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Abstract. Let δ > 1/2. We prove that if A is a subset of the primes such that the
relative density of A in every reduced residue class is at least δ, then almost all even
integers can be written as the sum of two primes in A. The constant 1/2 in the statement
is best possible. Moreover we give an example to show that for any ε > 0 there exists a
subset of the primes with relative density at least 1− ε such that A+A misses a positive
proportion of even integers.

1. Introduction

Let P be the set of all primes and let A ⊂ P be a subset. This paper studies the rep-
resentation of even integers as sums of two primes belonging to A. The famous Goldbach
conjecture, which remains wide open, states that every even integer n ≥ 4 can be written
as the sum of two primes. The ternary version which concerns representing odd integers
as sums of three primes has been much more tractable. Vinogradov [21] proved in 1937
that every sufficiently large odd integer is a sum of three primes (see also [2, Chapter 26]).
This is now known to hold for all odd integers at least 7, thanks to work of Helfgott [8].

Returning to the binary Goldbach problem, Estermann [3] showed in 1938 that almost
every even integer can be written as the sum of two primes. More precisely if E(N) denotes
the set of even integers n ≤ N which cannot be written as the sum of two primes, then

E(N)

N
≪A (logN)−A

for every A > 0. A power saving for the error term was first obtained by Montgomery and
Vaughan [13], who showed that

E(N)

N
≪ N−δ

for some positive constant δ > 0. Since then there have been a series of improvements on
the precise value of δ, leading to the current record of δ = 0.28 due to Pintz [14].

In this paper we study Goldbach-type problems with primes restricted to subsets of P.
For a subset A ⊂ P, the relative lower density of A in P is defined by

δ(A) = lim inf
N→∞

|A ∩ [1, N ]|

|P ∩ [1, N ]|
.

In recent years density versions of Vinogradov’s three primes theorem have been obtained
[9, 17, 18]. For example, in [17] it was proved that if δ(A) > 5/8 then all sufficiently large
odd positive integers can be written as a sum of three primes in A. See also [12, 11, 20, 6]
for results with (special) sparse subsets of primes.
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Motivated by these results, we seek to obtain a density version of the almost all binary
Goldbach problem. The binary problem for small positive density subsets of primes has
been studied in [16, 1, 10]. In particular, Matomäki [10] proved that if δ(A) = α for some
positive constant α > 0, then the sumset A + A := {p1 + p2 : p1, p2 ∈ A} has positive
lower density in the integers. Moreover, the lower density of A+A is at least

(e−γ − o(1))
α

log log(1/α)
,

where γ is the Euler-Mascheroni constant and o(1) denotes a quantity that tends to 0 as
α → 0. See also [7] for related results with A the set of almost twin primes.

We seek conditions on A ⊂ P which guarantee A+A contains almost all even integers,
or equivalently, A + A has density 1/2 in the integers. Specifically we ask whether there
exists a positive constant α < 1, such that if δ(A) ≥ α then A + A contains almost all
even integers. We show that, unlike the ternary case, such an α does not exist.

Theorem 1.1. For any ε > 0 there exists a subset A ⊂ P with δ(A) > 1− ε, such that a
positive proportion of the even positive integers cannot be written as a sum of two primes
in A.

However the situation changes if we impose additional local assumptions about the set
A. For a reduced residue class b (mod W ), we define the relative lower density of A in
primes within this residue class by

δ(A;W, b) = lim inf
N→∞

|A ∩ {1 ≤ n ≤ N : n ≡ b (mod W )}|

|P ∩ {1 ≤ n ≤ N : n ≡ b (mod W )}|
.

Theorem 1.2. Let A ⊂ P be a subset such that

inf
W,b

δ(A;W, b) > 1/2,

where the infimum is taken over all reduced residue classes b (mod W ). Then almost all
even positive integers N can be written as N = p1 + p2 with p1, p2 ∈ A.

Remark 1.3. The constant 1/2 is sharp. For any α > 2 we may define

A = {p ∈ P : p ∈ [1, N1] ∪ [αN1, N2] ∪ [αN2, N3] · · · },

where N1 < N2 < N3 < · · · is a rapidly increasing sequence. Then δ(A;W, b) = 1/α for
all reduced residue classes b (mod W ) and A + A misses a positive proportion of even
integers.

