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1. Introduction

Quasisymmetric functions were first defined formally by Gessel [10] in relation to the
theory of P-partitions, and have since grown to be a vibrant area of research in their
own right, including playing a crucial role in the resolution of the Shuffle Conjecture
[7]. As a natural nonsymmetric generalization of symmetric functions, one avenue of
research has been to establish analogies of classical symmetric functions, for example
monomial symmetric functions and chromatic symmetric functions. However an analogy
with the ubiquitous Schur functions remained elusive until 2011, when the authors of [11]
discovered quasisymmetric Schur functions that naturally arose from the combinatorics
of nonsymmetric Macdonald polynomials. These functions became the genesis of the now
flourishing area of Schur-like functions throughout algebraic combinatorics, for example
[1,6,8,12,13]. Within the algebra of quasisymmetric functions, two further bases rose to
attention: the dual immaculate functions [4], and the row-strict quasisymmetric Schur
functions [15], the latter being quasisymmetric Schur functions via the involution . In
this paper we will interpolate between these two bases to yield row-strict dual immaculate
functions.

More precisely, quasisymmetric Schur functions, all forms, can be defined combina-
torially as the generating function of composition fillings (resp. row-strict composition
fillings) where there is a requirement that the first column strictly (resp. weakly) in-
creases, each row increases weakly (resp. strictly), and a triple rule is satisfied. The
dual immaculate functions were introduced by Berg et al. [4] as the dual basis of the
noncommutative symmetric immaculate functions. Combinatorially the dual immaculate
functions can be viewed as the generating functions of composition fillings that satisfy
just the first column and row requirements of the quasisymmetric Schur functions, omit-
ting the triple rule.

The triple rules required to define all versions of quasisymmetric Schur functions al-
low those functions to retain many of the combinatorial properties of Schur functions,
including an RSK-style insertion algorithm, a JDT algorithm, a Murnaghan-Nakayama
rule, and Littlewood-Richardson rules. Without the triple rule, some combinatorial sim-
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ilarities to Schur functions are lost, but others are gained. For example, the immaculate
functions satisfy a noncommutative analogue of the Jacobi-Trudi rule.

In this paper we define row-strict immaculate tableauz of a given composition shape,
and study their generating function. By identifying the correct descent set, we show that
our combinatorial definition of the row-strict dual immaculate functions is equivalent to
applying the involution ¢ to the dual immaculate functions in Theorem 3.8, and can also
be obtained from the Hopf algebra of noncommutative symmetric functions by suitably
defined creation operators in Theorem 3.19.

We are able to quickly obtain many results from [4] by application of the involution 1
in Theorem 3.21. We also carefully construct skew row-strict dual immaculate functions
and define hook dual immaculate functions, obtaining results for them in our final two
sections. In this work we focus primarily on combinatorial aspects of the row-strict dual
immaculate functions. We investigate 0-Hecke modules for these new functions in [17].

Acknowledgments. The authors would like to thank Sarah Mason for bringing to their
attention an incorrect equation in the first version of the paper, the referee for thoughtful
comments, and the Algebraic Combinatorics Research Community program at ICERM
through which this research took place. The third author was supported in part by the
National Sciences Research Council of Canada.

2. Background

In this section we introduce much of the background on quasisymmetric and non-
commutative symmetric functions needed for our results. We refer the reader to [13] for
additional details.

A composition of a positive integer n is a sequence o = (a1, ..., o) such that ), a; =
n. We write o F n. We sometimes denote n by |a| and k by £(«). The diagram of
a = (ai,...,qr) is a collection of left-justified boxes with «; boxes in row 4, where row
1 is the bottom row.

Example 2.1. For o = (3,1,4,2,5,1), the diagram is as follows.

Compositions of n are in bijection with subsets of {1,2,...,n — 1}. Given a composi-
tion a = (a1, g, ..., ax) of n, the corresponding set is set(a) = {1, 1 + g, ..., a1 +
«tag_1}. Fora = (3,1,4,2,5,1) that is a composition of 16, set(a) = {3,4,8,10,15} C
{1,2,...,15}. Given a subset S = {s1 < sz < --- < s;} of {1,2,...,n — 1}, the
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corresponding composition of n is comp(S) = (s1,52 — $1,...,5; — Sj_1,n — s;). For
S = {2,3,5,9,10,14} C {1,2,...,15}, comp(S) = (2,1,2,4,1,4,2). The composi-
tion obtained by reversing the order of the parts of «, the reverse of «, is rev(a) =
(g, —1,...,0a1). The complement of a composition «, denoted af, is the composi-
tion obtained from « by taking the complement of the set corresponding to «. That is,
a¢ = comp(set(a)). The transpose of a composition «, denoted o, is the composition
obtained from « by taking the complement of the set corresponding to the reverse of a.
That is,

o' = comp(set(rev(a))®).

