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ABSTRACT. We introduce a new basis of quasisymmetric functions, the row-
strict dual immaculate functions. We construct a cyclic, indecomposable 0-
Hecke algebra module for these functions. Our row-strict immaculate functions
are related to the dual immaculate functions of Berg-Bergeron-Saliola-Serrano-
Zabrocki (2014-15) by the involution % on the ring QSym of quasisymmetric
functions. We give an explicit description of the effect of 1 on the associated
0-Hecke modules, via the poset induced by the 0-Hecke action on standard
immaculate tableaux. This remarkable poset reveals other 0-Hecke submodules
and quotient modules, often cyclic and indecomposable, notably for a row-
strict analogue of the extended Schur functions studied in Assaf-Searles (2019).

Like the dual immaculate function, the row-strict dual immaculate func-
tion is the generating function of a suitable set of tableaux, corresponding to
a specific descent set. We give a complete combinatorial and representation-
theoretic picture by constructing 0-Hecke modules for the remaining variations
on descent sets, and showing that all the possible variations for generating
functions of tableaux occur as characteristics of the 0-Hecke modules deter-
mined by these descent sets.
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1. INTRODUCTION

A recent flourishing area of research is that of Schur-like functions, whose proper-
ties are analogous to the ubiquitous Schur functions that arise in many areas, from
enumerative combinatorics where they are generating functions for Young tableaux,
to representation theory where they are the irreducible representations for the gen-
eral linear group, as well as being intimately connected to representations of the
symmetric group.

The area of Schur-like functions began with quasisymmetric Schur functions [13],
followed by discoveries of row-strict quasisymmetric Schur functions [18], Young
quasisymmetric Schur functions [17,19], noncommutative Schur functions [6] and
immaculate functions [4], quasisymmetric Schur @Q-functions [15], quasisymmetric
Macdonald polynomials [9], and Schur functions in noncommuting variables [1].

The results of this paper were first announced in [21]. In this paper and its
companion [22], we introduce a new family of quasisymmetric functions, the row-
strict dual immaculate functions. Our focus in the present work is the study of
the associated 0-Hecke algebra modules, which we define and analyse in order to
develop the analogy with Schur functions in the representation theory context.
This programme was first carried out for the dual immaculate functions [5], the
quasisymmetric Schur functions [26], and subsequently for the row-strict Young
quasisymmetric functions [3] and the extended Schur functions [24].

In further analogy with Schur functions, the row-strict dual immaculate func-
tions RG?, are defined in [22] as generating functions for certain types of tableaux
of composition shape «; by identifying the correct descent set, it follows that the
functions RS}, expand positively in the basis of fundamental quasisymmetric func-
tions, and are the image, under the involutive algebra automorphism 1 of the Hopf
algebra QSym of quasisymmetric functions, of the well-studied dual immaculate
functions of [5].

The descent set determines a 0-Hecke algebra action on the set SIT(«) of stan-
dard immaculate tableaux of composition shape «, yielding a cyclic indecomposable
module whose quasisymmetric characteristic is RG},. The action defines a partial
order on the set SIT(«) which turns out to be dual to the partial order in [5], see
Lemma 6.2. The resulting graded poset PRG*(«), which we call the immaculate
Hecke poset, has remarkable properties, leading to the discovery of several other
0-Hecke modules with interesting quasisymmetric characteristics. Among these is
an analogue of the extended Schur functions defined by Assaf and Searles [2]. An
examination of the poset (see Figure 2) reveals various subposets that are closed
under either our action or the dual immaculate action of [5]. We investigate the
associated submodules.

One of the key contributions of this paper, then, is the careful scrutiny of the
partial order resulting originally from the 0-Hecke algebra action defined in [5], and
the discovery that hidden within it are special standard immaculate tableaux, which
generate interesting 0-Hecke algebra submodules and quotient modules, for both
the dual immaculate action and our new row-strict dual immaculate action. The
duality in the poset reflects the action of the involution ¢ on QSym: we prove first
that the poset is graded, and has unique top and bottom elements, see Definition 6.3
and Definition 6.9. The cyclic generator for the dual immaculate module was shown
to be the top element in [5]; for the row-strict dual immaculate module, we show
that the cyclic generator is the bottom element of the poset. Similarly, the cyclic
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generators for the extended Schur Hecke-module of [24] and our row-strict extended
Schur Hecke-module (see Theorem 7.13) are the top and bottom elements of the
interval [S<°!) S7°%] the column superstandard and row superstandard tableaux of
Definition 7.7 and Definition 6.9, respectively. Finally we show how another special
standard tableau S;°"*, see Definition 8.2, also generates a cyclic submodule of the
dual immaculate 0-Hecke algebra module. The poset duality phenomenon can also
be used to explain, for example, the passage between the modules in [26] and [3],
see Section 8.

Our proofs are technical, relying heavily on two straightening algorithms which
produce saturated chains in the poset PRG&*(a)). We prove indecomposability by
following the pioneering work in [26] and [5], with considerable technical modifica-
tions.

The paper is organised as follows. The basic definitions regarding quasisymmet-
ric functions appear in Section 2, which also includes the facts that we need about
dual immaculate functions. Our new family of row-strict dual immaculate func-
tions is introduced in Section 3. In Section 4, we briefly review the necessary facts
about 0-Hecke algebras, and then define a new 0-Hecke algebra action on standard
immaculate tableaux. Section 5 describes a partial order on these tableaux, which,
by standard arguments, leads to a filtration showing that our 0-Hecke module has
quasisymmetric characteristic equal to the row-strict dual immaculate function.

Section 6 is devoted to showing that our new 0-Hecke module is cyclic (Theo-
rem 6.8) and indecomposable, culminating in Theorem 6.15. The technicalities here
hinge on two key straightening algorithms, described in Propositions 6.6 and 6.11,
which we use to establish that the poset of Section 5 is bounded, with a unique
minimal and maximal element. The minimal element, defined in Definition 6.3, is
shown to be the cyclic generator of our module. The maximal element is the cyclic
generator of the module of [5].! The straightening algorithms play an important
role in the technical lemmas leading to the indecomposability proof. The work
of this section also reveals a remarkable connection, see Lemma 6.2, between our
partial order and that of [5], showing how the map 1) between the quasisymmetric
characteristics of the dual immaculate and row-strict dual immaculate modules is
reflected in the duality of the posets.

The motivation for Section 7 and Section 8 comes from a closer examination of
the poset of standard immaculate tableaux defined by the 0-Hecke action, and the
remarkable properties to which we have alluded above. In Section 7 we show how
the poset reveals a 0-Hecke module whose characteristic is the row-strict analogue
of the extended Schur function defined in [2], for which a 0-Hecke module was con-
structed in [24]. In fact we show that there are not one but two related modules, a
submodule (Theorem 7.13) and a quotient module (Theorem 7.19) of the row-strict
dual immaculate action, both cyclic and indecomposable. To complete this analogy,
in Section 8 we show once again how the poset of standard immaculate tableaux
leads to the discovery of more cyclic modules, a submodule and two quotient mod-
ules of the (original) dual immaculate action, as well as a quotient module of the
extended row-strict dual immaculate module (Theorem 8.5, Theorem 8.8). Figure 2
indicates the essential representation-theoretic properties of the immaculate Hecke
poset.

Tt is not explicitly established in [5] that the poset of standard immaculate tableaux defined

by the 0-Hecke action has a maximal element.
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We conclude in Section 9 by considering the two remaining choices for the descent
set of a standard immaculate tableau, apart from the two which determine the dual
immaculate and row-strict dual immaculate functions. Although the correspond-
ing quasisymmetric functions are no longer independent, interestingly, both of the
new variants come with associated 0-Hecke actions. Furthermore, these actions
determine the same immaculate Hecke poset, and consequently our straightening
algorithms apply, giving cyclic 0-Hecke modules as in Section 6, generated respec-
tively by S? and S7°", as well as submodules generated respectively by S and
S7ow* as in Section 7 and Section 8. Our final result, Theorem 9.16, shows that
these modules complete the combinatorial picture of tableaux considered in this pa-
per, by accounting for all the possible variations on increasing rows and columns.
This information is captured in Figure 1.

(Section 9)  Ta(Ist col <,rows <) : Aq 4———2 T, (cols <,rows <) : Aspr(a)

A ot 4
Ta(cols <,rows <) : £, [24], [§] E _""‘T(,(lbt col <,rows <) : RS, (Section 3)
<. : T e >
el I
< et Tty
Ta(lst col <,rows <) : &% [5] .-~ : Ta(cols <,rows <) : RE, (Section 7)
4" A

Ta(cols <,rows <) : ASET(Q) €«€——— T, (Ist col <,rows <) : Ay (Section 9)

FIGURE 1. The eight flavours of tableaux, their characteristics and
H,,(0)-modules, related in pairs by the involution 1, from the four
descent sets. The double arrow-head indicates a quotient module,
and the hooked arrow indicates a submodule.

Table 1 below provides a list of tableau acronyms used in this paper.

TABLE 1. Standard tableaux of composition shape a of n, with
distinct entries {1,2,...,n}, where all rows increase (strictly)
left to right

NSET(«) at least one column does NOT increase bottom to top
SIT() first column increases bottom to top

SIT*(«) | first column filled bottom to top consecutively with 1, 2, ...
SET(«) all columns increase bottom to top

In Section 9, Table 2 provides a summary of our results, as well as comparison
with prior work. Table 3 compiles the known quasisymmetric bases to date, to-
gether with their 0-Hecke modules, as well as the new quasisymmetric functions,
all of which expand positively in the fundamental basis, arising from the 0-Hecke
submodules and quotient modules discovered in this paper.

2. BACKGROUND

We refer the reader to [17] for basic definitions.
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A composition of n is a positive sequence of integers o = (a1, aa, ..., ) sum-
ming to n, which we depict as a collection of left-justified boxes with «; boxes in
row 2, where row 1 is the bottom row, in the “French” convention. We call this the
diagram of a.

It is well known that compositions of n are in bijection with subsets of

{1,2,...,n — 1}. Write a F n for a composition o = (a1, as,...,q) of n; the
corresponding set is set(a) = {ai,a1 + ag,...,a1 + -+ + ag_1}. Given a sub-
set S = {s1,s2,...,s;} of {1,...,n — 1}, the corresponding composition of n is
comp(S) = (s1,82 — 81,...,8; — Sj—1,n — 8;). A function f € Q[[x1,z2,...] is
quasisymmetric if the coeflicient of z{' 252 --- 2" is the same as the coefficient of
xitap? - -apk for every (o, g, ..., ay) and i) < idp < --- <. The set of all qua-

sisymmetric functions forms a ring graded by degree, QSym = €, QSym,,, where
each QSym,, is a vector space over Q with bases indexed by compositions of n.

Given a composition o = (a1, aa, ..., a) of n, the fundamental quasisymmetric
function indexed by « is
Fa(.’ﬂl,xg,...): E Ly Ly =" T, -
i1 <ip <o i,

15 <ijy1 if jEset(ar)
Note that {F, : a F n} is a basis for QSym,,, the fundamental basis.

The complement of a composition «, denoted ac, is the composition obtained
from a by taking the complement of the set corresponding to «. That is, a© =
comp(set()®). In QSym we have the involutive automorphism 1, defined on the
fundamental basis by

(1) W(F,) = Fae.

With notation as in [17], the algebra NSym = Q(e1, es,...) of noncommutative
symmetric functions, a Hopf algebra dual to QSym [11], is generated by noncom-
muting indeterminates e,, of degree n. We briefly review concepts we will need from
the work of Berg-Bergeron-Saliola-Serrano-Zabrocki, who introduced the immacu-
late functions &, as a basis of NSym formed by iterated creation operators [4].
Their dual in QSym is the dual immaculate functions, &%. These functions can be
defined as the generating function for immaculate tableauz.

Definition 2.1 ([5, Definition 2.1]). Given « F n, an immaculate tableau of shape
a is a filling, D, of the cells of the diagram of « such that

(1) The leftmost column entries strictly increase from bottom to top.

(2) The row entries weakly increase from left to right.
An immaculate tableau of shape a E n is a standard immaculate tableau if it is
filled with distinct entries taken from {1,2,...,n}.

Given an immaculate tableau D, define 2P = z1z42 .. ~xz", where d; is the

number of i’s in the tableau D. Thus if D is standard and « E n, P = z129 - - 2.

Definition 2.2. The dual immaculate function indexed by a Enis &%, =Y,z
summed over all immaculate tableaux of shape «.

Theorem 2.3 ([5, Definition 2.3, Proposition 3.1]). The set {S%}orn is a basis
for QSym,,. Given a standard immaculate tableau S, its G*-descent set Desgx(.S)
of S is

Desg+(S) :={i: i+ 1 appears strictly above i in S}.
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Then &7, =3 ¢ Fcomp(DeSC*(S)), summed over all standard immaculate tableaux of
shape .

For a = (1,2), the unique standard immaculate tableau has G*-descent

set {1};  thus 612) = Feomp(1} = F12)-

3. ROW-STRICT DUAL IMMACULATE FUNCTIONS

In this section we define a new quasisymmetric function, which we call the row-
strict dual immaculate function. These were introduced in the companion paper
[22], where it is shown that they form a basis of QSym.

Definition 3.1. Let a F n. A row-strict immaculate tableau of shape « is a filling
U such that

(1) The leftmost column entries weakly increase from bottom to top.
(2) The row entries strictly increase from left to right.

A row-strict immaculate tableau of shape o F n is standard if it is filled with

distinct entries taken from {1,2,...,n}. Note that standard row-strict immaculate
tableaux coincide with standard immaculate tableaux.

The row-strict dual immaculate function indexed by o is RS; = > 2V
where the sum is over all row-strict immaculate tableaux of shape a, and 2V :=
P ~J:Z’“, where d; is the number of ¢’s in the tableau U.

Theorem 3.2 ([22]). Let o E n. Define the R&*-descent set of a standard row-
strict immaculate tableau S as

Desge«(S) :={i: i+ 1 is weakly below i in S}.
Then
RGZ = Z Fcomp(Desng* (9))»
5

where the sum is over all standard row-strict immaculate tableaux of shape c.

23]
1

For a = (1, 2), the unique standard immaculate tableau has RG*-descent

set {2}; thus RGE‘M) = Feomp{2} = Fl2,1)-

Clearly for any standard immaculate tableau S, Desg«(S) = Desgeg=(S5)¢, and
hence applying the involution ¢ immediately gives (&%) = RSY. Consequently,
we have:

Theorem 3.3 ([22]). {RS] | a F n} is a basis for QSym,,.

4. A NEwW 0-HECKE ALGEBRA ACTION

Recall that the symmetric group S, can be defined via generators s;,1 < i <
n — 1, the adjacent transpositions, subject to the relations

si® =1
SiSi4+18i = Si+15iSi+1;

§i85 = 5584, |Z —j| Z 2.
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Definition 4.1 ([20,23]). Let K be any field. The 0-Hecke algebra H,,(0) is the
K-algebra with generators m;,1 <4 < n — 1 and relations

2 _ .
T = T3

TTi41T = T4 1T i1,
T =TT, L —§] > 2.
The algebra H,(0) has dimension n! over K, with basis elements {r, : 0 € S,},

where 7, = m;, ...m;, if 0 =s;, ...5;, is a reduced word. This is well-defined by
standard Coxeter group theory, see [7].

From [23], the 0-Hecke algebra admits 2"~ ! irreducible one-dimensional modules
L., = Span(v,,), one for each composition « F n, carrying an action defined by

0, 7 € set(a),
) i) = { )

Vo, Otherwise.
Here set(a) = {a1, 01 + o, ...,a1 + ...+ ag_1} is the subset of [n — 1] associated
to the composition a = (ay, ..., ax) of n of length k.

Definition 4.2 ([10,16]). The quasisymmetric characteristic ch is an isomorphism
from the Grothendieck ring of H,,(0) with respect to the induction product, to the
ring of quasisymmetric functions QSym, sending the isomorphism class [L,] of the
0-Hecke algebra irreducible module L, indexed by the composition o F n to the
fundamental quasisymmetric function indexed by «:

ch([La]) = Fa.

For the purposes of this paper, the pertinent description of the quasisymmetric
characteristic is in [16, Section 5.4]. Let M be a finite-dimensional H,,(0)-module;
let M = M; D My D - D My, D Mi41 = K be a composition series of submodules
for M, so that each successive quotient M;/M; 1 is irreducible, and thus equal to
L, for some composition o’ E n. The quasisymmetric characteristic of the module
M, ch(M), is then defined to be the sum of fundamental quasisymmetric functions
Zle F,i. In particular we will henceforth simply write ch(L,) = F, for each
aFn.

The following is our restatement of the main result of [5].

Theorem 4.3 ([5, Theorem 3.12]). There is an indecomposable cyclic 0-Hecke
algebra module W, whose quasisymmetric characteristic is the dual immaculate
function G%,
ch(W,) = &7,

The module W, has dimension equal to the number of standard immaculate
tableauz of shape a.

The &*-action of the 0-Hecke algebra generator m; on the set of standard im-
maculate tableauz of shape «, for a E n, may be described as follows:

T, if it + 1 is in a row weakly below 1,
. 0 if i,i+ 1 in col 1ofT,
3) 7"16 1) ={° %fz',z + ' are 'm column : éf
s:(T), if i+ 1 is strictly above i in T,

and i,74+ 1 are NOT in column 1,
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2532 NIESE, SUNDARAM, VAN WILLIGENBURG, VEGA, AND WANG

where s;(T') is the standard immaculate tableauw obtained from T by swapping i and
1+ 1.

