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DENSITY VERSIONS OF THE BINARY GOLDBACH PROBLEM

ALI ALSETRI AND XUANCHENG SHAO

ABSTRACT. Let § > 1/2. We prove that if A is a subset of the primes such that the
relative density of A in every reduced residue class is at least §, then almost all even
integers can be written as the sum of two primes in A. The constant 1/2 in the statement
is best possible. Moreover we give an example to show that for any € > 0 there exists a
subset of the primes with relative density at least 1 — & such that A+ A misses a positive
proportion of even integers.

1. INTRODUCTION

Let P be the set of all primes and let A C P be a subset. This paper studies the rep-
resentation of even integers as sums of two primes belonging to A. The famous Goldbach
conjecture, which remains wide open, states that every even integer n > 4 can be written
as the sum of two primes. The ternary version which concerns representing odd integers
as sums of three primes has been much more tractable. Vinogradov [21] proved in 1937
that every sufficiently large odd integer is a sum of three primes (see also [2, Chapter 26]).
This is now known to hold for all odd integers at least 7, thanks to work of Helfgott [8].

Returning to the binary Goldbach problem, Estermann [3] showed in 1938 that almost
every even integer can be written as the sum of two primes. More precisely if E(N) denotes
the set of even integers n < N which cannot be written as the sum of two primes, then

E(N)

T <<A (log N)iA

for every A > 0. A power saving for the error term was first obtained by Montgomery and
Vaughan [13], who showed that
E(N)

—ZY) N9
N <

for some positive constant § > 0. Since then there have been a series of improvements on
the precise value of J, leading to the current record of 6 = 0.28 due to Pintz [14].

In this paper we study Goldbach-type problems with primes restricted to subsets of P.
For a subset A C P, the relative lower density of A in P is defined by

AN

0(A) =1 f—.

8(4) = liminf =
In recent years density versions of Vinogradov’s three primes theorem have been obtained
[9, 17, 18]. For example, in [17] it was proved that if (A) > 5/8 then all sufficiently large
odd positive integers can be written as a sum of three primes in A. See also [12, 11, 20, 6]
for results with (special) sparse subsets of primes.
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Motivated by these results, we seek to obtain a density version of the almost all binary
Goldbach problem. The binary problem for small positive density subsets of primes has
been studied in [16, 1, 10]. In particular, Matoméki [10] proved that if 6(A) = « for some
positive constant o > 0, then the sumset A + A := {p1 + p2 : p1,p2 € A} has positive
lower density in the integers. Moreover, the lower density of A + A is at least

(e77 —o(1))

o«
loglog(1/a)’

where v is the Euler-Mascheroni constant and o(1) denotes a quantity that tends to 0 as
a — 0. See also [7] for related results with A the set of almost twin primes.

We seek conditions on A C P which guarantee A + A contains almost all even integers,
or equivalently, A + A has density 1/2 in the integers. Specifically we ask whether there
exists a positive constant o < 1, such that if §(A) > a then A + A contains almost all
even integers. We show that, unlike the ternary case, such an o does not exist.

Theorem 1.1. For any £ > 0 there exists a subset A C P with §(A) > 1 — ¢, such that a

positive proportion of the even positive integers cannot be written as a sum of two primes
m A.

However the situation changes if we impose additional local assumptions about the set
A. For a reduced residue class b (mod W), we define the relative lower density of A in
primes within this residue class by

.. JAN{I<n<N:n=b (mod W)}
(AW, b) =1 f .
(A W) =l it o N = (mod W]

Theorem 1.2. Let A C P be a subset such that
inf §(A; W, b 1/2
inf 5(4; W,0) > 1/2,

where the infimum is taken over all reduced residue classes b (mod W). Then almost all
even positive integers N can be written as N = py + ps with p1,ps € A.

Remark 1.3. The constant 1/2 is sharp. For any a > 2 we may define
A={peP:pe[l,Ni]U[aNi, Na]U[aNy, N3] ---},

where N1 < Ny < N3 < --- is a rapidly increasing sequence. Then §(A; W,b) = 1/« for
all reduced residue classes b (mod W) and A + A misses a positive proportion of even
integers.

This result is proved using a variant of the Fourier analytic transference principle from
additive combinatorics. This technique originated from the work of Green [4] who devel-
oped it to establish Roth’s theorem in primes. Variants of the transference principle have
been developed suitable for different problems. See [15] for a survey. For a variant suitable
for additive problems involving dense subsets of the primes, see [10, Section 6] or [1]. For
an almost-all version of the transference principle, see [22].

This article is organized as follows. In Section 2 we study the binary Goldbach problem
in the local setting, leading to the proof of Theorem 1.1. In Section 3 we develop an almost-
all variant of the transference principle. In Section 4 we use this transference principle to
prove Theorem 1.2.