For example, if o = (3,1,2,4), rev(a) = (4,2,1,3), set(rev(a)) = {4,6,7},
set(rev(a))¢ = {1,2,3,5,8,9}, so o = (1,1,1,2,3,1,1). Note that o' = rev(a)¢ =
rev(a®).

We will use several different orders on compositions. For compositions o and 3, we
say « precedes 3 in lexicographic order, denoted by a <, 3, if either a; < fy or there
is a j > 1 such that a; < B; but o; = §;,1 < ¢ < 7 — 1. We say that a composition
B = (f1,--.,8m) is a refinement of a composition « = (ay,...,ax), denoted 8 < «, if
each part of o can be obtained by adding consecutive parts of 5. Equivalently, we say that
a is a coarsening of B. For example, § = (1,2,1,1,3,2) is a refinement of o = (3,2,5).
Finally, we use an order, defined in [4], where « C; 3 if

(1) 18] = [el +s,
(2) aj <Bj, V1<) <{(a),and
(3) £(B) < b(a) + 1.

Note that the last two parts guarantee that £(«) < ¢(8) < ¢(a) + 1. If we have only the
second condition then this is denoted o C £.

A function f € Q[[z1,x2,...]] is quasisymmetric if the coefficient of x{'x5? .- - x}*
is the same as the coefficient of x;’l'le; . xf;’“ for every (a1, as,...,ax) and i1 < is <

-+ < ig. The set of all quasisymmetric functions forms a Hopf algebra graded by degree,
QSym = @, QSym,,, where each QSym,, is a vector space over Q with bases indexed
by compositions of n.

The pertinent bases for our purposes include the monomial, fundamental, dual im-
maculate, and quasisymmetric Schur bases. We define the monomial and fundamental
bases here and defer the remaining definitions until later.

Given a composition & = (g, as, ..., ax) of n, the monomial quasisymmetric function
is
— a1 .02 Ok
M, E T Ty Tk

(41,82,..0k)
11 <t <--<lg
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A second important quasisymmetric basis is the fundamental basis. Given a composition
a = (a1,as,...,ak) of n, the fundamental quasisymmetric function indexed by « is

Fa(xl,xg,...): Z Ly Ly~ Ty, -

11 <ig<--<ip
ij:ij+1:>j¢set(a)
Note that

=Y Mg and My=)» (-1)"~ P F, (2.1)

B« Bt

In [9] the noncommutative symmetric functions are defined as the algebra NSym =
Q{e1,es,...) generated by noncommuting indeterminates e, of degree n. The set of
noncommutative symmetric functions forms a graded Hopf algebra NSym = €, NSym,,
where the degree of functions in NSym,, is n. Each NSym,, has bases indexed by com-
positions of n.

The nth elementary noncommutative symmetric function is the indeterminate e,
where eg = 1. Given a composition o = («v, ..., ax), we define the elementary noncom-
mutative symmetric function by

€y =€q " €qy-

The nth complete homogeneous noncommutative symmetric function is defined by

with hg = 1. Then, for a« = (aq,...,ax), the complete homogeneous noncommutative
symmetric function is defined by

h,=h,, - h,,.

We can write h,, in terms of the elementary noncommutative symmetric functions by

hy = Y (—1)l7 ey (2.2)

B

where the sum is over all 8 that refine «.
The noncommutative ribbon Schur function is defined by

ro = Y (=1)19 "y (2.3)

Jep et

where the sum is over all S that are coarsenings of «.
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As Hopf algebras, NSym and QSym are dual with the pairing
<ha7 Mﬁ) = 504,3
and

<raaFﬁ> = 50¢3

where 0,5 is 1 if o = § and 0 otherwise.