Furthermore, the dual immaculate function &, expands positively in the funda-
mental quasisymmetric functions as follows. Define the descent set Desg«(T) of a
standard immaculate tableau T to be the set

Desg«(T) :={i : i+ 1 is strictly above i in T'}.
Then
Ch(WOt) =6, = ZFcomp(DcsG*(T))y
T

where the sum runs over all standard immaculate tableaur T of shape a.

Our goal in this section is to define, for each composition « of n, a module V,,
whose image under the characteristic map is the quasisymmetric function RG&%.
Following [5], we consider the vector space V,, whose basis vectors are the standard
immaculate tableaux of shape «. Define, for each 1 < ¢ < n — 1 and each standard
immaculate tableau T' of shape «, the RG*-action of the generator 7; on T to be

T, if i ¢ Desge- (T),
0, i € Desge~(T) and swapping ¢ and i + 1 in T

does NOT result in a standard immaculate tableau,
$;(T), otherwise,

where s;(T) is the standard immaculate tableau obtained from T by swapping ¢
and ¢ + 1.

As in [3], we say an entry j in a tableau is right-adjacent to an entry ¢ if i, j are
in the same row and in adjacent columns, and j is to the right of . Note that from
the definition of the descent set, if ¢ € Desge«(T) and i,7+ 1 are in the same row,
then i 4+ 1 must be right-adjacent to i.

To avoid cumbersome notation, we write simply 7;(7) for the row-strict immac-
ulate action, using 71';[?’6* and 7ri6* only when there is explicit need to distinguish
between the actions of (4) and (3). We refer to these as the RG*-action and the
G*-action respectively. Likewise we may refer to the resulting H,(0)-modules as
the RG*-Hecke module and the G*-Hecke module respectively.

Lemma 4.4. Let T be a standard immaculate tableau and let i € Desgea~(T). Then

(1) i,i+ 1 cannot both be in the leftmost column of T';

(2) i and i+ 1 are in the same row <= i+ 1 is right-adjacent to i <=
T (T) = O,'

(3) if s;(T) is a standard immaculate tableau, then i ¢ Desgpeg«(s:(T)).

Proof. The first claim is immediate from the definitions.

For the second claim, one direction is clear: if 4+ 1 is right-adjacent to ¢, clearly
swapping ¢ and ¢ + 1 will make a non-increasing row, so m;(T") = 0.

Now suppose i € Desge+(T") and 4,7 + 1 are not in the same row, so that i + 1
is in a row strictly below i. Here it is clear that swapping 4,7 + 1 does not violate
row-increase (since a < i < b <= a<i+1 <bfora,b ¢ {i,i +1}). Since
by the first claim, 4,7 + 1 are not both in the leftmost column, the latter is still
increasing by the same argument. Hence s;(7") is also an immaculate tableau, and
mi(T) = s;(T) # 0.
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Note from above that s;(T") is an immaculate tableau <= i+1 is strictly below
iin T, and hence ¢ + 1 is strictly above 4 in s;(T). This verifies the third and final
claim. 0

In particular, if 1 € Desgg~(T'), then m1(T") = 0.

Example 4.5. Consider the standard row-strict immaculate tableau

8 [10]

HOJ;-P@‘
ot

2]9]

Then Desge+(S) = {1,4,6,8} and Desg-(T) = {2,3,5,7,9} (the complement in
the set {1,2,...,9}). Hence we have

TRS(T) =T fori € {2,3,5,7,9}, 7 (T)=0=nr" (T),

and

8|10\

15 S (T) = s6(T) = TS (T) = s5(T) =

»—vah\l‘
ot

(6]
1]5]9]10]
3
1

2(9] 28]

We can therefore reformulate the description of the action of 7" on T more
succinctly as follows:

T, if ¢ + 1 is strictly above i ,
(5) m(T) =78 (T) =< 0, if i 4+ 1 is right-adjacent to 1,
si(T), if i+ 1 is strictly below ¢ in 7.

Theorem 4.6. The operators 71'?6* define an action of the 0-Hecke algebra on the
vector space V.

Proof. Clearly from the preceding analysis, 7% (T) = 7;(T) € V, for every stan-
dard immaculate tableau T of shape a. We must verify that the operators satisfy
the 0-Hecke algebra relations.
To show 72(T) = m;(T), we need only check the case when i + 1 is strictly
below ¢ in T'. In this case m;(T) = s;(T"), and 4 is now strictly below ¢ + 1. Hence
i (8;(T)) = s;(T) and we are done.

Let 1 <i,j5 <n—1with |i —j| > 2. Then {4,5+ 1} N {j,5 + 1} = 0, so the
actions of m; and 7; are independent of each other, and hence commute.

It remains to show that

(6) 7Ti7TZ‘+17Ti(T) = 7Ti+17Ti7Ti+1(T).
We examine four separate cases.

Case 1. Assume i ¢ Desgg+(T),i+1 ¢ Desgg+(T): Then my(T) =T, mi11(T) =T,
and the claim is clear.

Case 2. Assume ¢ € Desgg~(T'), but i + 1 ¢ Desge~(T): Then m1(T) =T. If
m;(T) = 0, then the left-hand side of (6) is 0, and so is the right-hand side.
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If m(T) # 0, then m(T) = s;(T), and the left-hand side of (6) equals
m;mi+1(8:(T)), while the right-hand side is m;1(s;(T)). Hence (6) becomes
(7) mimi1(8i(T)) = mia(s:(T)),
which we need to verify.

Assume i+1 ¢ Desgg«(5:(T")). The left-hand side then equals 7;(s;(T)) = s;(T)
by Lemma 4.4, and this is also the right-hand side.

Finally assume i + 1 € Desgg~(s;(T")). We now have ¢ + 1 strictly below ¢ in T,

so that ¢ 4 1 is strictly above i in s;(T), and 7 + 2 weakly below i+ 1 in s;(T"). Also
recall that ¢ + 2 was strictly above ¢ + 1 in T'. It follows that

(8) In 5;(T), i + 2 is now strictly above i and weakly below ¢ + 1.

If ¢ + 2 is right-adjacent to ¢ + 1, then m;11(s;(T)) = 0 and Equation (7) is
immediate.
If not, then

(9) In s;(T), i + 2 is now strictly above @ and strictly below ¢ + 1.

This implies m;11(8:(T)) = $i+1(s:(T)), and in the latter we now have i below
i+ 1, which in turn is below ¢ + 2. In particular ¢ is not a descent of m;11(s;(T)) =
si+1(8:(T)), and hence the latter tableau is fixed by ;. Equation (7) is thus verified.

Case 3. Assume i ¢ Desga«(T), but i + 1 € Desra~(T):
Then 7;(T) = T and the left-hand side of Equation (6) is m;(m;+1(T))

)0, i+ 2 is right-adjacent to ¢ + 1 in 7,
| mi(si41(T)), otherwise.

The right-hand side of Equation (6) is m;1mmi1(T)

0, i + 2 is right-adjacent to ¢ + 1 in T
w1 (mi(siga(T))), otherwise.

Thus we need only consider the case when 7 + 2 is not right-adjacent to i + 1, so
that necessarily ¢ + 2 is strictly below ¢ + 1 in T". Also 7 is strictly BELOW ¢+ 1 in
T. That is, ¢ + 1 is strictly above both ¢ and ¢ + 2 in 7', and thus ¢ 4 2 is strictly
above both 4,7 + 1 in s;41(T). Hence we have two possibilities for s;41(7):

Either i is below ¢ + 1, which is below i + 2, and hence m; and ;41 both fix
si41(T"), or i + 1 is below 4, and i is below i 4+ 2. In the latter case, applying m; to
8i+1(T) switches 7 and i + 1, so that in m;(s;+1(T")) we now have i below i + 1, and
i+ 1 (still) below ¢ + 2. But then ;41 fixes m;(s;1+1(T")). Equation (6) has been
established.

Case 4. Assume i,7+ 1 € Desge~(T):

First suppose ¢ + 1 is right-adjacent to , so that m;(T") equals zero, and so does
the left-hand side of Equation (6). If m;41(T) = 0, we are done; if not m41(T) =
3i+1(T), and the right-hand side of Equation (6) is

Ti17i(si+1(T)).-
Since in T we have ¢ + 1 right-adjacent to ¢ and ¢ + 2 strictly below both, this
means in s;41(T) we have ¢ + 2 right-adjacent to ¢ and ¢ 4+ 1 strictly below them,

forcing i to be a descent of s;11(T). Hence in m;(s;4+1(T")), we have i + 2 right-
adjacent to i + 1 and ¢ strictly below. But then ;1 (m;(s;41(T))) = 0, as desired.
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Finally, suppose m;(T) # 0, so that i + 1 is strictly below ¢ in 7" and i + 2 is
weakly below ¢ + 1. For clarity we consider two sub-cases:

Case 4a. i + 2 is right-adjacent to ¢ + 1 in 7. This immediately makes the right-
hand side of Equation (6) equal to 0, since m;41(7") = 0. Then the left-hand side of
Equation (6) equals m;m;118;(T) = m;8;+1(8:(T)) since i + 1 is now above i + 2 in
$;(T). But now i + 1 is right-adjacent to i in $;41(s;(T)), so m;s;+1(s;(T")) reduces
to 0, as desired.

Case 4b. i + 2 is strictly below ¢ + 1, which is strictly below i in T, so that
mir1(T) # 0,7;(T) # 0. Then Equation (6) becomes

(10) 5i8i418:(T) = sip18:5i41(T),
and it is easy to see that this is indeed true.

We have verified Equation (6) in all cases, thereby completing the proof that the
action of the generators 7; extends to an action of H,(0) on V,. [l

5. A PARTIAL ORDER AND A 0-HECKE MODULE V, FOR RG,

Let o E n, and let SIT(«) denote the set of all standard immaculate tableaux of
shape a. Given T € SIT(«), let o(T') € S,, be the permutation in one-line notation
obtained from T by reading the entries of T" from right to left in each row, and the
rows from top to bottom.

5]
Example 5.1. If T'=| 2 then o(T) =542 3 1.
3]

Given o € S, recall that its inversion set is

Inv(e) = {(p,q) | 1 <p <g<nando(p) >0o(q)}

The number of inversions is denoted by inv(o) = |Inv(o)|.
Example 5.2. If 0(T) =54 2 3 1, then inv(c) = 9 from
Inv(o) = {(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5), (4,5) }.
Observe by our definition of 7; that if 71, T» € SIT(«) and
mi(Th) = Ts

with T7 # Ts, this means that

(1) in Ty we have that ¢ appears strictly above ¢ + 1, so in o(T7) we have that
1 appears left of 7 + 1.

(2) in Tp = m;(T1) we have that ¢ appears strictly below i 4+ 1, so in o(T3) we
have that ¢ appears right of 7 + 1.

Consequently, since all entries other than ¢ and ¢ + 1 are fixed by m;, we have that
if T2 = 7Ti(T1) with Tl 7& Tg, then

(11) inv(o (7)) = inv(e(Ty)) + 1.
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Proposition 5.3. Let a Fn and T1,Ty € SIT(a). Define <re= on SIT(a) by
Ty Swrex Ty if and only if there erists a permutation s;, - --s;, € Sp
such that
Ty o Tip(Th) = To.
Then Sre= is a partial order on SIT(a).

Proof. That <re: is reflexive and transitive is immediate from the definition. To
prove antisymmetry, if 71 <rex T then by Equation (11)

inv(o(T1)) < inv(o(12))
and if T» Xre= 11 then by Equation (11)

inv(o(Tz2)) < inv(o(T1)).

Thus inv(o(T1)) = inv(e(T3)). However, by Equation (11) we know each non-zero,
non-identity action of a generator m; increases the number of inversions, hence
T, = Ty as desired. O

We will now use our partial order to define an H,,(0)-module indexed by a compo-
sition a F n, whose quasisymmetric characteristic is the row-strict dual immaculate
function RG},. More precisely, given a composition « F n extend the partial order
<rex on SIT(a) to an arbitrary total order on SIT(«), denoted by 4%622' Let the

elements of SIT(a) under <4 . be
{Th <%Gg <%Gg T}
Now let Vr, be the C-linear span
Vr, = span{T; | T; 4%62 T;} for1<i<m

and observe that the definition of <% . implies that 7, ---m;, Vr, C Vr, for any

Siy -+ Si, € Sp. This observation combined with the fact that the operators {m—}?:]l
satisfy the same relations as H,(0) by Theorem 4.6 gives the following result.

Lemma 5.4. Vg, is an H,(0)-module.

Note that Vp, is precisely the module V,, of the preceding section.
Given the above construction, define Vr, ., to be the trivial H,,(0)-module, and
consider the following filtration of H,,(0)-modules.

V1.1 CVr, C--- CVp, C V7.

Then the quotient modules Vy, | /Vrp, for 2 <i < m + 1 are 1-dimensional H,,(0)-
modules spanned by 7;_;. Furthermore, they are irreducible modules. We can
identify which H,,(0)-module they are by looking at the action of 7; on Vr, ,/Vr,
for 1 <j<n-—1. We have

(T ) 0 .7 € DeSRG*(Tifl)y
Til\Lg— =
J ! T;_1 otherwise.

Thus, as an H,,(0)-representation, Vr, , /Vr, is isomorphic to the irreducible repre-
sentation Lg where [ is the composition corresponding to the descent set
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Desre=(Ti—1). Hence ch(Vr,_, /V1,) = Feomp(Desg s« (T;_1))» and

m—+1
Ch(Va) = Ch(VTl) = Z Fcomp(DcsRG*(Ti_l))

=2
= Y FeompDesge: (1)
TESIT(a)

=RG;,.
Consequently, we have established the following.

Theorem 5.5. Let o E n, and let Ty € SIT(«) be the minimal element under
the total order #%G* . Then Vo, = Vr, is an H,(0)-module whose quasisymmetric
characteristic is the row-strict dual immaculate function RG},.

6. THE O-HECKE MODULE STRUCTURE OF V,

Our next goal is to analyse the structure of the module V, in Theorem 5.5. We
will show that our partial order, and hence any linear extension of it, has a unique
bottom element SY. We will also show that V, is cyclic, and generated by the
standard tableau S9.

Lemma 6.1. LetaEn and T € SIT(«). If mi(T) = s,(T), m;(T) = s,;(T) € SIT(«)
and m;(T) = 7;(T), then necessarily i = j.

Proof. If i # j, we may assume i < j. Suppose j + 1 occupies cell z in T. In 7;(7T),
j+1>1i+1is unchanged from its position in T. However, in 7;(T) = s,;(T), j +1
is now strictly above j, and cell z is now occupied by j. It follows that =;(T), 7;(T)
differ at least in cell x, a contradiction. ([l

The cover relation for our poset PRG?, for row-strict dual immaculate tableaux
of shape oo F n is

(12) S <rex T <= Jisuch that T'= WRG*(S)a

i

with respect to the row-strict 0-Hecke action defined by Theorem 4.6.
On the other hand, the cover relation for the poset P&}, for dual immaculate
tableaux of shape a F n, as described in [5], is

(13) S <e&x T <= 3Jisuch that S = WF*(T),

with respect to the dual immaculate 0-Hecke action defined by Theorem 4.3.
Note that by Lemma 6.1, in each case, a cover relation is determined by a unique
generator of the 0-Hecke algebra.

Lemma 6.2. Let a Fn and S,T € SIT(«). Then
S<e: T < S <rex T.

Hence the two posets PG}, and PRGS}, are isomorphic.
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Proof. We have

S <e: T < 77 (T) =S, where S #T,S #0

(3

<= 1+ 1 is strictly above ¢ in T,
i, + 1 not both in column 1, by (3)

<= i+ 1 is strictly BELOW i in S
— 7R%7(8) =5;(S) =T, by (5)
— S <rex T.
The claim follows. O

From Equation (11) and remarks preceding Proposition 5.3, it follows that the
posets PG}, ~ PRG}, are graded by the number of inversions. We call the poset
P&}, ~ PRG}, the immaculate Hecke poset associated to the composition a.

Next we show that the poset has a unique bottom element S°. From this we will
show that the unique bottom element S is the cyclic generator for the module V,
in Theorem 5.5, whose quasisymmetric characteristic is RG},. Later we will also
show that it has a unique top element S}.°“, see Definition 6.9.

Definition 6.3. Let a F n be of length ¢ = /(a). Define SO to be the standard
tableau of shape « with entries 1, ..., £ in column 1, increasing bottom to top, and
then fill the remaining rows, top to bottom, left to right with consecutive integers
starting at £ + 1 and ending at n. Thus

(1) the top row, row ¢, contains the entry ¢ followed by the interval [¢ + 1,7 +
ay — 1]; note that n = Zle a; > (0—1) + ay;

(2) the next row, row ¢ — 1, contains the entry ¢ — 1 followed by the interval
€+ o, b+ oy + gy —2;

(3) row ¢ (from the bottom) contains the entry 4 followed by the interval [¢ +
ar+ap 1+ Fap—Cl—i—1)l+ar+--+a; —(£—1i+1)] (note
that there are ; — ({ —i+ 1)+ ({ —i—1) + 14+ 1 = o entries; also note
that n =37, o > (i— 1) + Y5, a);

(4) the bottom row, row 1, contains 1 followed by the interval [¢ + ay + ap—1 +
Fag—(l—=2) 0+t o — 4.

Example 6.4. We have

5[6]7] (5|

418 (4]
S9aa0s =3[9 |10|11], Sy =[3|6]7]8].

