasoning and
planning capabilities in the beyond 6G era, we will approach
an adequate level of advanced intelligence that drives the
autonomous operations of 6G-advanced networks.

From the above discussion, it is evident that the incorpora-
tion of cognitive abilities such as reasoning and planning repre-
sents a stepping stone to evolve AI-native wireless systems and
help them meet the challenges of future services. Yet, while
valuable, these cognitive abilities alone do not adequately
equip a communication system with sufficient capabilities
to curb and tame the dynamic nature of the wireless radio
access network (RAN) and its complex environment. Indeed,
networks that lack full generalization capabilities cannot be-
come fully autonomous, and they will not be sufficient to
create a new generation of communication systems. Hence,
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a fundamental question arises here: “How can we design
intelligent wireless systems with new cognitive abilities that
can become fully autonomous and potentially usher in a new
“G” of networks?”

This is the core question that this paper seeks to answer,
and in the path to do so, we reflect back to an inspirational
quote: “Every generation imagines itself to be more intelligent

than the one that went before it, and wiser than the
one that comes after it.”

George Orwell

Next, we explain what is the missing link from current AI-
native networks that must be addressed for reaching the next-
generation of wireless systems.

B. Common sense: A key missing link in AI-native wireless
systems

Although reasoning and planning constitute an important
part of cognitive abilities, their current forms remain insuffi-
cient for a network to become fully autonomous, driven by
its intents, similar to humans. On the one hand, while causal
reasoning can help in generalization, it remains task specific
and limited to the in-domain (i.e., out-of-distribution) context.
In other words, current reasoning frameworks [25]–[27], like
causal AI, on their own, may struggle with out-of-domain
generalization to unfamiliar, “corner cases”, that have never
been witnessed before.

On the other hand, exploring state-of-the-art solutions like
LLMs to perform the planning steps in a wireless system will
be susceptible to hallucinations that can initiate illogical steps.
This is due to the fact that LLMs possess limited reasoning
power and lack experience and general knowledge about the
world. LLMs also lack the fundamental elements of problem
solving: decisions, objectives, and transition models of the
problem [28]. Although there has been some attempts to equip
foundation models with reasoning capabilities through causal-
ity [29] and chain-of-thought reasoning [30], such solutions
primarily reduce hallucinations over the training data, rather
than bolstering generalization to new scenarios. Meanwhile,
although some recent solutions [31] develop LLMs that can
generalize to out-of-distribution scenarios (i.e., cope with
distribution shift), those methods cannot handle out-of-domain
scenarios beyond their training data [24]. Consequently, this
can hinder planning in real-world situations that are full of
corner cases and are continuously confronted with unfamiliar
situations. In other words, to be truly autonomous, wireless
systems should know how to plan even in novel situations.

AI-based planning is also closely tied to ML techniques like
reinforcement learning (RL) [32]. Although RL frameworks
can possibly plan and progress towards an intended goal,
they can only do so in a closed environment that consists of
limited action/state spaces. This can limit the generalizability
of these frameworks and impede planning in unforeseen, out-
of-domain scenarios, different tasks, as well as non-stationary
environments beyond this limited space. Hence, RL and its
variants eventually tend to learn and memorize, rather than to
solve problems in scenarios with open possibilities. Therefore,
the current line of reasoning and planning in AI-native net-
works, (e.g., [16], [22], [24], and [33]) is largely constrained
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by their limited capabilities of generalization to unfamiliar
scenarios [28]. This is possibly due to their lack of adequate
knowledge of the basic principles underlying the world that
surrounds them.

Evidently, the design of a generalizable AI system that can
adapt to diverse and dynamic network conditions remains a
persistent challenge for autonomous networks. To address this
issue, attempts have initially focused on training statistical
AI models with massive data samples and millions of RL
trials [34]. This aims to expose AI frameworks like RL to
every plausible scenario that they can possibly encounter.
Nevertheless, this solution cannot effectively generalize and
deal with specific, risky, and rare case scenarios. Although
causal AI can generalize the relation between the cause and
effect (i.e., vertical generalizability), yet, as stated by Y.
LeCun [35], we still do not have an AI system that can deal
with new, unfamiliar, and out-of-domain scenarios. This is
because AI systems lack horizontal generalizability, which is
the missing component preventing them from becoming fully
autonomous and independent [36]. Horizontal generalizability
stems from the ability to generalize to out-of-domain distribu-
tions. This lack of horizontal generalizability mainly pertains
to the absence of common sense in AI. As inferred from its
basic definition as a cognitive trait that is “common” to all
humans, it is argued that common sense lies in the ability
of humans to garner general, shared, and intuitive knowledge
about the world. This knowledge covers the facts that define
how humans understand the physical world in terms of its
different constituents and the corresponding relationships in
between. It also involves leveraging general principles that
govern our understanding of the dynamics in the world.

In essence, common sense can be majorly captured by the
four key technical pillars3 that we have concretely defined in
Fig. 4. Basically, common sense carries humans out of trouble

3While human cognitive skills inspire these pillars, we have defined them
based on their significant importance for common sense. That said, these
pillars are not necessarily derived directly from a single human cognition
theory nor do they include all human cognitive skills based on a specific
known theory.
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when dealing with the endless unforeseen scenarios that they
encounter on a daily basis in the real world. It also enables
humans to relate concepts and learn much faster, by analogy
(so-called analogical reasoning ability). In addition, it helps
them connect the dots to reach logical deductions, and fill
in plausible, missing elements as needed. In short, common
sense is the background knowledge about the world that
enables individuals to infer what is likely to happen next. This
definition considers the basic context of common sense which
broadly refers to the core skills of intuitive physics (i.e., object
navigation and manipulation)4. These skills involve innate
concepts and principles that humans grasp by understanding
the physical behaviors in the world. For instance, such basic
principles include intuitively knowing that a ball will fall to the
ground when it is dropped because of its gravitational weight.

In unforeseen scenarios, humans rely on their common
sense to reasonably navigate out of difficult situations, whereas
AI systems lacking this ability encounter major challenges
in doing the same. For example, a wireless network may
fail to deliver the QoE required through proper resource
management, when the application domains changes. As a
very simple example, the network can be trained to properly
allocate a beam for XR users, yet, it fails to handle the beam
assignment for a setting with autonomous vehicles. In general,
this challenge will persist as long as AI systems remain rule-
based systems that tend to just extract patterns from their
training data, and capture the underlying correlation and causal
relationships hidden within, without relying on common sense.
As a matter of fact, current AI systems lack this common sense
because they do not learn the world. In other words, today’s AI
systems do not understand how the world works in terms of its
underlying principles and elements. In concert with [37], we
posit that this common sense can only be acquired by grasping
the ability to learn world models.

Once AI systems are equipped with world models, they can
engage in the adequate reasoning and planning that would
allow them to actually become autonomous. On the one hand,
reasoning via common sense can provide ways to generalize
(e.g., via analogical reasoning) and deal with unforeseen
scenarios. On the other hand, planning by leveraging a world
model brings forth a rigorous approach for action-planning,
whereby planning is merged with reasoning about the general
knowledge of the world.

Therefore, acquiring common sense through a world model
plays an instrumental role in the path to designing advanced AI
systems with human-like cognitive abilities. Fundamentally, a
core, fundamental element of human intelligence pertains to
building the capability to simulate the physical world [38].
Toward this end, a world model enables predicting the different
plausible future states resulting from the actions that could be
performed. Hence, AI systems that understand their underlying
world can foresee the consequence of their actions if they were
to be executed, similar to what humans do. That is, humans
mainly learn through observation and limited interactions
with the world in a task-independent, unsupervised way [35],
rather than through a large volume of labeled data samples

4While intuitive psychology (e.g., social cognition) is also related to
common sense, it is not concretely considered in the scope of this work.

and numerous expensive trials like those done by RL. This
observation of the world is followed by simulating the specific
scenarios that incorporate their background knowledge, before
they attempt to act. The aim of this simulation in AI systems
is to solve problems and plan actions, by emulating the abil-
ities of humans to think and imagine beforehand. Therefore,
common sense drives in new human-like cognitive abilities for
thinking about actions and imagining the world.

Nevertheless, simulating the physical world would not just
require attaining a world model, but it also requires accurate
perception of its real-time status. In fact, perception is an-
other crucial ability missing in most of today’s AI systems.
Perception typically relies on estimating the state of world
and representing it in the form of abstractions [39]. These
abstractions play a crucial role in an AI system’s ability to
think about the world elements and their relationships [40].
Abstractions are also the key to carry out analogy between
these elements.

Clearly, there is a need to integrate more advanced cog-
nitive abilities into AI-native wireless networks, primarily
common sense, in order to achieve true levels of intelligence
and generalization. Once these generalization and intelligence
levels are reached, wireless networks can then deal with
unforeseen scenarios during reasoning and planning, thereby
enabling truly autonomous networks. Hence, the answer to
our earlier question on the design of new AI-native networks
with cognitive abilities lies in the integration of common sense.
Indeed, to unleash a new “G”, wireless networks must operate
with advanced human-like cognitive abilities. A key byproduct
of this common sense integration will be a much anticipated
transition from AI towards artificial general intelligence (AGI),
whose ultimate goal is essentially to replicate the broad range
of human cognitive abilities [41]. Therefore, the core idea of
AGI is to enable an advanced level of intelligence facilitated
by common sense, which provides a general understanding
and simulation of the physical world. As will be evident from
subsequent sections, this paper will design a new genera-
tion of wireless networks with AGI abilities by equipping
them with the common sense necessary to facilitate other
crucial cognitive abilities such as imagination, thinking, and
perception, along with reasoning and planning. Notably, this
transformation towards AGI constitutes the missing link to
evolve both wireless and AI systems (e.g., agentic AI) towards
their next generations.

II. PROPOSED VISION AND CONTRIBUTIONS

A. Prior works: Limitations and motivation

Designing a wireless system with AGI abilities has not been
studied in prior works to date. However, in some recent works
like [42], there has been some “hints” about the interplay
between AGI and wireless networks. For instance, in [42], the
authors discuss the use of embodiment to induce some form
of AGI in 6G networks. While this prior work mentions AGI
as a concept, it does not have a framework to truly achieve
AGI over the network, but instead, it just discusses how the
principle of AI embodiment can grant AI systems new abilities
to interact with the world. Moreover, the work in [42] is
impractical because learning in the physical environment itself
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can incur irreducible, risky costs for AI systems, similar to RL
that learns through trial and error in the real world. In addition,
the work in [42] does not define the specific role of wireless
functionalities in the interaction and perception processes.

Furthermore, since the world can be largely explained in
terms of cause and effect [43], there has been a number of
works that looked at the use of causal structures for design-
ing [44] or reasoning over world models e.g., [37] and [38].
Indeed, the work in [44] leverages a causal foundation model
to model the world for embodied AI interactions. Nevertheless,
the solution of [44] cannot capture generalizable5 abstrac-
tions of the world, and it lacks true transparency since it
still relies on black-box foundation models. Moreover, the
work in [45] leverages contrastive learning to disentangle and
perceive abstract representations of objects in world models.
However, this prior work does not take into account the
crucial role that analogical reasoning plays in the perception
of unforeseen objects and how to relate them to generalizable
abstract representations. Indeed, relating unforeseen objects
to similar, real-world elements is largely overlooked in [44]
and [45]. Alternatively, in more transparent models like that
of [37], a world model is designed as a structural causal
model (SCM) to assist in explainable RL decisions. In [38], a
world model is constructed in a causal partially observable
Markov decision process to give an autonomous agent the
abilities of imagination for physical reasoning. Considerably,
the presented models in both [37] and [38] are confined to a
closed environment comprised of a limited set of probabilistic
action/state spaces that do not have abstract representations.
As such, intuitive physics operations for object manipulation
and navigation in the real world – the core of common sense
– is not captured in the solutions of [37] and [38]. Although
some recent works such as [46] provide evidence for some
form of common sense emerging in LLMs, they do not build
a real, physically-consistent world model. Hence, while LLM
designs like those in [46] may answer questions that require
some features of common sense, such answers remain tied to
textual knowledge and lack grounding in the physical world.
Indeed, common sense acquired from text does not provide
sufficient means for generalization to out-of-domain scenarios.

One of the most prominent and comprehensive visions
towards AGI was articulated by Y. LeCun in [35]. For
achieving AGI, [35] envisions a modular cognitive brain
architecture composed of six different modules representing
cognitive abilities: perception, world model, actor, cost, short-
term memory, and configurator. As will be evident in the next
section, our vision of wireless systems with AGI abilities will
align with those modules. However, it is not a straightforward
application of this prior vision [35]. For instance, the AGI view
of [35] faces different challenges that limit its adoption into
wireless systems. These challenges stem from the underlying
intention of granting AGI abilities directly to individual agents
(e.g., autonomous vehicle, robot, etc.) through this cognitive

5Herein, the term “generalizable” refers to obtaining a common gen-
eral denominator between abstractions of similar real-world elements. This
is necessary to proficiently approach unforeseen elements. Moreover, this
encompasses the generalizabilty of the representation itself by remaining
invariant to out-of-distribution shifts.

architecture, an idea that has some key shortcomings:

1) Independent worlds: The framework of [35] considers
a single agent scenario and attributes the physical world
exclusively to this agent. However, real-life situations
involve different agents that share the physical world as
they interact with each other. Relying on agent-specific
perspectives can have direct implications on building
world models. First, granting individual AGI agents the
ability to build their own worlds independently will
not necessarily lead to having consistent models of the
same physical world, even if those agents share some
information. This is because AGI agents build their world
models according to their individual experiences and
knowledge. Consequently, we cannot guarantee that the
predicted “futures” or planned actions by individual AGI
agents comply with one another. Second, the interaction
between AGI agents in a shared space would still require
a coordination of their actions. For instance, consider
two vehicles at a crossroad. It is natural to ask which
vehicle will pass first, even if both can leverage intuitive
physics to foresee the possibility of an accident if they
do not decelerate. While that may seem very basic and
intuitive to human nature, because they lack coordination,
AGI agents built on the approach in [35] could stumble
in such situations. This stems from the lack of wisdom
and ethical motives in such agents, that are necessary to
navigate in such situations, particularly in the absence of
effective means for reliable coordination. Alternatively,
a possible idea could be to divide the world between
agents. Accordingly, each agent would control only their
limited part of the world and plan their actions, however,
this does not reflect the interactive reality of the world.
Finally, predicting the future of a common space would
require time synchronization between the AGI agents to
become effective. Nevertheless, this synchronization is
not guaranteed by scattering AGI capabilities individually
across agents, as foreseen in [35].