Recall that in Sym there is an automorphism w : Sym — Sym such that w(sy) =
sy where )\ is the transpose of the partition A and s, denotes the symmetric Schur
function. In QSym we have three involutive automorphisms [13], ¥, p, and w defined on
the fundamental basis by

d)(Fa) = Fie (2.4)
p(Fa) = Frev(a); note that Fieya) (21, ..., 2n) = Fo(2n, ..., 21) (2.5)
W(Fy) = Far. (2.6)

These maps all commute and w = po Y =Y op.
Observe that more generally (2.5) implies that, for any f € QSym,

p(f)(xh'"vxn):f(x’na”'axl)' (27)

For completeness, we give a proof of the second statement in (2.5), which we were
unable to find in the literature. Using the fact that j € set(rev(a)) <= n—j € set(a),
we have

Frcv(oz)(mlw-wxn) = Z Ty - Ty,

1<y < <in<n
15 <ijy1 if § € set(rev(a))

= E :L'Zl DR "Eln
1<y < <in<n
i <ijy1 if n—j € set(a)

— E xin PN xi1
n>ip > 24121
i.,ij+1 >i1L—j if j€ set(a)

= Fa(xna"',ml)'

Finally the truth of (2.7) is evident upon passing to the fundamental expansion of f €
QSym.

There are corresponding involutions in NSym, denoted by the same letters, and defined
on the noncommutative ribbon basis by
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U(ra) =Tae Y(rars) = ¢(ra)v(rs) (2.8)
p(ra) = Trev(a) p(rars) = p(rs)p(ra) (2.9)
w(ry) =ry w(rerg) = w(rg)w(ry). (2.10)

In NSym, p and w are anti-automorphisms while ¢ is an automorphism. We also have
that ¢(h,) = eq, p(ha) = hiev(a) and w(hy) = €rev(a)-

Proposition 2.2. The pairing between NSym and QSym is invariant under the map .
That is, for F € QSym and g € NSym, we have

(g, F) = (v(g), ¥(F)).
Proof. It suffices to check that the equality holds for the noncommutative ribbon basis
elements g = r, and the basis of fundamental quasisymmetric functions F' = Fjz, where
«, f are compositions of n. But this is clear from the preceding definitions. O
Recall from [13, Section 3.4.2], the forgetful map
X : NSym — Sym
satisfying x(e,) = e, where e,, is the nth elementary symmetric function, and similarly
we will denote the nth complete homogeneous symmetric function by h,. For a compo-

sition e E n, as in [13, Section 2.2], let & be the partition of n obtained by taking the
parts of « in weakly decreasing order. Then

X(ha) = héu X(ea) = €4-
Proposition 2.3. For g € NSym, (x c¢)(g) = (wo x)(g).

Proof. It suffices to verify the equality for the basis elements h,. We have

as claimed, where ez = w(hg) follows by the definition of w in Sym. O
2.1. Dual immaculate functions

The immaculate functions &, are a basis of NSym formed by iterated creation oper-
ators [4]. Their duals in QSym form the basis consisting of dual immaculate functions,
&} . These functions can be defined combinatorially as the generating function for im-
maculate tableaux.
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Definition 2.4. Given a composition «, an immaculate tableau of shape « is a filling, D,
of the cells of the diagram of o with positive integers such that

(1) The leftmost column entries strictly increase from bottom to top.
(2) The row entries weakly increase from left to right.

An immaculate tableau of shape « E n is standard if it is filled with distinct entries
taken from {1,2,...,n}. Given an immaculate tableau D, we form a content monomial,
2P, by setting the exponent of z; to be d;, the number of i’s in the tableau D, namely,
aP = afrad> ..zl We call the vector (dy,da,...) the content of the tableau D. In

particular a standard tableau of shape a F n has content equal to the composition (1™).

Definition 2.5. The dual immaculate function indexed by the composition « is
NG
D
where the sum is over all immaculate tableaux of shape a.

We can rewrite the dual immaculate functions in terms of the fundamental basis as a
sum over standard immaculate tableaux. To do this, we first standardize each immaculate
tableau and define a descent set on the standard immaculate tableaux. The reading word
of an immaculate tableau D is obtained by reading the entries of D from left to right
starting with the top row. We can standardize a semi-standard tableau (repeated entries
allowed) by replacing all the 1’s in the reading word by 1,2,..., in reading order, then
the 2’s, etc.

Example 2.6. Here is an immaculate tableau of shape oo = (3,2,4,1,2) that has reading
word 675344522112, and its standardization.

6]7] 11]12]

5 9
T=[3]4]4]5] S=[6]7][8]10]
2 3[4

1[1]2] 1]2]5]

For a composition «, let SIT(a)) denote the set of standard immaculate tableaux of
shape a.