This result is proved using a variant of the Fourier analytic transference principle from
additive combinatorics. This technique originated from the work of Green [4] who devel-
oped it to establish Roth’s theorem in primes. Variants of the transference principle have
been developed suitable for different problems. See [15] for a survey. For a variant suitable
for additive problems involving dense subsets of the primes, see [10, Section 6] or [1]. For
an almost-all version of the transference principle, see [22].

This article is organized as follows. In Section 2 we study the binary Goldbach problem
in the local setting, leading to the proof of Theorem 1.1. In Section 3 we develop an almost-
all variant of the transference principle. In Section 4 we use this transference principle to
prove Theorem 1.2.
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2. Local results

For a positive integer m, we write Z∗
m for the set of reduced residue classes modulo

m. In this section we will prove Theroem 1.1 by studying the binary problem in the
local setting of a cyclic group. We will first prove the following Theorem 2.1 which is an
independent result and will not be needed in the subsequent proofs in our paper, however
as we will show Theorem 1.1 is essentially a consequence of the observation that Theorem
2.1 is sharp.

Theorem 2.1. Let m be an odd squarefree positive integer and let A,B ⊂ Z∗
m be subsets.

Assume that

|A|+ |B| > φ(m)


2−

∏

p|m

p− 2

p− 1


 .

Then A+B = Zm.

Proof. Let n ∈ Zm be arbitrary. Let

X = {x ∈ Z
∗
m : n− x ∈ Z

∗
m}.

Then x ∈ X if and only if x ̸= 0, n (mod p) for every p | m, and hence

|X| ≥
∏

p|m

(p− 2).

It follows that the number of x ∈ X such that x ∈ A and n− x ∈ B is at least

|X| − |Z∗
m \A| − |Z∗

m \B| ≥ |A|+ |B| − 2φ(m) +
∏

p|m

(p− 2) > 0.

Pick any such x. Then n = x+ (n− x) ∈ A+B, as desired. □

The lower bound for |A|+|B| is sharp. Let m = p1p2 · · · ps, where p1, · · · , ps are distinct
odd primes. Define

A =
s⋃

i=1

{a ∈ Z
∗
m : a (mod pi) ∈ Xi}, B =

s⋃

i=1

{a ∈ Z
∗
m : a (mod pi) ∈ Yi},

where Xi = Yi = {1} for 1 ≤ i ≤ s− 1, and

Xs = {1, 2, · · · , x}, Ys = {1, 2, · · · , y}.

for some 1 ≤ x, y < ps. Then 1 /∈ A+B if x+ y ≤ ps and

|A| = φ(m)


1−

ps − 1− x

ps − 1

∏

1≤i≤s−1

pi − 2

pi − 1


 , |B| = φ(m)


1−

ps − 1− y

ps − 1

∏

1≤i≤s−1

pi − 2

pi − 1


 .

Hence if we choose x, y such that x+ y = ps then

|A|+ |B| = φ(m)


2−

∏

p|m

p− 2

p− 1


 .

Moreover, if we choose x = y = (ps − 1)/2, then A = B and we obtain A ⊂ Z∗
m with

|A| = φ(m)


1−

1

2

∏

1≤i≤s−1

pi − 2

pi − 1



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such that A + A ̸= Zm. Since the infinite product
∏

p
p−2
p−1 diverges to 0 we can suppose,

for any ε > 0, that |A| > φ(m)(1 − ε). Now let A′ be the set of all primes which are
congruent to some a ∈ A. By Dirichlet’s theorem on primes in arithmetic progressions,
δ(A′) > 1− ε. Since A+A ̸= Zm it follows that A′ +A′ does not contain any of the even
integers in some fixed residue class modulo m and so we immediately arrive at Theorem
1.1.

3. A transference principle

We work in a cyclic group ZN . We adopt the normalization corresponding to the
probability measure on the physical side ZN and to the counting measure on the frequency

side ẐN . Thus, the Fourier transform of a function f : ZN → C is defined by

f̂(r) = En∈ZN
f(n)eN (−rn)

for r ∈ ZN . For p, q > 0, the norms ∥f̂∥p and ∥f∥q are normalized as follows:

∥f̂∥p =
( ∑

r∈ZN

|f̂(r)|p
)1/p

, ∥f∥q =
(
En∈ZN

|f(n)|q
)1/q

.

For two functions f1, f2 : ZN → C, their convolution f1 ∗ f2 is defined by

f1 ∗ f2(n) = En1∈ZN
f1(n1)f2(n− n1).

Proposition 3.1. For i ∈ {1, 2}, let fi, νi : ZN → R≥0 be functions such that fi(n) ≤ νi(n)
for every n ∈ ZN . Let δi = En∈ZN

fi(n). Let δ, η > 0. Suppose that the following conditions
hold.