2 [12[13 2910

1[14]15]16] 1[11]12]13]

The complement of the descent set of SO is precisely [¢ — 1]; all entries not in
column 1 are descents, and £ is also a descent if £ # n. Furthermore, the entries
i at the end of a row of size 2 or more are the only ones for which 7%¢"(S9) =
5;(S9) # 0. The following facts are a consequence of (5), and are illustrated by the
above examples.
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Lemma 6.5. Let a En and £ = ¢(«). Then
(1)

(14) RS89 =80 — ie[t—-1].
(2) Assume ay > 2. Then

(15) 7 (8%) =0, and

(16) 7S (S0) ¢ {S0,0} <= je{l+ar+-+ai—(L—i+1),2<i< ().

(Note that i = 1 corresponds to j =n.)

(3) Assume apy =1 and k < € —1 is mazimal such that oy > 2. Then

17

Srfé*(sg) ¢{82,0} <= j=Ctorje{l+as+ - +a;—({—i+1),2<i<k}.
(4) If there is mo j such that mj(SS) = 0, then oy = 1 and oy, < 2 for all

</-1.

(5) ];’z%(flly ;foz is a hook of the form (1*"1,n — £+ 1),1 < £ < n, then S is

the unique standard tableau of shape .

To avoid trivialities, unless otherwise stated, in everything that follows we will
assume that o ¢ {(1*"1,n—¢+1):1< /¢ <n}.

Proposition 6.6. Let o F n and consider the standard immaculate tableau SO.
Then for any T € SIT(a),T # SO, there is a sequence of generators m;,, and
tableauz T; € SIT (), @ = 1, ..., r, such that m;,(T;) = Ty, i = 1,2, ..., 1,
where we set Ty =T and T, = S%. Hence we conclude

S0 <rex T and T = 7y, ), - - 'WjT(Sg).
In particular SO is the unique minimal element of the poset PRG,.

The proof consists of a straightening algorithm which we first illustrate with an
example. Let T' € SIT(a) # S2. We describe how to work backwards from 7' to
SY in the poset along a saturated chain. This can be viewed as a “straightening”
of the tableau T, which transforms it into S9.

31415 5167
Example 6.7. Let o = 223, so that S) =|2 | 6 ,andlet T'=|2 |4 . First
1|7 113

we straighten column 1 of 7' to match column 1 of SY: Start with the lowest entry
a; in column 1 of T such that a; # j, and exchange it with a; — 1. Continue in this
manner until column 1 has the entries 3,2, 1 from top to bottom.

467| 367|
T=T,&Ty=[2]5 =215
1]3 1]4

Next we work on the top row of T, starting with the smallest entry which differs

from the corresponding entry in the same cell of S, and continuing until the top

rows match:

5|7 314(7 314(6 3/4(5
ToTy=1216| &~Ty=|2(6| &Ty=217] &Ty=217
4 1/5 5 6
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Now move down to the next row from the top, and proceed in the same manner,
finding the smallest entry that differs from the corresponding entry in S9:

3[4(5
Te <~ T, =|2|6 =59,
1|7

Hence we have
0
T = mymsmsmamemsme (S, )-

Proof of Proposition 6.6. As illustrated by Example 6.7, the following algorithm
identifies a unique saturated chain from S9 to 7. In what follows, when an integer
a occupies row i and column j of T, by the counterpart of a in S° we will mean
the integer occupying the same cell, row i and column j, in S9.

Step 1. We begin by making the first column of 7" match the first column of SY.
Find the least j, 2 < j < £, such that the entry x in cell (4, 1) is not equal to 7. Then
x — 1 is in a lower row, not in column 1 by minimality of j. Hence T' = m,_1(T1),
such that in T3 € SIT(«), z — 1 is now a descent strictly higher than x. Now
repeat this procedure until x is replaced by j. Then continue with the next entry
in column 1 of T which does not match in S9. Clearly this process ends with a
tableau T}, = 7., Ty, _, -+ 7y, (T), whose first column matches column 1 of S°.
Note that T = T;. if T and S? already agree in the first column.

Step 2. First observe that 7). and SY now agree for all entries less than or equal
to £ = {(a). Now consider the top-most row of length greater than 1, say row k.
Find the least entry, say y, in this row of 7, which differs from the corresponding
entry in SO. Note that y is then necessarily larger than its counterpart in S, by
definition of the latter. Then y > ¢+ 1 and y — 1 is strictly below y in 7,.. Hence
T, = my—1(Tr41) for Tr41 € SIT(ax), such that y — 1 is a descent in T, strictly
higher than y. We repeat this step until ¥ has been replaced by its counterpart in
S0,

Step 3. Continue in this manner to the end of the row. We now have a sequence
of operators 7;, and tableaux T; € SIT(«) such that T;_; = m;,(T}), and the final
tableaux T agrees with SO for all entries < £ + (o — 1).

Step 4. Proceed downwards to the next row where an entry in Ty differs from its
counterpart in SY, and repeat Steps 2 and 3, until all rows are exhausted.

Since at the end of each iteration of Step 3, the number of entries that are in
agreement with SY increases, we see that the algorithm produces a saturated chain
from SO to T in the poset PRG? as claimed. O

We now immediately have:

Theorem 6.8. The module V,, of Theorem 5.5, whose quasisymmetric character-
istic is RG}, is cyclic and generated by the unique minimal element SO of the poset
PRG:,.

Proof. This is clear since Proposition 6.6 shows that

T € SIT(a),T # S2 = So <re: T,
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and that there is a sequence of generators 7, mj, - - - ;. such that
0
T =mjmj - 75, (Sa):
O

Before proceeding with our analysis of the structure of V,, some remarks on the
analogous results in [5] are in order. There the existence of the unique top element
of PG is implicitly deduced via a map between an analogue of Yamanouchi words
which the authors call Y-words, which are in bijection with standard tableaux.
The authors show indirectly that the top element of the poset PG} ~ PRG} is
a cyclic generator for the module W, of Theorem 4.3, by appealing to a parent
module generated by a special Yamanouchi word; they invoke the fact that W, is
a quotient of this module.

In order to give a complete and self-contained analysis of the immaculate Hecke
poset PG}, ~ PRG}, we will explicitly establish the existence of the unique top
element by means of a straightening algorithm similar to Proposition 6.6. In analogy
with Theorem 6.8, we will also be able to deduce that the H,(0)-module W, is
cyclically generated by this top element.

Definition 6.9. Define S”.°" to be the row superstandard tableau in SIT(«), whose
entries left to right, bottom to top, are 1, 2, ..., n—1, n in consecutive order. Note
that if o is a hook of the form (1°~',n — ¢ +1),1 < ¢ < n, then SIT(a) has
cardinality one and SO = Srew.

Example 6.10. We have

14]15]16] 13
12[13 12
Sisihs =89 |10[11),  Spg, =89 [10]11].
7
1[2]3]4] 1[2]3]4]

Proposition 6.11. Let o E n and consider the standard immaculate tableaw SL°.
Then for any T € SIT(«), T # S.°, there is a sequence of generators m;,, and
tableaur T; € SIT(a), i = 1, ..., r, such that m;,(T,—1) =T;, i =1, 2, ..., r,
where we set Ty =T and T, = S.°". Hence we conclude

T Swrey 837 and w75, -, (T) = S5
In particular S7°% is the unique mazimal element of the poset PRG?,.

We illustrate the straightening algorithm with an example.

5[6]7] 347
Example 6.12. We have 5593’ =| 3 | 4 .Let T=Tp=|2|6 . Start with
112 115
the largest entry in the top-most row of 1" that differs from its counterpart in 5595,
and repeat:
5|7 3|6|7 7 5|16|7
To 51216 =T1 = (2[5 =T, =25 =Ty =524 =Ty
4 1 3

Licensed to Univ of Minnesota. Prepared on Wed Jul 31 01:26:58 EDT 2024 for download from IP 134.84.192.102.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2542 NIESE, SUNDARAM, VAN WILLIGENBURG, VEGA, AND WANG

Once the top row coincides in both, move down to the next row where there is
disagreement, again starting with the largest such element in that row:

5067
Ty 2(3|4 = §row,
1]2

— Tow
Hence momymamsma(T) = SHOY.

Proof of Proposition 6.11. In this case the algorithm is simpler to describe. We
start with the top-most row of T" which differs from S,°", and find the largest entry,
say x, in that row which differs from its counterpart in S.°*. Then necessarily z+1
is in a lower row of T' = Tp, and hence Ty = m,(Tp) for the tableau T} € SIT(«)
obtained from T by switching z, z 4+ 1. We continue in this manner along each row,
top to bottom, right to left. Note that at the start of a new row j, the tableau T}
agrees with S7,°" for all entries in the complement of [ay + - - - + o]

It is clear that this algorithm terminates in the tableau S.°“, producing a satu-
rated chain in the poset from 7" to S;°%. O

In view of Lemma 6.2, and combined with the filtration in [5], analogous to
our filtration of Lemma 5.4, we recover Theorem 4.3, specifically the results of
[5, Theorem 3.5, Lemma 3.10]:

Theorem 6.13 ([5, Lemma 3.10]). The module W, whose quasisymmetric char-
acteristic is equal to &, is cyclically generated by the standard immaculate tableau
Srow.

Comparing the two filtrations which give the H,,(0)-modules, we may summarise
the situation as follows:

We may take the total order on the poset PG}, ~ PRG?, to be the same in both
cases, thanks to Lemma 6.2:

SO=Ti ' To <" <! Ty = S,
where m = | SIT(«a)|.
For W,, in [5] the authors use the filtration
(0) C span([Sq, T1]) C -+~ C span([Sq, T3]) C -+~ C span([Sg, S57*]),
while for V,, our filtration (see Lemma 5.4) is
(0) C span([Ty,, ST°]) C --- C span([T;, S2°%]) C - -- C span([S2, S7°]).

Remark 6.14. Let oo E n and let £ = ¢(«). The poset PRG}, is ranked by the
function inv. By computing the difference inv(S7°%) —inv(S%), we see that its rank

is given by
l4 .
n / a;+1—1
() 6) -2 7))

Returning to the row-strict dual immaculate functions, our final task in this sec-
tion is to show that the cyclic module V,, generated by S is in fact indecomposable.
Since in any ring R with unity, if e is an idempotent we have the decomposition
R =eR® (1 — e)R, to show indecomposability, it is enough to show that if f is
an idempotent endomorphism of the module V, then f = 0 or f is the identity
[14, Proposition 3.1].
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Theorem 6.15. Let V,, be the cyclic H,(0)-module generated by SS. Then V,, is
indecomposable, and ch(V,) = RS,

The proof of Theorem 6.15 will require a series of technical lemmas.

Lemma 6.16 ([5, Proof of Theorem 3.12]). Let P € SIT(«) and let j € [n — 1]
such that w;(P) # P. Then P cannot equal 7;(T") for any tableau T € SIT(a).

Proof. Immediate since otherwise we would have P = m;(T) = m;(P) = 73(T) =

7;(T) = P, a contradiction. O

Definition 6.17. For a composition a E n of length ¢, denote by SIT*(«) the
set of standard immaculate tableaux whose first (left-most) column consists of the
integers 1, ..., £. Equivalently, SIT*(«) is the set of standard immaculate tableaux
such that ¢ = ¢(«) is in row ¢, the top row of a.

Lemma 6.18. Suppose f is an idempotent endomorphism of the H,(0)-module V,,

with
f(Sa) = Z arT.
TESIT()
Let P € SIT(a),P # S9, and suppose there is a j such that j € Desgg+(P) \
Desre+(S2). Then ap = 0.
As a consequence, we have

f80) = > aT

TESIT* (a)
Proof. From Equation (5), we have the following implications:
J € Desge+(P) = m;(P) # P,
and
j ¢ Desre-(Sa) = m;(Sa) = Sa-

Hence

F(58) = f(m;(58)) = m;(f(S0) = Y _ arm;(T),

and by Lemma 6.16, this does not contain P in its expansion. That is, f(S9) =
> rarT does not contain P in its expansion, and hence ap = 0. It follows that

ap = 0 unless Desge+ (P) is contained in Desge«(S2), which equals the comple-

ment of [/ — 1] from Equation (14). In particular, ap = 0 unless 1, ..., £ — 1 are
NOT descents of P. But then it is easy to see (since rows must increase left to
right) that 1, ..., ¢ must occupy the first column of P. Hence we have

ap #0=1,...,¢ occupy the first column of P,
which is the claim. O
Lemma 6.19. Let a F n, {(a) = £, and let P € SIT*(«) be such that £+ 1 is
right-adjacent to i for some 1 < i < £. Then either mo(P) = 0 or there is an
i € [0 — 1] such that
P <rex P =m(P)<rex Po=m-1(P1) <re: - <rex Pr—i = mip1(Pr—i-1)

is a saturated chain in the poset PRG},, with i + 1 right-adjacent to i in Pp_;.
In either case, there is a sequence of generators m;,,...,m; such that w;, ---m; (P)
=0.
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Proof. Since my(P) =0 <= (+ 1 is right-adjacent to ¢, we may assume ¢ + 1 is
inrow ¢ < £ —1. Thus £+ 1 is strictly below ¢, and hence my(P) = sy(P) swaps £
and £+ 1. That is, in P, = mp(P), £ is now right-adjacent to i < £—1. If i = £ — 1,
the argument stops here. If not, now /£ is strictly below ¢ — 1, and hence applying
me—1 produces a tableau sy—1(P;) in which ¢ — 1 is now right-adjacent to ¢ < £ — 2.
Clearly we can continue this process until ¢ + 1 becomes right-adjacent to 7, with
the appropriate replacements in the first column above the entry i, producing the
saturated chain as claimed.

Now applying m; results in 0, and hence m;m; 1 - m(P) = 0. O

Example 6.20. Let £ = 5, a = 23223. We have the following saturated chain
beginning at P € SIT*(«a):

5[7]8] 6[7]8] 6]7]8] 6]7]8]
4 [10 4 (10 510 510
P=|3]9 P =(319 5 P=[319 Dy Py=4]9|
2|6 ]12] 2[5 ]12] 2 [4]12] 2 [3]12]
111 1[11 111 1[11

and 7T27T37T47T5(P) = 7T2(P3) =0.

Lemma 6.21. Let aEn, {(a) =4, and let P,Q € SIT*(a) be such that £+ 1 is

e right-adjacent to i in P for some 2 <i <,
e right-adjacent to j in Q for some 1 < j <i-—1.

Let 7t denote the sequence of generators mw;m; 172+ 7. Then #(P) = 0,7(Q) #
0, and rank(7(Q)) = (£ —i + 1) 4+ rank(Q).

Proof. This is clear from the preceding proof, since it takes (¢ — ¢) consecutive
applications of the 7; to make ¢ + 1 right-adjacent to i in P; applying m¢, me—1, ...,
m; successively to @ changes the first column, and, in column 2, it changes only the
entry in row j right-adjacent to j, diminishing the latter by 1 at each step. Hence
after applying the (¢ — i + 1) factors in the sequence 7, the entry right-adjacent
to j in @ is ¢, and this is greater than j by hypothesis. This means that one final
application of m; gives 7(P) = 0, but 7(Q) # 0.

The statement about the ranks is clear since at each step we are applying a 7
to the standard tableau to produce another standard tableau. ([l
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Example 6.22. Let ¢ =5, a = 23223, take P as in Example 6.20 and consider the
saturated chain beginning at Q € SIT*(«):

5(7]8] 6[7]8] 6]7]8] 6]7]8]
4110 4110 5(10 5 (10
Q=[3]9 Q=319 Q=39 >Q3=|4]9
2 [11]12] 2 [11]12] 2 [11]12] 2 [11]12]
1]6 15 1]4 1]3
6[7]8]
510
Qu=419 ; hence for the sequence & = mamsmyms, 7(Q) = Q4 # 0.
3 [11]12]
1]2

Before proceeding with the proof of Lemma 6.25, it is instructive to work through
two more examples.

Example 6.23. Let a = 33223.

5(6|7 5167
418 418
Then S =[3 |9 ; we take P =39 .
2 |10|11 2112|113
11{12]13 111011
Here p = 10 is right-adjacent to 2 in SO and to 1 in P.
Applying 7,1, mp_2, . ..in succession we have
5(6|7 5(6|7 5618 51718
418 419 419 419
P =130100  (3[10] 5H[3(10] [3]10
2112|113 2112(13 2112(13 2112(13
11911 11811 11711 11611

so that £+ 1 = 6 ends up right-adjacent to 1 in mgmymgmg(P).
However, it is clear that the same sequence applied to SO results in

Ty

5167 5167 5[6]8] 5718
418 419 419 419
3110 75,1310 13110 7% 13110
21911 2811 2711 21611
112]13 112]13 112]13 1(12[13

Hence 6 ends up right-adjacent to 1 in mgmrmgmg(P) but to 2 in memymgme(SY).

Example 6.24. This is the case p — 1 =/¢+ 1 in Lemma 6.25.
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(9] (9] 9]
B B 8
7] 7] 7]
610 6 (10 6 (11

Let SO =|5(11|, P=|5|13.  Then we have P 2% | 5 [13|.
4112 4112 412
3 3 3
2113 2 11 2 (10
1 1 1

Again, 10 ends up right-adjacent to 2 in m10(P), but is right-adjacent to a larger
entry, 6, in SY.

We are now ready to precisely formulate and prove the facts illustrated by Ex-
amples 6.23 and 6.24.