Definition 2.7. [4, Definition 3.20] Given a standard immaculate tableau S, the descent
set of S, denoted Desg+(.9), is

Desg+(S) = {i : i + 1 appears strictly above i in S}.
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We refer to Desg=(S) as the &*-descent set of S, and to its associated composition
comp(Desg+(S)) as the &*-descent composition of S.

For the standard immaculate tableau in Example 2.6, Desg+(S) = {2, 5, 8, 10}.
Then [4, Proposition 3.37]

6:; = Z Fcomp(DesG*(S)), (211)
SeSIT(w)

where the sum is over all standard immaculate tableaux of shape «.
3. Row-strict dual immaculate functions

In this section we start with a combinatorial definition of a new quasisymmetric
function that we call the row-strict dual immaculate function.

Definition 3.1. Given a composition «, a row-strict immaculate tableau of shape « is a
filling, U, of the cells of the diagram of o with positive integers such that

(1) The leftmost column entries weakly increase from bottom to top.
(2) The row entries strictly increase from left to right.

We now define our new function, where zV is the content monomial of the tableau

U, defined just before Definition 2.5. The content of the tableau U is also defined just
before Definition 2.5.

Definition 3.2. The row-strict dual immaculate function indexed by « is
R&;, => 2V
U

where the sum is over all row-strict immaculate tableaux of shape «.

We say the row-strict tableau U is standard if 2V = z; - - - ,,. Thus standard row-strict
immaculate tableaux coincide with standard immaculate tableaux.

As before, standardization provides us with a way to expand R&}, in terms of the
fundamental basis using only standard tableaux.

Definition 3.3. Given a row-strict immaculate tableau T', the row-strict immaculate read-
ing word of T, denoted rwrg=+(T), is the word obtained by reading the entries in the
rows of T from right to left starting with the bottom row and moving up.

To standardize a row-strict immaculate tableau T, replace the 1’s in T" with 1,2, ...,
in the order they appear in rwge«(T), then the 2’s, etc.



10 E. Niese et al. / Advances in Applied Mathematics 149 (2023) 102540

Definition 3.4. The descent set of a standard row-strict immaculate tableau T is the set
Desrpe«(T) = {i: i+ 1 is weakly below ¢ in T'}.

We refer to Desge«(T) as the R&*-descent set of T, and to its associated composition
comp(Desre+(T)) as the R&*-descent composition of T.

Example 3.5. Consider the row-strict immaculate tableau

5]6]

(@31

»—lww%|
S

2[6]

The row-strict immaculate reading word of T is 6215265434 and the corresponding
standardized row-strict immaculate tableau is

8 ]10]

EN

H@y&@‘
ot

2]9]

Here Desge+(T) = {1,4,6, 8}.
The row-strict dual immaculate functions expand positively in the fundamental basis.

Theorem 3.6. Let o E n. Then

RGZ = Z Fcomp(DeSRe* (S))
S

where the sum is over all standard row-strict immaculate tableaux of shape .

Proof. Let T be a row-strict immaculate tableau of shape «. Then T standardizes to
some standard row-strict immaculate tableau S. Suppose i € Desge«(S). Then i + 1 is
weakly below ¢ in S. If 4 and i+ 1 are in the same row of S, then the entry of T replaced
by i is strictly less than the entry replaced by ¢ 4+ 1 since rows of T strictly increase.
If i+ 1 is in a lower row than 4, then the entry of T replaced by i must be strictly
less than the entry replaced by ¢ 4+ 1, else the standardization process was not followed.
Thus 27 has strict increases at each position in Desge«(S) and 27 is a monomial in
Feomp(Despe- (5))- Lhus every monomial in RS}, appears in ) ¢ Feomp(Desp - (5))-

Now let S be a standard row-strict immaculate tableau and let x;, - - - x;, with 43 <
ig < -+ < ip be a monomial in Figmp(Desp - (5))- Create a new diagram 7' from S by
replacing each entry k in .S with i. If 45 = i1 then k ¢ Desge«(59), so k must appear
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strictly below k& + 1 in S and thus each entry in a row of T is distinct and increases
left to right. By construction, the first column will weakly increase from bottom to top.
Thus T is a semi-standard row-strict immaculate tableau with content (i1,...,%,), and
Zi, -+ T, is a monomial in RG},. O

Example 3.7. Let

5]8]10]
7
2[9]

HC»J»P@‘

be a standard row-strict immaculate tableau. Then Desgg=(S) = {1,4,6,8} and z¥’ =

r123r32322 2% is a monomial in Feomp(Desr s+ (5))- We can “destandardize” S as described

in the proof of Theorem 3.6 to obtain

4]5]6]
- .
2[6]

»—~woou>|

For any standard immaculate tableau S, note by definition that Desg+(S) =
Deng* (S)C
It will be helpful to know how the involutions 1, p, and w act on G,.