2) Limitless perception: Perceiving the world and then
focusing on the limited part and details relevant to the
task (or objective) at hand faces many challenges. On the
one hand, inferring which parts of the world are most
relevant to the task is typically beyond the capabilities of
individual AGI agents. In [35], a configurator component
is defined for this purpose, however, its elements remain
undefined. On the other hand, it is challenging to define
the physical limits of perception for an autonomous
agent. For instance, consider an autonomous airplane; it is
imperative to clarify the limits of the world that it should
perceive and what it should focus on. One may argue
that it should perceive just what it is able to detect based
on its abilities. Another argument may be to perceive the
whole world all the way from the Earth up to space as it is
relevant to its specific task. In addition, many autonomous
lightweight agents (e.g., drones) are often constrained
by limited sensing, computing, and storage capabilities,
which can be impractical for acquiring common sense
(i.e., building a world model) or AGI. All these aspects
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Fig. 5: Illustrative figure showcasing the operation of an AGI-native telecom brain and its different modules. This design is inspired from
the AGI architecture in [35], but it refines it for our communication network purposes.

related to perception are not addressed in [35].
3) General-purpose agents: In general, autonomous agents

are typically designed to be aware of their numerous,
narrow tasks. Hence, they are not necessarily reconfig-
urable to execute any arbitrary task as the design implies
in [35]. In other words, equipping autonomous agents
with a cognitive architecture, such as in [35], implies that
those systems must be able to deal with any objective.
Nevertheless, in reality, an autonomous agent may fail to
achieve a given objective if it happens to fall outside its
scope. Practically, an autonomous agent does not need
to perform every task (i.e., general-purpose), but it is
rather confined to a defined set of germane tasks (i.e.,
multi-purpose). For instance, an autonomous vehicle must
know the operations needed in the scope of driving, but
it will never need to learn how to “fly” like an airplane.
This is different from learning a new skill or being
directed to fulfill a new objective within its defined scope.
Instead, an autonomous vehicle must know how to act
in corner cases that appear when performing its defined
narrow tasks. Although agents having AGI as in [35] can,
in an ideal case, solve a large number of these corner
case situations, this can become an expensive solution
given the massive number of autonomous agents that
are expected to proliferate over next-generation networks
and systems. Instead, it may be more desirable to find
sustainable, concise, and steerable solutions that keep
AGI controllable, while still granting autonomous agents
the ability to deal with corner cases, as needed.

Despite the above drawbacks, the vision for AGI presented
in [35] provides us with a valuable basis for wireless net-
works to progress towards human-level AI. In a nutshell, the
previously discussed works, like [35], [42], and [47] do not
consider how real-world systems like wireless networks can
reach AGI levels in which both the network and its agents
can operate with AGI. Evidently, wireless networks must start
by building world models of the physical world. To do so,
one can exploit features from concepts like DTs and the
metaverse because they provide means of replicating the real
world through the lens of the wireless network [2]. Herein,
this can be a promising solution for the network to procure
common sense and the autonomous agents to acquire AGI. To
shed light on this promising avenue, we next present one of
the first visions that explores the design of a new generation
of wireless system with AGI capabilities.

B. Proposed vision: AGI-native wireless networks

As shown in Fig. 5, we envision a new breed of wireless
systems with AGI abilities, that can reason, plan, imagine,
think, and have common sense, operating with a novel cogni-
tive brain architecture that we call the telecom brain. Some of
the key concepts related to this architecture are summarized
in Table I. This architecture tailored to wireless systems
comprises three main modules related to the cognitive abilities
that we have discussed:

• Perception: A perception module allows the wireless
network to capture generalizable abstract representations
from the physical world through a fusion of techniques
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like contrastive learning and causal representation learn-
ing. These representations should exhibit an optimal
level of complexity that balances between causality and
generalizability.

• World model: The envisioned world model couples the
causal aspect of the world and the transparency of SCMs
with hyper-dimensional (HD) computing [48]. Thus, our
envisioned world model can manipulate the representa-
tions in the form of HD vectors that are compatible with
the intuitive physics operations of common sense and
suitable for analogical reasoning.

• Action-planning: This module considers two main
strategies to plan the actions of autonomous wireless
systems: a) intent-driven planning and, b) objective-
driven planning. These strategies build on brain-inspired
methods such as integrated information theory (IIT) [49]
and hierarchical abstractions.

These main three modules also rely on interconnections
with a cost module that operates based on various network
QoE indicators (explained and summarized in Table I) as
well as with a memory module, as shown in Fig. 5. This
envisioned cognitive architecture is anticipated to bring forth
unprecedented levels of intelligence, which can transform the
wireless network from an AI-native system into an AGI-native
system. With common sense, this new generation of networks
could achieve a leap in generalization to unforeseen scenarios
and autonomous abilities by operating at AGI levels. Thus,
we will explore how the cognitive architecture in Fig. 5, with
the emergence of the metaverse, will bring in new levels of

general intelligence6 into the network. Next, we provide a
concise summary of the operation of the three main modules
that drives in AGI into the network.

Perception. As evident from Section II-A, in order to
design a wireless system with AGI capabilities, we must
endow the network with the ability to perceive the physical
world. Here, perceiving the state of the world can be equivalent
to providing a synchronized, real-time digital replica of it.
Remarkably, this is exactly the role of the digital world of
the metaverse that represents this replica, while encompassing
its different physical constituents (see Fig. 6) [2]. These
constituents include humans (digitally represented as so-called
humanoids), autonomous agents, physical assets (e.g., build-
ings, infrastructure, etc.), and the network itself (i.e., RAN
and core). Notably, autonomous agents are DT-enabled appli-
cations, that have their physical twins (PTs) replicated into
the digital world as DTs [2]. Clearly, autonomous agents that
require common sense will now be perceived as DTs by the
network. This is a crucial angle that is surprisingly overlooked
in works that deal with autonomous agents (e.g., vehicles,
drones, etc.), such as [35], [42], and [47]. In essence, DTs are

6We acknowledge that the term AGI, when used to refer to actual human-
level intelligence, could be controversial since complete, fully-fledged human-
level intelligence may never be attained by AI. However, we use this
commonly adopted term to refer to an AI system that can have common
sense. Although we call this instance of intelligence “general”, it is practically
specialized to a multitude of specific domains or tasks. Thus, AGI refers to
a special form of intelligence characterized as being task-independent, with
distinct generalization performance that could outperform the one associated
with narrow AI. This stems from the fact that even humans are intelligent
within specific domains and not in every domain.
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Fig. 7: Illustrative figure showcasing simple, direct examples of AGI-native networks that deal with unforeseen scenarios through:
(A) intuitive physics and (B) analogical reasoning. In (A), the network can adjust the beamforming to avoid signal blockage from an

obstacle. In (B), the network can identify an unforeseen object as an obstacle and maneuver the vehicle away. Naturally, these examples are
provided for illustrative purposes, and the proposed AGI-native network will be able to deal with more complex and large-scale use cases.

bi-directional AI models that enable proactive configuration
and performance optimization of autonomous agents [50]. To
facilitate their aforementioned roles, DTs must acquire their
proactive abilities from the world model of the network.

World model and action-planning. Integrating the per-
ceived digital world with a world model can allow predicting
the plausible future states of the network, including those of
the DTs of the autonomous agents. This can be done by
representing the perceived abstractions as HD vectors and
manipulating them with the actions from the action-planning
module. On the one hand, simulating plausible (i.e., probable)
reality worlds can enable planning the optimal actions to be
executed by the AGI-native network. As discussed earlier in
Section I-B, this is the essence of AGI. On the other hand,
the network will now acquire an additional degree of freedom
to optimize the future states of the DTs. For this purpose, the
DT configuration feedback is passed to the PTs in the physical
world. This feedback includes the configurations needed for
the PT to reach this optimal (predicted) future state. Thus, this
feedback can account for any unforeseen scenario that could be
encountered by the PT in the physical world. Consequently, the
PT operates as if it has acquired common sense. By leveraging
DTs and an AGI-native network, autonomous agents do not
need to acquire AGI directly as discussed in prior works [35].
In contrast, autonomous agents become AGI-augmented DTs
that are endowed with common sense from the network. There-
fore, an AGI-native network can enable general intelligence on
both the network and agent levels, simultaneously. That said,
the potential of AGI-native networks also extends to enable
other use cases beyond revolutionizing autonomous agents.

Use cases of AGI-native networks. Evidently, the digital
world considers twinning the core and RAN elements of
the network, such as holographic RISs (see Fig. 6), within
the network itself (i.e., RAN-DT and core-DT). In fact, the

network can rely on its twin to plan its actions. Hence, an
AGI-native network will be driven by its telecom brain that
determines its actions and orchestrates its resources, as shown
in Fig. 5. Similarly, the emergence of AGI-native networks
is anticipated to revolutionize the human-centric applications
and experiences of the metaverse as well. In particular, an
AGI-native network can support AI-driven cognitive avatars
that require common sense to faithfully embody and immerse
XR users over the network. Moreover, an AGI-native network
can leverage its common sense to estimate the states of
network users, which can be vital in enabling novel metaverse
applications such as holographic teleportation. For example,
these new abilities can play a role in reliably teleporting
the interactive assets of industry 5.0 applications over the
network [2]. In Fig. 6, we provide an illustration that shows the
blend of the telecom brain with human-centric use cases and
constituents (see Table I for the definition of the constituents).

Examples of intuitive physics and analogical reasoning.
To further exemplify the abilities of an AGI-native network,
we can directly extend our previous, illustrative example on
causal reasoning for THz beamforming. Let us consider an
autonomous vehicle navigating the real world when suddenly
an object appears in its proximity, as shown in Fig. 7. For
the discussion purposes, let us consider this object to be
a dog [52]. Next, we will consider two examples to show
the vital impact of AGI and how the network and vehicle
may fail without it. In the first example, this object acts an
obstacle that blocks the beam from the BS to the vehicle. In
this first example, this object was previously identified by the
network in a different context. In this case, the AI model in
the air interface was trained to specify the beam according to
the causal AI solution (i.e., based on channel response and
location of the vehicle) in the absence of this obstacle. As a
result, the network is not trained to this unforeseen scenario
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TABLE I: Lexicon of the index terms used in AGI-native wireless systems

Index Terms Definition
Reasoning The ability to make sense of observed information and use inference to reach new and logical conclusions

from acquired knowledge.

Planning • The process of anticipating the right actions to reach a specific goal.
• The ability to think about the future.

Common Sense

• A cognitive trait pertaining to the acquired background knowledge about the world that can be
leveraged to deal with unfamiliar scenarios and reach reasonable conclusions.

• Common sense encompasses the general understanding of intuitive physics and intuitive psychology
shared by (i.e., common to) humans (see Fig. 4).

• Common sense includes the ability to foresee the consequences of actions and identifying the
probable, plausible, and impossible scenarios that can take place in the observed world.

Analogical Reasoning Ability to relate and generalize between instances and scenarios to cope with unforeseen conditions.

Intuitive Physics Basic core skills of physical object manipulation and navigation.

Vertical Generalizability Ability to generalize to out-of-distribution shifts in the data.

Horizontal Generalizability Ability to generalize by leveraging the common knowledge about the world to deal with out-of-domain
scenarios and corner cases.

Perception Cognitive ability for acquiring an abstract representation of the state of the real-world constituents.

AGI-Native Telecom Brain An AGI system encompassing an interconnected architecture of cognitive modules that can autonomously
control and orchestrate a wireless network (see Fig. 3).

Digital World An alternative synchronized digital reality that replicates the physical world and its constituents in the
form of real-time abstractions.

Cognitive Avatars

Next-generation of AI-driven avatars that can:
• Learn how to map sensory and tracking inputs of XR users to movements and actions at the avatar.
• Apply reasoning abilities to deduct the sensory feedback and actuations that are passed from the

avatar to the XR user.

AGI-Augmented Digital Twins (DTs) Bidirectional operational AI models that can proactively optimize and configure the states of autonomous
systems with common sense feedback endowed through an AGI-native network.

Physical Assets Unidirectional (digital) simulation streams of massively sensed physical elements (e.g., Statue of Liberty).
In general, these assets include, but are not limited to: landmarks, industry 5.0 machines, etc. [2]

Humanoids Massively sensed matterless human representations that capture the human presence in the digital world.

Quality-of-Physical Experience (QoPE) Metric to assess the QoE delivered to users in the physical world (e.g., XR users). Its dimensions
include the rate, reliability, latency, etc. needed by these users.

Quality-of-Digital Experience (QoDE)
Metric to assess the QoE of DT-enabled autonomous agents (e.g., vehicles). Its dimensions could include
satisfying trustworthiness of the DT configurations, synchronization between the PT and DT, need to abide by
guardrails, etc.

Quality-of-Virtual Experience (QoVE) Metric to assess the QoE of cognitive avatars in the virtual world. Its dimensions could include
synchronization, fidelity, and accuracy in replicating the actions between the XR and avatar.

Quality-of-Network Experience (QoNE)

• A novel metric that captures the quality of the autonomous operation in an AGI-native network in
terms of how it can independently achieve its own demands (e.g., guarantee sustainability, satisfy
intents, etc.).

• It reflects the “relief” or discomfort of the network from its own (subjective) first-person point-of-
view, and can possibly incorporate metrics that capture other conscious abilities [51].

(i.e., appearance of this specific obstacle and its ability to block
the LoS) and can fail to adjust the beamforming. In contrast,
when endowed with AGI, the network can identify that the
beam would be blocked (i.e., through intuitive physics) and can
modify its configuration accordingly to provide an alternative
beam. In the second example, we assume the object crosses
in front of the vehicle, and the vehicle has never encountered
this unforeseen obstacle before. In this case, under a classical
AI-native system, the action of the vehicle is undetermined as
it has never been trained to deal with this object. In contrast, if
the vehicle is endowed with AGI from the network, then the
network could identify this unfamiliar object as an obstacle
(e.g., through analogical reasoning). Accordingly, the network
can maneuver the vehicle away from this object (e.g., through
intuitive physics) to avoid a potential crash. In both examples,
an AGI-native network can further deal with these unforeseen
situations and objects by assigning the vehicle to a different

beam.

Evidently, the envisioned AGI-native network can overcome
the limitations of task-defined models that have constrained
AI-native networks to date, and, instead provide a task-
independent model for general intelligence. Henceforth, AGI-
native networks can leverage such new abilities to deliver
the quality-of-physical experience (QoPE), quality-of-digital
experience (QoDE), and quality-of-virtual experience (QoVE)
of immersive XR users (see Table I for the definitions of these
metrics), DT-enabled autonomous systems (e.g., autonomous
vehicles), and cognitive avatars, respectively. These metrics
constitute key examples of the extrinsic reward (cost) of the
telecom brain. In addition, this reward must be optimized along
with the telecom brain’s own quality-of-network experience
(QoNE) that guides its autonomous operations in planning
its actions (see Table I and Fig. 5), where QoNE constitutes
the intrinsic reward of the telecom brain. Empowered with
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the ability to deal with unforeseen scenarios and effectively
generalize, AGI-native networks can push the boundaries of
intelligence beyond the AI-native paradigm currently under
consideration in 6G and overcome its limitations to pave
the way for an advanced set of revolutionary wireless user
experiences.

C. Contributions

The main contribution of this paper is a holistic, forward-
looking vision of AGI-native wireless networks, as articu-
lated in Section II-B. This vision advocates for a disruptive
paradigm shift in the traditional evolution of wireless networks
that is asymptotically capped by the different physical limi-
tations of conventional communication enablers illustrated in
Fig. 3. In particular, we envision that the metaverse will play
a crucial role in pushing towards a new AI-based revolution
for networks. On the one hand, the metaverse with its digital
world can enable a real-time perception of the physical world,
which is an essential factor to enable AGI-native networks.
On the other hand, the metaverse brings forth novel use cases
and applications such as cognitive avatars and AGI-enabled
DTs that require common sense abilities. To the best of our
knowledge, this is the first work that explores the design of
wireless systems with common sense as a pathway for the
emergence of next-generation AGI-native networks that bring
forth a revolutionary set of capabilities, users, and experiences.
In summary, our key contributions include:

• We propose the first vision of an AGI-native wireless
system, that promises the next revolution towards a new
“G” of networks. Unlike its previous generations, we
envision this network to be driven by a telecom brain
architecture, as shown in Fig. 5. In addition, we articulate
how this AGI-native network can catalyze a new gener-
ation of human-centric applications. In our vision, we
advocate for the network to become the main entity that
acquires common sense to reach AGI levels, rather than
the individual autonomous agents, as assumed in [35]. In
contrast, individual agents will become AGI-augmented
DT applications that are endowed with common sense
from the AGI-native network. This interplay between
network-level AGI and agent-level AGI is necessary to
push the frontiers of both communication and AI systems.

