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1. Introduction

Quasisymmetric functions were first defined formally by Gessel [10] in relation to the 
theory of P -partitions, and have since grown to be a vibrant area of research in their 
own right, including playing a crucial role in the resolution of the Shuffle Conjecture 
[7]. As a natural nonsymmetric generalization of symmetric functions, one avenue of 
research has been to establish analogies of classical symmetric functions, for example 
monomial symmetric functions and chromatic symmetric functions. However an analogy 
with the ubiquitous Schur functions remained elusive until 2011, when the authors of [11]
discovered quasisymmetric Schur functions that naturally arose from the combinatorics 
of nonsymmetric Macdonald polynomials. These functions became the genesis of the now 
flourishing area of Schur-like functions throughout algebraic combinatorics, for example 
[1,6,8,12,13]. Within the algebra of quasisymmetric functions, two further bases rose to 
attention: the dual immaculate functions [4], and the row-strict quasisymmetric Schur 
functions [15], the latter being quasisymmetric Schur functions via the involution ψ. In 
this paper we will interpolate between these two bases to yield row-strict dual immaculate 
functions.

More precisely, quasisymmetric Schur functions, all forms, can be defined combina-
torially as the generating function of composition fillings (resp. row-strict composition 
fillings) where there is a requirement that the first column strictly (resp. weakly) in-
creases, each row increases weakly (resp. strictly), and a triple rule is satisfied. The 
dual immaculate functions were introduced by Berg et al. [4] as the dual basis of the 
noncommutative symmetric immaculate functions. Combinatorially the dual immaculate 
functions can be viewed as the generating functions of composition fillings that satisfy 
just the first column and row requirements of the quasisymmetric Schur functions, omit-
ting the triple rule.

The triple rules required to define all versions of quasisymmetric Schur functions al-
low those functions to retain many of the combinatorial properties of Schur functions, 
including an RSK-style insertion algorithm, a JDT algorithm, a Murnaghan-Nakayama 

rule, and Littlewood-Richardson rules. Without the triple rule, some combinatorial sim-
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ilarities to Schur functions are lost, but others are gained. For example, the immaculate 
functions satisfy a noncommutative analogue of the Jacobi-Trudi rule.

In this paper we define row-strict immaculate tableaux of a given composition shape, 
and study their generating function. By identifying the correct descent set, we show that 
our combinatorial definition of the row-strict dual immaculate functions is equivalent to 
applying the involution ψ to the dual immaculate functions in Theorem 3.8, and can also 
be obtained from the Hopf algebra of noncommutative symmetric functions by suitably 
defined creation operators in Theorem 3.19.

We are able to quickly obtain many results from [4] by application of the involution ψ
in Theorem 3.21. We also carefully construct skew row-strict dual immaculate functions 
and define hook dual immaculate functions, obtaining results for them in our final two 
sections. In this work we focus primarily on combinatorial aspects of the row-strict dual 
immaculate functions. We investigate 0-Hecke modules for these new functions in [17].

Acknowledgments. The authors would like to thank Sarah Mason for bringing to their 
attention an incorrect equation in the first version of the paper, the referee for thoughtful 
comments, and the Algebraic Combinatorics Research Community program at ICERM 
through which this research took place. The third author was supported in part by the 
National Sciences Research Council of Canada.

2. Background

In this section we introduce much of the background on quasisymmetric and non-
commutative symmetric functions needed for our results. We refer the reader to [13] for 
additional details.

A composition of a positive integer n is a sequence α = (α1, . . . , αk) such that 
∑

i αi =
n. We write α � n. We sometimes denote n by |α| and k by �(α). The diagram of 
α = (α1, . . . , αk) is a collection of left-justified boxes with αi boxes in row i, where row 
1 is the bottom row.

Example 2.1. For α = (3, 1, 4, 2, 5, 1), the diagram is as follows.

Compositions of n are in bijection with subsets of {1, 2, . . . , n − 1}. Given a composi-
tion α = (α1, α2, . . . , αk) of n, the corresponding set is set(α) = {α1, α1 + α2, . . . , α1 +
· · ·+αk−1}. For α = (3, 1, 4, 2, 5, 1) that is a composition of 16, set(α) = {3, 4, 8, 10, 15} ⊆

{1, 2, . . . , 15}. Given a subset S = {s1 < s2 < · · · < sj} of {1, 2, . . . , n − 1}, the 
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corresponding composition of n is comp(S) = (s1, s2 − s1, . . . , sj − sj−1, n − sj). For 
S = {2, 3, 5, 9, 10, 14} ⊆ {1, 2, . . . , 15}, comp(S) = (2, 1, 2, 4, 1, 4, 2). The composi-
tion obtained by reversing the order of the parts of α, the reverse of α, is rev(α) =
(αk, αk−1, . . . , α1). The complement of a composition α, denoted αc, is the composi-
tion obtained from α by taking the complement of the set corresponding to α. That is, 
αc = comp(set(α)c). The transpose of a composition α, denoted αt, is the composition 
obtained from α by taking the complement of the set corresponding to the reverse of α. 
That is,

αt = comp(set(rev(α))c).

For example, if α = (3, 1, 2, 4), rev(α) = (4, 2, 1, 3), set(rev(α)) = {4, 6, 7}, 
set(rev(α))c = {1, 2, 3, 5, 8, 9}, so αt = (1, 1, 1, 2, 3, 1, 1). Note that αt = rev(α)c =
rev(αc).

We will use several different orders on compositions. For compositions α and β, we 
say α precedes β in lexicographic order, denoted by α ≤� β, if either α1 < β1 or there 
is a j > 1 such that αj < βj but αi = βi, 1 ≤ i ≤ j − 1. We say that a composition 
β = (β1, . . . , βm) is a refinement of a composition α = (α1, . . . , αk), denoted β � α, if 
each part of α can be obtained by adding consecutive parts of β. Equivalently, we say that 
α is a coarsening of β. For example, β = (1, 2, 1, 1, 3, 2) is a refinement of α = (3, 2, 5). 
Finally, we use an order, defined in [4], where α ⊂s β if

(1) |β| = |α| + s,
(2) αj ≤ βj , ∀ 1 ≤ j ≤ �(α), and
(3) �(β) ≤ �(α) + 1.

Note that the last two parts guarantee that �(α) ≤ �(β) ≤ �(α) + 1. If we have only the 
second condition then this is denoted α ⊆ β.

A function f ∈ Q[[x1, x2, . . .]] is quasisymmetric if the coefficient of xα1
1 xα2

2 · · ·xαk

k

is the same as the coefficient of xα1
i1
xα2
i2

· · ·xαk
ik

for every (α1, α2, . . . , αk) and i1 < i2 <

· · · < ik. The set of all quasisymmetric functions forms a Hopf algebra graded by degree, 
QSym =

⊕
n QSymn, where each QSymn is a vector space over Q with bases indexed 

by compositions of n.
The pertinent bases for our purposes include the monomial, fundamental, dual im-

maculate, and quasisymmetric Schur bases. We define the monomial and fundamental 
bases here and defer the remaining definitions until later.

Given a composition α = (α1, α2, . . . , αk) of n, the monomial quasisymmetric function
is

Mα =
∑

xα1
i1
xα2
i2

· · ·xαk
ik

.

(i1,i2,...,ik)
i1<i2<···<ik
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A second important quasisymmetric basis is the fundamental basis. Given a composition 
α = (α1, α2, . . . , αk) of n, the fundamental quasisymmetric function indexed by α is

Fα(x1, x2, . . .) =
∑

i1≤i2≤···≤in
ij=ij+1⇒j /∈set(α)

xi1xi2 · · ·xin .

Note that

Fα =
∑
β�α

Mβ and Mα =
∑
β�α

(−1)�(α)−�(β)Fβ . (2.1)

In [9] the noncommutative symmetric functions are defined as the algebra NSym =
Q〈e1, e2, . . .〉 generated by noncommuting indeterminates en of degree n. The set of 
noncommutative symmetric functions forms a graded Hopf algebra NSym =

⊕
n NSymn

where the degree of functions in NSymn is n. Each NSymn has bases indexed by com-
positions of n.