Theorem 3.8. Let o be a composition. Then

¥»(6,) =RE,, (3.1)
p(Gh(x1,...,xn)) =G (Tn,...,21) (3.2)
w(Gi(x1,...,2p)) = RE.(Xn, ..., 21) (3.3)

Proof. Let o be a composition. Recall from (2.4) that ¢(F,) = Fae. Then

»(&h) = (Z Fcomp(Dcs«s*(sn)
S

w(Fcomp(DesG* (S)))

Fcomp(DesRG *(9))

>
S
= Z Fcomp(Dese* (5)°)
S
>
S
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The second equation follows from (2.7). Finally the third equation is now a consequence
of the fact that w =po. O

Corollary 3.9. We have that {RGY | a E n} is a basis for QSym,,.

Proof. Since {&?, | @ F n} is a basis for QSym,, and ¢ is an involution it follows by
Theorem 3.8 that {RS&Y, | a En} is also a basis for QSym,,. O

Recall from Section 2.1 that the immaculate functions &g form a basis of NSym
satisfying, by definition,

(Gay &%) = Bup.

Similarly, by definition, we have row-strict immaculate functions RSg in NSym sat-
isfying

(RG4, REj) = dap-

An immediate consequence of these definitions is the effect of the map ¥ on G,. Using
Proposition 2.2, we have, by duality,

bap = (Ga, &) = (V(64a),¥(6p)) = (¥(Ea), RE),

and hence ¥(6,) = RG,.
From [4, Proposition 3.36] we have that the dual immaculate functions are monomial
positive:

&, = Y KapMs,
B<e

where K, g is the number of immaculate tableaux of shape o and content . It follows
from this expansion that K, = (hg, &%) = (eg, RS},). Similarly, for row-strict dual
immaculate functions, we have by their definition and that of monomial quasisymmetric
functions that

RS, =Y K ;Mg
B

where K7 g 1s the number of row-strict immaculate tableaux of shape a and content S,
and K}, 5 = (hg, R&},) = (es, G}). Note that Ko 5 # K, 5 in general, and K7, , = 0
unless ¢(a) > .

By contrast, it is easy to see [4, Proposition 3.36] that the transition matrix (K, g)
is upper unitriangular:

Koo=land Ko 3 #0= 0 <y a. (3.4)
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Example 3.10. Let o = (1, 2). Then the tableau definitions give the monomial expansions
RGS1, = Moy + Mini, &ip = Mz + M.

As this example shows, the triangularity condition of (3.4) is false for the transition
matrix K7 5, making it difficult to deduce, directly from the monomial expansion, that
the row-strict dual immaculate functions form a basis.

Let L, s denote the number of standard immaculate tableaux of shape a with &*-
descent composition 8 and L7, 5 denote the number of standard immaculate tableaux of
shape o with RG*-descent composition 5. Given a standard immaculate tableau T', we
have Desg+ (T')¢ = Desre+(T'), and so L}, 5 = Lq,ge.

Theorem 3.11. Fiz a composition «. For any composition v with |y| = |a|,
Ko =Y Los = Y Lo
By By

Proof. We have

R6:; = Z KZ,'yM’Yv
vy
and

RGZ = Z FComp(Desng* (T)) = Z LZﬁ FB = Z Lﬂéﬁc FB
TESIT () 8 B

Since the monomial expansion of Fj is iz = Z’v <5 My, equating coefficients of M., gives

Ko =Y Lage=)» Lis O

BiFy BiFy

3.1. Creation operators and row-strict immaculate functions

In [4], the authors defined a family of operators on NSym, modelled after Bernstein’s
operators that were used to define the ordinary Schur functions in the Hopf algebra of
symmetric functions [14, pp. 95-97, Exercise 29]. This new family of “creation operators”
was then used to define the immaculate basis of NSym, and, via the pairing between
NSym and its dual QSym, the dual immaculate quasisymmetric functions G7,.