• We concretely define the pillars of common sense, as
per Fig. 4. Then, we investigate the key role that com-
mon sense plays in AGI-native networks, highlighting
how its integration into wireless networks can pave the
way towards their fully autonomous operation. Here, we
envision common sense to be the cornerstone for gen-
eralizable reasoning and planning abilities in networks.
In particular, we showcase how such abilities allow a
communication network to truly deal with all possible
corner cases that it can face along with its autonomous
agents.

• We show how an AGI-native network could acquire com-
mon sense by building a hypothetical world model, rather
than by learning from the real world itself, as assumed
in [42]. To perceive this real world, we leverage the the

ability of the network to support a synchronized digital
world, in a scalable manner. Effectively, this scalable
solution is facilitated by deploying a decentralized digital
world architecture over the network. We discuss how
the use of such a scalable network solution can help
bypass the need for the configurator module which has
been a largely undefined element in the design of AGI
systems [35]. Moreover, this scalable approach involves
predicting the world in a concise, synchronized, and well-
coordinated manner, as opposed to randomly predicting
individual futures at the level of individual agents.

• We propose capturing generalizable forms of abstractions
of real-world elements by disentangling their seman-
tic content through the fusion of ML techniques like
contrastive learning with causal representation learning.
Subsequently, we show how this step is crucial to enable
analogical reasoning between elements and effectively
deal with unforeseen scenarios in AGI-native networks.

• We propose the first physics-based, causal world model
in the literature. The proposed model merges the trans-
parency of SCMs with the higher order vector representa-
tions of HD computing [48] to effectively manipulate ab-
stractions in a brain-inspired fashion, while capturing rich
causal relationships and representing the intuitive physics
operations pertaining to common sense. To convert these
abstract representations into the HD space, we propose
to leverage the mathematical underpinnings of category
theory [53] that can facilitate this transformation.

• To guide the autonomous decision-making operations
of AGI-native networks, we design two action-planning
methods driven by intents and objectives. Inspired from
neuroscience, we discuss how concepts such as IIT [54]
can play a major role in the design of the intent-driven
and objective-driven planning strategies.

• We discuss how AGI-native networks can provide re-
silient and synchronized avatar experiences to faithfully
immerse and embody XR users in the metaverse. More-
over, we show how an AGI-native network can leverage
its intuitive psychology capabilities pertaining to the the-
ory of mind (ToM) [55] to enable brain-level metaverse
experiences such as holographic teleportation.

• We conclude with a number of recommendations on how
to evolve towards AGI-native wireless networks in the
beyond 6G era.

The rest of the paper is organized as follows. In Section III,
we study how to design the telecom brain architecture of an
AGI-native network including its different modules shown in
Fig. 5. In Section IV, we present the different use cases and
experiences that an AGI-native network can bring forth for
humans and autonomous agents. Finally, we conclude with a
set of recommendations along the path to enable AGI-native
networks in Section V. A summary of this organization is
shown in Fig. 2.

III. DESIGNING THE TELECOM BRAIN: A SYNERGY OF
AGI AND THE DIGITAL WORLD

We begin our design of AGI-native networks by shedding
light on how to build the telecom brain of AGI-native wireless
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systems. In particular, we provide a comprehensive discussion
of the various modules (shown in Fig. 5) needed for the design
of the telecom brain. Here, we emphasize that the cornerstone
of common sense is representing this accumulated background
knowledge in a structural form that enables simulating a
general model of the world. Hence, building the modules
needed to to acquire common sense includes sequential steps
that begin with sensing the physical world and perceiving it
in the form of abstractions over the network. This is followed
by efficient representation of these abstractions as causal HD
vectors that can be manipulated with the intuitive physics
operations of common sense. Accordingly, this will allow
the network to infer the next plausible states and plan the
corresponding network actions.

A. Sensing: How can we capture the physical world over
wireless networks?

To establish a real-time, digital replica of the physical world
over the network, we must first capture the real-time sensory
data of the different physical constituents before feeding them
to the perception module of Fig. 5. This includes the data
collected or generated by DT-enabled autonomous agents, hu-
mans, and physical assets (e.g., Eiffel Tower, Statue of Liberty,
etc). To facilitate this process, it is necessary to integrate
diverse sensing technologies in 6G and beyond networks that
can range from joint sensing and communications (e.g., in
the sub-THz bands [56]) to wireless sensor networks, along
with other sensing infrastructure (e.g., vehicle-to-everything
(V2X)). This integration can help create a collective view of
the physical world from multiple angles, close any sensing
gaps, and ensure a faithful replication process.

Nevertheless, attempting to replicate the real world in a
centralized, cloud-based manner over the network can lead
to significant communication delays that can jeopardize the
synchronization between the physical and digital worlds. To
address this issue, a decentralized, edge-enabled digital world
is necessary. However, this requires establishing effective
modeling techniques of the physical world that can capture
the states of its constituents (e.g., assets, autonomous agents,
etc.), while allowing efficient decomposition of the replication
process over the edge. For instance, these techniques must
consider the different computing and communication resources
at each network edge to preserve the maximum synchroniza-
tion between the physical and digital counterparts of these
constituents. In our previous work [57], we demonstrated
that the optimal approach to achieving this digital reality
involves decentralizing the digital world into so-called “sub-
metaverses” – digital counterparts of physical world spaces.
These sub-metaverses are orchestrated, along with their com-
ponents (e.g., assets, DTs, etc.) at the wireless edge to preserve
the highest levels of synchronization. On the one hand, this or-
chestration aims to conserve the inter-synchronization between
the physical and digital worlds and ensure upmost levels of
real-time replication. On the other hand, this is complemented
by minimizing the delay gap between the sub-metaverses so as
to preserve the intra-synchronization between the distributed
parts of the digital world. In this case, the digital world can

(a)

(b)

Fig. 8: Region partitioning and DT association according to the (a)
SNR method and (b) proposed optimal transport method [57].

conserve its overall homogeneity as a collective structure. For
AGI-native wireless systems, this synchronization is neces-
sary as it will allow the telecom brain to predict concise
future states that truly reflect the real-state of the physical
world. This, in turn, can allow taking the proper network
actions and enabling reliable coordination of the DT-enabled
autonomous agents. This solution differs from the approach
outlined in [35] that relies on individual agents to predict the
future states individually, thereby lacking synchronization and
coordination between agents in the prediction process which
can possibly lead to chaos in the physical world, as explained
in Section II-A.

Thus, as per our work in [57], we can model the physical
world by using a probabilistic approach with a continuous
distribution of sensors that capture the states of physical
objects and assets. In this model, we incorporate two essential
metrics: a) volumetric sensing density (bps/m3), and b) spatial
distribution of sensors. Here, the volumetric sensing density
represents the amount of data being produced from each spatial
position in the physical world. Moreover, the spatial distri-
bution describes the likelihood of the sensors being located
around the 3D assets in the physical world. Thus, it is the
fusion of both metrics that provides a reflection of the effective
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data flowing from the physical world. This perspective is
aligned with the view that future wireless systems can be
seen as massive sensing or imaging devices and not just mere
communication systems [1].

In addition, our proposed solution in [57] provides an
effective technique for distributing the digital world through an
iterative algorithm that can guarantee the maximum synchro-
nization between the physical and digital worlds. As shown in
Fig. 8 from [57], our solution can provide a non-uniform dis-
tribution and association of the physical world and its PTs, as
sub-metaverses with their corresponding DTs, respectively, at
the edge. Unlike the uniform signal-to-noise ratio (SNR)-based
association scheme, our distribution method also considers
the synchronization intensity µ which represents the tolerable
threshold at which different DT applications can replicate their
PTs. Moreover, our proposed method in [57] considers the
computing and communication resources associated with each
edge in the distribution process. Hence, our method provides a
comprehensive solution to determine the optimal association of
sub-metaverses and DTs at the edge. In fact, our results show
that this non-uniform distribution appears due to an optimal
tradeoff between sub-metaverses and DTs associations at the
edge that can ensure that the highest inter-synchronization is
achieved and the synchronization intensity requirements of DT
applications are met.

Open Problems. Although sensing the physical world over
wireless networks has been instantiated with prior works such
as [57], there remain a number of open problems that require
further investigation:

• Replicating the RAN and core: Replicating the physical
world is not just exclusive to mirroring the wireless users,
but it also encompasses a replica of the network. That
said, the RAN and core components must be replicated
in a distributed manner over the network to ensure
the scalability in providing a synchronized twin of the
wireless system. In this case, it is necessary to investigate
how to distribute the replication of RAN elements close to
the network edge to preserve their synchronization with
the physical counterparts, while hierarchically replicating
the other components of the network as we move closer
to the core. Hence, it is challenging to set the boundaries
and designate the precise orchestration of the RAN-DT
and core-DT over an AGI-native network.

• Designing efficient collaborative sensing schemes:
Upon replicating the physical world, multiple modes of
sensing data will be gathered to describe the physical
elements (e.g., LiDAR, Internet of Things (IoT) sensors,
etc). Clearly, sensing data may include redundant infor-
mation from multiple modalities. Hence, it is necessary
to design collaborative sensing frameworks that can com-
bine the distributed sensing inputs to efficiently utilize the
communication resources. That said, it is also necessary
to consider methods such as the value of information to
reduce the rounds of sensing updates on the network.

• Joint sensing and communications: Naturally, for creat-
ing a massive replica of the world, it will be important to
design joint sensing and communication schemes that can
exploit emerging wireless technologies (like THz bands)

to get an image of the real world and create parts of
the digital world. Indeed, using the communication signal
to perform sensing and imaging is an important open
problem here. Hence, the design of low-cost, effective
joint sensing and communication systems is an interesting
direction for research in this component of our AGI
vision.

After distributing the sensing process of the world over the
network, the subsequent step is to perceive the world in the
form of real-time abstract representations. In fact, replicating
the real world into its digital counterpart is facilitated by this
perception process. Creating such representations is essential
for determining the plausible future states of the world and
its elements (e.g., assets, autonomous agents, etc.). Moreover,
these abstract representations will be the key to carry out
analogical reasoning and generalizing in unforeseen scenarios.
Next, we will show how such generalizable abstractions can
be uncovered by disentangling the “semantic representations”
that exist in the sensory data coming from the physical world.

B. Perception: From data to representations

Perception is one of the primary cognitive abilities that
should exist at the frontier of the telecom brain, as observed
from our proposed framework in Fig. 5. In essence, per-
ception is the cognitive ability that allows the computation
of an abstract representation of a real-world element. An
abstract representation refers to a simplified structure of an
element that captures its essential features while omitting
irrelevant details. As these representations consider embedding
the different meanings, properties, and functions of real-world
elements in an abstract form [58], an AGI-native network may
require a unique approach therein to unleash its full set of ca-
pabilities and enable its functionalities. In particular, an AGI-
native network must exploit these abstractions to make future
predictions and analogies for the unfamiliar elements it can
encounter in the physical world. Therefore, to facilitate these
functionalities, the representations in an AGI-native network
must exhibit certain characteristics beyond just abstraction. In
particular, the telecom brain in an AGI-native network must
carefully encode the abstract forms into representations that:

• Sufficiently hold their essential characteristics.
• Uncover the relations with other representations.
• Maintain a common generalizable form that allows car-

rying out analogical reasoning in unforeseen scenarios.
On the path towards capturing such representations from

the physical world, the network must start by understanding
the contextual meaning of the real-world elements from their
sensory data. In other words, the telecom brain must unravel
the semantic content elements [52] pertaining to each physical
element. Here, the “semantic” aspect broadly refers to the
meaning inside the data. Hence, a semantic content element
therefore refers to the meaning of a physical element that
is present within the captured data points of this element.
This can help abstract the essential features of each physical
element to further encode them into corresponding represen-
tations. In fact, the process of abstraction and representation
is the cornerstone of replicating the physical world into its
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corresponding version of the digital world. However, encoding
these representations cannot take place by embedding the
underlying meaning in the semantic content element in a
minimally sufficient manner, as is the case in the paradigm
of semantic communications [52]. In contrast, encoding in an
AGI-native network requires an advanced level of represen-
tation complexity to express the aforementioned requirements
about maintaining the essential characteristics, uncovering the
relations, and remaining generalizable. On the one hand, these
representations should capture inherent causal relations in
the observed data to faithfully predict future states of the
world and accurately plan the actions of the telecom brain.
This is expected to minimize the error between the predicted
abstractions and the real world. This error minimization is
also expected to drive lower costs7 (or higher rewards) for
the telecom brain. On the other hand, as the complexity of
these representations increases, the representations start to
overfit the semantic content. Therefore, the representations
must conserve a generalizable form for analogical reasoning.
This generalizable form makes representations relatable to
identify unforeseen elements.

However, before discussing how abstract representations
should be designed in AGI-native wireless systems, we must
clarify the distinctions and synergies between our proposed
methodology and that of semantic communications [52], [59].
Similar to semantic communication systems that consider
capturing representations of the different content elements in
the data, we leverage semantic representations to capture the
real-world elements and identify their real-time status from
the sensor data. Nevertheless, there exist key fundamental
differences with classical semantic communications:

• In general, semantic communications leverage abstrac-
tions to enhance link level efficiency and minimize
communication resources. However, AGI-native networks
must exploit abstractions to create a complete and holistic
understanding of both the physical world and the network.
Hence, abstractions in AGI-native networks will play
a different role than the one they play in semantic
communications. They will also have to possess other
distinct properties. Indeed, abstract representations have
a role central to the different modules of the telecom brain
architecture shown in Fig. 5. Hence, this role extends be-
yond the transmission of the meaning of messages which
is the focus in semantic communications, to computing
and controlling the physical world. This is particularly
reflected in their aforementioned characteristics that need
to i) hold their essential characteristics, ii) uncover the
essential relations, and iii) maintain a generalizable form.

• In essence, semantic communication exclusively deals
with the reconstruction of a Tx’s message at the Rx side.
While that may be possible by exploiting minimally suf-
ficient representations of real-world elements, leveraging
those same representations to predict the future states of
these elements is inadequate for AGI-native networks. In
other words, minimally sufficient representations may fall

7Here, the cost (or reward) is captured by the QoPE, QoDE, QoVE, and
QoNE, shown in Fig. 5.

short in uncovering the entire causal relations between
representations. Consequently, this will directly degrade
the faithful predictions of the telecom brain along with
the anticipated rewards gained from its actions. Finally, it
is important to note that AGI-native networks use abstract
representations to deal with problems beyond just Rx
reconstruction.

Now that we have distinctly pinpointed the uniqueness of
abstractions in AGI-native networks, we describe how we can
capture the semantic content elements from the sensing data.
This procedure is illustrated in Fig. 9 and explained in the
following two steps:

1) Disentangling learnable and spurious data: The first
step to capture abstractions is to disentangle well-structured
points within the data from those that are weakly structured.
On the one hand, well-structured data points are those that
are rich in meaning and express a consistent format. On the
other hand, weakly structured data points pertain to spurious
or even very specific instances that lack any format, and
do not necessarily map to the essential characteristics of
a semantic content element. Subsequently, the goal of this
step is to categorize the data into two streams: a) learnable
and b) spurious. Effectively, it is the learnable data that
will contribute to the abstract representations in AGI-native
networks. In this case, the spurious data can be neglected
as it lacks any underlying structure and does not represent
specialized semantic attributes of the elements that can further
contribute to the representation.8 This is the first step to
abstract and differentiate between the elements in the data.
Here, one promising technique that can facilitate extracting
these structured representations from the data is contrastive
learning [60]. As shown in Fig. 9, the telecom brain can
disentangle the learnable and spurious data of each real-world
element through contrastive learning. In fact, our work in [61]
demonstrated how we can properly disentangle and structure
the data, to efficiently transmit it over wireless networks by
adopting a semantic language of these representations. Also,
it is worthwhile noting that multi-modal sensing requires the
fusion of learnable data structures from each modality into a
single representation.