The nth elementary noncommutative symmetric function is the indeterminate en, 
where e0 = 1. Given a composition α = (α1, . . . , αk), we define the elementary noncom-
mutative symmetric function by

eα = eα1 · · · eαk
.

The nth complete homogeneous noncommutative symmetric function is defined by

hn =
∑

(α1,...,αm)�n
(−1)n−meα

with h0 = 1. Then, for α = (α1, . . . , αk), the complete homogeneous noncommutative 
symmetric function is defined by

hα = hα1 · · ·hαk
.

We can write hα in terms of the elementary noncommutative symmetric functions by

hα =
∑
β�α

(−1)|α|−�(β)eβ (2.2)

where the sum is over all β that refine α.
The noncommutative ribbon Schur function is defined by

rα =
∑
β�α

(−1)�(α)−�(β)hβ (2.3)
where the sum is over all β that are coarsenings of α.
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As Hopf algebras, NSym and QSym are dual with the pairing

〈hα,Mβ〉 = δαβ

and

〈rα, Fβ〉 = δαβ

where δαβ is 1 if α = β and 0 otherwise.
Recall that in Sym there is an automorphism ω : Sym → Sym such that ω(sλ) =

sλ′ where λ′ is the transpose of the partition λ and sλ denotes the symmetric Schur 
function. In QSym we have three involutive automorphisms [13], ψ, ρ, and ω defined on 
the fundamental basis by

ψ(Fα) = Fαc (2.4)

ρ(Fα) = Frev(α); note that Frev(α)(x1, . . . , xn) = Fα(xn, . . . , x1) (2.5)

ω(Fα) = Fαt . (2.6)

These maps all commute and ω = ρ ◦ ψ = ψ ◦ ρ.
Observe that more generally (2.5) implies that, for any f ∈ QSym,

ρ(f) (x1, . . . , xn) = f(xn, . . . , x1). (2.7)

For completeness, we give a proof of the second statement in (2.5), which we were 
unable to find in the literature. Using the fact that j ∈ set(rev(α)) ⇐⇒ n − j ∈ set(α), 
we have

Frev(α)(x1, . . . , xn) =
∑

1≤i1≤···≤in≤n
ij<ij+1 if j ∈ set(rev(α))

xi1 · · ·xin

=
∑

1≤i1≤···≤in≤n
ij<ij+1 if n−j ∈ set(α)

xi1 · · ·xin

=
∑

n≥in≥···≥i1≥1
in−j+1>in−j if j ∈ set(α)

xin · · ·xi1

= Fα(xn, . . . , x1).

Finally the truth of (2.7) is evident upon passing to the fundamental expansion of f ∈
QSym.

There are corresponding involutions in NSym, denoted by the same letters, and defined 

on the noncommutative ribbon basis by
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ψ(rα) = rαc ψ(rαrβ) = ψ(rα)ψ(rβ) (2.8)

ρ(rα) = rrev(α) ρ(rαrβ) = ρ(rβ)ρ(rα) (2.9)

ω(rα) = rαt ω(rαrβ) = ω(rβ)ω(rα). (2.10)

In NSym, ρ and ω are anti-automorphisms while ψ is an automorphism. We also have 
that ψ(hα) = eα, ρ(hα) = hrev(α) and ω(hα) = erev(α).

Proposition 2.2. The pairing between NSym and QSym is invariant under the map ψ. 
That is, for F ∈ QSym and g ∈ NSym, we have

〈g, F 〉 = 〈ψ(g), ψ(F )〉.

Proof. It suffices to check that the equality holds for the noncommutative ribbon basis 
elements g = rα and the basis of fundamental quasisymmetric functions F = Fβ , where 
α, β are compositions of n. But this is clear from the preceding definitions. �

Recall from [13, Section 3.4.2], the forgetful map

χ : NSym −→ Sym

satisfying χ(en) = en, where en is the nth elementary symmetric function, and similarly 
we will denote the nth complete homogeneous symmetric function by hn. For a compo-
sition α � n, as in [13, Section 2.2], let α̃ be the partition of n obtained by taking the 
parts of α in weakly decreasing order. Then

χ(hα) = hα̃, χ(eα) = eα̃.

Proposition 2.3. For g ∈ NSym, (χ ◦ ψ)(g) = (ω ◦ χ)(g).

Proof. It suffices to verify the equality for the basis elements hα. We have

χ(ψ(hα)) = χ(eα) = eα̃ = ω(hα̃) = ω(χ(hα)),

as claimed, where eα̃ = ω(hα̃) follows by the definition of ω in Sym. �
2.1. Dual immaculate functions

The immaculate functions Sα are a basis of NSym formed by iterated creation oper-
ators [4]. Their duals in QSym form the basis consisting of dual immaculate functions, 
S∗

α. These functions can be defined combinatorially as the generating function for im-

maculate tableaux.



8 E. Niese et al. / Advances in Applied Mathematics 149 (2023) 102540
Definition 2.4. Given a composition α, an immaculate tableau of shape α is a filling, D, 
of the cells of the diagram of α with positive integers such that

(1) The leftmost column entries strictly increase from bottom to top.
(2) The row entries weakly increase from left to right.

An immaculate tableau of shape α � n is standard if it is filled with distinct entries 
taken from {1, 2, . . . , n}. Given an immaculate tableau D, we form a content monomial, 
xD, by setting the exponent of xi to be di, the number of i’s in the tableau D, namely, 
xD = xd1

1 xd2
2 · · ·xdk

k . We call the vector (d1, d2, . . .) the content of the tableau D. In 
particular a standard tableau of shape α � n has content equal to the composition (1n).

Definition 2.5. The dual immaculate function indexed by the composition α is

S∗
α =

∑
D

xD

where the sum is over all immaculate tableaux of shape α.

We can rewrite the dual immaculate functions in terms of the fundamental basis as a 
sum over standard immaculate tableaux. To do this, we first standardize each immaculate 
tableau and define a descent set on the standard immaculate tableaux. The reading word
of an immaculate tableau D is obtained by reading the entries of D from left to right 
starting with the top row. We can standardize a semi-standard tableau (repeated entries 
allowed) by replacing all the 1’s in the reading word by 1,2,. . . , in reading order, then 
the 2’s, etc.

Example 2.6. Here is an immaculate tableau of shape α = (3, 2, 4, 1, 2) that has reading 
word 6 7 5 3 4 4 5 2 2 1 1 2, and its standardization.

T =

6 7
5
3 4 4 5
2 2
1 1 2

S =

11 12
9
6 7 8 10
3 4
1 2 5

For a composition α, let SIT(α) denote the set of standard immaculate tableaux of 
shape α.

Definition 2.7. [4, Definition 3.20] Given a standard immaculate tableau S, the descent 
set of S, denoted DesS*(S), is
DesS*(S) = {i : i + 1 appears strictly above i in S}.
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We refer to DesS*(S) as the S∗-descent set of S, and to its associated composition 
comp(DesS*(S)) as the S∗-descent composition of S.

For the standard immaculate tableau in Example 2.6, DesS*(S) = {2, 5, 8, 10}.
Then [4, Proposition 3.37]

S∗
α =

∑
S∈SIT(α)

Fcomp(Des
S* (S)), (2.11)

where the sum is over all standard immaculate tableaux of shape α.

3. Row-strict dual immaculate functions

In this section we start with a combinatorial definition of a new quasisymmetric 
function that we call the row-strict dual immaculate function.

Definition 3.1. Given a composition α, a row-strict immaculate tableau of shape α is a 
filling, U , of the cells of the diagram of α with positive integers such that

(1) The leftmost column entries weakly increase from bottom to top.
(2) The row entries strictly increase from left to right.