Lemma 6.25. Let a = n, {(a) = ¢, and let P € SIT*(a), P # S° be such that for
all j, whenever j,j + 1 are right-adjacent in SO, they are also right-adjacent in P.
Let p be the smallest entry in SO, say in cell x, which differs from the entry in cell
x of P. Then

(1) p>Ll+1;

(2) SY and P coincide in the top-most row, row ¢;

(3) the cell x is located in column 2 and row i for some i such that a; > 2; in
Cartesian coordinates, cell © is in position (i,2).

(4) SO and P coincide in all rows above the row i containing cell z, and hence
all entries less than p occupy the same cells in both tableauz;

(5) the entry p must occur in P in column 2 and in a lower row j where j < i
and oj > 2; i.e. p occupies the cell with coordinates (j,2),j < i.

(6) When p > £+ 2, let T be the permutation T 1= Spy1Sp+2- - Sp—2Sp—1 (@
reduced word of length p—€—1); then applying 7, = Tpp1Tot2 - Tp—2Tp_1
to P (resp. SY) replaces p with £ + 1, by diminishing it by 1 at each step,
making ¢ + 1 right-adjacent to j in P (resp. right-adjacent to i in S°).
When p =€+ 1, 7 is the identity since £ + 1 is already right-adjacent to j
in P (resp. right-adjacent to i in SO ), with i > j; this is because ¢ + 1 is
already in a lower row in P than in SO.

Proof. Note first that the hypothesis includes the case when there is no j such that
4, j + 1 are right-adjacent in SO. This forces all parts of « to be at most 2.

Item (1) is clear. Item (2) follows by hypothesis, since all the entries of SO are
consecutive beginning in column 1 for the top row.

Rows of length > 3 have consecutive entries from column 2 onwards in both
tableaux, by hypothesis. The entry in column 2 of such a row is uniquely determined
by any other entry in that row, and hence the least entry that differs must occur
in column 2. This is Item (3).

Item (4) is clear by minimality of the entry p in cell z, since all entries in S
occurring to the left of cell x, or higher than it, must be less than p. Also rows
increase left to right, so in P, if the entry p were not in column 2, there would be
an entry ¢, £ + 1 < g < p, immediately to its left in its row. But this contradicts
the fact that all entries strictly less than p occupy exactly the same cells in both
tableaux. This establishes Ttem (5).
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Now note that when p = ¢+ 1, Item (6) is immediate for 7 equal to the identity
permutation. See Example 6.24 with P replaced with 719(P). Thus we may assume
p>0+2.

It is now clear from Example 6.23 what happens; applying 7,1 puts p — 1 into
the position formerly occupied by p, in cell (4,2), of P, j < i, and moves p UP to
the cell formerly occupied by p—1. But in SY, it puts p—1 in cell (i, 2), and moves
p to the same cell as in P. This is by virtue of Item (4).

Similarly, applying m,_o next will move p — 2 into the position (j,2), and p — 1
will now move UP. In S9, it puts p — 2 into cell (i,2) and moves p — 1 into the same
cell as in P.

In fact a comparison of the two tableaux after each application of 7y shows that
they coincide in all rows above the ith row and they differ in rows 7 and 7, in column
2.

The first step of our induction is depicted in Example 6.26. Subsequent steps
are completely analogous, with p diminished by 1 at each step.

Assume by induction that after applying m,_, (p — k) was in cell (4, 2) of P and
in cell (i,2) of SO (recall j < i), and the two tableaux coincide in rows above row i.
By induction hypothesis, p — k — 1 occupies the same cell in each tableau, since it
is in a row higher than row i. Now apply m,_;—1. This swaps p—k —1and p — k
in each tableau, putting p — k — 1 into cell (j,2) of P and in cell (,2) of S?, and
moving p — k UP to the same cell in both tableaux.

In P, cell (j,2) changes p to £+ 1. In SY, cell (i,2) changes from p to £+ 1. We
have thus established Item (6). O

Example 6.26.

| e+1 £ |e+1 0 | e+1
p—1 p—1 p
1 P T |z>p i |2>p
Let SO = , P = . Then 7, 1(P) =
J |v>p J|p J |r-1
2 2 2
1 1 1

Lemma 6.27. Let P # S°, such that P € SIT*(«). Then there is a sequence 7 of
generators my, -+ - m;,. such that

(1) #(Sg) = 0;
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(2) w(P) is nonzero and has rank r + rank(P) in the poset PRG&Y,.

Proof. By hypothesis, P and SY have identical first columns.

Suppose there is a j < n— 1 such that j,j + 1 are right adjacent in S%, but NOT
right-adjacent in P. Then from Equation (5), 7;(S%) = 0 but m;(P) # 0, so we are
done.

Otherwise, whenever 7, j+1 are right-adjacent in S?, they are also right-adjacent
in P. Note that the case when j is never adjacent to j + 1 is included here. But
now Lemma 6.25, followed by Lemma 6.21, establish the claim. |

Lemma 6.28. Let Ty, T» € SIT(«) and let & denote the sequence of generators
T, -, such that #RS(T)) = #RS(Ty) = U, and rank(U) = r + rank(T}) =
r 4 rank(7Ts). Then Ty = Ts.

Proof. By hypothesis, each application of m;, produces a tableau in SIT(«). The
proof of Lemma 6.2 shows that when S, T € SIT(«),

RS =T «— S =72 (T).

Hence we have
T, =778 ...18 (U) =Ty,

i Nip_1 i1

as claimed. g
Now the argument is nearly identical to [3, Proof of Theorem 4.1].

Proof of Theorem 6.15. From Lemma 6.18, we have the equation

f(Sq) = Z arT.

TESIT* ()

In the above sum, let 7' be a tableau of maximal rank in the poset PRG}, such that
az # 0. Assume T + SY and let 7 denote the sequence of generators m;, - - - 7;
guaranteed by Lemma 6.27 for the tableau 7. Let #(T) = T" # 0. In particular,
rank(T”) = r + rank(7).

We have
(18) 0= f(&(S2) =#(f(S))= > ar#(T).

TeSIT* ()

r

Suppose ar # 0 and 7#(T) =T" = #(T).
Comparing ranks, we obtain

7+ rank(T") = rank(T") = rank(#(T)) < r 4 rank(T),

the weak inequality being due to the fact that some m; can fix a tableau. This
implies rank(T ) < rank(T'). If the ranks are unequal, however, and ar # 0, we
have a contradiction to the maximality of rank(T"). Hence rank(7") = rank(7T).

By Lemma 6.28, this forces T =T

It follows that the coefficient of 77 = #(T") in the right-hand side of Equation (18)
is a, which must therefore be zero, a contradiction.

Hence

f(52) = aso SY;

since f is idempotent, this implies ago = 0 or 1, finishing the proof. O
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FIGURE 2. The row-strict dual immaculate poset PRG3,5; the red
(bold) tableaux and 559t are increasing along rows and up columns, so
are in SET(223) = [S595, 555%’]; the blue (italics) tableaux and Ssgh =
S59%* are the elements in STT*(223) = [S9y5, S594°%], with the smallest
elements in the first column.
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7. A ROW-STRICT ANALOGUE FOR EXTENDED SCHUR FUNCTIONS

This section is motivated by [24] and a closer examination of the immaculate
Hecke poset PRG?,. We consider again the H,,(0)-module V,, whose quasisymmet-
ric characteristic is RG},.

Definition 7.1. Let SET(«) be the set of all standard immaculate tableaux of
shape « in which ALL columns increase from bottom to top. Equivalently, SET(«)
is simply the set of all standard tableaux of shape a with strictly increasing rows,
left to right, and strictly increasing columns, bottom to top.

Thus SET(«) C SIT(«r). When the composition « is in fact a partition of n, the
set SET () coincides with the set of standard Young tableaux of shape . In [24],
the tableaux in SET () are called standard extended tableaux.

Let Z, := span(SET(«)). Figure 2 shows the elements of SET(223) (in red);
notice that they form a closed interval [S¢°, Sm°¥] of PR&3,5 with respect to our
R&*-Hecke action defined in (4). This is no accident.

Lemma 7.2. Z, is an H,(0)-submodule of V, for the R&*-action.

Proof. Tt is enough to verify that T € SET(a) = 7*® (T) € SET(a). From
Equation (5), we need only consider the case when i + 1 is strictly below ¢ in T
Note that ¢ + 1 is not in the same column as i, by definition of SET. The two
possible configurations are:

le andng

1| () |- P R VA I P

The parentheses indicate the possibility that there may be no cell under ¢ in 77, and
there may be no cell above (i + 1) in T5. But the definition of SET(«) eliminates
T1, since it forces the contradiction i + 1 < x < i. Hence T3 is the only possibility,
implying y < i(< z) and y < i + 1(< z). These conditions are symmetric in ¢ and
1+ 1 and hence
TRS(Ty) = 5;(T3) € SET(c).

Clearly switching ¢ and ¢ 4+ 1 does not affect the increasing property of the rows
and columns, so this finishes the proof. O

Now SET(«) is a subposet of PRG&*(«), and it contains the unique top element
Srew. Thus we can take an arbitrary total order

{7\ Ske -+ SRe- Tm = 527}
of SET(«) exactly as in Section 5, obtaining the corresponding filtration of H,(0)-
modules
0C 2’7Tm c--C ZTQ - ZTl = [Tl’S(’;O’w] = ZOH
where as before, Z7, is the C-linear span
Zy, = span{T} | T; ks T} = [T3, SL°%]  for 1 <i < m.
The fact that each Z7, is an H,, (0)-submodule is inherited from the poset PRG&*(a),

since we still have er . 7756 Zp, C Zp, for any s;, -+ 55, € Sp.
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The same calculation as in the proof of Theorem 5.5 now gives us:

Theorem 7.3. Z, is an H,(0)-submodule of V. with quasisymmetric characteristic

ch(Z,) = Z Feomp(Desg o (1))
TESET (a)

As mentioned at the start of this section, these results were motivated by the
observation that SET(«) is invariant under the H,(0)-action, and by the paper
[24]. In that paper, Searles constructs an H, (0)-module whose quasisymmetric
characteristic is the extended Schur function &, defined by Assaf and Searles in [2].
We restate Searles’ formulation of their theorem as follows:

Theorem 7.4 ([2], [24, Theorem 2.7]). Let a« E n. Then the extended Schur
function &, expands positively in the fundamental basis of QSym as follows:

(19) ga = Z Fcomp(Dcss* (T))-
TeSET ()

A remark about this restatement is in order. Searles defines the descent set of a
standard extended tableau T' € SET () as the set

{i : i is weakly to the right of i + 1 in T}.

This coincides with the descent set Desg«(T) for dual immaculate tableaux as
defined in Theorem 4.3, since it is easily verified, by an argument analogous to the
proof of Lemma 7.2, that if T' € SET(«), then

1 weakly right of i + 1 <= i strictly below i +1 <= ¢ € Desg=«(T).
Assaf and Searles also show that

Theorem 7.5 ([2]). The extended Schur functions {Eq }arn form a basis of QSym,
with the property that when the composition « is a partition A of n, Ex coincides
with the Schur function sy .

Recall from Equation (1) that ¢ is the QSym-involution which sends the fun-
damental quasisymmetric function Fj3 to Fjge, where 3¢ is the complement of the
composition . See also [17, Section 3.6]. We now immediately have the following:

Proposition 7.6. Write RE, for the characteristic of the H,(0)-submodule Z,.
Then we have
REa = Z Fcomp(DesRG*(T)) = ¢(5a)
TESET(a)
Hence the functions {REy }aen also form a basis for QSym. Furthermore, when the
composition « is a partition X of n, RE\ coincides with the Schur function sy:.

Proof. Immediate from the fact that the descent sets Desg«(T"), Desge«(T) are
complements of each other in [n — 1]. O

We call the RE, row-strict extended Schur functions.

The extended Schur functions are dual to the shin basis of noncommutative
symmetric functions [8]. It follows that our row-strict extended Schur functions
RE,, also give rise to a dual basis of NSym, which we may call the Rshin basis.

In analogy with the row superstandard tableau S.,°“ of Definition 6.9, we make
the following
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Definition 7.7. Let S°! € SET(a) denote the column superstandard tableau of
shape «, whose columns are filled bottom to top and left to right, beginning with
the first column, with the numbers {1,2,...,n} taken in consecutive order. As
before we note that if o is a hook of the form (1°=1,n —¢),1 < ¢ < n, then SIT ()
has cardinality one and SO = Srew = S0,

In Figure 2, S¢° is the lowest-ranked tableau (in red). As observed previously,
Srow is the top element of the poset PRG?,, and hence also of the subposet SET («).

We show next that the module Z, is cyclic and indecomposable. The following
observation is key:

Lemma 7.8. Suppose S = m;(T) with S € SET(a) and T € SIT(«). Ifi,i+ 1 are
NOT in the same column of S, then T must also be in SET(«), i.e. T must have
all columns increasing bottom to top.

Proof. First note that ¢ must be in Desgg+(T), and in fact 4 + 1 is strictly below
¢ in T. The proof of Lemma 7.2 shows, by definition of m;, that T" and S must
coincide for all entries not equal to ¢,7 + 1. Since switching 4,7 + 1 does not affect
the increase of their respective columns, it follows that 7', like S, must have all
columns increasing. O

Lemma 7.9. Let a F n. Then S is the unique minimal element of the sub-
poset SET (), and generates Z, as a cyclic H,(0)-module. In particular, SET ()
coincides with the interval [S5°, ST°%] in the poset PRG* ().

Proof. Let T € SET(a), T # S<°. We claim that the straightening algorithm of
Proposition 6.6 can be modified to show that there is a sequence of generators ;,,
and tableaux T; € SET(a), ¢ =1, ..., r, such that 7, (T;) =T;—1,i=1, 2, ..., r,
where we set Ty =T and T, = Sg"l.

Note that S¢! € SIT*(a) N SET(a), i.e. the first column of S5 consists of
the entries [¢]. We begin by following Step 1 of the straightening algorithm of
Proposition 6.6, which shows how to generate a tableau 77 and a saturated chain
in the interval [T, T of the poset PRG}, such that T} has the same entries [(]
in column 1. Lemma 7.8 guarantees that the elements of this chain are in fact in
SET(«).

We describe the inductive step. Once the first £k —1 columns have been matched,
we proceed to the kth column. Here we diverge from the proof of Proposition 6.6,
and instead continue the procedure of Step 1. Let j be the largest entry such that T'
and ng’l coincide for all entries ¢ < j. Then j < n—2, and T and S’g"l coincide for all
entries weakly below or to the left of j in S, Note that j cannot be the top-most
entry in its column, because this would force j + 1 into the bottom cell of the next
column, and this in turn would contradict the maximality of j. Let = be the entry
immediately above j in T'. By hypothesis x > j+1, and x —1 is strictly to the right,
and hence also below, z in T. Hence T' = m,—1(T"), T' € SET(«) by Lemma 7.8,
and now the first disagreement between 7’ and S° has been diminished by 1. This
inductive step is repeated until the original entry x is replaced with j + 1, so that
now our tableau coincides with S for all entries i < j + 1.

Since the number of entries in agreement with S5 increases at the end of each
such step, continuing in this manner produces the saturated chain in [SS, T as
claimed. The statement of the lemma now follows. O
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The subposet SET(223) in Figure 2 is very small. We illustrate the preceding
straightening algorithm with two larger examples, using oo = 232.

316 6|7
Example 7.10. Here S5%5 = |2 |5 |7 [ let T = S5 =| 3| 4|5 | We have the
114 112
sequence of operators
6|7 6|7 5|7 4
T=3l4|5]8n=[2[4]5|En=[2]4]|6]|&T5s=]2]5]6]
112 113 113 113
3
E1,=12]5 6‘<7T—6T5: 215 7|:S§§l2,and thus T = momsmamsme(S55s)-
1 4
316 5|7
Example 7.11. Here S§3, = |2 | 5|7 [ let T =|3 |4 |6 | We have the sequence
4 112
of operators
517 5|7 4|7 3
r=3l4|6|En=[2[4]6|E=|2]|5]|6]|ETs=]2]5]|6]
112 3 113 4
316
1y =2]5[7]=55, andthus T = mymymsms(S535)-
4

Lemma 7.12. Let P € SET(a), P # S¢°. Then there is a j € [n — 1] such that
m; (S5 = S5 but 7;(P) # P.

Proof. By definition of the RG*-action, for any T' € SET (), we have m;(T) #
T <= j € Desre-(T). In particular, the definition of S implies that

mi(S) # 8% <= j is at the top of a column in S5

Let P € SET(a),P # S¢°. Let j be the largest entry such that P and S
coincide for all entries i < j. Then j < n — 2, and P and S coincide for all
entries weakly below or to the left of j in S¢°. Hence, in P, j + 1 must be strictly
to the right of j; it cannot be in the same column as j by maximality of j and
the fact that P is increasing in rows and in columns. This also forces j + 1 to be
either strictly below j or right-adjacent to j in P. In particular j € Desgg=(P),
and hence 7;(P) = s;(P) # P or 7;(P) =0 # P.

If j € Despe=(S5°!) then j must be at the top of some column of S5, but in
that case, since rows and columns are increasing in SET(«), j + 1 must be at the
bottom of the next column in both S5°! and P. This contradicts the maximality of
j. Hence j ¢ Desgg-(5°) and m;(S5°!) = Seot. O

Theorem 7.13. The cyclic H,(0)-submodule Z, of V, is indecomposable.
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Proof. Let f be an idempotent H,,(0)-module endomorphism of Z,. Our starting
point here is the equation

8= > arT.