Here, we can also note that once we have acquired struc-
tured, learnable data, the AGI-native network can further
decompose the data into two components: i) structured entity
and, ii) variability [52]. The structured entity represents the
general form of the representation that is shared among
different real-world elements, while the variability refers to
specific information that is exclusive to the specific element
among others. For instance, a learnable data related to a
humanoid (see Table I for definition) can be decomposed
into a structured entity of a human and the specific data
points that differentiate between a man and woman are the
those of the variability, as shown in Fig. 9. Thus, maintaining

8An abstract representation is an invariant, well-defined, reduced structure
of an element. Therefore, the contributions of spurious data points, that lack
these crucial features, to abstractions is minimal and can be further neglected.
This is a key difference from semantic communications that still needs to
transmit this type of data stream to reconstruct the elements back at the Rx.
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Fig. 9: Illustrative figure showcasing the process of perception in the telecom brain that includes: i) Disentangling of learnable and
spurious data to capture the semantic content elements contributing to the abstractions of real-world elements and, ii) Encoding these

abstractions into representations by optimizing their complexity levels to balance between causality and generalizability.

a generalizable representation will depend on the structured
entity that can be shared with similar real-world elements.

Thus far, we have captured the learnable structures of the
elements that will contribute to their abstract representations.
The next necessary step is to encode these abstract forms into
the corresponding representations. As mentioned earlier, these
representations must maintain a certain level of complexity,
beyond the minimalism of semantic communications, that can
uncover rich causal relations while preserving a generalizable
structure for similar real-world elements. In other words, the
telecom brain must further optimize the complexity level of
the representations to balance between a) capturing the causal
relations necessary to have faithful predictions and accurate
planning, and b) maintaining a generalizable structure of
representations for analogical reasoning. Next, we will show
how to optimize the complexity of these representations so as
to balance between causality and generalizability.

2) Causal vs. generalizable representation learning for ab-
stractions: Representing the captured semantic content ele-
ments in abstract form requires encoding them into proper
symbols, as shown in Fig. 9. These symbols are related through
causal relationships. Hence, these symbols must be designed
to facilitate the discovery of the rich causal relations between
them by the telecom brain. With the proper design of such
symbols, the telecom brain can faithfully predict the future
states of the real-world elements and accurately plan the
actions of the network.

Nevertheless, uncovering the majority of causal relations be-
tween the representations requires encoding them into detailed,
complex symbols. Hence, it will be challenging for the telecom
brain to faithfully predict the future states of the elements with
such granular details in the symbols. Moreover, the additional
degrees of complexity introduced by detailed encoding may
not necessarily achieve significant improvements in terms of

reward (or cost) for the actions of the telecom brain. Moreover,
having more complex symbols will favor the variability in the
representations over the structure. This is due to the fact that
including more granular details in the symbols will reduce the
similarity between the symbols of similar real-world elements.
Consequently, this can hinder effective analogical reasoning.
For instance, encoding the semantic content element of a
humanoid in a complex form will capture each of its minute
details (see the low complexity and high complexity icons
in Fig. 9). Subsequently, such encoding will capture much
more rich and exact causal relations between the symbols
corresponding to the different world elements.

Therefore, the telecom brain must optimize the complexity
level at which it encodes the semantic content elements, so as
to balance between the expected rewards, prediction error, and
similarity of abstractions. Moreover, we should also note that
the complexity herein is related to the level of details to which
we encode the semantic content elements. This is different
from the complexity of a semantic language that characterizes
the difficulty of identifying and learning the semantic content
elements [52]. Optimizing this tradeoff is a key challenge that
must be addressed when designing an AGI-native wireless
network.

Furthermore, it is crucial for the telecom brain to maintain
an SCM to represent the causal relations between the symbols.
Here, one standard approach to represent an SCM can be in the
form of a directed acyclic graph (DAG) that captures the causal
relationships between the different symbols of the semantic
content elements. This SCM structure can be generally defined
as follows.

Definition 1. An SCM is a collection of elements <
U ,V,F , P (U) >, where V and U represent endogenous and
exogenous variables, respectively. For an AGI-native network,
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V represents the encoded symbols of semantic content elements
and U represents latent random variables. These exogenous
variables captured in a vector (or matrix) U represent the
stochastic and random side of the world that makes it partially
predictable. For any index i, any endogenous variable vi ⊂ V
can be determined by the structural functions fi ∈ F and
modeled as fi(PAi,ui), where PAi ⊂ V (in the graph) are
the sets of its parents and ui ⊂ U are exogenous inputs. The
exogenous distribution P (ui) determines the values of ui, and
thus the distribution of endogenous variables V.

The process of finding a representation z can be seen as the
equivalent of acquiring rich and generalizable symbol repre-
sentations that are closely related to neighboring symbols in
a semantic space and resilient to the semantic noise distortion
from other representations. Since the SCM connects these
symbols, it is then necessary to consider the joint discovery
process of these causal relations with the encoding process of
these symbol representations to reach the optimal SCM form
that encloses the encoded representations.

Open Problems. In the context of perceiving real-world
elements, there exists several challenges that should be par-
ticularly addressed to enable the full functionality of the
perception module in the telecom brain:

• Dimension collapse in contrastive learning: Learning
techniques such as contrastive learning can help disen-
tangle the learnable and spurious data streams. Nonethe-
less, such methods must initially start by distinguishing
between the different content elements in the sensing
data. Although contrastive learning considers a high-
dimensional embedding space to differentiate between the
semantic content elements, it may still face the problem
of dimensional collapse [62]. In other words, data points
of different semantic content elements can become indis-
tinguishable or collapse into a lower-dimensional space.
For example, this can occur when the training loss in
contrastive learning promotes learning to distinguish be-
tween elements, but fails to capture the high-dimensional
structure of the content elements present in the data. Here,
there is a need for novel approaches to contrastive learn-
ing that can overcome this issue. Alternatively, one can
investigate other approaches beyond contrastive learning,
such as energy-based models [63].

• Symbol representation of DTs: It is imperative to
differentiate the symbol representations of autonomous
applications from other physical world elements. This is
because these applications are enabled by DTs that are
essentially AI models driven by sensory data from the
world. Evidently, one crucial angle of perception is that
the DTs of these applications must be integrated by the
telecom brain as abstract representations into the digital
world. Hence, these representations take part in a slow
thinking process for planning the optimal actions of the
telecom brain. Simultaneously, the DTs should respond
“fast” to the large amounts of sensory data to synchronize
with the PTs. Thus, in response to these integral roles,
DTs must be modeled through a hybrid approach that
can capture both fast and slow modes of thinking [64].

One solution can be to define DTs as neuro-symbolic
AI systems that can capture both of the aforementioned
properties [65]. This is because neuro-symbolic AI is an
approach that merges the rule-based and logic capabilities
offered by symbolic AI to represent knowledge and
reason, with NN-based learning that excels in detecting
patterns within data. This hybrid approach can strengthen
AI systems with both approaches. On the one hand,
these symbols can play a role in the slow thinking and
reasoning process of the telecom brain. On the other
hand, leveraging NNs can provide swift response and fast
actions by the DT.

• Perceiving the network: Evidently, the network itself is
perceived in terms of the RAN-DT and core-DT. Hence,
this will require abstracting its elements (e.g., RAN, core,
channels, etc.) and functionalities (e.g., beamforming,
resources, etc). Although there has been some recent
works that consider semantics and representations of a
communication network to enhance its efficiency (e.g.,
for channel state information (CSI) feedback [66]), a
key open challenge is the need for new approaches to
abstract the network and build the core-DT and RAN-
DT in terms of representations that can be exploited to
initiate actions such as beam steering (as we will discuss
in Section III-D). As such, this will require encoding
the abstractions of the network into proper symbols as
discussed earlier. In this case, an important open problem
is to adequately determine the complexity of the encoded
symbols of the network. This due to the fact that this
complexity will depend on discovering how the actions
of the network are related to one another as well as to
real-world elements.

• Categorizing representations of similar instances:
Capturing abstract representations of real-world elements
is a dynamic real-time process. Hence, it is necessary for
the telecom brain to identify the abstracted element as a
new or a previously identified element. This requires the
telecom brain to categorize the symbols that largely hold
the same semantics into a single space dedicated to the
same representation. For example, if the telecom brain
identifies a humanoid with some new additional variabil-
ities, it must consider this previously identified humanoid
and relate it directly to its acquired representation. Indeed,
real-world elements cannot be identified as new instances
once a slight change occurs to their representation. To
address this problem, a promising approach can be to
explore the concept of persistent homology from the field
of topology [67]. In fact, our prior work [68] discusses the
use of persistent homology to design the semantic space
inherent for each representation. Thus, one can consider
various semantic content elements within the data to form
a simplicial complex. Accordingly, a simplicial complex
comprises a finite assembly of simplices, with each k-
dimensional simplex being an affine combination of k+1
semantic content elements. Techniques such as filtration
within persistent homology offer rigorous capabilities in
organizing disparate semantic content elements. Hence,
these elements can be categorized and clustered according
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to their similarity between representations or the requisite
level of abstraction.

• Migration of DTs and its effect on SCMs: In general,
the PTs can move around the physical world. This would
require the DT to potentially transition from one edge
to the other to remain synchronized to the PT. This
can lead to multiple challenges. First, the DTs can be
present over one edge, however, they can have causal
relations with elements from another edge. Hence, it is
challenging to determine how an SCM can be formed
to model this relation between elements from different
edges. In addition, as one DT migrates to a new edge,
a key open question would be to determine how the
SCM that establishes the world model at this edge can
be efficiently and dynamically updated to include the
migrating DT.

Given that we have now perceived the real-world elements
in terms of abstract representations, the next natural step is to
manipulate those symbols of abstract nature with the principles
of intuitive physics that govern the real world as well as
common sense. In addition, it is also important to perform
analogical reasoning with such abstract symbols. Therefore, it
is necessary to ground these symbols within a world model
that is compatible with the nature of physics, facilitating their
manipulation and enabling analogical reasoning.

To achieve the above goal, we propose to transform these
representations from symbols to vectors in an HD space. In
essence, leveraging concepts like HD vectors and spaces [48]
allows the telecom brain to efficiently manipulate its ab-
stract representations with intuitive physics operations. This
approach will enable the telecom brain to predict the plausible
future states of the world as described in Fig. 4, and plan the
optimal actions of the AGI-native network accordingly. More-
over, the structure of vectors in an HD space foster the abilities
of the telecom brain to perform efficient analogical reasoning.
However, there is a need to find a mapping technique that can
transform these representations from the symbol space to the
vector space. For that purpose, we propose the use of category
theory [53], from the fields of abstract algebra and topology,
as a rigorous tool that can facilitate this mapping from the
category of symbols to vectors, as described next.

C. World model: Causality meets HD computing

The world model is one of the most intricate components of
the AGI-native brain architecture. Its responsibilities encom-
pass two strategic purposes that are the cornerstone of common
sense. Firstly, it must estimate the information that was missed
upon perceiving the elements from the real-world, thereby
enabling the prediction of the natural progression of real-
world events. Secondly, it plays a crucial role in simulating
the plausible future states of the world that can result from
endogenous and exogenous contributions. Hence, without a
physically-grounded world model that can manipulate sym-
bols to make analogies and perform predictions, there is no
possibility to acquire general intelligence.

The design of a world model has been already touted in the
AI literature such as [35] and [38] as the cornerstone of AGI

and its derivatives. However, remarkably, to date, there are no
rigorous world models that can permit autonomous agents to
manipulate representations so that they can predict the future
and perform analogy between real-world elements. Interest-
ingly, because the telecom brain has access to a scalable replica
of the world, it provides the missing link needed to overcome
these persistent challenges and bring in a new design of world
models.

Although the idea of a causal world model as an SCM
between real-world variables has been proposed previously
e.g., in [15] and [69], the design of a world model that
permits physical interactions (i.e., object manipulation and
navigation) with abstract representations is still largely an open
problem and a grand challenge. In fact, the design of such a
world model should be influenced by the cognitive mechanism
by which the brain performs mental computations over its
representations. This is accompanied by the need to address
two crucial limitations of SCMs:

• Difficulty in representing symbols with a multitude of
distinct features as a single variable in an SCM.

• Limited scalability in modeling the causal relations be-
tween the features of real-world elements in an SCM.

To address these challenges, in our AGI-native wireless
system, we propose to couple causal world models with HD
computing [70]. The inspiration for HD computing comes in
part from the study of human cognition that addresses how
the brain processes information and perceives the world with
all of its different variations. In particular, the perception of
information in the brain is represented by the activation of
numerous neurons, that fire in a certain sequence, to signal a
specific concept or element. Hence, the same neurons, when
activated differently, can represent completely different ele-
ments. Therefore, information is represented as a combination
of activated neurons, sharing the same basis. Analogously,
the key to HD computing is representing the information of
a certain element or concept as a combination of feature
vectors in an HD space. In essence, these feature vectors
essentially represent the different characteristics of real-world
elements. Thus, this notion of HD vectors is compatible with
the representations captured in the perception module of our
AGI-native wireless system, which in turn, are a composite
of different key features that make up a representation. While
HD computing has been used in the AI literature previously,
e.g., [71] and [72], those prior works are limited to certain
applications such as lightweight classification in resource-
constrained systems. Nevertheless, in general, these works do
not account for the intuitive physics operations and analogical
reasoning of common sense. In contrast, we consider the
vectorial nature of HD as an enabler to manipulate the abstract
representations with the actions of the telecom brain and
facilitate the interaction between different representations.

Thus, to transform the representations from the symbol
space to the desired vector space, we propose leveraging cate-
gory theory, building on our prior work [17]. Category theory
(see [17, Appendix A] for category theory preliminaries) deals
with interrelated abstract representations and provides certain
algebraic structural properties, facilitating the grouping of
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Fig. 10: Illustrative figure showcasing the use of category theory in
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every symbol z in the symbol category L is decomposed into N
feature vectors x1, . . . ,xN in the vector category L̂ through
functor F . In addition, morphisms between symbols in L are

transformed into morphisms between feature vectors in L̂.

elements within a category and capturing the relations between
the elements, as well as between the different categories. We
next define basic terminologies in category theory that are
useful for our purpose.

Definition 2. A category is defined as a mathematical struc-
ture that comprises a set of objects and morphisms.

Definition 3. A morphism is a directed relation from object
w to object y in a category Ψ that indicates whether w can
cause y or y is a property of w.

Definition 4. A functor F is a mathematical object that maps
between categories in a way that preserves the structure of
those categories.