We now define our new function, where xU is the content monomial of the tableau 
U , defined just before Definition 2.5. The content of the tableau U is also defined just 
before Definition 2.5.

Definition 3.2. The row-strict dual immaculate function indexed by α is

RS∗
α =

∑
U

xU

where the sum is over all row-strict immaculate tableaux of shape α.

We say the row-strict tableau U is standard if xU = x1 · · ·xn. Thus standard row-strict 
immaculate tableaux coincide with standard immaculate tableaux.

As before, standardization provides us with a way to expand RS∗
α in terms of the 

fundamental basis using only standard tableaux.

Definition 3.3. Given a row-strict immaculate tableau T , the row-strict immaculate read-
ing word of T , denoted rwRS∗(T ), is the word obtained by reading the entries in the 
rows of T from right to left starting with the bottom row and moving up.

To standardize a row-strict immaculate tableau T , replace the 1’s in T with 1, 2, . . ., 

in the order they appear in rwRS∗(T ), then the 2’s, etc.
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Definition 3.4. The descent set of a standard row-strict immaculate tableau T is the set

DesRS∗(T ) = {i : i + 1 is weakly below i in T}.

We refer to DesRS∗(T ) as the RS∗-descent set of T , and to its associated composition 
comp(DesRS∗(T )) as the RS∗-descent composition of T .

Example 3.5. Consider the row-strict immaculate tableau

T =

4
3 4 5 6
2 5
1 2 6

The row-strict immaculate reading word of T is 6 2 1 5 2 6 5 4 3 4 and the corresponding 
standardized row-strict immaculate tableau is

S =

6
4 5 8 10
3 7
1 2 9

Here DesRS∗(T ) = {1, 4, 6, 8}.

The row-strict dual immaculate functions expand positively in the fundamental basis.

Theorem 3.6. Let α � n. Then

RS∗
α =

∑
S

Fcomp(DesRS∗ (S))

where the sum is over all standard row-strict immaculate tableaux of shape α.

Proof. Let T be a row-strict immaculate tableau of shape α. Then T standardizes to 
some standard row-strict immaculate tableau S. Suppose i ∈ DesRS∗(S). Then i + 1 is 
weakly below i in S. If i and i +1 are in the same row of S, then the entry of T replaced 
by i is strictly less than the entry replaced by i + 1 since rows of T strictly increase. 
If i + 1 is in a lower row than i, then the entry of T replaced by i must be strictly 
less than the entry replaced by i + 1, else the standardization process was not followed. 
Thus xT has strict increases at each position in DesRS∗(S) and xT is a monomial in 
Fcomp(DesRS∗ (S)). Thus every monomial in RS∗

α appears in 
∑

S Fcomp(DesRS∗ (S)).
Now let S be a standard row-strict immaculate tableau and let xi1 · · ·xin with i1 ≤

i2 ≤ · · · ≤ in be a monomial in Fcomp(DesRS∗ (S)). Create a new diagram T from S by 
replacing each entry k in S with ik. If ik = ik+1 then k /∈ DesRS∗(S), so k must appear 
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strictly below k + 1 in S and thus each entry in a row of T is distinct and increases 
left to right. By construction, the first column will weakly increase from bottom to top. 
Thus T is a semi-standard row-strict immaculate tableau with content (i1, . . . , in), and 
xi1 · · ·xin is a monomial in RS∗

α. �
Example 3.7. Let

S =

6
4 5 8 10
3 7
1 2 9

be a standard row-strict immaculate tableau. Then DesRS∗(S) = {1, 4, 6, 8} and xP =
x1x

2
2x3x

2
4x

2
5x

2
6 is a monomial in Fcomp(DesRS∗ (S)). We can “destandardize” S as described 

in the proof of Theorem 3.6 to obtain

T =

4
3 4 5 6
2 5
1 2 6

.

For any standard immaculate tableau S, note by definition that DesS∗(S) =
DesRS∗(S)c.

It will be helpful to know how the involutions ψ, ρ, and ω act on S∗
α.

Theorem 3.8. Let α be a composition. Then

ψ(S∗
α) = RS∗

α (3.1)

ρ(S∗
α(x1, . . . , xn)) = S∗

α(xn, . . . , x1) (3.2)

ω(S∗
α(x1, . . . , xn)) = RS∗

α(xn, . . . , x1) (3.3)

Proof. Let α be a composition. Recall from (2.4) that ψ(Fα) = Fαc . Then

ψ(S∗
α) = ψ

(∑
S

Fcomp(DesS∗ (S))

)

=
∑
S

ψ(Fcomp(DesS∗ (S)))

=
∑
S

Fcomp(DesS∗ (S)c)

=
∑
S

Fcomp(DesRS∗ (S))

∗
= RSα.
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The second equation follows from (2.7). Finally the third equation is now a consequence 
of the fact that ω = ρ ◦ ψ. �
Corollary 3.9. We have that {RS∗

α | α � n} is a basis for QSymn.

Proof. Since {S∗
α | α � n} is a basis for QSymn and ψ is an involution it follows by 

Theorem 3.8 that {RS∗
α | α � n} is also a basis for QSymn. �

Recall from Section 2.1 that the immaculate functions Sβ form a basis of NSym
satisfying, by definition,

〈Sα,S
∗
β〉 = δαβ .

Similarly, by definition, we have row-strict immaculate functions RSβ in NSym sat-
isfying

〈RSα,RS∗
β〉 = δαβ .

An immediate consequence of these definitions is the effect of the map ψ on Sα. Using 
Proposition 2.2, we have, by duality,

δαβ = 〈Sα,S
∗
β〉 = 〈ψ(Sα), ψ(S∗

β)〉 = 〈ψ(Sα),RS∗
β〉,

and hence ψ(Sα) = RSα.
From [4, Proposition 3.36] we have that the dual immaculate functions are monomial 

positive:

S∗
α =

∑
β≤� α

Kα,βMβ ,

where Kα,β is the number of immaculate tableaux of shape α and content β. It follows 
from this expansion that Kα,β = 〈hβ , S∗

α〉 = 〈eβ , RS∗
α〉. Similarly, for row-strict dual 

immaculate functions, we have by their definition and that of monomial quasisymmetric 
functions that

RS∗
α =

∑
β

K∗
α,βMβ

where K∗
α,β is the number of row-strict immaculate tableaux of shape α and content β, 

and K∗
α,β = 〈hβ , RS∗

α〉 = 〈eβ , S∗
α〉. Note that Kα,β 
= K∗

α,β in general, and K∗
α,α = 0

unless �(α) ≥ α1.
By contrast, it is easy to see [4, Proposition 3.36] that the transition matrix (Kα,β)

is upper unitriangular:
Kα,α = 1 and Kα,β 
= 0 =⇒ β ≤� α. (3.4)
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Example 3.10. Let α = (1, 2). Then the tableau definitions give the monomial expansions

RS∗
12 = M21 + M111, S∗

12 = M12 + M111.

As this example shows, the triangularity condition of (3.4) is false for the transition 
matrix K∗

α,β , making it difficult to deduce, directly from the monomial expansion, that 
the row-strict dual immaculate functions form a basis.

Let Lα,β denote the number of standard immaculate tableaux of shape α with S∗-
descent composition β and L∗

α,β denote the number of standard immaculate tableaux of 
shape α with RS∗-descent composition β. Given a standard immaculate tableau T , we 
have DesS∗(T )c = DesRS∗(T ), and so L∗

α,β = Lα,βc .

Theorem 3.11. Fix a composition α. For any composition γ with |γ| = |α|,

K∗
α,γ =

∑
β�γ

Lα,βc =
∑
β�γ

L∗
α,β .

Proof. We have

RS∗
α =

∑
γ

K∗
α,γMγ ,

and

RS∗
α =

∑
T∈SIT(α)

Fcomp(DesRS∗ (T )) =
∑
β

L∗
α,β Fβ =

∑
β

Lα,βc Fβ .