2. LOCAL RESULTS

For a positive integer m, we write Z;, for the set of reduced residue classes modulo
m. In this section we will prove Theroem 1.1 by studying the binary problem in the
local setting of a cyclic group. We will first prove the following Theorem 2.1 which is an
independent result and will not be needed in the subsequent proofs in our paper, however
as we will show Theorem 1.1 is essentially a consequence of the observation that Theorem
2.1 is sharp.

Theorem 2.1. Let m be an odd squarefree positive integer and let A, B C Z;, be subsets.
Assume that

A+ |B| > ¢(m 2—Hp
plm

Then A+ B = 7Z,,
Proof. Let n € Zy, be arbitrary. Let
X={z€Z,,:n—xz€l,,}
Then z € X if and only if z # 0,n (mod p) for every p | m, and hence

x| >][-2.

plm

It follows that the number of £ € X such that x € A and n — x € B is at least
| X| = |Z;, \ Al = |Z3, \ B > |A] + |B| = 2¢(m) + [ [(» — 2) > 0.
plm

Pick any such z. Then n =z + (n —x) € A+ B, as desired. O

The lower bound for |A|+|B| is sharp. Let m = pipy - - - ps, where pq, - - -, ps are distinct
odd primes. Define

S S
A= U{aEZ;fn ta (mod p;) € X;}, B= U{an’,“n:a (mod p;) € Y3},
' i=1
where X; =Y; = {1} for 1 <i<s—1, and
XS:{1727"'7x}7 ){9:{17277y}
for some 1 < z,y < ps. Then1¢ A+ B if x +y < ps and

S 1_ z_ S 1_ 7
Al =pm) [1-2——"F T © CIBl=p(m) [1-2——2 T 22|,

1<i<s— 1 1<i<s— 1

Hence if we choose x,y such that x + y = p, then

4]+ |B| = 21— P

pim ¥
Moreover, if we choose x =y = (ps — 1)/2, then A = B and we obtain A C Z, with

pi —
Al = ¢(m)

l<z<s l



such that A + A # Z,,. Since the infinite product Hp Z%f diverges to 0 we can suppose,
for any e > 0, that |A] > ¢(m)(1 — ¢). Now let A’ be the set of all primes which are
congruent to some a € A. By Dirichlet’s theorem on primes in arithmetic progressions,
0(A") > 1 —¢. Since A+ A # Z,, it follows that A’ + A’ does not contain any of the even
integers in some fixed residue class modulo m and so we immediately arrive at Theorem

1.1.

3. A TRANSFERENCE PRINCIPLE

We work in a cyclic group Zy. We adopt the normalization corresponding to the
probability measure on the physical side Zx and to the counting measure on the frequency
side Zy. Thus, the Fourier transform of a function f : Zy — C is defined by

F(r) = Bpezy f(n)en(—rn)

for r € Zy. For p,q > 0, the norms Hﬂ\p and | f|; are normalized as follows:

17l = (X 1FP)"S 15l = (Baczylfle) ™"

T‘EZN
For two functions f1, fs : Zny — C, their convolution f; x fo is defined by

J1x fa(n) = Ep czy fi(n1) fa(n — nq).

Proposition 3.1. Fori € {1,2}, let fi,v; : Zny — Rx>q be functions such that f;(n) < v;(n)
for everyn € Zy. Let§; = E,cz, fi(n). Let §,m > 0. Suppose that the following conditions
hold.
(1) 61+ 92 > 146 for some § > 0.
(2) Each f; satisfies a mean value estimate in the sense that HﬁHp < M for some
p € (2,4) and M > 1.
(8) Each v; has Fourier decay in the sense that HVT—\IHOO < ¢(d,n,p, M) for some
sufficiently small constant c(6,n,p, M) > 0.

Then f1 * fa(n) > 63/1000 for all but at most nN values of n € Zy.

To prove Proposition 3.1, first we construct in Lemma 3.2 decompositions f; = g; + h;
for each i € {1,2}, such that g; is essentially 1-bounded and h; is Fourier uniform in
the sense that ||i]l.c = 0(1). Then we show in Lemma 3.3 that gy * ga(n) >4 1 for all
n € Zy using hypothesis (1) about the sizes of d;, d2. Finally we show in Lemma 3.4 that
f1#* fa(n) >5 1 for almost all n, using a standard Fourier analytic argument.

We now turn to the details. Let € > 0 be a small constant to be chosen later in terms
of 6,n,p, M.

Lemma 3.2. Let the notations and assumptions be as above. For each i € {1,2}, we may
construct an approzimant g; : Zny — R>q of fi with the following properties:

(1) ]EnEZNgi(n) = ;.