As shown in Fig. 10, the symbols in the semantic space form
a symbol category L and the extracted causal relations between
these symbols can be represented as morphisms. To enable this
transformation of space, the symbol category L is mapped via
a functor F into a vector category L̂, where F : L → L̂. Here,
the resulting category L̂ is formed of vectors that represent
the features of these symbols. In particular, the symbol z is
decomposed into its features vectors x1, . . . ,xN , as shown
in Fig. 10. Evidently, while an AGI-native telecom brain can
identify the set of symbol representations and their causal
relations, it still needs to identify the proper functor F that
can facilitate the mapping from the symbol to vector category;
which is an interesting open problem. After transforming the
abstract representation z from the symbol into the vector
space, the telecom brain must manipulate these abstractions
to predict the future states of the world. Hence, the telecom
brain must build HD representations from the objects in the
vector space.

Toward this end, we explain the foundations of mathemati-
cal operations in HD computing that can be used to transform
the symbols encoded by the telecom brain into the HD
space. In other words, we explain how abstract representations
can be expressed as HD vectors. This solution, based on
HD computing, provides a scalable and efficient approach to
represent elements with numerous features, while capturing the

causality between their features. Moreover, through the use of
vectors, this approach can provide a foundation for handling
basic physics operations (e.g., addition, subtraction, transla-
tion, etc.) and object manipulation by altering the entries of
the vector separately. Therefore, these operations are essential
for common sense in AGI-native networks. In particular, these
operations are necessary for the telecom brain because it has to
manipulate these vectors to predict the future states, and reason
over them, to plan its actions. Hence, for the proposed AGI-
native wireless systems, a world model is concretely defined
as an HD space of vectors that represent the symbols of the
telecom brain. These HD vectors are further connected with
an SCM between their entries to model the causal relations
between their features. Thus, this process culminates in an
HD-enabled SCM of the world. Subsequently, we explain the
facets of HD causal world models that build on SCMs as their
underlying basis.

A fundamental block in HD computing is the encoder
f : X → Hd, where Hd represents a d−dimensional HD
space. In this context, the representation z ∈ X may have
a dimension of N features, while h = [h1, · · · , hd] repre-
sents an HD vector with d ≫ N . Hence, each dimension
hk, k ∈ {1, . . . , d} of a vector in an HD space refers to
either a feature or its corresponding value (not necessarily
numerical) that are unraveled from the lower-dimensional
space containing the representation z. For instance, a feature
can be the color and the value can be red (non-numerical) or
its hexadecimal value (numerical). To initiate a representation
in an HD space, each feature must be combined to its values
as a vector. Then, the combination of these different vectors
defines the representation. Given this mapping, we discuss how
the perceived abstract representations can be represented as
HD vectors. This process is illustrated in Fig. 11 and includes
the following sequel of mathematical vector operations:

• Binding (multiplication): The binding operation hi⊗hj

combines two hyper vectors hi,hj ∈ Hd into a new
“bound” hyper vector in the same space that represents
them as a pair. Hence, a binding operation is equivalent
to coordinate-wise multiplication that combines ideas. In
general, it is the main operation that binds features to
their values. For instance, consider having a feature vector
for the human that represents “direction of movement”
and another vector that represents the direction “right”.
Thus, the resulting bound vector is nearly orthogonal to
both vectors and represents “direction of movement is
right” (see Fig. 12). Broadly, each binding operation will
result in a new orthogonal basis and an entry in the HD
space. In addition, it is worth noting that if we were to
consider binding the vector basis hi that symbolizes the

different features, then the resulting HD vector
N⊗
i=1

hi can

effectively represent a generalizable structure entity of the
representation z.

• Bundling (addition/aggregation): The bundling operator
hk ⊕ hl involves taking a set of hyper vectors, usually
bound vectors, and aggregating them into a hyper vector
that represents their superposition. A standard technique
here is to implement bundling as an addition operation
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Fig. 11: Mathematical operations of HD computing to capture an
abstract representation as a vector in the HD space.

for real/complex valued vectors (quantitative) and a XOR
operation for binary (qualitative) HD vectors. For in-
stance, consider a bound vector “height is tall” that is
superpositioned with “direction of movement is right” to
represent a humanoid that is both tall and moving to the
right.

• Permutation (ordering): This operation involves re-
arranging the individual elements of the vectors. This
is an efficient way to represent the order of occurrence
between the bounds and deal with sequences, particularly,
upon superposing bound vectors while aiming to preserve
their order. Permutation provides an effective technique
to perform temporal reasoning about events that occur
sequentially.

Now that we have transformed the real-time representations
into HD vectors, the world model will then need to predict the
next states of the world. This will require predictions to take
place based across multiple dimensions, as shown in Fig. 12.
Initially, the world model must predict the natural evolution
of some representations based on previous encounters with
such structure (fetched from a memory module that will be
explained in Section III-E) and a grasp of intuitive physics.
Consequently, this change of state is reflected within the
entries of the vector. For example, a humanoid moving to the
right will usually continue in the same direction (to the right)
in order to reach their destination, and will not start moving
upwards. Hence, the feature related to “direction” will remain
constant in the predicted evolution of the humanoid. Given
the large number of features in an HD representation, it is
imperative to limit the prediction to important features that
may impact the state of the real world and its elements (e.g.,
direction of an autonomous vehicle) [73]. Nevertheless, this
can reduce the semantics of the symbols, where it becomes
challenging to differentiate between representations of real-
world elements. For instance, consider f (0)(zk) and f (0)(zj)
to be the HD vector representations corresponding to dis-
similar symbols zk and zj at the lowest level (i.e., level
0) of abstraction that considers all features. After reducing
the number of features, f (1)(zk) and f (1)(zj) may become

semantically similar at a higher level of abstraction (i.e.,
level 1). Thus, it becomes crucial to determine the necessary
features by optimizing a reduced representation form that
can foster predictions, while reducing the similarity between
symbols. Here, one possible solution is to use an AI model
(e.g., auto-encoder) that can learn these important features of
a representation. Accordingly, this model can then reduce the
size of these representations by filtering non-relevant features
that may not impact prediction or similarity.

Additionally, these predicted states are contingent on other
factors. Notably, the future states are impacted by the causal
relationships that exist between the bounds of different HD
vector representations (see Fig. 11). In essence, these relation-
ships are captured within this HD-based SCM. Hence, once
a bound of a certain HD vector changes, it will affect the
causally related bounds of HD vectors pertaining to other real-
world elements. In addition, SCMs account for the random,
stochastic variables from the world as stated in Definition 1.
Indeed, this random factor is inherently embedded within the
SCM and considered in the prediction process.

Furthermore, the predicted future states of the real-world
elements are affected by the actions of an AGI-native network.
Hence, the telecom brain must carefully think of its optimal
action sequence before it takes its actions. In particular, the
telecom brain must choose a sequence of actions that can
bring it closer to achieving its desired goals and fulfilling
its intents. In an AGI-native network, these actions can be
in the form of beamforming designs, resource allocations, or
any network optimization and management functionality. As
such, this functionality includes the configurations passed to a
PT of an autonomous agent to augment it with common sense.
Therefore, predicting the future states of these real-world ele-
ments will require considering: 1) the natural evolution of the
representations, 2) the corresponding cause-effect relationships
between the representations, and 3) the effect impinging from
the actions of the telecom brain.

Open Problems. When dealing with our vision of HD
causal world models, there is a need to still address a number
of key challenges:

• Capturing intuitive physics: Although real-world ele-
ments can be represented as HD vectors, there is still
a need to manipulate these vectors to predict the future
states of the world. To do so, it is necessary to incor-
porate intuitive physics and impinge the effect of their
operations on the representations. Hence, integrating in-
tuitive physics into the world model requires representing
basic physical actions (e.g., motion, force, gravitational
weight, collision, etc.) as HD vectors. These actions
are fundamental physics phenomena such as momentum
and friction that humans and agents encounter in the
physical world. In addition, intuitive physics must allow
manipulating the representations of different elements as
they interact with each other. For instance, consider the
representation of a humanoid and an autonomous vehicle.
The telecom brain should be able to infer that the collision
of both representations will have a negative impact that
increases the cost. Hence, it should avoid this risk of
accident as it may reduce the QoE of the autonomous
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vehicle and can have undesirable effects.9 Here, one
possible solution for AGI-native networks to capture these
forces is through learning physics principles from real-
world situations. Indeed, emerging AI models such as
joint embedding and predictive architecture (JEPA) [74]
that learn how to map abstract representations between
different time instances can be a promising solution.
For instance, JEPA models can be exploited to extract
forces from data and learn how these forces affect the
representations and bounds. However, applying JEPA as
is to predict the world states would not account for all of
the factors that alter and affect the world. This is because
JEPA does not have an active component to represent
the effects of the actions pertaining to the telecom brain.
Moreover, transforming the perceived forces into HD
vectors requires a more elaborate analysis of category
theory to determine the functor objects.

• Learning the functors from symbol to vector category:
The transformation from symbols to HD vectors through
category theory can be conceptualized via a functor
mapping. A simple, yet efficient approach to represent the
functors (F ) between categories L and L̂ can be through
linear transformations (V F ) as follows:

L u
Kf−−−−−−−−−→ vyF yVF

yVF

L̂ V Fu
KF (f)−−−−−−−−→ V Fv.

(1)

The resulting transformation matrix V F should be chosen
such that it obeys the structural properties KfV F =
V FKF (f) (ensuring the preservation of morphisms be-
tween L and L̂). Physically, this implies that the functor
maintains the meaning or interpretation of relationships
among objects within category L, even after its trans-
formation to L̂. Nevertheless, the transformation of a
single symbol from L to L̂ decomposes the symbol into
multiple feature vectors. One key challenge is to learn
this one-to-many transformation in category theory in
an unsupervised fashion. Here, one promising approach
can be through functorial learning [75]. More generally,
the development of fundamental techniques grounded
in category theory for building the world model is an
important open area for research in this space.

• Training and updating the world model: Analogous
to humans that learn and enhance their world models as
they progress over time, the telecom brain must learn
and update its world model with new encounters and
scenarios. This update will involve discovering new real-
world elements and updating the causal relations. Hence,
the world model should be differentiable to allow for
this update. Effectively, the SCM must optimize the
complexity of the symbols and update the causal rela-

9As security concerns may rise with the control of AGI-native networks to
autonomous agents, safe designs world models and secure networks become
a necessity. Nevertheless, security remains outside the scope of this work and
addressing such problems is considered for future works.
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Fig. 12: Illustrative figure showcasing how an HD vector space of
a world model can facilitate the prediction of future world states.

tions, in a gradient-inspired fashion, to maximize the
reward of the telecom brain. Nevertheless, pinpointing
the threshold at which to update the world model is still
an important challenge. Furthermore, updating the world
model could also require simulating alternative realities
that were not encountered in the real world and what
could have happened if other actions were to take place.
In other words, updating a world model should be in-
duced through imagination. Imagination is done through
evoking hypothetical scenarios of reality by dynamically
altering the features of real-world elements. Here, as our
model integrates causal relationships into its system, we
conjecture that counterfactuals and interventions can be
leveraged to simulate these alternative realities and update
the world model [27].

Once the world model is built, the telecom brain will have
to plan its actions in attempt to achieve its objectives or fulfill
its intents. To do so, the telecom brain must execute planning
methods to perfectly choose these optimal set of network
actions (e.g., resource allocations, beamforming, etc). Next,
we will define the intent-driven and objective-driven planning
methods of the action-planning module in our vision in Fig. 5.

D. Action-planning: Intents vs. objectives

For an AGI-native network to plan its actions, it has to
imagine the plausible future states of the world as a function
of these possible actions. As such, the telecom brain must
choose the actions that will minimize its costs (or maximize
its rewards), and bring it closer towards its goals i.e., objective
or intent. This can be facilitated through two main planning
methods: i) intent-driven planning and, ii) objective-driven
planning. Here, intent-driven planning refers to the network
strategy of determining actions to fulfill intents that do not
necessarily incorporate a particular end-goal or objective.
In contrast, objective-driven planning refers to the network
strategy to drive its actions towards achieving an objective
or goal. Indeed, the distinction between intent and objective
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is that objective-driven planning encompasses an end-goal that
the network should attain, whereas intent-driven planning does
not necessarily incorporate such a goal. In other words, intent
is a more of a general purpose to achieve a target than an
objective that includes a precise goal to achieve with these
actions. However, both planning methods are synergistic with
the field of optimal control, where the aim is to control
a function that is subject to certain constraints. Next, we
describe in more detail how these two planning methods can
be developed.

1) Intent-driven planning: In general, the concept of intent
refers to the purpose or aim behind a certain action. In other
words, it signifies the motivation that drives one to act in
a certain way. Similarly, the motivation behind intent-driven
planning in AGI-native wireless networks is typically to drive
a reduced cost (enhanced reward) for the telecom brain, or
more broadly the wireless network. This cost (reward) can
involve multiple factors, and it can be defined in terms of the
intrinsic and extrinsic costs of the telecom brain, i.e., QoNE,
QoPE, QoDE, and QoVE. For instance, an intent in an AGI-
native network can be to: “Satisfy the users’ QoE requirements
while minimizing the power consumption of the network”.
In terms of optimal control, this intent can be formulated as
an optimization problem whose objective is to reduce power
consumption under the constraint of satisfying the user’s QoE.
Thus, intent-driven planning refers to finding the set of actions
that are incorporated into the HD causal world model that can
bring the telecom brain closer to fulfilling its intent. This is
distinct from objective-driven planning as it does not account
for the existence of a measurable goal that the network can
come close to accomplish with a set of sequential actions.

Nevertheless, planning with a causal world model considers
a form of interrelation between the different world states.
Therefore, intent-driven planning is contingent on the causal
information present in the world model. For instance, planning
over time depends on the degree to which we can reliably
imagine the future states of the world. Hence, imagining the
future states with confidence is a major issue that should be
considered in intent-driven planning so as to ensure the fidelity
of the planned actions. Unlike objective-driven planning which
may be guided toward reaching its desired objective, the
number of planning steps in intent-driven planning should
be governed by a technique that reflects the inherent causal
information in the world. Accordingly, we propose to quantify
this causal dependence between the world states to extract the
information about the future states through a brain-inspired
approach. In particular, this approach builds on IIT [49] from
the field of neuroscience which can possibly quantify the
number of planning steps the telecom brain can perform to
reliably imagine into the future.

In essence, capturing the causal relationships between ab-
stract representations (or their bounds) is a cognitive aspect
of the brain that requires a state of consciousness [76]. This
consciousness is then reflected in the sequential states of the
world that appear over time. One attempt to capture this
consciousness can be by employing IIT. In fact, IIT states
that consciousness is embedded in the amount of integrated
information generated by a system [54]. Integrated information

refers to the extent with which the information within a system
is unified and cannot be subdivided into independent parts. In
particular, IIT can provide an analytical solution to quantify
the information conveyed collectively within the sequential
states of the causal world model. This metric can be leveraged
to assess the common sense of the telecom brain. On the one
hand, it provides a technique to capture the causality between
the states of the representations. In consequence, this technique
inherently incorporates intuitive physics. On the other hand,
it can provide an overall assessment of the causal relations
that exist between the different abstract representations. As
such, IIT characterizes information as both causal and intrinsic
based on the influence of the current states on the likelihood
of its past and future states. Hence, IIT can play a crucial
role in capturing the depth of the planning steps that the
telecom brain can reliably perform. Clearly, IIT represents
a shift from traditional information theory that statistically
captures the mutual information I(X;Y ) between two random
variables and overlooks the causal dependency between them,
i.e., I(X;Y ) = I(Y ;X). In contrast, IIT is inherently tailored
towards causal relationships and can capture the causal infor-
mation conveyed by the states of the world model. Next, we
present a primer on quantifying IIT to capture the information
in the world perceived by our AGI-native network.