Since the monomial expansion of Fβ is Fβ =
∑

γ�β Mγ , equating coefficients of Mγ gives

K∗
α,γ =

∑
β�γ

Lα,βc =
∑
β�γ

L∗
α,β . �

3.1. Creation operators and row-strict immaculate functions

In [4], the authors defined a family of operators on NSym, modelled after Bernstein’s 
operators that were used to define the ordinary Schur functions in the Hopf algebra of 
symmetric functions [14, pp. 95-97, Exercise 29]. This new family of “creation operators” 
was then used to define the immaculate basis of NSym, and, via the pairing between 
NSym and its dual QSym, the dual immaculate quasisymmetric functions S∗

α.
In this section we define a variant of the creation operators of [4], and show how they 

in turn lead to a definition of the row-strict immaculate basis of NSym and our row-strict 
dual immaculate quasisymmetric functions RS∗

α.
A pair of dual Hopf algebras A and B over a field K induces a pairing 〈, 〉 : A ×B → K. 
Hence for each element F ∈ B, one can define the adjoint operator F⊥ : A → A by
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〈F⊥(a), b〉 = 〈a, Fb〉.

Explicitly, if {aα} and {bα} are bases of A and B respectively so that 〈aα, bβ〉 = δαβ as 
before, then the operator F⊥ may be computed according to the formula

F⊥(g) =
∑
α

〈g, Fbα〉aα. (3.5)

As in [4], we apply this to the graded dual Hopf algebras A = NSym and B =
QSym. Let {Fα}α�n be the basis of fundamental quasisymmetric functions in QSym, 
indexed by the compositions α of the nonnegative integer n. We will consider the linear 
transformation F⊥

α of NSym that is adjoint to multiplication by Fα in QSym.
First we record the following important effect of the involution ψ on the adjoint 

transformation.

Proposition 3.12. Let F ∈ QSym, H ∈ NSym. Then

ψ[F⊥(ψ(H))] = [ψ(F )]⊥(H),

or equivalently,

ψ[F⊥(H)] = [ψ(F )]⊥(ψ(H)).

In particular, for the fundamental quasisymmetric function Fα indexed by the composi-
tion α, we have F⊥

α (ψ(H)) = ψ[F⊥
αc(H)] and hence

F⊥
(1i)(ψ(H)) = ψ[F⊥

(i)(H)], F⊥
(i)(ψ(H)) = ψ[F⊥

(1i)(H)].

Proof. Let {aα}α�n and {bα}α�n be dual bases of NSym and QSym respectively, so that 
〈aα, bβ〉 = δαβ .

From Equation (3.5) we have

F⊥(ψ(H)) =
∑
α

〈ψ(H), F bα〉aα =
∑
α

〈H,ψ(F )ψ(bα)〉aα

by Proposition 2.2, and hence

ψ[F⊥(ψ(H))] =
∑
α

〈H,ψ(F )ψ(bα)〉ψ(aα) = [ψ(F )]⊥(H),

since again Proposition 2.2 implies that duality of bases is preserved under ψ. �
Lemma 3.13. [4, Lemma 2.6] For i, j > 0 and f ∈ NSym,

F⊥
i (fh ) = F⊥

i (f)h + F⊥
i−1 (f)h ; F⊥ (fh ) =

min(i,j)∑
F⊥ (f)h .
(1 ) j (1 ) j (1 ) j−1 (i) j

k=0
(i−k) j−k
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In particular we have

F⊥
(i)(hj) =

⎧⎪⎪⎨
⎪⎪⎩

0, i > j

hj−i, 1 ≤ i ≤ j

hj , i = 0;
F⊥

(1i)(hj) =

⎧⎪⎪⎨
⎪⎪⎩

0, i > 1
hj−1, i = 1
hj , i = 0.

The next two definitions are made in [4].

Definition 3.14. [4, Definition 3.1] The noncommutative Bernstein operator Bm is defined 
by

Bm =
∑
i≥0

(−1)ihm+iF
⊥
(1i),

and for α ∈ Zm,

Bα = Bα1 · · ·Bαm
.

Note that when i = 0, (10) is the empty composition and thus F⊥
(10)(f) = f = F⊥

∅ (f) for 

all f ∈ NSym, since F∅ = 1 in QSym. Also F⊥
(1i)(1) = F⊥

(i)(1) =
{

0 i > 0,
1 i = 0.

While we chose duality to define immaculate functions, the following is the original 
definition, which was proven to be equivalent in [4].

Definition 3.15. [4, Definition 3.2] For any α ∈ Zm, the immaculate function Sα ∈ NSym
is given by

Sα = Bα(1) = Bα1 · · ·Bαm
(1).

This definition was inspired by Bernstein’s original definition in the Hopf algebra of 
symmetric functions for a Schur function sα indexed by any m-tuple α ∈ Zm.

As observed in [4, Example 3.3], we have

S(m) = Bm(1) = hm, S(a,b) = Ba(hb) = hahb − ha+1hb−1.

Applying ψ to Lemma 3.13, and using Proposition 3.12 and the fact that ψ(Fα) = Fαc , 
so that ψ(F(1i)) = F(i) in NSymi, we obtain

Lemma 3.16. For i, j > 0 and f ∈ NSym,

F⊥ (fe ) = F⊥ (f)e + F⊥ (f)e ; F⊥
i (fe ) =

min(i,j)∑
F⊥

i−k (f)e .
(i) j (i) j (i−1) j−1 (1 ) j

k=0
(1 ) j−k
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In particular we have

F⊥
(1i)(ej) =

⎧⎪⎪⎨
⎪⎪⎩

0, i > j

ej−i, 1 ≤ i ≤ j

ej , i = 0;
F⊥

(i)(ej) =

⎧⎪⎪⎨
⎪⎪⎩

0, i > 1
ej−1, i = 1
ej , i = 0.

Now we define new operators as follows.

Definition 3.17. Define the noncommutative Bernstein operator Brs
m by

Brs
m =

∑
i≥0

(−1)iem+iF
⊥
(i),

and for α ∈ Zm,

Brs
α = Brs

α1
· · ·Brs

αm
.

Note that when i = 0, this is the empty composition and F∅ = 1 in QSym, and thus 
F⊥

(0)(f) = f = F⊥
∅ (f) for all f ∈ NSym.

Furthermore we have the following.

Lemma 3.18. For α ∈ Zm, ψ(Sα) = Brs
α (1).

Proof. From the above properties, it is clear that

Brs
m(1) = em, ψ(S(a,b)) = Brs

a (eb) = eaeb − ea+1eb−1.

Hence the result is true for m ≤ 2. Let f ∈ NSym. We claim that

ψ(Bm(f)) = Brs
m(ψ(f)). (3.6)

We have

ψ(Bm(f)) = ψ

⎡
⎣∑

i≥0
(−1)ihm+iF

⊥
(1i)(f)

⎤
⎦ =

∑
i≥0

(−1)iem+iψ[F⊥
(1i)(f)]

=
∑
i≥0

(−1)iem+iF
⊥
(i)(ψ(f)) = Brs

m(ψ(f)),

where the penultimate equality is thanks to Proposition 3.12.
Since for α ∈ Zm,

Bα(1) = Bα1(f), f = Bα2 · · ·Bαm
(1),
the result now follows by induction. �
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Theorem 3.19. The row-strict immaculate function RSα can be defined as the result of 
applying a creation operator as follows:

RSα = Brs
α (1).

Proof. Immediate from the preceding lemma, since we already know that RSα =
ψ(Sα). �

Finally, just as left multiplication by hm can be expressed in terms of creation oper-
ators [4, Remark 3.6], we have the following.

Lemma 3.20. Left multiplication by hm in NSym can be expressed as applying the operator

hm =
∑
i≥0

Bm+1F
⊥
(i),

and left multiplication by em in NSym can be expressed as applying the operator

em =
∑
i≥0

Brs
m+1F

⊥
(1i).