(2) llgills <1+ 4/10.

(3) i~ Gilloo <.
(4) lgilly < M.

The statement of the lemma is analogous to [17, Lemma 4.2] (where we caution that
the functions and the Fourier transforms are normalized differently), and the proof follows
the same arguments as in [5, Proposition 5.1]. For completeness, we include a full proof.



Proof. For convenience, we drop the dependence on i, writing f = f;, ¢ = gi, v = v;.
Define the large spectrum of f to be

~

R={reZn:|f(r)]>¢e}.
From the mean value estimate Hpr < M it follows that
IR < D If ()P < M,
reZN
and hence |R| < (M/e)P. Define the Bohr set

B={x€Zy:len(zr)— 1| <e for each r € R}.

By the pigeonhole principle (see [19, Lemma 4.20]), it follows that |B| > (ce)l®IN for
some absolute constant ¢ > 0 and thus |B| >., v N. Now define the approximant
g:Zn — Rzo by
g(n) = Ep, pyenf(n + b1 — ba).
We will verify that g satisfies the four desired properties.
Property (1) follows trivially by the definition of g. To verify property (2), note that
for each n € Zx we have

g(n) < By, ppepv(n+b1 —by) = Y D(r)en(—rn) Epepen(rd)|*.
reELN

By the Fourier decay property of v, we may replace v(r) above by 1,—¢ at the cost of an
error at most ¢ = ¢(d,n,p, M) for some sufficiently small constant c(d,n,p, M) > 0. It
follows that

gn) <1 —i—O(c Z ]EbeBeN(rb)|2) =1 —i—O(

rELN

cN
— ) =1+0 .
|B‘ ) + €7p7M(C)
Since ¢ is chosen in terms of §,7n, p, M, we may ensure that g(n) < 1+ /10 by choosing ¢
sufficiently small in terms of §,7,p, M.
To verify property (3), note that for each r € Zy we have

[F(r) =) = 1 ()] (1 = [Bpepen (rb)[*) < 2/F(r)[Esep|1 — en(rd)].
We divide into two cases according to whether r € R or not. If r € R, then |en(rb)—1| < e
for each b € B by the definition of the Bohr set B, and hence

-~ ~

[f(r) =g(r)] < 2] f(r)] < 4e,

using the trivial bound
(3.1) F()] < Enezy f(n) < Enezyv(n) = 0(0) < 2

~

(say). If r ¢ R, then |f(r)] < e by the definition of the large spectrum R, and hence
|f(r) —g(r)| < 4e. This verifies property (3) (after replacing € in our argument by £/4).
Finally, property (4) follows easily from the fact

~ ~

(3.2) 9(r)| = 1f(r)] - [Evepen(rb)[* < | £(r)]

and the mean value estimate for f. O

Lemma 3.3. Let the notations and assumptions be as above, and let g1, g2 be the approz-
imants constructed in Lemma 3.2. Then g1 * g2(n) > 63/200 for every n € Zy.



Proof. For i € {1,2}, define A; to be the essential support of g;:
A ={n € Zy:gi(n) > §/10}.
Since ||gilloc < 14 6/10, we have
6N = Y gi(n) < 350N + (14 §) |[Ail < §6N +A4].
neELZN
Hence |A4;| > (6; — d/5)N. Thus for every n € Zn,
|A1 N (n = Ag)| > |As| + [A2| = N > (61 4+ 82 — 1 — 28) N > 36N,

and hence )
gl*gg(n) > N1 (%) ‘Alﬁ(n—Ag)‘ > ﬁd?’
This completes the proof. O

Lemma 3.4. Let the notations and assumptions be as above, and let g1, g2 be the approx-
imants constructed in Lemma 3.2. Let E be the exceptional set defined as

E={ne€Zy: fi* fa(n) <8/1000},
Then |E| < nN.

Proof. Let a = |E|/N. Consider the inner product I = (g1 * g2 — f1 * f2,1g). On the one
hand, we have

= 0~ ) >

by Lemma 3.3 and the definition of E. On the other hand, by Plancherel’s identity and
Cauchy-Schwarz inequality we have

I={(0192 — fif2; 1E) <|1Ell2 - G192 — f1f2]]2-

/2 Thus the two inequalities above together imply that

a < 679715 — fifoll3.
Note that for every r € Zy we have
151 (PG (r) — FL) Fo(r)] < 1Gi ()] - 1Ga(r) — Fo(r)] + | fo(r)| - |Gi (r) — Fi(r)] < 4e,

where we used the property that Hﬁ — Gillo < € and the trivial bounds |ﬁ(7“)| < 2 and
|gi(r)] < 2 (see (3.1) and (3.2)). Moreover by Cauchy-Schwarz, condition (4) of Lemma
3.2 and the mean value estimate (2) of Proposition 3.1, we have