(1) δ1 + δ2 ≥ 1 + δ for some δ > 0.

(2) Each fi satisfies a mean value estimate in the sense that ∥f̂i∥p ≤ M for some
p ∈ (2, 4) and M ≥ 1.

(3) Each νi has Fourier decay in the sense that ∥ν̂i − 1∥∞ ≤ c(δ, η, p,M) for some
sufficiently small constant c(δ, η, p,M) > 0.

Then f1 ∗ f2(n) ≥ δ3/1000 for all but at most ηN values of n ∈ ZN .

To prove Proposition 3.1, first we construct in Lemma 3.2 decompositions fi = gi + hi
for each i ∈ {1, 2}, such that gi is essentially 1-bounded and hi is Fourier uniform in

the sense that ∥ĥi∥∞ = o(1). Then we show in Lemma 3.3 that g1 ∗ g2(n) ≫δ 1 for all
n ∈ ZN using hypothesis (1) about the sizes of δ1, δ2. Finally we show in Lemma 3.4 that
f1 ∗ f2(n) ≫δ 1 for almost all n, using a standard Fourier analytic argument.

We now turn to the details. Let ε > 0 be a small constant to be chosen later in terms
of δ, η, p,M .

Lemma 3.2. Let the notations and assumptions be as above. For each i ∈ {1, 2}, we may
construct an approximant gi : ZN → R≥0 of fi with the following properties:

(1) En∈ZN
gi(n) = δi.

(2) ∥gi∥∞ ≤ 1 + δ/10.

(3) ∥f̂i − ĝi∥∞ ≤ ε.
(4) ∥ĝi∥p ≤ M .

The statement of the lemma is analogous to [17, Lemma 4.2] (where we caution that
the functions and the Fourier transforms are normalized differently), and the proof follows
the same arguments as in [5, Proposition 5.1]. For completeness, we include a full proof.
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Proof. For convenience, we drop the dependence on i, writing f = fi, g = gi, ν = νi.
Define the large spectrum of f to be

R = {r ∈ ZN : |f̂(r)| ≥ ε}.

From the mean value estimate ∥f̂∥p ≤ M it follows that

εp|R| ≤
∑

r∈ZN

|f̂(r)|p ≤ Mp,

and hence |R| ≤ (M/ε)p. Define the Bohr set

B = {x ∈ ZN : |eN (xr)− 1| ≤ ε for each r ∈ R}.

By the pigeonhole principle (see [19, Lemma 4.20]), it follows that |B| ≥ (cε)|R|N for
some absolute constant c > 0 and thus |B| ≫ε,p,M N . Now define the approximant
g : ZN → R≥0 by

g(n) = Eb1,b2∈Bf(n+ b1 − b2).

We will verify that g satisfies the four desired properties.
Property (1) follows trivially by the definition of g. To verify property (2), note that

for each n ∈ ZN we have

g(n) ≤ Eb1,b2∈Bν(n+ b1 − b2) =
∑

r∈ZN

ν̂(r)eN (−rn) |Eb∈BeN (rb)|2 .

By the Fourier decay property of ν, we may replace ν̂(r) above by 1r=0 at the cost of an
error at most c = c(δ, η, p,M) for some sufficiently small constant c(δ, η, p,M) > 0. It
follows that

g(n) ≤ 1 +O
(
c
∑

r∈ZN

|Eb∈BeN (rb)|2
)
= 1 +O

(cN
|B|

)
= 1 +Oε,p,M (c).

Since ε is chosen in terms of δ, η, p,M , we may ensure that g(n) ≤ 1 + δ/10 by choosing c
sufficiently small in terms of δ, η, p,M .

To verify property (3), note that for each r ∈ ZN we have

|f̂(r)− ĝ(r)| = |f̂(r)|
(
1− |Eb∈BeN (rb)|2

)
≤ 2|f̂(r)|Eb∈B|1− eN (rb)|.