Proof. Immediate from Equation (3.6). �
3.2. Results obtained by using ψ

We can immediately obtain the row-strict analogue of many results in [4] by using 
the involution ψ. We list here the most pertinent for the remainder of the paper. We 
leave results for skew row-strict dual immaculate functions to the next section, as the 
combinatorial definition is not obviously equivalent.

Theorem 3.21.

(1) [4, Lemma 3.4] For s ≥ 0, m ∈ Z and f ∈ NSym,

Bm(f)hs = Bm+1(f)hs−1 + Bm(fhs)
ψ⇐⇒ Brs

m(f)es = Brs
m+1(f)es−1 + Brs

m(fes).

(2) [4, Theorem 3.5] (Multiplicity-free right Pieri rule) For a composition α and s ≥ 0,

Sαhs =
∑
α⊂sβ

Sβ
ψ⇐⇒ RSαes =

∑
α⊂sβ

RSβ .
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(3) [4, Proposition 3.32] (Another multiplicity-free right Pieri rule) For a composition 
α and s ≥ 0,

SαS(1s) = Sαes =
∑
β

Sβ
ψ⇐⇒ RSαRS(1s) = RSαhs =

∑
β

RSβ ,

where the summation ranges over compositions of β of |α| + s such that αi ≤ βi ≤
αi + 1 and αi = 0 for i > �(α).

(4) [4, Corollary 3.31] For n ≥ 0,

S(1n) =
∑
α�n

(−1)n−�(α)hα = en
ψ⇐⇒ RS(1n) =

∑
α�n

(−1)n−�(α)eα = hn.

(5) [4, Theorem 3.27] (Jacobi-Trudi) For �(α) = m,

Sα =
∑

σ∈Sm

(−1)sgn(σ)h(α1+σ1−1,α2+σ2−2,...,αm+σm−m)

ψ⇐⇒

RSα =
∑

σ∈Sm

(−1)sgn(σ)e(α1+σ1−1,α2+σ2−2,...,αm+σm−m)

where Sm is the symmetric group on m elements and (−1)sgn(σ) is the sign of σ.
(6) From [4, Lemma 2.5] and Equation (3.6),

F⊥
(1r)(S(1n)) = S(1n−r), and for s > 1, F⊥

(s)(S(1n)) = 0

which is equivalent via the map ψ to

F⊥
(r)(RS(1n)) = RS(1n−r), and for s > 1, F⊥

(1s)(RS(1n)) = 0.

(7) [4, Proposition 3.16 and Corollary 3.18]

hβ =
∑
α≥�

β

Kα,β Sα
ψ⇐⇒ eβ =

∑
α≥�

β

Kα,β RSα

and by Theorem 3.11

hβ =
∑
α

K∗
α,β RSα

ψ⇐⇒ eβ =
∑
α

K∗
α,β Sα.

(8) [4, Theorem 3.25] The ribbon function rβ expands positively in both immaculate 

bases:
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(

rβ =
∑
α≥�β

Lα,βSα
ψ⇐⇒ rβc =

∑
α≥�β

Lα,βRSα.

(Recall that Lα,β denotes the number of standard immaculate tableaux of shape α
and descent composition β.)

(9) [4, Theorem 3.38] The Schur function sλ with �(λ) = k expands into the dual im-
maculate and row-strict dual immaculate bases as follows:

sλ =
∑
σ∈Sk

(−1)sgn(σ)S∗
σ(λ)

ψ⇐⇒ sλ′ =
∑
σ∈Sk

(−1)sgn(σ)RS∗
σ(λ)

where, for λ a partition and σ ∈ Sk, we define σ(λ) = (λσ1 +1 −σ1, . . . , λσk
+k−σk)

provided λσi
+ i − σi > 0 for each i. If the latter condition is not satisfied, we define 

S∗
σ(λ) = 0 = RS∗

σ(λ).
10) [2, Theorem 1.1] For α a composition and cαβ ≥ 0,

S∗
α =

∑
β

cαβŜβ
ψ⇐⇒ RS∗

α =
∑
β

cαβRŜβ ,

where Ŝ and RŜ are the Young quasisymmetric Schur and Young row-strict qua-
sisymmetric Schur functions.

4. Skew row-strict dual immaculate functions

Following the work of Berg et al. [4], we define the poset P of immaculate tableaux. 
The labelled poset P is on the set of all compositions. Place an arrow from α to β if 
β ⊂ α, and |α| − |β| = 1, denoted by β ⊂1 α. The label of m on each cover α m−→ β

denotes the row containing the single additional box. Denote a path from α to β in P
by P = [α, β].

To obtain a standard skew immaculate tableau from a path P = [α, β], for each mi, 
1 ≤ i ≤ k, label the rightmost unlabeled cell in row mi of α with k−i +1, see Example 4.3. 
In order to understand the combinatorial models for skew dual immaculate and skew 
row-strict dual immaculate functions we define two special types of paths.

Definition 4.1. A path P = {α = β(0) m1−→ β(1) m2−→ · · · mk−→ β(k) = β} in the poset P is a

◦ horizontal k-strip if m1 ≤ m2 ≤ · · · ≤ mk, and a
◦ vertical k-strip if m1 > m2 > · · · > mk.

The horizontal 3-strip ((red) dotted path) and vertical 3-strip ((blue) dashed path) 

in Fig. 1 give rise to the following tableaux.
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∅

1

2 1

3 2 1
2 1

4
3 2

1

3 2 1 2

3

1 2 1

Fig. 1. The start of the poset P with edge labels. A horizontal 3-strip is shown in (red) dotted arrows and 
a vertical 3-strip is shown in (blue) dashed arrows. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

1 2
3

3
2

1
horizontal strip vertical strip

We can now make the following definition.

Definition 4.2. A standard skew immaculate tableau of shape α/β is a filling of the shape 
α/β with the distinct positive integers {1, 2, . . . , |α/β|}, such that rows strictly increase 
from left to right and the labels in α/β in cells that are in the first column of α must 
increase from bottom to top.

For a path P = [α, β] of length k, define the descent set of P to be D(P ) = {k − i :
mi > mi+1} and the weak ascent set of P to A(P ) = {k − i : mi ≤ mi+1}. Each such 
path P = [α, β] corresponds to a unique standard skew immaculate tableau T of shape 
α/β, and conversely. Furthermore, the descent set D(P ) coincides with the descent set 
DesS∗(T ) = {i : i + 1 appears strictly above i in T}, and similarly the ascent set A(P )
coincides with the descent set DesRS∗(T ) = {i : i + 1 appears weakly below i in T}.

Example 4.3. For α/β = (3, 2, 3)/(1, 1, 2),

T =
1

2

3 4
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T =

4 7

2 3 5

1 6

P = (2, 3, 2) 3→ (2, 3, 1) 1→ (1, 3, 1) 2→ (1, 2, 1) 3→ (2, 1) 2→ (1, 1) 2→ (1) 1→ ∅

Fig. 2. The path P has D(P ) = {1, 3, 6} and A(P ) = {2, 4, 5}, while DesS∗ (T ) = {1, 3, 6} and DesRS∗ (T ) =
{2, 4, 5}.

T =

2 4 5

3

1

P = (3, 2, 3) 3→ (3, 2, 2) 3→ (3, 2, 1) 2→ (3, 1, 1) 3→ (3, 1) 1→ (2, 1)

Fig. 3. The standard skew immaculate tableau T and its corresponding path can be decomposed into max-
imal horizontal strips (3, 2, 3) 3→ (3, 2, 2) 3→ (3, 2, 1), (3, 2, 1) 2→ (3, 1, 1) 3→ (3, 1), and (3, 1) 1→ (2, 1). 
Alternatively, decompose P into maximal vertical strips (3, 2, 3) 3→ (3, 2, 2), (3, 2, 2) 3→ (3, 2, 1) 2→ (3, 1, 1), 
and (3, 1, 1) 3→ (3, 1) 1→ (2, 1).

is a valid standard skew immaculate tableau. It corresponds to the path P = (3, 2, 3) 1→
(2, 2, 3) 1→ (1, 2, 3) 2→ (1, 1, 3) 3→ (1, 1, 2). Further, DesRS∗(T ) = {1, 2, 3}, D(P ) is 
empty, and A(P ) = {1, 2, 3}.