TESET(a)

Lemma 7.12 is the analogue of [5, Lemma 3.11]. To make our work self-contained,
we reproduce the brief argument in [5, Theorem 3.12]. Let P € SET(a), P # S°;
we claim that ap = 0. Let j be the integer guaranteed by Lemma 7.12 for this P,
and apply 7; to the preceding equation. We then have, since 7; fixes Seol,

PN = Fm(S2) = D0 army(D),
TEeSET(a)
but P # m;(P), so P does not appear in the right-hand side by Lemma 6.16.
Hence P does not appear in the expansion of f(S¢), i.e. ap = 0. We conclude
that f(S¢!) equals a scalar multiple of SS°!, which can only be 0 or 1 since f is

idempotent. (Il

Next we examine the quotient module V, /Z, arising from the submodule Z, of
Va.

Definition 7.14. Let NSET(«) be the set of all standard tableaux of shape « in
which all rows increase left to right, but at least one column does NOT increase
from bottom to top.

Lemma 7.15. The quotient module Y, = Vo/Za is also an H,(0)-module for the
R&*-action, with basis of cosets whose representatives constitute the set NSET ()N
SIT(a). The module V, is nonzero if and only if a has at least two parts of size
greater than or equal to 2. When it is nonzero, it is cyclically generated by (the
coset represented by) S9.

Proof. The first statement is clear, since a basis for the quotient module is the
complement of SET(«) in SIT(«), which is empty if o has at most one part of
size greater than or equal to 2; recall that the first column is always increasing by
definition of SIT(«). The second statement follows since SO generates all of V,. O

It is helpful to record the extreme cases of V,.

Lemma 7.16. Let o E n.

(1) If a has at most one part greater than 1, then V, = (0).
(2) If a has exactly two parts greater than 1, and both of these have size 2, then
V. is one-dimensional, and hence irreducible and indecomposable.

Proof. Ttem (1) is clear since in this case any 7" € SIT(«) has only one column
of length greater than 1, the first, and so all its columns are increasing. Hence
NSET () N SIT(a) = 0.

For Item (2), column 2 of any T € SIT(«) has only two cells, and hence can
decrease bottom to top in only one way. ([l

For the remainder of this section we will assume NSET () N SIT () # 0. Equiv-
alently, by Lemma 7.16, we assume « has at least two parts greater than or equal
to 2.

We define a relation on NSET(«) N SIT(«) by setting, for S,T € NSET(«) N
SIT(r), S <RET T if there is a sequence 7 of generators 7, ---m;, such that

r
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T = #R®°(S). This is simply the relation induced on the subposet of PRG
consisting of the elements in NSET () NSIT (). For any S,T € NSET(a) NSIT(«),
since SET(«) is invariant under the H,(0)-action, the intervals [S, T in SIT(«) and
NSET(a)) NSIT(«) coincide, and hence the induced subposet NSET(a) N SIT(«) is
also ranked. However, it has no top element since S.°* ¢ NSET(«). See the Hasse
diagram of PRG}, for o = 223, Figure 2.

We therefore immediately have

Lemma 7.17. The relation NET is a partial order on NSET () N SIT(a), with
minimal element S9.

Given a composition a F n, extend the partial order <33T on NSET(a)NSIT(«r)
to an arbitrary total order on NSET(a) N SIT(«), denoted by s%SGE*Tt. Let the
elements of NSET(a)) N SIT () under 471\%56%@ be

t t
[0 =T <EF o T,
Now let V7, be the C-linear span
Vr, = span{T}; | T; 4%86]%Tt T;} for1<i<m

and observe that the definition of 471%%5}3*Tt implies that sze* - ~7TZ§G*]7T1- C Vr, for

any S;,, ..., Si, € Sp. This observation combined with the fact that the operators
{TFZRG* ?;11 satisfy the same relations as H,,(0) by Theorem 4.6 gives the following
result.

Lemma 7.18. Vr, is an H,(0)-module, and gives us a filtration of H, (0)-modules
0CVr, C--CVp, CVr,.
Set Va = pTl-
Essentially the same arguments leading to Theorem 5.5 now give us:

Theorem 7.19. Let o E n be such that o has at least two parts of size greater
than or equal to 2, and let Ty = S° € SIT(«) be the unique minimal element of
NSET(a)NSIT(a). Then V, is an H,(0)-module, cyclically generated by SO, whose
quasisymmetric characteristic is the quasisymmetric function

(20) ma = Z Fcomp(Desng* (T))-
TENSET (a)NSIT(ax)
FEquivalently,
(21) RG;, —RE, = Z Feomp(Desr o+ (1))
TeSET (a)

Proof. In Lemma 7.18, letting Vr,,,, = 0, the quotient modules Vr, ,/Vr, for
2 <i<m+1 are 1-dimensional H,(0)-modules spanned by T;_;. Since

7T(T ) — 0’ .7 6 DesRG*(E*l)?
Jitemt T;_1, otherwise,

as an H,,(0)-module, Vr,_, /Vr, is isomorphic to the irreducible module Lg, where
is the composition corresponding to the descent set Desge«(T3—1). Hence
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Ch(vTi—l/)}Ti) = FCOmp(DeSRG*(Ti—l)) and

m—+1 m+1
Ch(va) = Z Ch(VTi,l/vTi) = Z Fcomp(DesRG*(Ti,l))
=2 1=2
= Z Fcomp(DesRG* (T)) = ﬁou
TENSET (a)NSIT()

as claimed. Equation (21) follows from the fact that

RG;, = Z Feomp(Desge+ (1))
TeSIT ()

The statement about the cyclic generator was established in Lemma 7.15. |

We now show that the module V, is indecomposable. This will require a careful
analysis of the technical lemmas in Section 6. In particular, we need to show that
the analogue of Lemma 6.27 holds.

Lemma 7.20. Let P # S9, such that P € NSET(a) N SIT*(a). Assume o has at
least three parts of size greater than or equal to 2. Then there is a sequence T of
generators m;, - - - ;. such that
(1) #(Sg) = 0;
(2) 7(P) is nonzero and has rank r+rank(P) in the subposet PRG* NNSET («)
N SIT* ().

Proof. We follow the argument of Lemma 6.27: again, we may assume that when-
ever j,j + 1 are adjacent in SY, they are also adjacent in P.

Now we need the analogues of Lemma 6.19, Lemma 6.21 and Lemma 6.25. It is
enough to show that each of these lemmas holds when P € NSET(«) N SIT* («).

In that case, note first that if column 2 of P increases bottom to top, then there
must be a non-increasing column, column j, for j > 3. The important observation
is that in each of the three lemmas, Lemma 6.19, Lemma 6.21 and Lemma 6.25, the
algorithms described in the proofs affect only the first two columns of the tableau
P. Hence we need only address the case when column 2 of P (is the only column
which) does NOT increase from bottom to top.

Consider Lemma 6.19 and the algorithm which produces the saturated chain in
the statement. It is clear that if £ 4 1 is right-adjacent to ¢ < ¢ — 1 in P, then the
algorithm affects only columns 1 and 2, and furthermore in column 2 it changes
only the entry in the cell (¢,2), diminishing it each time by 1. Clearly if ¢ > 2, all
entries below row i in column 2 are greater than ¢ 4+ 1, and hence the algorithm
preserves the fact that column 2 is NOT increasing bottom to top. If ¢ = 1, then in
column 2 above the first row there must be entries z < y such that x is in a higher
row than y. But these entries are untouched by the algorithm, so the intermediate
tableaux in the saturated chain are all in NSET(«).

The analogous analysis for Lemma 6.21 brings us to the same conclusion.

Finally we examine Lemma 6.25. This is somewhat more intricate. Note that
we have assumed « has at least three parts greater than 1. It is also clear from
the proof of Lemma 6.25 that once again, the algorithm only affects the first two
columns. As before, we assume column 2 of P is NOT increasing.

Let p be the smallest entry in S? where there is disagreement with P, and say it
isin cell (¢,2). Then P has an entry z, z > p in this cell, (¢,2), and p appears in P in
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cell (4,2) for j < i. Again as in the proof of Lemma 6.25, we may assume p > £+ 2.
The algorithm of Lemma 6.25 successively replaces P with 7;(P) for some j. Our
claim is that the second column of 7;(P) continues to be non-increasing, i.e. at
each step, m;(P) € NSET(«).

Consulting Example 6.26, we note that all rows above row i coincide in both S
and in P, and that if the second column of P is non-decreasing, clearly the same is
true of m,_1(P). At each step the entry in cell (j,2) of P is diminished by 1, and
hence continues to be smaller than the entry z in cell (4,2), which is unchanged.
Also, at each step, entries in P above cell (i,2) continue to be smaller than p. It
follows that column 2 is always non-increasing.

Our argument is now complete. (Il

To finish the proof that V, is indecomposable, we note first that Lemma 6.28
still holds, as does the following analogue of Lemma 6.18:

Lemma 7.21. Suppose f is an idempotent endomorphism of the H,,(0)-module V,,

with
f(Sa) = Z arT.
TENSET () NSIT ()
Let P € NSET(a) N SIT(a), P # S°, and suppose there is a j such that j €
Deng*(P) \ Deng*(Sg). Then ap = 0.
In particular, we have

f(Sa) = > arT.

TENSET (a)NSIT* ()
Proof. The proof of Lemma 6.18 goes through verbatim. ]

It can now be verified that the argument following Lemma 6.28 carries through
unchanged, thanks to Lemma 7.20. Combined with Lemma 7.15, this gives us the
following:

Theorem 7.22. The H,,(0)-module V,, is nonzero and indecomposable if o has at
least two parts greater than or equal to 2, and is zero otherwise.

Remark 7.23. The functions RE, cannot form a basis for QSym, since they equal
zero when « F n has at most one part greater than 1. (Such compositions are called
diving boards in [8].) In fact the set {RE, : a has at least two parts of size > 2}
need not be linearly independent. For instance, RE 9y = F311 = ﬁglg, because
34

5 |, as does NSET(212) N SIT(212):

NSET(122) NSIT(122) has only one tableau

2
1

34\

5\.

Next we observe that each of the quasisymmetric functions of this section is in
fact the generating function for an appropriate class of tableaux.

Call a row-strict immaculate tableau T a row-strict semistandard immaculate
tableau if ALL the columns of T are weakly increasing, bottom to top (and nec-
essarily all the rows of T' are strictly increasing, left to right). Similarly, call an
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immaculate tableau S a column-strict semistandard immaculate tableaw if ALL the
columns of S are strictly increasing, bottom to top (and necessarily all the rows of
S are weakly increasing, left to right).

Recall (Definition 3.1) that RG&Y is the generating function for all tableaux of
shape a with weakly increasing first column, bottom to top, and strict increase
along rows, left to right, while &% (Definition 2.2) is the generating function for all
tableaux of shape a with strictly increasing first column, bottom to top, and weak
increase along rows, left to right.

Proposition 7.24. Let o E n. For any tableau D of shape o, as in Definition 2.2,
let d; be the number of entries equal to i in D.

(1) RE, = folng -+ where the sum is over all row-strict semistandard
immaculate tableauxr D of shape . In particular when « is a partition A,
R_g)\ = S)t.

(2) RE, = S alald2... where the sum is over all row-strict immaculate

tableauz of shape o with at least one column that is NOT increasing.

(3) [8, Definition 8, Theorem 11, and Section 7] £, = Y. %292 ... where the
sum is over all column-strict semistandard immaculate tableaux D of shape
a. In particular when « is a partition A\, Ex = Sy.

Proof. Part (2) is immediate from Part (1) and the fact that RSY, — RE, = REa.
Part (3) is due to [8], where the authors define the shin basis @, of NSym; their
notation for our &, is @},. Their proof arrives at our definition of column-strict
semistandard immaculate tableaux using Pieri rules. However, one can also adapt
the following proof of Part (1).

Our proof follows [25, Ex. 7.90(a)]. From Proposition 7.6 we have

RE, = Z Fcomp(DeSR@* (T))-
TeSET (o)

It suffices to show that for any 8 F n, the coeflicient of the monomial x11x§2 .-+ in
the right-hand side is the number of row-strict semistandard immaculate tableaux
of shape a and content (3, i.e. with §; ©’s. To see this, we recall [17] that for a
composition 3, the monomial xllxgz .-+ appears in F, if and only if 8 is a finer
composition than v, or equivalently, if and only if set(y) C set(3). Hence the
monomial ;' 57 - .- appears in RE, if and only if Desge-(T) C set(S).

We claim that [{T € SET(«) : Desges=(T) C set()}| equals the number of row-
strict semistandard immaculate tableaux of shape o with 3; entries equal to 4, for
all + > 1.

By definition, in a row-strict semistandard immaculate tableau 7, the entries 1,
2, ..., i appear in the first ¢ columns of 7 from the left.

Fix a composition 8 F n. Given such a tableau 7 with §; ¢’s, we associate to
7 a tableau T' € SET(«) obtained by replacing the §; entries equal to 7 with the
B; consecutive entries in the interval [8y + -+ + B;—1, 51 + -+ + Bi—1 + Bi], where
we read all the entries equal to i from bottom to top. Since the columns increase
weakly and the rows increase strictly, no two i’s are in the same row, so this implies
that the descents in 7' can occur only where i’s change to (i 4+ 1)’s as we read up
the columns of 7, starting with the leftmost column. Hence Desge«(T') C set(8).

Conversely, suppose we have T' € SET(«) such that Desge~(T) C set(8). To
recover 7, replace 1, 2, ..., B with I’s, 81 +1, ..., 1+ B2 with 2’s and so on. The
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condition Desgg+(T) C set(8) guarantees that for all 4, the first 5; entries appear
in the first ¢ columns of 7, and hence we have a tableau with weakly increasing
columns, and strictly increasing rows. This finishes the proof. (|

In his paper, Searles shows that the set NSET(«) constitutes an H,,(0)-invariant
submodule, whose basis is the set of all row-increasing tableaux of shape «, of a
larger parent module for the G*-action; he then shows that the resulting quotient
module has the following properties: it has basis SET(«) and quasisymmetric char-
acteristic &,, specialising to the Schur function s) when « is the partition A, and
it is indecomposable and cyclically generated by the top element S.°% (the row
superstandard tableau) of the poset PGY. Also, the following difference expands
positively in the fundamental basis for QSym:

GZ —&a = Z Fcomp(DesG* (T))-
TENSET(a)NSIT(a)

By contrast, in this section we have shown that SET(«) constitutes an H,(0)-
invariant subposet of PRGY, for the RG*-action, and therefore spans an H,(0)-
submodule Z, of V, with the following properties:

Z,, has basis SET(«) and quasisymmetric characteristic RE, = (&, ), special-
ising to the Schur function sy: when « is the partition A, and it is indecomposable
and cyclically generated by the column superstandard element S5 of the poset
PRG&, which is also the bottom element of the subposet SET(«). Furthermore,
the resulting quotient module V,/Z,, with basis NSET(a) N SIT(«) and charac-
teristic RE,, is cyclically generated by SO, and is indecomposable if @ has at least
two parts greater than or equal to 2, and is zero otherwise. Finally, the following
difference expands positively in the fundamental basis for QSym:

RGZ —RE = ma = Z Fcomp(Desng* (T))-
TENSET (a)NSIT(a)

We now observe that, similarly, the poset PRG*(«) gives a quotient module of
W, with characteristic equal to the extended Schur function &,. In Figure 2, by
reversing the arrows, one sees that the tableaux that are NOT in SET(«) form a
closed subset under the G*-action.

Proposition 7.25. The set NSET(«) N SIT(«) is a basis for a submodule YV, of
W, for the &*-action. The resulting quotient module Wy, /Y, has basis of cosets
represented by the set SET(a), with characteristic £, and is cyclically generated
by (the coset represented by) SLo™. It is indecomposable.

Proof. Lemma 7.2 shows that NSET(«) N SIT(«) spans a submodule Y, of W, for
the G*-action, since, by Lemma 6.2, for T € SIT(a), 7% (T) = S € SIT(a) <=
T = 7% (S). Clearly the resulting quotient module has basis indexed by SET (),
characteristic £, and is cyclically generated by S.,°“. It remains to check that this
quotient module is indecomposable. But this follows by invoking [4, Lemma 3.11],
which states that for P # S7° there is an i such that 7" fixes the generator S5
but not P. The argument is now identical to [4, Theorem 3.12] and the proof of
Theorem 7.13. 0

Licensed to Univ of Minnesota. Prepared on Wed Jul 31 01:26:58 EDT 2024 for download from IP 134.84.192.102.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2560 NIESE, SUNDARAM, VAN WILLIGENBURG, VEGA, AND WANG

8. NEwW 0-HECKE MODULES FROM THE DUAL IMMACULATE ACTION

In this section we re-examine the dual immaculate action G&* described in The-
orem 4.3, originally defined in [5], on the vector space with basis SIT(«). Recall
from Section 6 that SIT*(«) is the set of standard immaculate tableaux whose
first column consists of the integers in [¢(«)]. In Figure 2, these are the (in blue)
tableaux lying in the interval [S9, S<o!].

In [24], Searles constructs the H,(0)-module (for the dual immaculate action)
whose characteristic is the extended Schur function by taking a quotient of a larger
module, different from W,. We showed in Proposition 7.25 how this H,,(0)-module
can also be obtained by taking a quotient of W,. In this section we will consider
a different submodule, and resulting quotient module of W, itself, for the dual
immaculate action. This continues the analogy with the previous section, where we
constructed both a submodule and quotient module of V, for the row-strict dual
immaculate action.