We divide into two cases according to whether r ∈ R or not. If r ∈ R, then |eN (rb)−1| ≤ ε
for each b ∈ B by the definition of the Bohr set B, and hence

|f̂(r)− ĝ(r)| ≤ 2ε|f̂(r)| ≤ 4ε,

using the trivial bound

(3.1) |f̂(r)| ≤ En∈ZN
f(n) ≤ En∈ZN

ν(n) = ν̂(0) ≤ 2

(say). If r /∈ R, then |f̂(r)| ≤ ε by the definition of the large spectrum R, and hence

|f̂(r)− ĝ(r)| ≤ 4ε. This verifies property (3) (after replacing ε in our argument by ε/4).
Finally, property (4) follows easily from the fact

(3.2) |ĝ(r)| = |f̂(r)| · |Eb∈BeN (rb)|2 ≤ |f̂(r)|

and the mean value estimate for f . □

Lemma 3.3. Let the notations and assumptions be as above, and let g1, g2 be the approx-
imants constructed in Lemma 3.2. Then g1 ∗ g2(n) ≥ δ3/200 for every n ∈ ZN .
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Proof. For i ∈ {1, 2}, define Ai to be the essential support of gi:

Ai = {n ∈ ZN : gi(n) ≥ δ/10}.

Since ∥gi∥∞ ≤ 1 + δ/10, we have

δiN =
∑

n∈ZN

gi(n) ≤
1
10δN +

(
1 + δ

10

)
|Ai| ≤

1
5δN + |Ai|.

Hence |Ai| ≥ (δi − δ/5)N . Thus for every n ∈ ZN ,

|A1 ∩ (n−A2)| ≥ |A1|+ |A2| −N ≥
(
δ1 + δ2 − 1− 2

5δ
)
N ≥ 1

2δN,

and hence
g1 ∗ g2(n) ≥ N−1

(
δ
10

)2
|A1 ∩ (n−A2)| ≥

1
200δ

3.

This completes the proof. □

Lemma 3.4. Let the notations and assumptions be as above, and let g1, g2 be the approx-
imants constructed in Lemma 3.2. Let E be the exceptional set defined as

E = {n ∈ ZN : f1 ∗ f2(n) ≤ δ3/1000},

Then |E| ≤ ηN .

Proof. Let α = |E|/N . Consider the inner product I = ⟨g1 ∗ g2 − f1 ∗ f2, 1E⟩. On the one
hand, we have

I =
1

N

∑

n∈E

(g1 ∗ g2(n)− f1 ∗ f2(n)) ≫ δ3α

by Lemma 3.3 and the definition of E. On the other hand, by Plancherel’s identity and
Cauchy-Schwarz inequality we have

I = ⟨ĝ1ĝ2 − f̂1f̂2, 1̂E⟩ ≤ ∥1̂E∥2 · ∥ĝ1ĝ2 − f̂1f̂2∥2.

Clearly ∥1̂E∥2 = ∥1E∥2 = α1/2. Thus the two inequalities above together imply that

α ≪ δ−6∥ĝ1ĝ2 − f̂1f̂2∥
2
2.

Note that for every r ∈ ZN we have

|ĝ1(r)ĝ2(r)− f̂1(r)f̂2(r)| ≤ |ĝ1(r)| · |ĝ2(r)− f̂2(r)|+ |f̂2(r)| · |ĝ1(r)− f̂1(r)| ≤ 4ε,

where we used the property that ∥f̂i − ĝi∥∞ ≤ ε and the trivial bounds |f̂i(r)| ≤ 2 and
|ĝi(r)| ≤ 2 (see (3.1) and (3.2)). Moreover by Cauchy-Schwarz, condition (4) of Lemma
3.2 and the mean value estimate (2) of Proposition 3.1, we have

∥ĝ1ĝ2 − f̂1f̂2∥p/2 ≤ ∥ĝ1ĝ2∥p/2 + ∥f̂1f̂2∥p/2 ≤ ∥ĝ1∥p∥ĝ2∥p + ∥f̂1∥p∥f̂2∥p ≤ 2M2.

Since p ∈ (2, 4), it follows that

∥ĝ1ĝ2 − f̂1f̂2∥2 ≤ ∥ĝ1ĝ2 − f̂1f̂2∥
1−p/4
∞ · ∥ĝ1ĝ2 − f̂1f̂2∥

p/4
p/2 ≪p,M ε1−p/4

and hence
α ≪p,M δ−6ε2−p/2.

Thus we may ensure that α ≤ η by choosing ε = (cδ6η)2/(4−p), where c = c(p,M) > 0 is a
sufficiently small constant. □

As mentioned previously, the proof of Proposition 3.1 is completed by combining Lem-
mas 3.2, 3.3 and 3.4.