Given a path P = [α, ∅] corresponding to a standard immaculate tableau T , we have 
that DesS∗(T ) = D(P ) and DesRS∗(T ) = A(P ), by comparing the definitions, and is 
illustrated in Fig. 2.

Note that given a skew immaculate tableau, it can be decomposed into horizontal 
or vertical strips in several ways. An example of decomposing a tableau into either 
horizontal or vertical strips is given in Fig. 3.

In [4] the poset P and horizontal strips are used to define the skew dual immaculate 
functions as follows.

Definition 4.4. For {γ : β ⊆ γ ⊆ α} an interval in P, define the skew dual immaculate 
function to be

S∗
α/β =

∑
γ

〈Sβhγ ,S
∗
α〉Mγ .

This can be rewritten in terms of both the fundamental basis and the dual immaculate 

basis.
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Proposition 4.5. [4, Propositions 3.47 and 3.48] For {γ : β ⊆ γ ⊆ α} an interval in P,

S∗
α/β =

∑
γ

〈Sβrγ ,S∗
α〉Fγ (4.1)

=
∑
γ

〈SβSγ ,S
∗
α〉S∗

γ (4.2)

=
∑

P=[β,α]∈P

Fcomp(D(P )) =
∑

T a standard skew immaculate
tableau of shape α/β

Fcomp(DesS∗ (T )); (4.3)

in the last line, each path P from β to α corresponds to a unique standard skew immac-
ulate tableau T of shape α/β.

Note that the number of standard skew immaculate tableaux T of shape α/β with 
comp(DesS∗(T )) = γ is 〈Sβrγ , S∗

α〉.

Definition 4.6. For {γ : β ⊆ γ ⊆ α} an interval in P, define the skew row-strict dual 
immaculate function to be

RS∗
α/β =

∑
γ

〈RSβhγ ,RS∗
α〉Mγ .

We now quickly obtain the following.

Theorem 4.7. For {γ : β ⊆ γ ⊆ α} an interval in P,

RS∗
α/β =

∑
γ

〈RSβrγ ,RS∗
α〉Fγ (4.4)

= ψ(S∗
α/β) (4.5)

=
∑
γ

〈RSβRSγ ,RS∗
α〉RS∗

γ (4.6)

=
∑

P=[β,α]∈P

Fcomp(A(P )) =
∑

T a standard skew immaculate
tableau of shape α/β

Fcomp(DesRS∗ (T )). (4.7)

Proof. The first equality is immediate from Definition 4.6 by using (2.3) to expand hγ in 
terms of the ribbon basis, interchanging the order of summation, and finally using (2.1):

RS∗
α/β =

∑
γ

〈RSβ

∑
τ�γ

rτ ,RS∗
α〉Mγ =

∑
τ

〈RSβrτ ,RS∗
α〉

⎛
⎝∑

γ�τ

Mγ

⎞
⎠

=
∑

〈RSβrτ ,RS∗
α〉Fτ .
τ
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The second line then follows by applying ψ to the first equality in Proposition 4.5, and 
using the invariance of the pairing under ψ, which gives

ψ(S∗
α/β) =

∑
γ

〈ψ(Sβ) ψ(rγ), ψ(S∗
α)〉 ψ(Fγ) =

∑
γ

〈RS∗
β rγc ,RS∗

α〉 Fγc ,

where we have used (3.1), (2.8) and (2.4). The last two lines are now immediate by 
applying ψ to the last two equations in Proposition 4.5, since A(P ) and D(P ) are com-
plementary by definition, and each path P from β to α corresponds to a unique standard 
skew immaculate tableau T of shape α/β. �
Definition 4.8. Let α and β be compositions with β ⊆ α. Then a filling T of the diagram 
of α/β with positive integers is a skew immaculate tableau provided

(1) the entries in the first column of α (if any remain in α/β) are strictly increasing 
from bottom to top, and

(2) rows weakly increase from left to right.

Similarly, T is a skew row-strict immaculate tableau if

(1) the entries in the first column of α (if any remain in α/β) are weakly increasing from 
bottom to top, and

(2) rows strictly increase from left to right.

We now have the needed interpretation of the coefficients in Definitions 4.4 and 4.6
to rewrite S∗

α/β and RS∗
α/β as generating functions of skew immaculate tableaux.

Theorem 4.9. Let α and β be compositions with β ⊆ α. Then

S∗
α/β =

∑
T

xT

where the sum is over all skew immaculate tableaux of shape α/β, and

RS∗
α/β =

∑
T

xT

where the sum is over all skew row-strict immaculate tableaux of shape α/β.

Proof. By Point (3) in Theorem 3.21, we know that for γ = γ1γ2 · · · γk, α can be ob-
tained from β by a series of vertical strips of lengths γ1, γ2, . . . , γk. Thus the coefficient 
〈RSβhγ , RS∗

α〉 represents the number of ways to add a sequence of vertical strips of 
lengths γ1, γ2, . . . , γk from β to α, which counts the number of skew immaculate tableaux 

T of shape α/β such that the descent composition of T is coarser than γ, since adding 
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a vertical strip after another one may or may not create a descent. See Example 4.10
below. Thus

〈Sβhγ ,S
∗
α〉

is the number of skew immaculate tableaux of shape α/β of content γ and

〈RSβhγ ,RS∗
α〉

is the number of skew row-strict immaculate tableaux of shape α/β of content γ. The 
result now follows immediately from the definitions. �
Example 4.10. Consider

T =
1 4

3
2

and corresponding path

P = (2, 2, 2) 3→ (2, 2, 1) 2→ (2, 1, 1) 1→ (1, 1, 1) 3→ (1, 1).

Note that T can be considered to be formed from vertical strips corresponding to 
γ = (1, 3) or (1, 1, 2), or (1, 2, 1) or (1, 1, 1, 1) since comp(DesRS∗(T )) = (1, 3) and is 
coarser than the listed options for γ.

In analogy with the well-known Schur function identity [14, Chapter 1 Eqn. (5.9)],

sλ(X,Y ) =
∑
μ⊂λ

sμ(X)sλ/μ(Y ), (4.8)

Theorem 4.9 immediately gives us the following:

Theorem 4.11. Suppose we have two sets of variables, X and Y , ordered so that the 
alphabet X precedes the alphabet Y . Then

S∗
α(X,Y ) =

∑
β⊂α

S∗
β(X)S∗

α/β(Y ), (4.9)

and

RS∗ (X,Y ) =
∑

RS∗ (X)RS∗ (Y ). (4.10)
α

β⊂α

β α/β
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4.1. Hopf algebra approach

We consider the Hopf algebra approach to defining skew dual immaculate functions 
and establish that it is equivalent to the previous definition. To start, we provide a brief 
introduction to the necessary Hopf algebra background.

We have that NSym and QSym form dual Hopf algebras using the pairing 〈·, ·〉 :
NSym⊗ QSym → Q defined by 〈hα, Mβ〉 = δαβ where δαβ = 1 if α = β and 0 otherwise.

Given dual bases {Bi}i∈I and {Di}i∈I ,

Bi ·Bj =
∑
k

bki,jBk ⇔ ΔDk =
∑
i,j

bki,jDi ⊗Dj

Di ·Dj =
∑
k

dki,jDk ⇔ ΔBk =
∑
i,j

dki,jBi ⊗Bj

where · is the product and Δ is the coproduct.
For the fundamental quasisymmetric functions, we have that

ΔFα =
∑

(β,γ) with
β·γ=α or
β�γ=α

Fβ ⊗ Fγ (4.11)

where for β = (β1, . . . , βk) and γ = (γ1, . . . , γn), β · γ = (β1, . . . , βk, γ1, . . . , γn) is the 
concatenation of β and γ, and β � γ = (β1, . . . , βk−1, βk + γ1, γ2, . . . , γn) is the near-
concatenation of β and γ.