The planning methodology can be defined by options rep-
resenting sequences of actions in a structured manner [77].
An option ω ∈ Ω is a tuple ω = ⟨Iω, πω, βω⟩, where
Iω ⊂ S is the option’s initiation state, with S being the set
of states of the representation, πω : (S × A)T → [0, 1] is
the planning strategy (over T time steps) that describes the
causal sequence of states and actions, and βω is the goal
state to be reached. To compute the optimal planning steps
in πω , it is crucial to quantify the information conveyed by
the causal transition from s0i to sTi . Here, sti represents the
state of the representation i at time t. The sequence of causal
states Si =

{
s0i , s

1
i , . . . , s

T−1
i , sTi

}
includes the causal state

transitions, and can be defined as transitions. To capture the
information conveyed by this set of causal states, we consider
intrinsic and integrated information. Intrinsic and integrated
information can, respectively, be leveraged to quantify the
information conveyed by each abstract representation and
integrated in the world model, as follows [78]:

• Intrinsic information for abstract representation: The
intrinsic information refers to the inherent cause-and-
effect structure related to an abstract representation that
produces a particular set of observed states and transi-
tions. This is conveyed for any state sti as follows:

I(sti) = min{Ic(st−1
i | sti), Ie(st+1

i | sti)}, (2)

where Ic(st−1
i | sti) = D

(
p
(
st−1
i | sti

)
||p

(
st−1
i

))
is the

cause information that the current state sti specifies about
the past, Ie(st+1

i | sti) = D
(
p
(
st+1
i | sti

)
||p

(
st+1
i

))
is

the effect information that sti specifies about the future, D
is a distance measure between probability distributions of
each representation (e.g., Wasserstein distance, Kullback-
Leibler (KL) divergence, etc.), and p is the probability
distribution of the state of each representation i. Although
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the intrinsic information may convey the information cap-
tured by an abstract representation, it is still necessary to
integrate this information with that of other abstractions
to convey the information represented collectively by the
world model, as defined next.

• Integrated information for world model: The integrated
information represents the information generated by a
world at a certain state, beyond the information gen-
erated by its individual representations. To capture this
integrated information, one can partition the world state
st into m parts M t

1,M
t
2, · · · ,M

t
m. Accordingly, this

partition pk ∈ P (the set of all partitions of the world
done in k ways) is defined such that ∪iM

t
i = st and

M t
i∩M

t
j = ∅. Here, st represents the set of world states

{s1, . . . , sT−1}, whose cause state is the initial state s0

and effect state is the goal state sT . Hence, the integrated
information of a world model given by its irreducibility
over its minimum partition pk ∈ P can be defined as
follows:

IΦ = Ip
∗
k

Φ ,

s.t. p∗k = argmin
pk

IpkΦ
max
pi∈P

IpiΦ
, (3)

where Ipk

ϕ = min(Ipk

Φ,c, I
pk

Φ,e), having Ipk

Φ,j =

Ij(st−1
i |sti) −

∑
k

Ij(M t−1
k |M t

k)∀j ∈ {c, e}. Here, we

note that the normalization in (3) is over the maximum
possible value that Ipk

Φ can take for any partition.
Thus, in order to capture the corresponding integrated

information Imax
Φ , we must find the optimal partitioning p∗k

that can maximize the value of the information in (3). Here,
Φ refers to the level of consciousness essential for the in-
tegration of information in the telecom brain [79]. Hence,
Imax
Φ represents the amount of information conveyed about

the world and measures the potential of the telecom brain to
generate conscious experiences. Henceforth, we can use this
metric in intent-driven planning to reflect the depth to which
the telecom brain can plan ahead of time. As a result, the
integrated information can further be leveraged as a relative
measure that captures the number of planning steps that the
telecom brain can perform, as shown in Fig. 13. By employing
this metric to determine the number of planning steps that
the network can perform, the telecom brain must choose the
actions that minimize its cost at every step or as a moving
average over all steps accordingly.

2) Objective-driven planning: In contrast to intent-driven
planning, objective-driven planning primarily considers an
end-goal that an AGI-native network must achieve. Here, the
telecom brain must determine the action steps necessary for
the network to converge towards an objective with minimum
cost (or maximum reward). However, the telecom brain of
an autonomous AGI-native network must perfectly plan its
actions upon monitoring the convergence of the network
towards this objective. One possible way to do this is through
hierarchical planning [35]. In particular, hierarchical planning
is a problem-solving approach that involves organizing goals
into a structured hierarchy of sub-goals and actions. This
hierarchical structure enables the decomposition of complex
tasks into smaller tasks, making it easier to plan and execute
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Fig. 13: Illustrative figure showing the integration of information
between representations in the telecom brain and the role of IIT in

intent-driven planning.

actions efficiently. Thereby, hierarchical planning considers
planning at different levels of abstraction. Notably, the telecom
brain can plan its actions over longer terms with higher orders
of abstract representations [80]. This long-term planning can
then guide short-term planning at lower orders of abstraction.
Planning at these lower levels involves determining the inter-
mediate goals as well as the granular steps of the actions that
must be taken by the telecom brain. Here, the goal or objective
can be specified by human intervention or by the telecom
brain. For instance, an objective in an AGI-native network
can be to: “Reduce the power consumption in the network by
5% while maximizing the users’ QoE”. Clearly, maximizing
the users’ QoE is equivalent to achieving the minimum cost
in the telecom brain. In contrast to intent-driven planning,
this objective can be formulated as an optimization problem
whose target is to minimize the cost (in terms of QoE) under
the constraint of satisfying a reduced power consumption.
Next, we will discuss how this example can be solved through
objective-driven planning. To do so, we will explain how an
AGI-native network can acquire abstract representations at
different hierarchical levels. Subsequently, we will articulate
how these hierarchical representations can be leveraged in
hierarchical planning.

The features of each abstract representation in the HD
space can be categorized in a hierarchical manner according to
their concept levels. One promising approach to extract these
features in a structured hierarchical manner is through object-
centric representation learning [81], [82]. Hence, features of
these representations can be categorized into three main hier-
archical concepts: a) extrinsic concepts, b) dynamic concepts,
and c) intrinsic concepts, described as follows:

• Extrinsic concepts: Extrinsic concepts encompass the
features situated at the lowest level of abstraction, such
as the location of a given real-world element. Effectively,
these concepts are surface-level attributes, and the per-
ception module can directly encode these contexts at the
lowest level of abstraction. Nevertheless, it is essential
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to note here that the lowest level of abstraction provides
granular steps in terms of the future prediction of these
features. In fact, it is challenging to predict how these
features may change over the long term and are therefore
explicitly confined to short-term predictions and planning.

• Dynamic concepts: Dynamic concepts deal with a higher
level of abstraction provided by dynamic concepts that
are concealed within temporal and spatial characteristics.
Unlike extrinsic concepts, dynamic concepts are suitable
to carry out predictions on a longer term.

• Intrinsic concepts: These concepts reside at the high-
est level of abstraction. Intrinsic concepts include those
characteristics that are consistently static for long peri-
ods of time. Basically, they include the basic defining
characteristics of real-world elements that would possibly
indicate a change in the core of the element if they were
to be modified. Thus, intrinsic concepts are resilient to
change which makes them more suitable for long-term
predictions.

Therefore, an AGI-native network can form hierarchical
representations of real-world elements at multiple levels of
abstraction by categorizing the features of real-world elements
into these concepts. These abstract representations include
those of real-world elements such as humans and assets,
in addition to the RAN-DT and core-DT along with their
elements such as beams and RISs. We next discuss how these
hierarchical orders of abstract representations are leveraged for
hierarchical planning.

After discriminating the features of abstract representations
according to their concept levels, the network must lever-
age these abstract representations, at different hierarchical
levels, to plan its actions. This can facilitate hierarchical
planning in emerging AI frameworks such as the objective-
driven AI scheme proposed by Y. LeCun [35], [83]. For
instance, consider that the network is instructed to go from
its current state “A” to another state “B” with the goal of
reducing the power consumption of the network by 5%. At
a higher level of abstraction, the action is described as a
straightforward “Optimize the network to move from A to
B.” However, when examining the lower levels, the telecom
brain must break down this high-level goal into sub-goals and
smaller tasks. Consequently, the telecom brain must choose
the optimal actions at each sub-goal. These sub-goals can
involve actions like optimizing the resource allocation and
beamforming schemes that ultimately enable the network to
converge from A to B over a series of steps.

As shown in Fig. 14, the basis for objective-driven planning
involves the ability of the network to group adjacent tasks at
a lower abstraction level G into clusters. Each one of these
clusters is represented by a single node in another, higher
abstraction level Q. For instance, optimizing the resource
network configurations at level Q can be clustered into sub-
goals involving optimizing the precoding scheme at the BS
and RIS phase shifts at level G. Accordingly, as Q is more
abstracted, this can facilitate a longer term and more efficient
form of planning. Hence, when the network is oriented to move
from a state A to a state B in G, the telecom brain can initially
plan at a high level of abstraction in Q. Subsequently, this is

translated into actions at a lower level of abstraction within
G. Significantly, upon identifying the high-level path in Q, the
agent should exclusively plan within the current cluster in G.
In other words, it only needs to consider its transition from one
step to the other, so as to reach the same high-level abstract
goal with minimal costs. This process repeats until reaching
the end goal state in the final cluster. This hierarchical structure
in planning enables the agent to initiate progress toward the
goal without calculating the full path in G. Instead, the agent
can follow the high-level plan in Q and refine it gradually
in G during execution. Effectively, this hierarchical approach
can be recursively applied to higher levels of hierarchies,
where higher levels of abstraction continue to be clustered,
culminating in a single node at the top of the hierarchy
representing the original orientation towards the goal.

Open Problems. While both intent-driven and objective-
driven methods provide key strategies for the telecom brain to
plan its actions, there still exists different challenges that AGI-
native networks must overcome so as to proficiently determine
their actions, as follows:

• Design of telecom brain costs and metrics: Both intent-
driven and objective-driven planning methods require
minimizing the cost (maximizing the reward) so as to de-
termine the optimal actions of the telecom brain. Namely,
these rewards include the intrinsic QoNE along with the
extrinsic QoPE, QoDE, and QoVE. Hence, defining these
QoE metrics is of substantial importance. Along those
lines, our work in [56] was the first attempt to define the
QoPE in terms of the uplink rate, downlink rate, and the
E2E delay of an XR experience. Nevertheless, rigorously
determining the rest of the parameters is indeed chal-
lenging. However, we can see that the QoVE can include
the synchronization between avatars and XR users. In
addition, the QoNE can include metrics related to the
sustainability, spectral efficiency, and resource utilization
in the network. Furthermore, there is a critical need to
design a novel formulation that can map between IIT
and the number of planning steps needed for intent-driven
planning.

• Thinking fast and slow: As the telecom brain archi-
tecture presents new opportunities for cognitive abili-
ties in communication networks, its main functionality
focuses on the slow, analytical mode of thinking (see
Section III-B). Nevertheless, humans are not constantly
in a deep thinking mode. In particular, humans transi-
tion to this mode only when they require focus, logical
reasoning, and dealing with critical scenarios. That said,
humans effortlessly rely on their fast, intuitive mode of
thinking to respond to typical tasks. In other words,
humans balance between their fast and slow modes of
thinking to take actions [64]. Similarly, an AGI-native
network must proficiently leverage both modes to take
its actions. Typically, these actions range from those
requiring continuous, real-time configurations such as
resource allocations, to actions that require advanced
thinking such as dealing with unforeseen scenarios facing
autonomous agents. To incorporate the fast mode of
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Fig. 14: Illustrative figure showcasing an example of objective-driven planning in AGI-native networks.

thinking, one can typically rely on some of the AI-
native infrastructure incorporated into 6G networks. This
“fast” mode includes solutions encompassing NNs, auto-
encoders, meta-learning, etc. that an AGI-native network
can build on to further advance fast thinking. Henceforth,
it is critical to harmonize the interoperability of both
systems for thinking in the telecom brain.

• Exploring and executing new actions: While planning
has focused on determining the optimal actions of the
AGI-native network, the pool of actions for the telecom
brain is not limited to a closed set of actions. Indeed,
manipulating and modifying the actions of an AGI-native
network opens the doors for expanding these actions.
These actions are important when dealing with unfore-
seen scenarios that may require the network to think
outside the box. Hence, it is imperative to ask how AGI-
native networks can innovate to determine new sets of
actions that reflect real intelligence. One solution for
such innovation could be through compositional gener-
alization [84]. In particular, compositional generalization
refers to the capability of generating novel combinations
of familiar elementary concepts or actions. In AGI-native
networks, compositional generalization can possibly be
defined using the concept of deductive logic. In particular,
a deductive logic of actions c represents the conjunction
of N actions, i.e., c(N) = (c1 ∧ c2 · · · ∧ cN ). Here, the
telecom brain can choose a novel action c(N) that is a

combination of individual actions ci. While actions within
an AGI-native network should be determined to satisfy
objectives and intents, dealing with unforeseen scenarios
can require a glimpse of novelty in actions. However, this
requires AGI-native networks to capture broad analogies
between novel situations and generalize concepts among
the maximum possible number of situations. In this
case, an AGI-native networks can form relations between
situations to deduce such new actions.

In the slow mode of thinking, a major part in planning the
actions in unforeseen scenarios comes after carrying analogies
with previous instances of real-world elements. Hence, it is
necessary for the telecom brain to store and manage the
corresponding representations in its memory space for direct
analogy. Next, we explain the role of the memory in the
telecom brain and what cognitive (reasoning) abilities can it
enable for AGI-native networks.

E. Memory

To engage in analogical reasoning, the telecom brain re-
quires two memory components: 1) item memory that stores
the representations learned from the data, and 2) associative
memory that allows the retrieval of stored information based
on similarity or associative relationships to the perceived
representations. This memory structure is beneficial for tasks
in which recognizing abstract representations and retrieving
relevant information are crucial, such as in the case when
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the network must deal with unforeseen instances. To perform
analogical reasoning, it is necessary to carefully relate real-
world events, representations, and features to each other in
a way that mostly makes sense. In particular, HD vectors
can capture semantic relationships between entities. Hence,
similarity measures in HD spaces such as cosine similarity
can be used to quantify the relatedness or similarity between
different vectors, aiding in analogical reasoning. Nevertheless,
the perfect design of this memory requires new innovations in
AI models that are equipped with a persistent memory that can
mimic the memory faculties in humans in terms of storage of
representations and reaches its capacity. As it will be evident
from Section IV-A, we will provide an analysis on how this
analogical process can occur in the memory.

Having defined our AGI-native network’s components, we
next discuss some of the use cases that it will engender.

IV. USE CASES AND EXPERIENCES IN AGI-NATIVE
WIRELESS NETWORKS

Realizing the telecom brain discussed in Section III will
bring forth unprecedented levels of general intelligence into
the wireless network. In addition, the impact of AGI will
extend to enable new use cases and experiences for humans
and autonomous agents. These use cases include DTs with
analogical reasoning and cognitive avatars with resilient, syn-
chronized experiences. The use cases also include brain-level
metaverse experiences such as holographic teleportation with
ToM (see Fig. 1). In this section, we provide preliminary
expositions of these use cases and highlight their challenges
and opportunities. We also note that AGI-native networks may
pave the way towards a broader set of applications that we
cannot yet identify at this early stage.