7

4. Binary Goldbach for dense subsets of primes

In this section we prove Theorem 1.2. Let A ⊂ P be a subset satisfying the assumptions
in Theorem 1.2. Choose δ ∈ (0, 1/2) such that δ(A;W, b) ≥ 1/2 + δ for every reduced
residue class b (mod W ). Let E be the exceptional set consisting of those even positive
integers that cannot be written as a sum of two primes in A. It suffices to show that

lim
M→∞

|E ∩ [(1− δ10)M,M ]|

M
= 0.

Suppose, for the purpose of contradiction, that there exists a constant η > 0 such that

(4.1) |E ∩ [(1− δ10)M,M ]| ≥ ηM

for each M = Mi in an infinite increasing sequence M1 < M2 < · · · of positive integers.
Set W =

∏
p≤z p, where z is a constant sufficiently large in terms of δ, η. Recall that

δ(A;W, b) = lim inf
M→∞

|AW,b ∩ [1,M ]|

|PW,b ∩ [1,M ]|
,

where, for a set A ⊂ Z and a residue class b (mod W ), the notation AW,b is defined by

AW,b = {n ∈ A : n ≡ b (mod W )}.

Thus, for some large value M = Mi, we have

|AW,b ∩ [1,M ]|

|PW,b ∩ [1,M ]|
≥

1

2
+

δ

2

for each b ∈ Z∗
W . Fix this value of M for the remainder of the proof, and let N = ⌊M/W ⌋.

By the pigeonhole principle, there exists an even residue class r (mod W ) such that

(4.2) |EW,r ∩ [(1− δ10)M,M ]| ≥
ηM

W
≥ ηN.

By the Chinese remainder theorem we can choose b1, b2 ∈ Z∗
W with r = b1 + b2. For

i ∈ {1, 2}, define fi, νi : ZN → R≥0 (naturally identifying ZN with {1, 2, · · · , N}) by

νi(n) =

{
φ(W )
W log(Wn+ bi) if Wn+ bi ∈ P,

0 otherwise.

and

fi(n) =

{
φ(W )
W log(Wn+ bi) if Wn+ bi ∈ A and Wn+ bi ≤ (1− δ5)M,

0 otherwise.

We will show that fi, νi satisfy the assumptions of Proposition 3.1. Note that νi
N is the

same as λbi,W,N in the notation of Green’s paper [4] which we will appeal to. Clearly

0 ≤ fi(n) ≤ νi(n) for every n. The mean value estimates ∥f̂i∥p = O(1) follows from [4,
Lemma 6.6] with exponent p = 3 (say). The Fourier decay property of νi follows from [4,
Lemma 6.2], once z is chosen large enough in terms of δ, η. Now note that the average of
fi(n) is

δi = En∈ZN
fi(n) =

φ(W )

NW

∑

p∈AW,bi
∩[1,(1−δ5)M ]

log p.
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By restricting the sum over p above to p ∈ AW,bi ∩ [M(logM)−10, (1− δ5)M ] and noting
that

|AW,bi ∩ [M(logM)−10, (1− δ5)M ]| ≥ |AW,bi ∩ [1,M ]| −M(logM)−10 −
δ4M

φ(W ) logM

≥

(
1

2
+

δ

3

)
M

φ(W ) logM
,

we deduce that

δi ≥
φ(W )

NW

(
1

2
+

δ

3

)
M

φ(W ) logM
(logM − 10 log logM) ≥

1

2
+

δ

4
.

Hence, we may apply Proposition 3.1 to the functions fi, νi (with δ, η replaced by δ/2, η/2,
respectively) to conclude that

f1 ∗ f2(n) ≫ δ3

for all but at most ηN/2 values of n ∈ ZN . In view of (4.2), there exists m ∈ EW,r ∩ [(1−
δ10)M,M ] such that (m − b1 − b2)/W (naturally viewed as an element in ZN ) is in the
support of f1 ∗ f2. By the definition of f1, f2, this implies that we can write

m− b1 − b2
W

≡ n1 + n2 (mod N)

for some positive integers n1, n2 with Wni + bi ∈ A and Wni + bi ≤ (1 − δ5)M . The
congruence above can be rewritten as

m ≡ (Wn1 + b1) + (Wn2 + b2) (mod WN).

Since m ∈ [(1 − δ10)M,M ] and (Wn1 + b1) + (Wn2 + b2) ≤ (2 − 2δ5)M , the congruence
above must be an equality in the integers:

m = (Wn1 + b1) + (Wn2 + b2).

This implies that m can be written as the sum of two primes in A, contradicting m ∈ E.

Acknowledgements. We thank the anonymous referee for helpful comments and sug-
gestions.
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