Following [5], we can define the coproduct ΔS∗
α in terms of skew elements ˜S∗

α/γ .

Definition 4.12. Let α � n. Then we define

ΔS∗
α =

∑
γ

S∗
γ ⊗ ˜S∗

α/γ .

We show that ˜S∗
α/γ = S∗

α/γ as described in Proposition 4.5.

Lemma 4.13.

˜S∗
α/γ = S∗

α/γ =
∑
T

Fcomp(DesS∗ (T ))

where the sum is over all standard skew immaculate tableaux T of shape α/γ.

Proof. We use the technique of [5, Proposition 3.1]. Let T be a standard skew immaculate 
tableaux such that |T | = n. For any k with 0 ≤ k ≤ n, let �k(T ) be the standardization 

of the skew tableaux consisting of cells of T with entries {n −k+1, . . . , n}. Also let Ωk(T )
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T =

4 5 8
∗ ∗ 6 7
∗ ∗ 2 3
∗ 1 9

Ω4(T ) =

4
∗ ∗
∗ ∗ 2 3
∗ 1

�5(T ) =

∗ 1 4
∗ ∗ 2 3
∗ ∗ ∗ ∗
∗ ∗ 5

Fig. 4. An example of Ωn−k(T ) and �k(T ).

be the skew tableaux consisting of the cells of T after removing the entries {k+1, . . . , n}
as in Fig. 4.

Note that if T is a standard immaculate tableau of shape α, then T = Ωn−k(T ) ∪
(�k(T ) +(n −k)) where �k(T ) +(n −k) is �k(T ) with n −k added to each entry. Suppose 
DesS∗(T ) = α with |α| = n. Then we can rewrite (4.11) as

ΔFα =
n∑

i=0
Fβi

⊗ Fγi

where |βi| = n − i, |γi| = i, and either βi · γi = α or βi � γi = α. Observe that 
βi = comp(DesS∗(Ωn−i(T ))) and γi = comp(DesS∗(�i(T ))).

Then

ΔS∗
α = Δ

(∑
T

Fcomp(DesS∗ (T ))

)

=
∑
T

ΔFcomp(DesS∗ (T ))

=
∑
T

n∑
i=0

Fβi
⊗ Fγi

where T is a standard immaculate tableau of shape α.
Further, by Definition 4.12 we have

ΔS∗
α =

∑
δ

S∗
δ ⊗ ˜S∗

α/δ

=
∑
δ

∑
S

Fcomp(DesS∗ (S)) ⊗ ˜S∗
α/δ

where S is a standard immaculate tableau of shape δ.
For a fixed S of shape δ with |δ| = n −k for some k, there exists a standard immaculate 

tableau T of shape α such that S = Ωn−k(T ). Then �k(T ) has shape α/δ. Similarly, 
given a standard immaculate tableau T of shape α, T = Ωn−k(T ) ∪ (�k(T ) + (n − k))

where Ωn−k(T ) has shape δ with |δ| = n − k and �k(T ) has shape α/δ. Thus
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˜S∗
α/δ =

∑
T

Fcomp(DesS∗ (T )) = S∗
α/δ

where T is a standard skew immaculate tableau of shape α/δ. �
By the above lemma and Theorem 4.7, we have the following.

Theorem 4.14. Let α be a composition. Then

ΔS∗
α =

∑
β

S∗
β ⊗S∗

α/β and ΔRS∗
α =

∑
β

RS∗
β ⊗RS∗

α/β .

4.2. Expansions of skew Schur functions

We can also use a Hopf algebra approach to establish skew versions of Point (9)
in Theorem 3.21, from where we recall that for λ a partition and σ ∈ S�(λ), define 
σ(λ) = (λσ1 + 1 − σ1, . . . , λσk

+ k − σk) provided λσi
+ i − σi > 0 for each i.

Also recall that sλ/μ = det(hλi−μj−i+j). If we consider compositions α ⊆ λ, we can 
define sλ/α = det(hλi−αj−i+j). Note that if there exists some αj−j = αk−k for some j 
=
k, sλ/α = 0 since two columns of the matrix will be equal. If no such pair j, k exists, then 
there exists a unique permutation τ such that τ(α) = (ατ1 +1 −τ1, . . . , ατk +k−τk) = μ

where μ is a partition. In this case,

sλ/μ = (−1)sgn(τ)sλ/α. (4.12)

Theorem 4.15. Let λ and μ be partitions with μ ⊆ λ. Then

sλ/μ =
∑

σ∈S�(λ)

(−1)sgn(σ)+sgn(τ)S∗
σ(λ)/τ(μ)

for any choice of τ such that τ(μ) is a composition.

Proof. Recall that Δ(sλ) =
∑

μ sλ/μ ⊗ sμ =
∑

μ sμ ⊗ sλ/μ because the Hopf algebra of 
symmetric functions is cocommutative. We can rewrite Δ(sλ) using Theorem 3.21, Point 
(9). Then

Δ(sλ) = Δ

⎛
⎝ ∑

σ∈S�(λ)

(−1)sgn(σ)S∗
σ(λ)

⎞
⎠

=
∑

σ∈S�(λ)

(−1)sgn(σ)ΔS∗
σ(λ)

=
∑

(−1)sgn(σ)

⎛
⎝∑

S∗
β ⊗S∗

σ(λ)/β

⎞
⎠

σ∈S�(λ) β
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=
∑
β

S∗
β ⊗

⎛
⎝ ∑

σ∈S�(λ)

(−1)sgn(σ)S∗
σ(λ)/β

⎞
⎠ .

On the other hand,

∑
μ

sμ ⊗ sλ/μ =
∑
μ

⎛
⎝ ∑

τ∈S�(μ)

(−1)sgn(τ)S∗
τ(μ)

⎞
⎠⊗ sλ/μ

=
∑
μ

∑
τ∈S�(μ)

(−1)sgn(τ)
(
S∗

τ(μ) ⊗ sλ/μ

)

=
∑
β

S∗
β ⊗

⎛
⎝ ∑

τ∈S�(β)

(−1)sgn(τ)sλ/τ−1(β)

⎞
⎠

where β is a composition and τ−1(β) is a partition. Thus for a fixed choice of β,

∑
σ∈S�(λ)

(−1)sgn(σ)S∗
σ(λ)/β =

∑
τ∈S�(β)

(−1)sgn(τ)sλ/τ−1(β).

Note that for each β, there is at most one τ ∈ S�(β) such that sλ/τ−1(β) = sλ/μ 
= 0 for 
a partition μ. Thus

sλ/μ =
∑

σ∈S�(λ)

(−1)sgn(σ)+sgn(τ)S∗
σ(λ)/τ(μ)

for any valid choice of τ . �
Choosing τ as the identity gives the following corollary.

Corollary 4.16. For partitions λ and μ with μ ⊆ λ,

sλ/μ =
∑

σ∈S�(λ)

(−1)sgn(σ)S∗
σ(λ)/μ.

Applying ψ to both sides of Theorem 4.15 gives us an expansion in terms of the 
row-strict dual immaculate functions.

Corollary 4.17. For partitions λ and μ with μ ⊆ λ and τ ∈ S�(μ) such that τ(μ) is a 
composition,

sλ′/μ′ =
∑

(−1)sgn(σ)+sgn(τ)RS∗
σ(λ)/τ(μ).
σ∈S�(λ)
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5. Hook dual immaculate functions

Now that we have skew row-strict dual immaculate functions, we can define hook 
dual immaculate functions in a combinatorial manner analogous to the hook Schur func-
tions [18] and hook quasisymmetric Schur functions [16].