Note that thanks to Lemma 6.2, the &*-Hecke action on the poset P&*(«) is
obtained from the RG&*-Hecke action on the poset PRG&*(«) simply by reversing
the arrows in the Hasse diagram. In particular the labels remain unchanged.

Before stating the theorem, we extract the two main techniques used in this paper
for establishing indecomposability of a cyclic H,(0)-module . The technique of
Part (1) below was originally used to prove indecomposability in [26, Lemma 7.7,
Theorem 7.8], for the immaculate H,(0)-module W, in [5, Lemma 3.11, Theorem
3.12], as well as the extended immaculate module of [24, Theorem 3.13]; in the
present paper it is applied to the row-strict extended module Z, in Lemma 7.12
and Theorem 7.13 (in the special case where o, is a consecutive transposition).
The technique of Part (2) is used in [3, Proof of Theorem 4.1] and in this paper
for the row-strict Hecke module V,, in the proofs of Theorem 6.15, as well as in
Lemma 7.21 and Theorem 7.22.

Proposition 8.1. Let H be an H, (0)-module cyclically generated by ug, with K-
basis {v}yep for some finite set B such that ug € B. Let f be an endomorphism of
H. Either of the following two conditions implies that f is a scalar multiple of the
identity. In particular, if f is idempotent, then it must be either the identity or the
zero map.

(1) For every basis element v € B, v # wyg, there is a sequence of generators
frp = iy -+ i, o H,(0) such that
7o (1) = uo, but 7, (v) # .
Here we also need to know that v # #t,(v) = v # 71, (w) for any other basis
element w. The latter statement holds automatically when the sequence of
generators T, is a single generator m;, see Lemma 6.16.

(2) For every basis element v € B, v # wug, there is a sequence of generators
in H,(0) such that

iy (ug) = 0, but 7, (v) # 0.

Ty = T4y " TG

r

Here we also need to know that #t(v) = #(v') = v ="

Definition 8.2. Define S.°“* to be the standard immaculate tableau in SIT(«)
whose first column consists of 1, 2, ..., ¢(«), and whose remaining cells are filled
with the entries £ + 1, ..., n in consecutive order along rows, bottom to top and
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left to right. Clearly S.°*“* has strictly increasing columns bottom to top, and
hence S7°v* € SIT*(a) N SET(«). Compare this with the definition of S.°* in
Definition 6.9.

For example, we have

1]8]9]
3]6 7\ 3]8 T
Syos =959 =25 | , S5 =26 |7 |+ 553, Sisy = 515 Gl#S%ég-
1 415 -

Lemma 8.3. The set SIT* () is a bounded interval of the immaculate Hecke poset
PG*(a), the interval [SY, Sm°%*]. Furthermore, for any T € SIT*(«), there is a
sequence Tt of generators m;, - - - m;, such that, for the &*-action,

T — ﬁ.G*(S;’ow*).

Proof. Let £ = £(a), the length of a. The invariance of SIT*(«) under the G*-action
is clear from the fact (see Theorem 4.3) that

78 (T) = 5:(T) ¢ {T,0}
<= 4,1+ 1 are NOT in column 1 of 7" and i + 1 is strictly above i in T,

and hence the first column, consisting of {1,2,...,¢(«)}, is preserved under the
action.

Also Desge«(Sm°%*) = {¢}. Hence either S7°¥* = SO which occurs if ay is the
only part greater than 1, or there is exactly one j such that W?G*(S’gow*) =T ¢
SIT(a), namely j = £. Moreover in that case T ¢ SIT"(«). This shows that for the
G*-action, if for any j, 77](-5* (T) = Srow* T e SIT(«), then necessarily T ¢ SIT*(«).

For clarity and consistency with the previous sections, we revert to the partial
order defined in Section 5 and the poset PRG&*(a). The lemma will then follow
upon invoking Lemma 6.2.

It suffices to apply the straightening algorithm of Proposition 6.11 for the RG*-
action. Recall that the algorithm produces a saturated chain from any tableau
T € SIT(«) to the top element, the row superstandard tableau S7°". We straighten
a tableau T' € SIT* () to the tableau S7°“* in exactly the same manner, namely,
by working on the rows from top to bottom, starting with the largest entry of T
that differs from its counterpart in S],°, and moving to the next largest entry. This
ensures that the entries {1,2,...,¢(a)} are preserved in the first column. Exactly
as in the proof of Proposition 6.11, it follows that if T € SIT*(«), then there is
a sequence of operators 7;,, and tableaux T; € SIT"(«a), ¢ = 1, ..., r, such that
m,(Tic1) =T;, i =1, 2, ..., r, where we set Ty = T and T, = S.°*. Hence we
conclude

T <res SI and ;- () = Spo°.

In particular S7°** is the unique maximal element of the subposet SIT* () of the
poset PRG. Thanks to Lemma 6.2, by reversing the arrows, this establishes the
result for the dual immaculate G*-action as well. (]

We illustrate the straightening with two examples.
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[3]
Example 8.4. Let a = 431 so that S°“* = |2 |7 |8 . Indicating in bold
14|56
the largest top-most entry that differs from that of S7,°**, we have, for T' = S =
3
214]5]
1/6]7]8
(3] (3] (3]
T =12 6 =T, %247 =T, 75248
1]5]7]8] 1[5]6]8] 1[5]6]7]
3] (3] (3]
=T 12|58 =Ty, and Ty =|2(6|8 =T =278
1]4]6]7] 14]5]7] 1/4]5]6]
=Ty = Srows,
Similarly for U = S we have
(3] 3] (3]
U=|2(5|7] |2|5|8| =U=[2]6]8
1]4]6]8 14]6]|7 1]4]5]7]
3]
=U, =% 2|7|8| =Us= 8",
1]4]5]6]

Theorem 8.5. Let a F n, and let W, be the H,(0)-module with basis SIT(«) as
in Theorem 4.3. Then
(1) SIT* () = [SY, St°w*] is a basis for an H,(0)-submodule X, of We for the
* . . . n—fl(a
&*-action, of dimension (a1—170¢2—£,..).,042—1)'
(2) X, is cyclically generated by SL°™*; it has characteristic

ch(Xa) = D Feomp(Deso: (1)-
TeSIT* (o)

If o has at most one part greater than 1, then SIT*(«) has cardinality 1, and
the module X, is the irreducible H,(0)-module indexed by the composition
o

(3) Assume « has at least two parts of size greater than 1. Then the quotient
module W,/ X, is nonzero and cyclically generated by SL°Y, and further-
more it is indecomposable. It has characteristic

Ch(Wa/Xa) = Z FCOmp(DGSg* (T))-
TeSIT(a)\SIT* ()

If a has at most one part greater than 1, SIT(«) = SIT*(«) and the quotient
module is zero.
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Proof of Part (1). The first statement follows from Lemma 8.3. The dimension
count is clear, since, ignoring the constant first column, the tableau is uniquely
determined by a sequence of subsets Sy, ..., Sy, whose union is [n] \ [{]; S; consists
of the entries in row ¢ excluding the first column, and thus |S;| = o; — 1. |

Proof of Part (2). Lemma 8.3 gives the cyclic generator as well. The character-
istic follows from the now familiar argument: impose a linear extension on the
interval [S0, S7°w*]  inducing an H,, (0)-equivariant filtration whose quotients are
one-dimensional &*-Hecke modules generated by 7' € [SY, S7°%*] and then sum up
the individual quotient characteristics.

The last statement is clear, since SIT*(«) has cardinality 1 if and only if « has
at most one part of size greater than 1. O

Proof of Part (3). As above, it is clear that the quotient module is nonzero if and
only if o has at least two parts of size greater than 1. The statement about the
cyclic generator follows from the fact that the parent module W, is itself cyclically
generated by the row superstandard tableau S7.°". A basis for the quotient is given
by the complement of the set SIT*(«) in SIT(«), and the characteristic is computed
via the usual filtration arising from a linear extension.

In order to prove indecomposability, we appeal to the method in Part (1) of
Proposition 8.1. Following the proof of Theorem 7.13, for the quotient module our
starting point is the equation

s =Y wr

TEeSIT(a)\SIT* ()

We need the analogue of Lemma 7.12, but this is precisely the content of [5, Lemma
3.11], namely that for every tableau P # S.°%, there is a j € [n — 1] such that =;
fixes S7.° but does NOT fix P. The rest of the proof is identical to the proof of
Theorem 7.13. ]

The functions ch(X,,) are not independent, as the following simple counterexam-
ple shows:

Example 8.6. Let n = 3 and consider the compositions o = 12, = 21. Then

23] 2
SIT*(B) =

L ,SIT*(8) .

tableaux have the same G*-descent set, namely the set {1}.

SIT* (o) =

. Clearly ch(X,) = ch(Xjs), since both

We have the following pleasing expression for the characteristic of the module

Xy
Proposition 8.7. Let « F n have length ¢, and let & be the composition (q —
Las —1,...,ap — 1) of n — £, where we omit any part that is zero. Then

ch(X,) = Z er—1(z1, .. xp—1)xpha(Tr, Tpi, - -,

k>

where e, is the rth elementary symmetric function, and hg = hg, hg, --- 1is the
product of the homogeneous symmetric functions indexed by the parts of the com-
position 3.
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Proof. Recall from Theorem 7.5 that for a partition A we have the Schur function
expansion

S\ = Z Fcomp(DeSG*(T))
TESET(N)

and this naturally generalizes (see [25, Theorem 7.19.7]) for partitions A, u to the
skew Schur function expansion

S\/u = Z Fcomp(Dcse*(T))u
TESET(\ /1)

where \/p is the diagram of A with that of p removed from the bottom left corner.
See [12] for further details.

Now note that the first column of every tableau T' € SIT*(«) is in natural
bijection with the unique tableau in SET(1¢). Also note that 7" with the leftmost
column removed and every remaining tableau entry (that is at least £+ 1) reduced
by / is in natural bijection with a standard extended tableau denoted by Dt , whose
shape consists of disconnected rows of length a; —1, as—1, ..., ap—1 from bottom
to top. Moreover,

{i—2|i€Desg=(T),i >} ={i|iec Desg*(Dr)}.

Furthermore, we have that £—1 € Desg«(T') but £ € Desg+(T), so in the monomials
appearing in ch(X,) we have that the (¢ — 1)th variable does not equal the ¢th
variable, but the ¢th variable may equal the (¢ 4 1)th variable. Hence if the ¢th
variable is 3, then comparing the expressions for ch(X,,) and sy, the first column
of T contributes

5(1@—1)(3?1, coy Tp—1) T = €1 (T1, . To1)Th

and the remainder of the shape contributes

SDT(:Ck,$k+1, .. ) = ha(,fk,l'kJrl, .. )

Here we exploit the fact that the skew shape \/u consists of disjoint pieces. Sum-
ming over all k£ > ¢ completes the proof. |

It is not clear how to investigate the indecomposability of the module X,. The
method in Part (2) of Proposition 8.1 fails, since
&

m; (P)=0 <= j,j+1arein column 1 of P <= je[{—1],

but this is trivially true for every P € SIT*(«). Similarly, there are many examples
which show that the technique of Part (1) of Proposition 8.1 also fails. Recall from
Theorem 4.3 that for the dual immaculate action, we have

S*

7y (P)=P <= j+1is weakly below j in P.

6|7
Let oo = 223 as in Figure 2, so that S}°“* =| 2| 5

Then 7§ (Sow*) = Siow* <= j € {3,6}.
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5|6

However, the tableau P =|2 |7 is also fixed by both 7§ and 7", as well

as by 7756 .

Recall from the previous section that NSET(«) is the set of all standard fillings of
« with increasing rows, but with at least one column that is not increasing bottom
to top. We now consider two more modules, one for the &*-action, and one for the
R&*-action, whose basis will be the set SET(«) N SIT*(«).

Theorem 8.8. Let a Fn be of length {.

(1) SET () NSIT*(a) is the closed interval [SS, ST°%*] of the poset PRS* ()
~ P&*(a).

(2) The set D(a) = NSET(a)NSIT* () is a basis for a &*-invariant submodule
Va Of Ko

(3) The quotient module Xy, /Yo, under the &*-action, has a basis of cosets
whose representatives constitute the set SET () NSIT*(«), and is cyclically
generated by SLOV*.

(4) The set RD(a) = SET(a) \ SIT* () is a basis for an RS*-invariant sub-
module RY,, of the row-strict extended module Z, whose basis is SET ().

(5) The quotient module Z,/RY.,, under the RS&*-action, has a basis of cosets
whose representatives constitute the set SET (o) NSIT*(«), and is cyclically
generated by S<°. Furthermore, it is indecomposable.

(6) The quasisymmetric characteristic of the quotient &*-module Xy /Yo 18

(22) (Xa/Vo) =D er a1, v 1)wulalan, ),

k>0

where @ = (a; — 1,0 — 1,...) is the composition obtained from « by di-
minishing each part by 1, and discarding parts equal to zero, and Eg 1is the
extended Schur function of Theorem 7.4, Equation (19).

(7) The quasisymmetric characteristic of the quotient R&*-module Z,/RY,, is

(23) Z /Rya Z h( 1 :171, e ,:Ek)kaé'a(;ka, .. .),
k>t

where @ = (a1 —1,1—1,...) is as above, and RE3 is the row-strict extended
Schur function of Proposition 7.6.

Proof. For Part (1), let P € SET(a) N SIT*(«). The straightening argument of
Lemma 7.9 shows that P can be obtained by applying a sequence of operators ﬂ'RG
to S which preserves the first column. This is because the first columns already
match, so we can proceed to the inductive step, which only affects the remaining
columns. Similarly, the proof of Lemma 8.3 shows that P can be obtained by
applying a sequence of operators 7> " to STOW*| again without affecting the first
column. It remains to check that the sequence of operators produces tableaux
lying entirely within SET(«). But if the G*-straightening went from S5°"* to T
and then T to P, where T' ¢ SET (), then by reversing the arrows this would mean
that, with respect to the RG*-action, T' can be obtained by applying a sequence
of RG*-operators to P. Since P is in SET(«), this contradicts Lemma 7.9, which
established that SET(«) is closed under the RG&*-action.
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For Part (2), if S € NSET(«a) and 78 (S) = T € SIT*(a), then S = 7*%"(T).
Hence T ¢ SET(«), otherwise by Lemma 7.9, S would also be in SET(«). Part
(4) follows similarly, and Part (3), as well as the first statement of Part (5), is then
immediate, since S7°"* generates X, and S generates Z,,.

To see that the quotient module Z,/R)Y, in Part (5) is indecomposable under
the RG*-action, we observe that the proof of Theorem 7.13 goes through, although
we now start with the equation

=Y arT;
TG[S&“Z,SQUW*]

this is because, as is easily verified, Lemma 7.12 also applies here.
For Part (6), the filtration argument of Section 5 gives

Ch(Xa/ya) = Z Fcomp(D656* (T))-
TEeSET (a)NSIT* ()
The first column with 1, ..., ¢ gives us e;_1 as in Proposition 8.7. Also clearly we

do not have a descent at ¢. Since columns and rows all increase in SET(«), the
remainder of the tableau must have ¢ 4+ 1 in the bottom left corner and numbers
£42, ..., n such that the columns increase and so do the rows. This gives tableaux
for the generating function for the extended Schur function &z.

Similarly for Part (7), the filtration gives

M(Za/RYa)= D FompDesge- (1)
TESET(a)NSIT* (a)

This is clearly just the image of ch(X,/),) under the involution . Since only ¢ at
the top of the first column is in Desge«(T) for every T € SET(«) N SIT*(«x), the

first column contributes hy—1(x1, ...,z )xE. Since £ € Desge«(T), there must be
a strict increase in index ¢, so the remaining shape, being column strict in every
column, generates REx(Tk11, - . .). O

We have observed that Lemma 6.2 allowed us to interpret the passage between
the dual immaculate and row-strict dual immaculate functions, via the map 1,
in terms of the partial orders induced by the respective Hecke actions on stan-
dard immaculate tableaux. We conclude by pointing out that precisely the same
relationship holds between the H,,(0)-actions defined in [26] and [3].

Remark 8.9. The H,(0)-action on standard reverse composition tableaux (SRCT),
as defined in [26], bears the same relationship to the action defined by Bardwell-
Searles [3] for row-strict Young quasisymmetric functions, in the sense of Lemma 6.2.
First we recall the actions that are involved in these two situations. We also need
to recall the passage between standard reverse composition tableaux and standard
Young composition tableaux of size n, as described in [17, Chapter 4, Chapter 5],
namely replace each ¢ with n+1—4 and reverse the composition. The H,,(0)-action
on standard reverse composition tableaux defined in [26] is:
(24)
T, if ¢ is strictly right of ¢ + 1,
alvW(T) = <0, if 4 is strictly NW of, or in the same column as, i + 1,
s;(T), if 7 is strictly SW of 7 4 1.
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The second action is the one defined by Bardwell-Searles for row-strict Young
tableaux [3], but with left and right swapped to reflect using reverse tableaux when
considering row-strict quasisymmetric Schur functions:
(25)
T, if ¢ is weakly left of 7 + 1,
arevBS(Ty = { o, if ¢ is right-adjacent to i + 1,
s;(T), if i is strictly right of 4 + 1 but not in the same row.

Then we have the following analogue of Lemma 6.2:

Lemma 8.10. Let S and T be standard reverse composition tableauz. If S # T,

S #£ 0 then
IW(T) =8 «— alBS(8)=T.
Proof.
7l"W(T) = § <= i is strictly SW of i + 1 in T
<= i is strictly NEofi4+1in §
— mPY(9) = 5;(S) =T.
The argument is now complete. (Il

A summary of our results for row-strict dual immaculate functions appears in
Table 2 at the end of the next section. Table 3 summarises the families of qua-
sisymmetric functions, with corresponding 0-Hecke modules, that have appeared in
the literature to date.