19152 = fifallpsa < 151820ps2 + I frfellpsz < NGillplG2lls + L F 61 2l < 2042,
Since p € (2,4), it follows that

~ o~ N ~ o~ N _ ~ o~ N 4 _
1515 — fifellz < 13192 — Fifallis?/* - 1Gigs — f1f2\|£§2 <p s 7P

and hence

Clearly ||IEH2 = [1gl2 =

Thus we may ensure that o < 7 by choosing & = (cd%7)%/(4=P) where ¢ = ¢(p, M) > 0 is a
sufficiently small constant. O

As mentioned previously, the proof of Proposition 3.1 is completed by combining Lem-
mas 3.2, 3.3 and 3.4.



4. BINARY GOLDBACH FOR DENSE SUBSETS OF PRIMES

In this section we prove Theorem 1.2. Let A C P be a subset satisfying the assumptions
in Theorem 1.2. Choose ¢ € (0,1/2) such that §(A;W,b) > 1/2 + ¢ for every reduced
residue class b (mod W). Let E be the exceptional set consisting of those even positive
integers that cannot be written as a sum of two primes in A. It suffices to show that
[EN[(1 =M, M)
i

1

=0.

Suppose, for the purpose of contradiction, that there exists a constant 7 > 0 such that

(4.1) BN (1 - 8')M, M]| > nM
for each M = M; in an infinite increasing sequence M7 < Ms < --- of positive integers.
Set W = HpS . b, where z is a constant sufficiently large in terms of ,7. Recall that

. R T ’AVV,bﬂ[laM”
O O) =B I Yy A1, ]

where, for a set A C Z and a residue class b (mod W), the notation Ay, is defined by
Awp={neA:n=>b (mod W)}.
Thus, for some large value M = M;, we have
Mwy LMY 1o
Pwp N[L,M]| — 2 2

for each b € Zj,. Fix this value of M for the remainder of the proof, and let N = | M/W].
By the pigeonhole principle, there exists an even residue class r (mod W) such that

(4.2) B 01 [0~ 600, M]| > 22 > .

By the Chinese remainder theorem we can choose bi,by € Zj, with » = by + ba. For
i € {1,2}, define f;,v; : Zy — R>¢ (naturally identifying Zy with {1,2,--- ,N}) by

p(W) A .
viln) = w log(Wn +0b;) if Wn+b; €P,
0 otherwise.

and

fin) = £ Yog(Wn + ;) if Wn +b; € A and Wn + b; < (1 — 6%) M,
' 0 otherwise.

We will show that f;,1; satisfy the assumptions of Proposition 3.1. Note that %t is the
same as Ap, N in the notation of Green’s paper [4] which we will appeal to. Clearly

0 < fi(n) < vi(n) for every n. The mean value estimates ||ﬁ||p = O(1) follows from [4,
Lemma 6.6] with exponent p = 3 (say). The Fourier decay property of v; follows from [4,
Lemma 6.2], once z is chosen large enough in terms of §,7. Now note that the average of
w
5= Bncnn i) = 20 S gy

NW
pGAW’biﬂ[l,(lfﬁ)M]



By restricting the sum over p above to p € Awy, N [M(log M)~ (1 — §°)M] and noting
that

[ Awp; 0 [M(log M) ™, (1 — 6°) M]|

Y

M
Awp, N[, M| — M(logM)™ 10— — ———
| Wyb’L [ ) ” (Og ) QO(W) 10gM
ETANE 'S
“\2 3) o(W)logM’

(log M — 10loglog M) >

we deduce that

5
> S0y °
%= w2 3> 2(W) log M T3

Hence, we may apply Proposition 3.1 to the functions f;, v; (with d, 7 replaced by §/2,7n/2,
respectively) to conclude that

(W) <1 5

N | —

fi* fa(n) > 6°
for all but at most n/N/2 values of n € Zy. In view of (4.2), there exists m € Eyw, N[(1—
S19YM, M| such that (m — by — by)/W (naturally viewed as an element in Zy) is in the
support of fi * fo. By the definition of fi, f2, this implies that we can write

m — bl — b2
w
for some positive integers nq,ny with Wn; +b; € A and Wn; +b; < (1 —6°)M. The
congruence above can be rewritten as
m=(Wny+b1)+ (Wna+by) (mod WN).
Since m € [(1 — )M, M] and (Wny + b1) + (Wng + by) < (2 — 20°) M, the congruence
above must be an equality in the integers:
m = (Wm + bl) + (WHQ + bz).

This implies that m can be written as the sum of two primes in A, contradicting m € E.

=n; +n2 (modN)
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