Definition 5.1. Let A = {1, 2, . . . , �} and A′ = {1′, 2′, . . . , k′} be two alphabets with 
1 < 2 < · · · < � < 1′ < 2′ < · · · < k′. Then a semistandard hook immaculate tableau of 
shape α is a filling of the diagram of α with entries from A ∪A′ such that

(1) the first column increases from bottom to top with the increase strict in A and weak 
in A′, and

(2) each row increases from left to right, weakly in A and strictly in A′.

Denote the set of all semistandard hook immaculate tableaux of shape α by HIα.
The content monomial of a semistandard hook immaculate tableau T is a monomial 

in two alphabets, x1, . . . , x� and y1, . . . , yk, where

zT =
∏

i∈A∪A′

z# of i’s in T
i

where zi = xi if i ∈ A and zi = yi if i ∈ A′.

Example 5.2. Let α = (3, 1, 2, 4, 3). Then T , as shown below, is a semistandard hook 
immaculate tableau with content monomial zT = x2

1x2x
2
3y

3
1y2y3y

2
4y5.

T =

1′ 2′ 4′
1′ 3′ 4′ 5′
3 1′
2
1 1 3

Definition 5.3. The hook dual immaculate function indexed by α is

HS∗
α(X,Y ) = HS∗

α(x1, . . . , xl, y1, . . . , yk) =
∑

T∈HIα

zT .

It follows immediately from the definition that

HS∗
α(X,Y ) =

∑
γ⊆α

S∗
γ(X)RS∗

α/γ(Y ). (5.1)

We can also expand HS∗
α(X, Y ) in terms of the super fundamental quasisymmetric 
functions. We use the definition in [16].
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Definition 5.4. For α � n, the super fundamental quasisymmetric function indexed by α
is

Q̃α(X,Y ) =
∑

a1≤a2≤···≤an

ai=ai+1∈A⇒i/∈set(α)
ai=ai+1∈A′⇒i∈set(α)

za1za2 · · · zan
,

where za = xa if a ∈ A and za′ = ya for a′ ∈ A′.

Theorem 5.5. [16, Theorem 4.1] For α � n,

Q̃α(X,Y ) =
n∑

i=0
Fβ(X)Fγ(Y )

where β · γ = α if i ∈ set(α) and β � γ = α if i /∈ set(α).

As usual, we must have a standardization procedure for semistandard hook immacu-
late tableaux and an appropriate descent set to index the super fundamental quasisym-
metric functions. To standardize a semistandard hook immaculate tableau T , first replace 
the entries of T from A by scanning unprimed entries from left to right, starting with the 
top row, replacing 1’s as they are encountered by 1, 2, . . . in this reading order, followed 
by 2’s, etc. Next continue with the entries of A′ by scanning from right to left starting 
with the bottom row. The result is denoted by stdz(T ).

Example 5.6. The reading order of T , as shown below, is 3, 2, 1, 1, 3, 1′, 5′, 4′, 3′, 1′, 4′, 2′, 1′, 
giving rise to stdz(T ) below.

T =

1′ 2′ 4′
1′ 3′ 4′ 5′
3 1′
2
1 1 3

stdz(T ) =

8 9 12
7 10 11 13
4 6
3
1 2 5

Note that the standardization of a hook immaculate tableau is a standard im-
maculate tableau. Recall that the descent set of a standard immaculate tableau S is 
DesS∗(S) = {i : i + 1 is strictly above i in S}. The descent set for stdz(T ) in Exam-
ple 5.6 is DesS∗(stdz(T )) = {2, 3, 5, 6, 7, 11}. From the definition of standardization, we 
note that if T is a hook immaculate tableau of shape α with T = S ∪ U where S is an 
immaculate tableau of shape β and U is a skew row-strict immaculate tableau of shape 
α/β, then

DesS∗(stdz(T )) = DesS∗(stdz(S)) ∪ (DesRS∗(stdz(U))c + |β|)
if |β| + 1 is weakly lower than |β| in stdz(T ) and
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DesS∗(stdz(T )) = DesS∗(stdz(S)) ∪ (DesRS∗(stdz(U))c + |β|) ∪ {|β|}

if |β| +1 appears strictly above |β| in stdz(T ). (Here we have written J +k for the subset 
obtained from a nonempty set of integers J by adding the integer k to each element of 
J . If J = ∅, then J + k = ∅.)

Theorem 5.7. Let α � n. Then

HS∗
α(X,Y ) =

∑
S

Q̃comp(DesS∗ (S))(X,Y )

where the sum is over all standard immaculate tableaux of shape α.

Proof. We show that each polynomial consists of the same monomials. Suppose 
xa1 · · ·xak

yb1 · · · ybm is the content monomial associated with a hook immaculate tableau 
T of shape α with a1 ≤ a2 ≤ · · · ≤ ak and b1 ≤ b2 ≤ · · · ≤ bm. Note that if 
ai = ai+1, then i /∈ DesS∗(stdz(T )) by the standardization procedure. Similarly, if 
bi = bi+1, i + k ∈ DesS∗(stdz(T )), since b′i must occur in a lower row of T than b′i+1. 
Thus xa1 · · ·xak

yb1 · · · ybm is a monomial in Q̃comp(DesS∗ (stdz(T )))(X, Y ).
Now suppose xa1 · · ·xak

yb1 · · · ybm is a monomial in Q̃comp(DesS∗ (S))(X, Y ) for some 
standard immaculate tableau S of shape α. We must show that there exists a hook 
immaculate tableau with content a1, . . . , ak, b′1, . . . , b′m. We do this by replacing n in S
with b′m, n − 1 in S with b′m−1 and so on. Since bi = bi+1 implies that i + k ∈ DesS∗(S), 
we have that each primed entry in a row is distinct and increasing from left to right. 
Similarly, if ai = ai+1, then i /∈ DesS∗(S), guaranteeing that the first column is increasing 
bottom to top and has distinct unprimed entries. Thus the result is a hook immaculate 
tableau of content xa1 · · ·xak

yb1 · · · ybm . �
Berele and Regev [3] defined hook Schur functions indexed by a partition λ as

Hsλ(X,Y ) =
∑
μ⊆λ

sμ(X)sλ′/μ′(Y ).

We have the following analogue of Theorem 3.21, Point (9).

Theorem 5.8. Let λ be a partition. Then

Hsλ(X,Y ) =
∑

τ∈S�(λ)

(−1)sgn(τ)HS∗
τ(λ)(X,Y ).

Proof. Let λ be a partition. Then by Theorem 3.21, Point (9) and Corollary 4.17,

Hsλ(X,Y ) =
∑

sμ(X)sλ′/μ′(Y )

μ⊆λ
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=
∑
μ⊆λ

⎛
⎝ ∑

σ∈S�(μ)

(−1)sgn(σ)S∗
σ(μ)(X)sλ′/μ′(Y )

⎞
⎠

=
∑
μ⊆λ

⎛
⎝ ∑

σ∈S�(μ)

S∗
σ(μ)(X)

∑
τ∈S�(λ)

(−1)sgn(τ)RS∗
τ(λ)/σ(μ)(Y )

⎞
⎠

=
∑

τ∈S�(λ)

(−1)sgn(τ)

⎛
⎝∑

μ⊆λ

∑
σ∈S�(μ)

S∗
σ(μ)(X)RS∗

τ(λ)/σ(μ)(Y )

⎞
⎠ . (5.2)

Note that the only terms σ(μ) that appear in (5.2) are those such that σ(μ) = β for a 
composition β. We rewrite (5.2) as

Hsλ(X,Y ) =
∑

τ∈S�(λ)

(−1)sgn(τ)

⎛
⎝∑

μ⊆λ

∑
σ∈S�(μ)

S∗
σ(μ)(X)RS∗

τ(λ)/σ(μ)(Y )

⎞
⎠

=
∑

τ∈S�(λ)

(−1)sgn(τ)
∑

β⊆τ(λ)

S∗
β(X)RS∗

τ(λ)/β(Y )

=
∑

τ∈S�(λ)

(−1)sgn(τ)HS∗
τ(λ)(X,Y ). �
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