9. A NEW DESCENT SET

The work of this section is motivated by a desire to complete the analysis of
0-Hecke actions on the set SIT(«), by considering all the possible variations on
the descent set definitions in Section 2. There are four possible relative positions
of i and ¢ + 1: (strictly/weakly) and (above/below), two of which give the dual
immaculate and row-strict dual immaculate H,,(0)-modules.

As in Section 4, for each composition « of n, let V, denote the vector space
whose basis is the set SIT(«) of standard immaculate tableaux of shape a. In this
section we define two new descent sets which are complementary, and construct
0-Hecke modules for each one. This in turn gives two new families of quasisym-
metric functions which are related by the involution . The general framework is
tantalisingly similar to Section 4, but the details are sufficiently different that once
again a careful analysis is required to ensure that one does indeed have a 0-Hecke
action in each case.

Definition 9.1. For T € SIT(«), define
Des+(T) :={i : i+ 1 is strictly below ¢ in T'}.
Now we turn to the complement of this descent set.
Definition 9.2. For T' € SIT(«), define
Des 4+(T') := {i : i+ 1 is weakly above i in T'}.

We will prove the following.
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Theorem 9.3. There is a cyclic H,(0)-module A, generated by the bottom ele-
ment SO of the poset PRG&* (), whose quasisymmetric characteristic is

Ch(Aa) = Z Fcomp(DesA* (T))-
TESIT(@)
Here Desp«(T) = {i : i+ 1 is strictly below i in T}.
Similarly:

Theorem 9.4. There is a cyclic H,(0)-module A, generated by the top element
Srow of the poset PRG* (), whose quasisymmetric characteristic is

Ch(-Aa> = Z FCOmp(DeS_A’* (T))-
TeSIT ()
Here Des 1+(T) = {i : i + 1 is weakly above i in T'}.

Note that, as is the case with &}, and RG], the two characteristics are related
by the involution v : ¥(ch(A,)) = ch(A,).

The H,(0)-actions we define in Theorem 9.10 and Theorem 9.13, will also es-
tablish the following. The first two parts are analogues of results from Section 7;
see Theorem 7.3 and Proposition 7.25. The third is the analogue of Proposition 8.7
in Section 8. Once again we have a pleasing expression for the quasisymmetric
characteristic of the action of A, on SIT*(a).

Proposition 9.5. The vector space with basis
(1) SET(«) is a cyclic H,(0)-submodule Asgr(a) of Aa, generated by Seol with

characteristic
Z Fcomp(Dcs_A* (T))s
TeSET(a)

(2) SET(«) is also a quotient module /TSET(Q) of A, cyclically generated by
S7ew, with characteristic

Z Fcomp(DcsA* (T))-
TESET(a)

(3) SIT* () 4s a cyclic Hy(0)-submodule /TSIT*(Q) of Ao generated by STOW*,
with characteristic

Z Fcomp(DesA* (7)) = Z e(—l(xla e ,$k_1)$k€5(a7k, .. -)eocg—l(xk-i-lv .. ~)7

TESIT* () k>t
where o has length ¢ and = (ay — 1,...,cp—1 — 1) ignoring any parts of
size 0.
Proof of the quasisymmetric characteristic in Part (3). Note the similarity with

the proof of Proposition 8.7. Recall from Theorem 7.5 that for a partition A\ we
have the Schur function expansion

S\ = Z Fcomp(DcsG* (T))
TESET())

and this naturally generalizes (see [25, Theorem 7.19.7]) for partitions A, y to the
skew Schur function expansion

Sh/u = Z Fcomp(DeSG*(T))a
TESET(M\/ )
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where \/u is the diagram of A with that of x removed from the bottom left corner.
See [12] for further details.

Now note that the first column of every tableau 7' € SIT*(«) is in natural
bijection with the unique tableau in SET(1¢). Also note that T with the leftmost
column removed and every remaining tableau entry (that is at least £+ 1) reduced
by ¢ is in natural bijection with a standard extended tableau denoted by Dy UC of
shape Dr, consisting of disconnected columns of length a; —1, as —1, ..., ap_1—1
from bottom to top, and a further shape C at the top consisting of a column of
length oy — 1. Moreover,

{i —0|i€ Desz(T),i >t} ={i|i€ Desg+(DrUC)}.

It is worth noting that if ¢ 4+ 1 is strictly above ¢ (so in a different row), or in the
same row as ¢ in T, then this descent is maintained in D7 U C when we switch
rows to columns (with entries increasing bottom to top) so these descents all get
transferred from T to Dy U C. Furthermore, we have that £ — 1 € Des 4(T), so in
the monomials appearing in ch(&X,) we have that the (¢ — 1)th variable does not
equal the ¢th variable, but the ¢th variable may or may not equal the (¢ + 1)th
variable. In particular, it may, unless in T the entry ¢ + 1 appears in row ¢, so
¢ € Des 3+(T'), in which case the ¢th variable may not equal the (¢ + 1)th variable.
Hence if the £th variable is x, then comparing the expressions for ch(X,,) and s /,,,
the first column of T' contributes

5(1@—1)(3?1, coy Tp—1) T = g1 (T1, . To1)Th

and the remainder of the shape contributes

8y (Thy o+ )S(1ae-—1)(Tht1, - .) = ep(Th, - - )ea,—1(Th1, - - )

Again we exploit the fact that the skew shape A/u consists of disjoint pieces. Sum-
ming over all k£ > ¢ completes the proof. O

We also have the following analogue of Theorem 8.8, giving two more modules,
one for the A-action, and one for the A-action, whose basis is the set SET(a) N
SIT* ().

Theorem 9.6. Let aF n be of length £.

(1) SET(a) NSIT*(a) is the closed interval [SS°, ST°%*] of the poset PRG* ()
~ P&*(a).

(2) The set D(a) = NSET(a)NSIT*(«) is a basis for an A-invariant submodule
Ao of Asit*(a)- B B B

(3) The quotient module Agir+(a) / AVa, under the A-action, has coset basis
whose representatives constitute the set SET (o) NSIT* (), and is cyclically
generated by S;0V*.

(4) The set RD(«) = SET () \SIT* () is a basis for an A-invariant submodule
RAY of the module Asgr(a) whose basis is SET(a).

(5) The quotient module Asgr(a)/RAYa, under the A-action, has coset basis
whose representatives constitute the set SET (o) NSIT* (), and is cyclically
generated by S<.

(6) The quasisymmetric characteristic of the quotient A-module flSIT*(a) / AVa
is
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ch(Asrre(a) / AVa)
(26)
_ dokseee—1(T1, ., Tpo1) T ch(Aspr@) @k, Tht1,---), a# (1™ n—m),
€n, otherwise,

where @ = (aq — 1,01 — 1,...) is the composition obtained from a by di-
minishing each part by 1, and discarding parts equal to zero.

(7) The quasisymmetric characteristic of the quotient A-module Asgr(a)/RAYa
18

ch(Asgr(a)/RAY )
(27) - Zkgz he—1(x1,. .., xx)x ch(Aspr@)) (Trt1,-..), a# (1™,n—m),
b, otherwise,

where @ = (g — 1,1 — 1,...) is as above.

Proof. We comment only on the last two parts, since the proofs are otherwise similar
to Theorem 8.8. For Part (6), when aw = (1",n — m), Des 5(T) = {1,2,...,n — 1}
and hence ch(Agir(a) / AVa) = €n.

For Part (7), note that when a = (1™,n — m), the A*-descent set is always
empty, and hence ch(Aggr(a)/RAYVa) = hn. O

Example 9.7 shows that the quasisymmetric functions ch(A,,) do not form a basis
for QSym, since they fail to be independent: ch(Ay) = Fi,,) for a € {(1°" 1, n— 0+
1),1<¢<n}.

Example 9.7. Let a = (1*°1,n — ¢ +1),1 < £ < n. There is only one tableau T
in SIT(«). The descent sets are

Desg+(T) = [ — 1] or @ if £ = 1,Desge+«(T) = {4, +1,...,n—1}or P if £ =
n,Desa(T) = 0,Des 4(T) = [n — 1].

Hence the quasisymmetric characteristics are

GH F(12—17n7g+1) = Fa, RGE = F(Llnfe), Ch(Aa) = F(n), Ch(.Aa) = F(ln).

Remark 9.8. Since
Des4+«(T) C Desra=(T), Des+(T) 2 Desg(T),

the fundamental quasisymmetric functions in the expansion of RG&¥ (resp. &%)
correspond to compositions that are refinements of (resp. are coarser than) those

appearing in the fundamental expansion of ch(A,) (resp. ch(A,)). For example,

=z o [5] . _[4
1[3]a] ™ [1]2]a] 7 [1]2]3]
with respective descent sets {2,3}, {1,3} and {1,2} for R&%;, and {2}, {3} and ()
fOf Ch(Agl). Hence RG;l = F211 + F121 + F112, Ch(Agl) = F22 =+ F31 =+ F4.

the three elements in SIT(13) are Ty =

We turn now to constructing the appropriate H,(0)-modules for each new de-
scent set. The standard model in the literature for doing this is the following. We
are given some basis that is a subset ST(«), say, of the set of all standard tableaux
of shape «, and some definition of descents. For T' € ST(a), let s;(T") be the oper-
ator switching ¢ and ¢ + 1 in T. This may or may not produce a basis element in
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ST («). Define the action of the generator m; on T' € ST («) by

T if 4 is NOT a descent of T,
(28) mi(T) =< s;(T) if 4 is a descent of T and s;(T) € ST(a),
0 otherwise.

Under suitable conditions, the generators will satisfy the 0-Hecke relations,
thereby defining a 0-Hecke module. We will show that these propitious circum-
stances occur for A and A, in addition to &* and RG&*, and that in each case, the
partial order resulting from the 0-Hecke action gives the immaculate Hecke poset
PRG&! ~ PG:.

For Definition 9.1, (28) gives us the following.

Define, for each 1 < i < n —1 and each standard immaculate tableau T of shape
a, the action of the generator 7; on 7" to be

T, if i ¢ Desa«(T)
7r;4* (T) = <= i+ 1 strictly above or right-adjacent to i in T,
$;(T), 1€ Desypx(T) <= i+ 1 strictly below ¢ in T
where s;(T) is the standard immaculate tableau obtained from T by swapping ¢

and ¢ + 1.
The following analogue of Lemma 4.4 then follows by definition.

Lemma 9.9. Let T be a standard immaculate tableau and let i € Desa«(T). Then

(1) i,i+ 1 cannot both be in the leftmost column of T';
(2) if 5i(T) is a standard immaculate tableau, then i ¢ Des4x(s;(T)).

Theorem 9.10. The operators 77{4* define an action of the 0-Hecke algebra on the
vector space V.

Proof. As usual for simplicity we will simply write m; for 77{4*. Clearly from the
preceding analysis, m;(T) € V, for every standard immaculate tableau T' of shape
a. We must verify that the operators satisfy the 0-Hecke algebra relations.

To show 72(T) = m;(T), we need only check the case when i + 1 is strictly
below ¢ in T'. In this case m;(T) = s;(T"), and 4 is now strictly below ¢ + 1. Hence
7 (8:(T)) = s;(T) and we are done.

Let 1 < 4,5 <n—1with |[¢ —j| > 2. Then {¢,i +1}U{j,j + 1} = 0, so the
actions of m; and 7; are independent of each other, and hence commute.

It remains to show that

(29) mimipmi(T) = 7Ti+177i7ri+1(T)'
We examine four separate cases.

Case 1. Assume i ¢ Desg-(T),i+ 1 ¢ Desa(T): Then my(T) = T, mi11(T) = T,
and the claim is clear.

Case 2. Assume i € Des g« (T), but i+1 ¢ Desa«(T): Then m;41(T) =T, m(T) =
$;(T). Hence (29) becomes
(30) mimiv1(si(T)) = mipa(si(T)),
which we need to verify.

Assume i+ 1 ¢ Des g+ (s;(T)). The left-hand side then equals m;(s;(T)) = s;(T)
by Lemma 9.9, and this is also the right-hand side.
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Finally assume i + 1 € Des 4« (s;(T")). We now have i + 1 strictly below ¢ in T,
so that ¢ + 1 is strictly above 4 in s;(T'), and i + 2 strictly below i + 1 in s;(7T"). Also
recall that i + 2 was weakly above ¢ 4+ 1 in T'. It follows that

(31) In s;(T'), i + 2 is now weakly above i and strictly below ¢ + 1.

This implies m;4+1(8:(T")) = si4+1(s:(T)), and in the latter we now have ¢ (weakly)
below i 4+ 1, which is strictly below i + 2. In particular 7 is not a descent of
mir1(8:(T)) = si+1(8;(T)), and hence the latter tableau is fixed by ;. Equation (30)
is thus verified.

Case 3. Assume i ¢ Desa«(T'), but i+ 1 € Des g~ (T'):
Now (29) becomes
(32) Ti(8i41(T)) = migami(si+1(T)),
which we need to verify.
Thus i + 2 is strictly below ¢ + 1 in T'. Also i is weakly BELOW ¢+ 1 in T'.
Suppose i and i + 1 are NOT right-adjacent in 7. Then ¢ + 1 is strictly above
both ¢ and ¢ + 2 in 7', and thus i + 2 is strictly above both 7,7+ 1 in s;41(7"). Here
we have two possibilities for s;41(7T):

e Either ¢ is below ¢ 4+ 1, which is below ¢ + 2, and hence 7; and ;11 both
fix s;41(7);

e or ¢ + 1 is below ¢, and ¢ is below ¢ + 2. In the latter case, applying m; to
$i+1(T) switches ¢ and i + 1, so that in m;(s;41(T")) we now have 7 below
i+1,and ¢ + 1 (still) below i + 2. But then ;41 fixes m;(s;41(7T)).-

Now suppose i and i+ 1 ARE right-adjacent in T'. Since ¢+ 2 is strictly below i + 1
in T, the only possibility here for s;+1(7) is that ¢,¢ + 2 are right-adjacent, lying
strictly above ¢ + 1. But then in m;(s;4+1(T)), i + 1,7 + 2 are right-adjacent, lying
strictly above i.

Hence ;41 fixes m;(s;4+1(T")), and Equation (32) has been established.

Case 4. Assume i,i+ 1 € Desy«(T'): This means ¢ is strictly above i + 1 which is
strictly above ¢ + 2 in T. Then Equation (29) becomes

(33) si8i415:(T) = siy18i8i41(T),

and it is easy to see that this is indeed true.

We have verified Equation (29) in all cases, thereby completing the proof that
the action of the generators m; extends to an action of H,,(0) on V,. a

This H,(0)-action on V, induces a partial order <4 on SIT(«), exactly as in
Section 5. In fact it produces the same poset PRG?, since clearly

n (1) ¢ {T,0} = =*°(T) ¢ {T,0}.

i
Moreover, we have the following:

Proposition 9.11. The module A, is cyclically generated by the standard immac-
ulate tableau SO.

Proof. Examining Proposition 6.6, we see that, since we have

7A(T) = 54(T) <= 7 (T) = 54(T) <= i+ 1 is strictly below ¢ in T,

3

the straightening algorithm goes through without change, giving the same conclu-
sion. ]
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Proof of Theorem 9.3. As in Section 5, extend the partial order <4: on SIT(«) to
an arbitrary total order on SIT(«), denoted by <’.. Let the elements of SIT ()
under 4%2 be
(T <ty - < T,
The induced filtration, as in Section 6, is
0 C span([T},, S2°"]) C --- C span([T;, S7°%]) C - -- C span([SY, ST°¥)).
The key observation here is that
A7) =T < i¢ Desy-(T),

(3

which guarantees that the successive quotients in the filtration are one-dimensional
irreducible modules. Theorem 9.3 now follows. (Il

Consider next Definition 9.2. Define, for each 1 <i < n — 1 and each standard
immaculate tableau T of shape «, the action of the generator m; on T to be

T, i ¢ Des 1+(T) < i+ 1 strictly below ¢ in T,
0, i + 1 right-adjacent to ¢ in T'
7(T) = 74 (T) = or i, + 1 both in 1st column,

s;(T), 1+ 1 strictly above ¢ in T,

and 7, ¢ + 1 not both in 1st column,

where s;(T) is the standard immaculate tableau obtained from T by swapping ¢
and 7 + 1.

Lemma 9.12. Suppose i,i + 1 are not both in column 1 of T € SIT(«), and
i € Des 1=(T). If mi(T) = s;(T), then i cannot be in column 1 of T.

Proof. This follows since rows must increase left to right, and 7+ 1 is strictly above
1in T. ]

Theorem 9.13. The operators T; define an action of the 0-Hecke algebra on the
vector space V.

Proof. Clearly from the preceding analysis, 7;(T) € V, for every standard immac-
ulate tableau T of shape a. We must verify that the operators satisfy the 0-Hecke
algebra relations.

That 72(T) = 7;(T) holds is clear if 7;(T) € {T,0}, so we need only check the
case when ¢ + 1 is strictly above ¢ in T, and 4,7 + 1 not in column 1. In this case
7i(T) = 5;(T), and ¢ is now strictly below i 4+ 1 in s;(T"). Hence 7;(s;(T)) = s;(T)
and we are done.

Let 1 <i,j5 <n—1with |i —j| > 2. Then {4,5 + 1} U{j,5 + 1} = 0, so the
actions of m; and 7; are independent of each other, and hence commute.