A. Analogical reasoning for next-generation DTs and net-
works

One of the crucial pillars of AGI-native networks is their
ability to deal with unrecognized real-world elements and
events through common sense. This will involve the ability
of the telecom brain to relate these new elements and events
from the real world to similar elements and situations stored
in the memory through analogy. Hence, analogical reasoning
enables the telecom brain to identify and proficiently approach
these new cases. As discussed in the example of Fig. 7, this
crucial ability also extends to guide DT-enabled autonomous
agents in their corner cases. For instance, once an AGI-native
network identifies an unforeseen element (to the autonomous
agent) in the world as an obstacle, it can guide the autonomous
agent to move away from it. As such, analogical reasoning
becomes an indispensable component for both the network
and its autonomous agents.

In order to recognize these new elements, the telecom
brain must draw parallels with existing elements from its
memory. This is of notable importance for the telecom brain
while planning its actions, since it can face a multitude of
unforeseen elements in the real world. Hence, the telecom
brain must interact with these new elements to guarantee
reaching its optimal cost. As our world model allows perceiv-
ing the elements through HD vectors of semantic content, one

possible approach for analogical reasoning can be to capture
the semantic similarity between the representations. Therefore,
the key for reliable inferences in analogical reasoning relies
on perfectly perceiving and identifying real-world elements.

To classify the various elements that appear in the real
world, analogy plays a crucial role in categorizing these
elements either as previously identified or novel encounters. In
essence, analogical reasoning is a fundamental facet of human
cognition that involves a sequential process to identify similar-
ities [85]. In particular, the telecom brain performs analogical
reasoning through a mechanism that involves the world model,
memory, and perception modules. This mechanism involves
the semantic similarity between HD vectors and is subdivided
into the following processes:

• Retrieval: Upon perception of an element whose identi-
cal (i.e., semantically similar) representation is available
in the memory, the network can recall the previous, short-
term situations that include such an element. In this case,
this representation must fall into the semantic space of an
element. Furthermore, these retrieved situations include
the state of the worlds at those particular instants and
their associated costs, while recalling causal relations
between this particular element and other elements in the
world. According to the costs recorded through previous
interactions with a similar element, the telecom brain
can plan its actions by either exploration or exploitation.
This is determined by the level of confidence that the
telecom brain has for dealing with this particular element
(representation). For instance, if, for every encounter
with a given object, the telecom brain chooses the same
action repeatedly and is satisfied with the cost, then
the confidence levels would lead to exploitation rather
than exploration. If the telecom brain does not recognize
this representation, it will proceed to a mapping phase
(explained next) by treating it as a newly identified object,
that requires learning how it can be handled. This is
beneficial for the telecom brain as it must provide real-
time planning of its actions for an AGI-native network.
That said, the planning process can be interrupted by
every new element that the telecom brain must identify.

• Mapping: If the perceived representation does not fall
into a certain semantic space, the telecom brain rec-
ognizes this element as a new instance. Consequently,
the telecom brain attempts to approach this element by
mapping its representation to one of the nearest semantic
spaces. Herein, we highlight the role of the generalizable
abstract representations in this mapping process, particu-
larly in identifying these elements. Incorporating gener-
alizability in learning abstract representations increases
the size of the semantic space corresponding to each
element while bringing representations sharing a common
structured entity closer together (see Section III-B). Con-
sequently, the possibility that a perceived element falls
within the semantic space of a specific or similar element
increases. Meanwhile, neglecting this generalizability will
reduce the semantic space of each representation. Hence,
recognizing known elements becomes non-trivial. Gener-
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Fig. 15: Received semantics as a function of reduced semantic rep-
resentation space |U| and thresholds, while having |W| = 256 [17].

alizability plays a role in providing swift predictions of
future states, in contrast to continuously identifying new
elements that can hinder real-time predictions. Essen-
tially, identifying new elements involves aligning the per-
ceived representation to the nearest representations from
different semantic spaces. Once identified, the telecom
brain extracts the preceding encounters with this specific
representation from the short-term memory. Nonetheless,
based on the confidence in mapping this representation,
the telecom brain should initiate the interaction with this
new element through an exploration-exploitation strategy
rather than just equating it to this specific representation.

Open Problems. Specifying the border between retrieval
and mapping is a major challenge. In essence, this borderline is
contingent on the design of the semantic space in the telecom
brain. The design of this space involves two factors: i) the
number of representations |U| in a semantic space W and,
ii) the threshold δ that reflects the semantic space surrounding
each representation. Here, the joint design of δ and |U| influ-
ences the retrieval and mapping processes to faithfully perceive
the real world. In fact, our previous work in [17] studied
the impact of the representation space U and the threshold
δ on the semantic rate of a communication system. As shown
in Fig. 15, the reduction in the size of the representation
space U minimizes the semantic rate, even for low values
of δ. This exemplifies an important challenge in analogical
reasoning that relates to mapping different elements that exist
near each other in the semantic space with a reduced set of
representations U . In addition, our results in [17] show that a
tradeoff exists between the cardinality measure |U| and δ so
that the same semantic rate is achieved. This tradeoff provides
flexibility in terms of the design of the semantic space so as
to ensure the highest confidence in the mapping scores of the
recognized elements, while conserving the overall semantics
existing in the system. Therefore, the design of analogical
reasoning frameworks in AGI-native networks requires an in-
depth analysis according to the specific setting or application

in the real world.

B. Resilient and synchronized experiences for cognitive
avatars

Realizing the affinity between XR users and their avatars
depends on the harmonization of the physical and virtual world
experiences. Nevertheless, ensuring a seamless mirroring be-
tween the physical and virtual realms has multiple require-
ments. On the one hand, avatars must authentically embody
their corresponding XR users, in terms of senses, actuations,
and movements, to attain a seamless virtual experience (in
terms of QoVE). On the other hand, XR users require a reliable
QoPE, which can be expressed in terms of rate, reliability, and
latency, to perfectly immerse them into the virtual world.

In essence, fostering this embodiment between XR users
and avatars requires envisioning it as a harmonious duality, as
shown in Fig. 16. For instance, the avatar should replicate the
sensory and tracking information (e.g., position, movements,
etc.) of the XR user while interacting in the virtual world [86].
Simultaneously, the avatar must accurately reflect the incoming
feedback (from other avatars or virtual objects) from the virtual
world to the XR user. That said, this duality requires achieving
the highest degrees of synchronization while minimizing the
mismatch in accuracy and precision between the XR user and
the avatar. Nevertheless, achieving this duality is not feasible
by considering a mere blind carbon copy approach for avatars.
This is due to the fact that the resulting avatars would lack
essential capabilities to initiate a responsive interaction back
to their XR user. Consequently, the absence of the ability to
have back-and-forth interactions between the human user and
its avatar prevents executing their corresponding interactions
as a complete duality [87].

To effectively address this challenge, avatars should be-
come cognizant of their corresponding XR users’ actions, by
comprehensively understanding the underlying logic stemming
from the sensory inputs that initiated them. Accordingly,
avatars should transcend being a reactive entity and become
a dynamic, AI-driven system. To achieve this transformation,
these avatars must capture the unique kinematic fingerprint of
the XR user, represented by the mapping between the sensory
inputs and corresponding actions [88]. Hence, by leveraging
this knowledge (i.e., fingerprint), the avatar can reason and
execute the action impinging from peer avatars (and virtual
elements). In this case, the avatar inversely determines the
senses and actuations that the user would most likely have
experienced due to this action. Subsequently, the avatar feeds
back the corresponding senses and actuations to the user. Thus,
to inversely reach the senses and actuations, an AI-driven
avatar should be equipped with cognitive abductive reasoning
capabilities, thereby becoming a cognitive avatar. In fact, we
have proposed to model this duality as a bi-directional mirror
game in our previous work [2].

Furthermore, as cognitive avatars are AI models, they face
significant challenges when deployed over a wireless network.
On the one hand, such avatars must reside at the network edge
to reduce the synchronization mismatch with the XR user. On
the other hand, the avatars must still migrate and interact in the
virtual world (at the cloud or another edge), which can make
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this mismatch more pronounced. Hence, the optimal placement
of cognitive avatars becomes a bottleneck for synchronization
over networks. Furthermore, another impediment lies in the
ability of the network to ensure an uninterrupted immersive
physical experience for XR and metaverse users. For next-
generation networks, this will be mainly due to the suscepti-
bility of narrow beams to LoS blockage particularly when they
operate at high frequency bands (e.g., mmWave or sub-THz).
Effectively, addressing these challenges requires achieving the
following:

• Reliably guaranteeing a high QoPE for XR users by
mitigating LoS blockages, and

• Reducing the synchronization mismatch between XR
users and their avatars to sustain an adequate QoVE.

Here, we note that wireless networking for XR has been
studied extensively over the past few years [89]–[91]. How-
ever, those prior works do not particularly address the require-
ments of avatars over wireless networks. In particular, these
works do not look into the synchronization aspect and virtual
experience of avatars with their XR users. In fact, the scope
of the prior art is largely limited to the problem of enabling
the network to meet the low latency and high rate demands
of XR applications. While this can be indeed crucial for an
immersive physical experience, state-of-art solutions in [89]–
[91] do not inherently guarantee the reliability of this physical
experience. Here, reliability is defined as the ability of the
network to deliver a consistent performance to guarantee the
expected experience. In contrast, it is necessary to maintain
a reliable, immersive physical experience and synchronized

virtual experience for cognitive avatars with their XR users.
This plays a critical role in embodying XR users in their
avatars and achieving the E2E duality between them.

A possible solution to address these limitations can be by
using the capabilities of an AGI-native network. In essence, an
AGI-native network can leverage its common sense abilities
to sustain an adequate QoPE for its XR users. In particular,
the telecom brain can predict the possible future states of the
world, as shown in Fig. 12. As such, the telecom brain can
foresee whether the XR user would suffer from any blockage
of the LoS beam through intuitive physics.10 For instance,
consider the basic example of Fig. 16 in which the telecom
brain can predict the possible blockage of a sub-THz beam
from the RIS by an obstacle that eventually prevents the
establishment of an LoS connection between the network and
the XR user. Clearly, this blockage can reduce the QoPE, even
for this simple example.

To mitigate this issue, one possible approach is to perform a
beam handover so as to sustain an LoS link that preserves the
QoPE. Unlike other methods that initiate a beam handover
once the QoPE degrades due to sudden blockages, an AGI-
native network can anticipate the blockage and proactively
initiate a multi-beam handover [92]. Given that the handover
process can introduce latency (e.g., to establish the new
connection), causing temporary interruptions or delays in

10While an AGI-native network considers abstract semantic representations
with intuitive physics to predict the future states of the world, it is worth-
while noting that this is independent of the XR experience which may not
necessarily require semantic communications and could be based on classical
communications.
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communication, this can negatively impact the QoPE [56].
Hence, an AGI-native network, with its proactive abilities, can
seek to minimize the duration of such handovers (optimally
reaching zero) and the corresponding QoPE degradation. In
this case, the XR user can be assigned another beam to facil-
itate a continuous LoS which guarantees that their immersive
physical experience is uninterrupted. This is in contrast to
other handover methods with relatively prolonged handover
times that prevent the QoPE from returning back to the values
necessary for an immersive experience. Therefore, an AGI-
native network ensures a continuous physical experience that
is resilient to LoS blockages and QoPE degradation.

Here, the concept of a resilient experience is defined as the
ability to mitigate any degradation in the QoE, by a swift return
to guaranteed levels [93]. In particular, resilience in our context
refers to the ability of the physical experience to withstand LoS
beam blockages. In this case, anticipating potential blockages
enables proactive handovers to prevent interruptions in the
immersive experience. This is crucial to maintain a reliable
QoPE within the target performance levels needed for a contin-
uous immersive avatar experience. In contrast to reliability and
robustness,11 resilience is important here because XR users are
susceptible to frequent LoS blockages of their narrow beams
at mmWave or (sub-)THz frequencies. Hence, these blockage
limitations can initiate frequent handovers that interrupt the
immersive experience. Consequently, such interruptions can
prevent the AGI-native network from sustaining the desired
QoPE levels. Obviously, the proposed AGI-based approach is
therefore more reliable than the aforementioned conventional
approaches.

In essence, an AGI-native network can continuously guaran-
tee an LoS for XR users as it anticipates their future states and
possible blockage through intuitive physics. Accordingly, this
framework requires real-time sensing of the real world along
with high rate low latency communications, simultaneously.
One possible way to achieve this functionality is through
a joint sensing and communications framework at sub-THz
frequencies. On the one hand, communication at sub-THz
bands promises to provide the necessary data rates and latency
requirements for XR and metaverse use cases. On the other
hand, sensing at the sub-THz bands provides a major opportu-
nity to capture the situational awareness that maps the physical
environment into the digital world. In fact, our previous
work [56] demonstrated that the use of a non-autoregressive
multi-resolution generative AI framework combined with an
adversarial transformer can surpass other benchmarks (e.g.,
beamtracking) in delivering a resilient physical experience
in such joint system. In particular, because sensing in the
sub-THz regime can be largely sparse, we adopted a multi-
resolution generative AI framework in [56] to compensate
for any missing sensing values. Basically, the generative AI
framework of [56] can provide a basic implementation of an
AGI-native network with a world model, because it allows
to fill in the missing blanks, as described in Sections I-B
and III-C. In addition, the adversarial transformer enables

11Robustness is defined as the ability of the network to maintain its
performance (i.e., reliability) under different operating conditions.

predicting future situational awareness information that can
leveraged for detect blockage and future beam allocation.
Evidently, this mimics a key functionality of our envisioned
world model.

Open Problems. While an AGI-native network can ensure
an uninterrupted, immersive physical experience, one impor-
tant open problem is to design new approaches for reducing
the mismatch between the XR user and the cognitive avatar so
as to provide a synchronized virtual experience. In this regard,
we propose to design AI-driven cognitive avatars as foundation
models. These models can be pre-trained over a huge corpus
of data that encompasses the tracking and sensory information
with the corresponding actions of XR users. Accordingly,
we propose leveraging the captured kinematic fingerprint of
each XR user to fine-tune the foundation model to each XR
user. In this case, the foundation model can be placed in the
virtual world over the network (at the cloud or at another
edge). Thus, each XR user must fine-tune this model according
to their unique kinematic fingerprint prior to participating
in the virtual world. Although privacy concerns can arise
when training a foundation model in this case, this can be
resolved possibly through distributed learning architectures
(e.g., federated learning and its numerous extensions [94]).
To address the synchronization challenge that results from
placing the avatar model in the virtual world, an AGI-native
network must go beyond predicting the future states of the XR
user through intuitive physics. Here, the AGI-native network
must predict the future sensory information of the XR user
with more granular details. Hence, such sensory information
expands the scope beyond the framework of joint sensing and
communications that is limited to predicting the six degrees-
of-freedom of the XR user, as shown in our work in [56]. Such
sensory information can include the specific locations of the
arms, legs, etc. This predicted sensory information can then
be leveraged to generate the corresponding actions proactively
in the virtual world, by using the foundation model. After
the interaction in the virtual world, the avatar can determine
the feedback to the XR user via its reasoning capabilities.
Accordingly, this feedback can then be reflected from the
avatar to the XR user. In essence, this proactive mechanism
promises to close the synchronization gaps between the XR
user and their cognitive avatar. As such, it is imperative for
an AGI-native to further leverage principles of physics (e.g.,
laws of motion) to reliably predict the sensory information
of the XR user. In essence, the prediction of the sensory
information is built on the premise that an AGI-native network
can also understand the behavior of the XR user. Henceforth,
there is a need to develop novel physics-aware frameworks
in AGI-native networks that allow them to faithfully predict
the sensory information of XR and metaverse users while also
minimizing the synchronization mismatch.

C. Brain-level metaverse experiences: Holographic teleporta-
tion with ToM

Live metaverse experiences such as holographic telepor-
tation provide means to bridge the physical gap between
entities residing at different geo-spatial settings. Holographic
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teleportation is based on transmitting descriptive representa-
tions of objects and events [95]. Essentially, the teleportation
of real-world elements and objects requires a merger of
digital and virtual worlds to spatially transfer holographic
entities over the network [2]. In this scenario, relying on
classical communications to perfectly describe and transmit
large amounts of data in an attempt to construct such elements
can fail to meet the stringent E2E synchronization delays of
this process. Naturally, this can degrade the overall QoVE of
the metaverse end-user. Alternatively, going beyond classical
communications, holographic teleportation should capitalize
on capturing detailed real-time abstract representations of
objects and events, such as those captured by the telecom
brain (see Section III-B). These abstract representations are
then transmitted from one location to another for reassembly
and generation as holograms.

In general, the telecom brain can capture representations
of real-world elements and facilitate their teleportation in an
efficient manner over the AGI-native network. For example,
leveraging our approach for disentangling data points from
Section III-B provides a promising method to capture rep-
resentations and transmit them over the network. As shown
in Fig. 17, our previous work in [61] proves that we can
efficiently represent rich, complex data (such as that of
holograms) for transmission over the network. This includes
transmitting the learnable data (as representations) seman-
tically, while continuing to send the spurious data through
conventional classical communications.12 In fact, our approach
showcases superiority in terms of semantic impact [52] over
two benchmarks: a) transmitting the data using classical com-
munication and, b) transmitting all the data semantically. Here,
the semantic impact is a metric that captures the number of
packets that would have been needed to be transmitted during
a certain time interval to regenerate the semantic content
element. Hence, we are able to rigorously and efficiently rep-
resent such holograms even when the underlying complexity
for such objects or events increases, without jeopardizing the
quality of the hologram and the overall QoVE.

Nonetheless, one crucial requirement to attain seamless
holographic teleportation in such scenarios is based on the
correct regeneration of the objects and events at the Rx side
(i.e., end-user). For instance, any error in reconstruction can
lead to a degradation in the QoVE of the metaverse end-
user. In other words, the constructed elements at the Rx
should be semantically similar to those at the telecom brain
(which here would essentially act as a Tx) to achieve a
reliable teleportation. In particular, consider an element n
(i.e., object or event) conveying the abstract representation
z that has a semantic message space C. To be semantically
similar, the constructed element n̂ at the Rx with an abstract
representation ẑ must belong to the same semantic message
space C. Moreover, the semantic message space corresponding
to ẑ can be defined as the Euclidean space over which the
semantic information conveyed by ẑ is the same within a ball
of radius δ [17]. Thus, to achieve a reliable teleportation, the

12Here, we transmit the abstract representation along with the remaining
spurious data over the network to faithfully generate the real-world objects.
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Fig. 17: Semantic impact vs. complexity of the transmitted
content [61].

following condition must be satisfied:

E(n, n̂) ≤ δ, s.t. E(z, ẑ) = 0, (4)

where E(n, n̂) = ∥n− n̂∥2 and E(z, ẑ) = ∥z − ẑ∥2.
One of the major errors during reconstruction of real-world

elements from their representations can be related to the
causal models acquired at the Rx for re-generation. Here, the
acquired causal models incorporate the causal relationships
(e.g., in the form of an SCM, a graph neural network (GNN),
etc.) and parameters extracted from the data to describe
the underlying elements and events. In fact, reasoning-based
transmitters and receivers extract and interpret messages based
on their different causal knowledge, whereby this knowledge
is captured within the Tx/Rx parameters. Hence, a mismatch in
causal models at the Tx and Rx can degrade the reconstruction
process. Therefore, the Tx and Rx should be aligned in terms
of their parameters.

One possible approach to address this alignment concern
can be through the intuitive psychology abilities pertaining to
common sense in an AGI-native network. In particular, the
telecom brain can leverage the psychological concept of ToM
to estimate the concealed mental states of other elements [96].
In general, ToM can be defined as follows.

Definition 5. ToM is defined as the cognitive ability of the
brain to attribute mental states to others and to oneself,
which may not necessarily be in agreement with each other. In
essence, these mental states can refer to the different beliefs,
emotions, or intentions [55].

Since an AGI-native network operates with common sense,
it can possibly reason the mental states of different users in
the network (see Fig. 1). A “mental state” in an AGI-native
network is essentially the causal knowledge and corresponding
attained models of the end-user. In our case, the Tx (i.e.,
telecom brain) can estimate the mental states (i.e., a priori
causal knowledge and models) of the Rx side prior to the
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communication rounds that happen [97]. Subsequently, the Tx
can dynamically adapt its parameters and the corresponding
representations based on the feedback measures of semantic
effectiveness from the Rx [98]. In this case, the telecom brain
tries to understand the causal model of the Rx and, then,
it aligns its parameters with it for reliable reconstruction.
Effectively, supporting the Tx with ToM abilities can reduce
the number of iterations needed with the Rx to achieve the
same semantic reliability. Here, semantic reliability measures
the ability to achieve semantic similarity between the Tx and
Rx. As shown in Fig. 18, our work in [98] proves that the
semantic reliability achieved with ToM reasoning can outper-
form several benchmarks that include causal reasoning and
implicit semantic communications (i.e., semantic communica-
tion with imitation learning-based implicit reasoning). In fact,
our results in [98] show that ToM can become more effective
in achieving semantic reliability for constructing elements at
the Rx as the complexity of causal relationships (complexity
increases with task index) increases. Notably, ToM can play a
critical role in the telecom brain that seeks to acquire complex
abstract representations (see Fig. 9), and potentially utilize
these representations to enable applications like holographic
teleportation. Therefore, ToM is a promising ability for AGI-
native networks to further enhance reliable communications
through common sense.

Open Problems. Although ToM can play a crucial role
in an AGI-native network, scaling ToM with multiple re-
ceivers can be challenging. For instance, consider an example
of holographic teleportation that supports the omnipresence
of the teleported element at multiple receivers. Clearly, the
telecom brain will have to transmit its representations to
receivers that have different causal models. Here, the telecom
brain has to adapt its parameters to compromise between
the different causal models at the receivers. Effectively, this
compromise could jeopardize the semantic reliability of the
AGI-native network and degrade the QoVE of the metaverse
user. In other words, this results in a miscommunication
between the Tx and the receivers. One possible interpretation
of this issue lies in the underlying communication model,
which typically treats individual communication links inde-
pendently, overlooking the possibility that multiple receivers
may have different causal knowledge when interpreting the
same message. Here, we can potentially look at the use of the
framework of mass communication theory [99] that considers
more complex communication models with multiple receivers
that accommodate different beliefs. One candidate from this
theory is the Westley and Maclean communication model.
This model considers multiple receivers which inherently have
different causal knowledge or experiences that influence how
communication messages are interpreted. In addition, the Tx
can have its own causal model and knowledge. As such, this
model admits a gatekeeper at the Tx side, which aims to refine
the message based on the feedback from the receivers. The role
of the gatekeeper complies with the ToM ability developed in
AGI-native networks which expands this ability into a mass
communication framework. Clearly, this mass communication
framework can better model the communication in an AGI-
native network with receivers having different causal models
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Fig. 18: Semantic reliability vs task index (task complexity) [98].

and knowledge, as in the example of holographic teleportation.
In this case, the different models of causal knowledge can
be incorporated into the communication model, and jointly
optimized with the message representation, facilitating a rigor-
ous system design that reflects the underlying communication.
Thus, it is crucial to design new metrics that can be optimized
in this system to ensure the message is largely conveyed by
the different receivers. For instance, this system can benefit
from a collective channel capacity between the Tx and the Rx
instead of separate communication capacities. Last, but not
least, it is necessary to investigate the broader role that mass
communication theory can play in future AGI-native wireless
systems.

V. CONCLUSION AND RECOMMENDATIONS

In this paper, we have proposed a novel vision of AGI-
native wireless systems that could constitute the next frontier
of the wireless network evolution. This vision advocates for
a paradigm shift from the traditional, unsustainable path of
network evolution that is ultimately limited by various physical
constraints of the wireless enablers, towards an AI-driven path
guided by next-generation AGI technologies. In essence, we
have shown that enabling next-generation of networks that
can meet the perpetual demands of emerging applications like
the metaverse, DTs, or holographic teleportation, will require
equipping the network with cognitive abilities, namely, com-
mon sense. We have identified the pillars of common sense,
and showcased how it can be implemented using a native
cognitive telecom brain architecture having three essential
modules: perception, world model, and action-planning, and
complemented by proper memory and cost modules. This
architecture enables future wireless networks to operate at AGI
levels and augments autonomous agents with common sense.
Towards this end, we have presented a novel method for cap-
turing generalizable abstract representations of the real world
through optimizing the complexity of these representations
while balancing between causality and generalizability. More-
over, we have studied how transforming these representations
into an HD vector space facilitates building a world model that
is compatible with the inuitive physics operations pertaining
to common sense and the real, physical world. In addition,
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we have discussed how this world model can enable efficient
analogical reasoning. Furthermore, we have proposed two
action-planning methods, namely, intent-driven and objective-
driven planning, that enable an AGI-native network to plan its
actions. Moreover, we have shown how an AGI-native network
plays a crucial role in enabling a new set of use cases including
cognitive avatars and holographic teleportation. In a nutshell,
we have drawn the first connection between wireless networks
and AGI, while showcasing that the two fields are largely
intertwined and must be developed in concert with one another.

We finally conclude by offering concrete recommendations
to pave the way for the emergence of AGI-native wireless
networks:

• Physics-based digital world models: It is evident that
world models bring forth common sense into AGI-
native wireless systems. Nevertheless, ensuring the proper
foundations to implement the intuitive physics in world
models is necessary. While the proposed HD-based causal
world models presents an initial step in this direction,
there is a clear gap in the design of advanced approaches
that enable an AGI system to learn the physics of the
world surrounding it. Hence, there is a need to push
more towards designing physics-based world models and
perfectly representing basic physical actions in such a
world. At high level, we need new approaches that allow
AI systems to learn “high school-level physics” of the
world around them.

• Role of LLMs and generative AI in an AGI-native
network: LLMs and more broadly generative AI have
become a major discussion point for current 6G efforts.
In the proposed vision, LLMs and generative AI can
have a few roles. For instance, there could be a need
for translating human input into machine-understandable
intents, and those inputs can be done through LLM
prompts for instance. Those prompts are then translated
into proper data points for our telecom brain. Moreover,
generative AI can be used to generate synthetic data
points out of the DT for potentially further training our
system on additional inputs, thereby refining proactive
learning. These generative capabilities can also be useful
at the receiver in the context of a semantic communica-
tion network whereby the receiver can locally generate
content in absence of the communication link. LLMs
and generative AI can also have a role in human-centric
applications, whereby they can be used in the design
of foundation models for cognitive avatar applications.
However, LLMs and generative AI, by themselves are
clearly not the appropriate path for fully-fledged network
automation and for instilling rigorous intelligence into
wireless systems. Instead, an AGI-native network, with
the components defined specifically in Fig. 5, is the
necessary path towards autonomy and AI-nativeness for
wireless systems. In other words, LLMs are “fluent” AI
systems that know a vast amount of information. How-
ever, fluent AI systems are not necessarily intelligent as
they lack cognitive functions like reasoning and common
sense. In contrast, towards building the next-generation
of AI-native networks, we need to put more emphasis

on the design of AI systems that have strong reasoning,
planning, and common sense abilities. Therefore, we
recommend shifting focus from generative and large AI
models towards AI designs that can rigorously understand
how the world works, and that can help further develop
the building blocks in Fig. 5. In this regard, it is also
necessary to design a more intelligent AI that focuses
more on the world and its physics, and less on the massive
sizes of models and data. In particular, the success behind
these generative models primarily stems from the con-
tinuous increase in the size of their models and training
data. Nevertheless, their training data is gradually coming
to an end while the need to continue scaling model
size is apparent. Henceforth, these generative models
will eventually approach a saturation limit in terms of
performance before reaching human-like generalizability
that is necessary to understand the world. In contrast,
reaching AGI will require new architectures that learn
the physical concepts of the world that humans rely on
to navigate uncertainties in their real-life situations.

• Open interfaces in AGI-native wireless systems: The
design of the Open RAN (ORAN) architecture is built
on the premise of disaggregating software from hardware
components and introducing the radio intelligent con-
troller (RIC) functionality. Essentially, the openness of the
RAN interfaces plays a role in achieving this premise, and
ORAN can be a suitable architecture for incorporating
AGI-native networks. For example, ORAN can provide a
meaningful software framework to deploy the proposed
approach for creating sub-metaverses and deploying AGI
capabilities at the edge. Moreover, as AGI-native systems
anticipate the emergence of the telecom brain, the intel-
ligence in the network can become fully disaggregated.
Consequently, there is a need to adopt open interfaces
beyond the RAN, particularly, in the core network. For
instance, a fully open network is crucial for the core-
DT and RAN-DT to interact with each other as well as
with the elements of the world, so that the AGI-native
network can plan its actions. In addition, these open
interfaces must enable the interoperability of DTs from
different sources on the network. Hence, the design of
a fully open network becomes an important cornerstone
for AGI-native wireless systems. Here, we also note that
the presence of an AGI-native network is also useful to
orchestrate and manage the various functionalities of the
existing Open RAN architecture. Indeed, deploying AGI-
native infrastructure over ORAN systems is an important
subject for future investigation.

• Synergies between fundamental mathematics and
AGI: In order to design AGI-native wireless networks, it
is necessary to exploit rigorous, fundamental tools from
mathematics. Those tools include frameworks such as
category theory, that is useful for transforming symbols in
the telecom brain into HD vectors, persistent homology
that allows efficient grouping of similar symbols, as
well as notions like integrated information, that allows
quantifying the number of intent-driven planning steps.
Here, we expect that building reliable and explainable
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AGI-native wireless networks requires exploring syner-
gies with fundamental mathematical frameworks in order
to “open” the black box, and be able to concretely define
some of the AGI and common sense abilities. Close
collaboration between AI, wireless, and mathematics re-
searchers is therefore important.

• Modifying traditional components to serve common
sense: As AGI is driven by cognitive modules adopted
from fields like robotics and model predictive con-
trol (MPC), further developments of these modules are
needed to help them serve common sense. In particular, a
world model must go beyond its differential and dynamic
interpretation that is used in MPC towards modeling real-
world entities as abstract representations in a latent space.
In addition, plausible future predictions should consider
physical principles (e.g., intuitive physics) rather than
deterministic calculations. In addition, perception should
diverge from simply identifying the state of the environ-
ment towards capturing it in the form of generalizable and
causal representations. Moreover, action-planning should
accommodate more principles from neuroscience (e.g.,
IIT) when providing the optimal sequence of actions so
as to reflect and resemble human nature in planning their
actions over a time horizon.

• Design of efficient guardrails for autonomous AI: As
wireless systems continue to become autonomous, they
will need to be guided throughout their learning, plan-
ning, and execution phases. Consequently, incorporating
the proper guardrails for AI systems to remain safe and
steerable with human intervention becomes necessary.
Therefore, an indispensable step towards AGI-native net-
works is to design efficient guardrails that can safely
guide the network without constraining it from learning
and acquiring knowledge. These guardrails should satisfy
the guidelines posed by standardization bodies such as the
Third Generation Partnership Project (3GPP) for wireless
communications and networking applications.
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