It remains to show that

(34) ﬁiﬁi+1ﬁi(T)Zﬁi+1ﬁiﬁi+1(T).
Again there are four separate cases.

Case 1. i, i+ 1 ¢ Des z1-(T): This case is clear as before, since 7;, T;4+1 both fix T'.
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Case 2. i € Des 1+(T), i + 1 ¢ Des 4-(T): thus 7,11 fixes T and i + 2 is strictly
below 7 + 1.

If 7;(T) = 0, we are done, so assume 7;(T) = s;(T). By Lemma 9.12, ¢ cannot
be in column 1, but 7 + 1 could be. Note that Equation (34) becomes

(35) 77(1' 7Tfl'+1 SZ(T) = 7TF7;+1 Sl(T)

Now 7 is strictly below ¢ + 1 in T', so either i + 2 is below both of them, or i 4+ 2
is above ¢ and below 7 + 1.

In s;(T) = 7;(T), we have, in the first case, i + 2 below ¢ 4+ 1 below i and so
Ti+1 (as well as 7;) fixes s;(T'); and in the second case i + 1 below i + 2 below i, so
Ti+1(8:(T)) has i + 2 below i + 1 below 7.

Thus in either case, i is NOT a descent of 7;41(s;(T)), which is thus fixed by
7;. This verifies (35).

Case 3. Assume ¢ ¢ Des 1+ (T'), but i + 1 € Des 4+ (T'):
This is Case 2 with the roles of ¢ and i + 1 interchanged, and the argument
follows mutatis mutandis.

Case 4. Assume i,i+1 € Des g+ (T'): This means i+2 is weakly above i+ 1 which is
weakly above ¢ in T'. If both relations are strict, and neither of the pairs ¢ + 2,7+ 1
nor ¢+ 1,4 is in column 1, Equation (34) becomes

(36) 5i8i415i(T) = sip18i8i41(T),

and it is easy to see that this is indeed true.
If 7,(T) = 0 = 7;41(T), each side of Equation (34) is 0.
Otherwise, we have two sub-cases.

Case 4a. T;11(T) # 0 and 7;(T) = 0:

This makes the left side of (34) equal to 0. We must show that the right side
of (34) is also zero.

We have 7;41(T) = s;41(T"), and ¢ 42,7+ 1 are not both in column 1. The right
side of (34) is then 7,11 7;(8;11(T)).

Since 7;(T) = 0, either i,i 4+ 1 are right-adjacent in T with ¢ 4+ 2 strictly above
them or 4,741 are in the first column with 42 above them, not in the first column.

In the first case, applying s;;1 makes ¢ and i + 2 right-adjacent with i + 1 above
them, and this followed by 7; makes ¢ + 1 and ¢ + 2 right-adjacent. This tableau is
thus sent to 0 by 7;41.

In the second case, applying s;4+1 makes ¢ and ¢ + 2 adjacent in column 1 with
141 above them and strictly to the right, and following this with 7; puts both ¢ +1
and ¢ 4+ 2 in column 1. Again, this tableau is sent to 0 by T;41.

Case 4b. T;41(T) = 0 but 7,(T) # 0:
This is Case 4a with the roles of ¢ and 7 + 1 interchanged, and the argument
follows mutatis mutandis.

We have verified Equation (34) in all cases, thereby completing the proof that
the action of the generators 7; extends to an action of H,(0) on V,. O

The analogue of Proposition 9.11 is

Proposition 9.14. The module A, is cyclically generated by the standard immac-
ulate tableau S7°V.
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Proof. Examining Proposition 6.11, we see that, since we have

(T = 5;(T) <= 78 (T) = s4(T)

i %

<= i+ 1 is strictly above ¢ in T, and 4,7 + 1 are not both in column 1,

the straightening algorithm goes through without change, with the same conclusion.
O

Proof of Theorem 9.4. This is proved using the filtration of H,(0)-modules
0 C span([S%, Ty]) C --- C span([SS, T;]) C --- C span([S2, S7°]),

induced by a linear extension

of the poset, exactly as before. Again the key observation is that

7 (T) =T < i¢ Desz(T),

?

guaranteeing that the successive quotients in the filtration are one-dimensional
irreducible modules. ]

Finally, we have:

Proof of Proposition 9.5. This is proved by examining the arguments in Lemma 7.9
and Lemma 8.3, which in turn rely on the straightening algorithms of Proposi-
tion 6.6 and Proposition 6.11, respectively, and observing that they go through
unchanged. ([l

Remark 9.15. It is not clear how to approach the question of indecomposability for
the module A,. The method of Part (2) of Proposition 8.1 fails since the action of
the generators is never 0 by definition. As for Part (1), consider the basis element
v = ST and note that Des4-(S7°") is the empty set; thus 771" fixes the top
element S"° for all i. Since the generator of the module is the bottom element S,
Part (1) of Proposition 8.1 fails for the basis element S.°*. This discussion also
applies to the module Aggr(q), since S;°" € SET(a).

For the module A,, our only recourse is Part (2) of Proposition 8.1, because the
cyclic generator is now S7°% | and its A-descent set is [n — 1]. An example shows
that this fails as well. Let o = 3121. It is easy to check that the Hecke generators
sending S7°” to 0 coincide with those sending P = mg'(S%°") to 0.

While Example 9.7 showed that the quasisymmetric characteristics arising from
these modules are not independent, we conclude the paper by showing that they
are nonetheless combinatorially interesting. In analogy with &}, and R&},, we will
establish that these new characteristics are the generating functions for appropri-
ately defined sets of tableaux with possibly repeated entries. See Figure 1 for a
schematic summary.

Let o E n. Given a filling T of the diagram of o with entries {1,2,...}, let
cm(T), the content monomial of T, denote the monomial a?ih:vg2 -+, where d; is
the number of entries equal to ¢ in T. We then refer to the composition (dy,ds, . . .)
of n as the content of the tableau T

Define 7, (1st col <,rows <) to be the set of tableaux of shape a whose first
column entries increase strictly bottom to top, and whose rows all increase weakly
left to right.
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Similarly, define T, (1st col <,rows <) to be the set of tableaux of shape a whose
first column entries increase weakly bottom to top, and whose rows all increase
strictly left to right.

From Definition 2.2 and Definition 3.1, we have

Sl = Z cem(T), and RG}, = Z cem(T).
TEeTo(1st col<,rows<) TeTo(1st col<,rows<)

Define T, (cols <,rows <) to be the set of column-strict tableaux of shape «;,
whose columns ALL increase strictly bottom to top, and whose rows all increase
weakly left to right. From Proposition 7.24, the tableau generating function for the
extended Schur function is

Eo = > em(T).
TeTa(cols<,rows<)

Define 74 (cols <,rows <) to be the set of row-strict tableaux of shape o whose
columns ALL increase weakly bottom to top, and whose rows all increase strictly
left to right. From Proposition 7.24, the tableau generating function for the row-
strict extended Schur function is

RE, = Z cm(T).
TeTa(cols<,rows<)

Our final result, captured in Figure 1, is:

Theorem 9.16. Let o F n.

(1) Let To(1st col <,rows <) denote the set of tableaux of shape o whose first
column entries increase weakly bottom to top, and whose rows all increase
weakly left to right. Then

ch(Aq) = Z Feomp(Des 4« (1)) = Z cm(T).
TeSIT () TeTa(1st col<,rows<)
(2) Let To(1st col <,rows <) denote the set of tableaux of shape a whose first
column entries increase strictly bottom to top, and whose rows all increase
strictly left to right. Then

Ch(Aa) = Z Fcomp (Des 4+ (T)) — Z cm(T)
TeSIT(o TETa(1st col<,rows<)
(3) Let To(cols <,rows S) be the set of tableaux of shape a having weakly in-
creasing entries in ALL columns, bottom to top, and all rows, left to right.
Its generating function is the characteristic of the submodule Asgr(a) of
A.. Equivalently,

Ch(ASET(a)) = Z Fcomp(DesA* (7)) = Z CIIl(T)
TEeSET (a) TeTao(cols<,rows<)

(4) Let To(cols <,rows <) be the set of tableauz of shape o having strictly in-
creasing entries in ALL columns, bottom to top, and all rows, left to right.
Its generating function is the characteristic of the quotient module flSET(a)
of An. Equivalently,

Ch(ASET(a)) = Z Fcomp(DesA* (T)) = Z Cm(T)

TeSET(a) TeTq(cols<,rows<)
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Proof. Recall that a composition S is finer than « if and only if set(8) 2O set(c).
We prove (1) by showing that, for a fixed § F n, the cardinality of the set

S1={T € SIT(«x) : Des 4~ (T') C set(B)}
equals the cardinality of the set
Sy = {T € Ta(1st col <,rows <) : T has shape a and content 5}.

Given U € Sy, replace the 1’s in U left to right, bottom to top with the consecutive
entries 1, ..., (1, then the 2’s with the next [y consecutive entries, again left to
right, bottom to top, and so on. It is clear that this produces increasing entries
going up the first column of the resulting standard tableau T', as well as along the
rows. Also the descents can occur only where the last ¢ of U in this reading order
(left to right, bottom to top) changes to an i + 1, so set(3) 2 Des 4~ (T).

Conversely let T € S7. The entries of the standard tableau T' constitute a
labelling of the diagram of a. We can then fill this diagram with 8; 1’s, 82’s, etc.
consecutively following the order of the labels in T'. If the cell labelled m is filled
with entry ¢, then the cell labelled m+1 can be filled with ¢ or i+ 1, but it must be
filled with the label i 41 if m is a descent of T'. Such a filling is necessarily weakly
row-increasing and also increasing in the first column.

In order to prove (2) we must show that, for a fixed 8 F n, the sets S5 =
{T" € SIT(«) : Des(T) C set(B)} and Sy = {T € Tu(Ist col <,rows <) :
T has shape « and content §} are of the same cardinality. The argument is similar,
except for the change in reading order. Given U € Sy, note first that there is at
most one 7 in each row, in view of the strict increase. In particular, because of the
strictly increasing first column, all entries equal to ¢ go from left to right and top
to bottom in U. Now we replace the 1’s in U left to right, top to bottom, with
the consecutive entries 1, ..., £1, then the 2’s with the next 85 consecutive entries,
again left to right, top to bottom, and so on. To go backwards from a standard
tableau in S3 to one with repeated entries, note that when ¢ + 1 is weakly above
i, then 7 must be in set(f), so if i was replaced by an entry j, then ¢ + 1 must be
replaced by j 4 1, guaranteeing row-strictness.

The reading order for (3) is the same as for (1): left to right, bottom to top,
and likewise, the reading order for (4) is the same as for (2): left to right, top to
bottom. We omit the details for the otherwise identical arguments. See also the

proof of Proposition 7.24. (]
Example 9.17. Let o = 122. Then the immaculate Hecke poset PRG*(a) is a
315
3-element chain. Here SET(a) consists of only two tableaux, S = |2 |4 | and
1
NE R
Srow =12 | 3 |, while SIT(«) has one additional tableau, SO =

—_

H‘»—lww
ot

We have Des 4+ (S5°%) = 0, Des 4+ (S5°!) = {3}, Des 4+ (S2)
Ch(ASET(a)) = F5 + F32, while Ch(.Aa) = F5 + F41 + F32.

Consider ch(Asgr(a)). Now Fs will contribute all monomials with exponents
B E 5, while F35 will contribute only monomials with exponents 5 finer than the
composition 32. One such monomial that would appear in both expansions is

{4}, and hence
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r12323, corresponding to the composition 122. There are exactly two tableaux of

content 122 with weakly increasing rows and weakly increasing columns.
Following the reading order in the above proof, left to right, bottom to top,

315 203 415

we see that S = |2 maps to 17 = |2 |3 |, while S.°% = |2 | 3 | maps to
1 1 1
313
To =] 2| 2| Note that these are weakly increasing in all rows and all columns.
1

Hence T} comes from Fyo, and Ty comes from Fk.

Now consider the module A,. Here we have Desz-(S5°%) = {1,2,3,4},
Des g+ (S&Y) = {1,2,4}, and Des4-(S5) = {1,2,3}, and hence ch(Aspr(a)) =
Fis + Fii21, while ch(Ay) = Fis + Fi21 + Fiie.

Fis can only contribute the unique square-free monomial of degree 5, correspond-
ing to the tableau S},°. Now F12; contributes to ch(Aa) the monomial $1I21‘§I4;

following the reading order for A", namely left to right and top to bottom, we see

315 314
that Sf;’l =|2|4 |mapsto T3 =|2|3| Notethat T3 is a nonstandard tableau
1 1

that is strictly increasing in all rows and all columns; also, it is the unique such
tableau of content 1121.

Similarly Fj112 contributes the monomial xlxgxgxi; again following the reading
314

order for A", namely left to right and top to bottom, we see that S =125
1

314
maps to Ty = | 2|4 | Note that Ty is strictly increasing in all rows, but only
1

strictly increasing in the first column. Again, it is (necessarily) the unique such
tableau of content 1112.
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TABLE 2. &, versus the new basis RG},

Immaculate Tableaux — S 5] RGH
Dual immaculate Row-strict dual imm.
1st Col bottom to top strict weak
Rows left to right weak strict 7
Descents (for fund. expansion) {i : i+ 1 strictly above 7} {i:1+ 1 weakly below i}
Action of ¢ in QSym Si(z1,...,xp) RG&E = (6h)
0-Hecke action on SIT(«) Note that standard tableaux are the same
m(T)=T 1+ 1 weakly below i i+ 1 strictly above 4
m(T) =0 i, 1+ 1 in 1st column i, 1+ 1 in same row
T, s;(T) standard, i+ 1 strictly above ¢, 1+ 1 strictly below 4
and m;(T) = s;(T) i, 1+ 1 NOT both in 1st column
Partial order on SIT(«) | Poset P&* () = [ST, Shov] | Poset PRG*(a) ~ PG*(«) ‘
Cover relation S=<g: T <= S= ﬂf*(T) S <rer I < T = ﬂ,iRG*(S)
Imm. module generated by top element: W, = (SLow) bottom element: V,, = (S7)
Indecomposable? Yes [5] Yes
Extended Schur fn basis Eay Ex = s2[2) V(En) = REun, REN = Sxt
Module, Extended Schur fn cyclic (SL°"), indecomp. [24] cyclic (S5°T), indecomp.
Basis SET(«) (quotient of larger module) submodule of V,
Quotient module, Ext Schur fn None Yes, cyclic (S7°"), indecomp.
Basis NSET(a) N SIT() quotient of V,
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TABLE 3. Various families in QSym and associated H,(0)-
modules; they form a basis of QSym unless otherwise indicated

‘ Quasisymmetric function indexed by a F n

H,,(0)-module

Fundamental F,
[12]

Irreducible, one-dimensional
[10]

Dual immaculate

&, = ZTGSIT(Q) Feomp(Dese (1))
[4]

Cyclic (SL°")=W,, indecomp.
acts on standard immaculate tableaux SIT(«)

[5]

Row-strict dual immaculate
RE&, =(6;) = ZTGSIT(a) Feomp(Desr e (1)

Cyclic (S)=V,, indecomp.
acts on SIT(«)

_ Quasisymmetric Schur
So = ZTeSRCT(a) Fcomp(Dess(T))
Desg(T) := {i : i + 1 weakly right of i}
[13]

Indecomp. iff a is simple;
acts on standard reverse
composition tableaux SRCT ()
(26]

§ Row-strict quasisym Schur
Y(Sa) = RSa = 3 pesret(a) Feomp(Des s (1)
Despg(T) = {i : i + 1 strictly left of i}
[18]

[17, Chapter 4], [3]

(Column-strict) Young quasisym function
So = p(Sar) via p(Fp) = For
(17]

[17, Chapter 4], [26]

Row-strict Young quasisym function
RSa = 7/)(5(1)
(19]

Indecomp. iff « is simple;
acts on standard Young row-strict tableaux
3]

Extended Schur function
SD‘ = ZTGSET(Q) Fcomp(DesG,* (T))

Cyclic (Sto"), quotient of W, indecomp.;
acts on SET(a) = [S<°!, Srow)
24]

Row-strict Extended Schur
RE = ’w(&ﬂ = ETGSET(Q> Fcomp(DcsRS*(T))

Cyclic {S), submodule of V,, indecomp.;
acts on SET(a) = [SS°, STov]

Row-strict Extended Quotient Schur

REa = ZTGNSET(Q)HSIT(Q) Fcomp(DesRe*(T))
*NOT a basis*

Cyelic (S9), quotient of V,, indecomp.;
acts on NSET («) N SIT(«)

ch of Dual immaculate submodule

ch(X,) = ZTGSIT*(O) Feomp(Dese« (1))
*NOT a basis*

Cyclic (S5o**), submodule of Wy;
X, acts on [S9, S| = SIT*(a)

ch of Dual immaculate quotient module

Ch(Wa/Xa) = ZTGSIT(Q)\slT*(Q) FCOmp(DcsG* (T))
*NOT a basis*

Cyclic (S5o"), quotient of We;
W/ Xa acts on SIT(a) \ SIT* ()

The five functions in Section 9:
Theorem 9.3, Theorem 9.4, Proposition 9.5,
Theorem 9.16 and Figure 1
*NOT a basis*

Cyclic modules (S2), (S7°") acting on SIT();
submodule (S¢°!) of A, acting on SET(«);
quotient module (S7°%) of A, acting on SET(a);
submodule (S7°%*) of (S°") acting on SIT*(«)
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