In this section we define a variant of the creation operators of [4], and show how they
in turn lead to a definition of the row-strict immaculate basis of NSym and our row-strict
dual immaculate quasisymmetric functions RG},.

A pair of dual Hopf algebras A and B over a field K induces a pairing (,) : Ax B — K.
Hence for each element F' € B, one can define the adjoint operator '+ : A — A by
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(FL(a),b) = (a, Fb).

Explicitly, if {a,} and {b,} are bases of A and B respectively so that (aq,bs) = dap as
before, then the operator F- may be computed according to the formula

F(g) = (9, Fba)aa. (3.5)

[0

As in [4], we apply this to the graded dual Hopf algebras A = NSym and B =
QSym. Let {F,}arn be the basis of fundamental quasisymmetric functions in QSym,
indexed by the compositions a of the nonnegative integer n. We will consider the linear
transformation F- of NSym that is adjoint to multiplication by F, in QSym.

First we record the following important effect of the involution v on the adjoint

transformation.

Proposition 3.12. Let F € QSym, H € NSym. Then
YIFH(W(H))] = [ (F)](H),
or equivalently,
YIFH(H)] = [(F)] - (v (H)).

In particular, for the fundamental quasisymmetric function F,, indexed by the composi-
tion o, we have F-(y(H)) = ¢[F (H)] and hence

Fiin(W(H)) = ¢[Fg (H)), - Fay(0(H)) = 9 [Fya (H)).

Proof. Let {aq }arn and {bs }arn be dual bases of NSym and QSym respectively, so that

(aa, b5> = 5046-
From Equation (3.5) we have

by Proposition 2.2, and hence

YIEHH)] = Y (H () (ba))d(aa) = [W(E)]* (H),

e}

since again Proposition 2.2 implies that duality of bases is preserved under ¢». 0O

Lemma 3.13. [/, Lemma 2.6] Fori,j > 0 and f € NSym,

min(i,j)

Finy(£hy) = Firo (Hhy + Froon (Hhyoy; Foy(Fhy) = Y Fig (Hhyg.
k=0
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In particular we have
0, 1> ] 0, 1>1
Fay(hj)=qhyy, 1<i<j  Fyhy)=1{h;,, i=1
h i =0; h i=

g Jo

The next two definitions are made in [4].

Definition 3.14. [4, Definition 3.1] The noncommutative Bernstein operator B, is defined
by

B, = Z(_l)lhwme(#z)a
i>0

and for a € Z™,
By =Ba, - Ba,, -

Note that when i = 0, (1°) is the empty composition and thus (10)(]”) = f = F;(f) for
0 >0,

all f € NSym, since Fy =1 in QSym. Also F, (11 (1) = Fé)(l) = {1 .
i=0.

While we chose duality to define immaculate functions, the following is the original

definition, which was proven to be equivalent in [4].

Definition 3.15. [4, Definition 3.2] For any a € Z™, the immaculate function &, € NSym
is given by

604 = Ba(l) = Boq o ']Boém(]')‘

This definition was inspired by Bernstein’s original definition in the Hopf algebra of
symmetric functions for a Schur function s, indexed by any m-tuple o € Z™.
As observed in [4, Example 3.3], we have

G(m) = ]Bm(1> = hm7 6(a,b) = Ba(hb) = hahb - ha+1hb71~

Applying ¢ to Lemma 3.13, and using Proposition 3.12 and the fact that ¢(F,) = Fye,
so that ¢(F(y:)) = F(;) in NSym;, we obtain

Lemma 3.16. Fori,j > 0 and f € NSym,

min(%,5)

Fiy(fej) = Fiy(fles + Fiioy(F)ej—1; Fiiy(fej) = Z Firiny(f)ej—k-
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In particular we have
0, 1>7 0, 1>1
Fin(ej)=qej i, 1<i<j Fgle)=qe1, i=1

€;, 1= O; €;, 1=
Now we define new operators as follows.

Definition 3.17. Define the noncommutative Bernstein operator B> by

By =Y (—1)'emtiFp,
i>0

and for a € Z™,
[BTS — BT‘S .. B’I”S
(0% (e 5]

QAm

Note that when ¢ = 0, this is the empty composition and Fj = 1 in QSym, and thus
F5 (f) = f = F;(f) for all f € NSym.

(0)
Furthermore we have the following.
Lemma 3.18. For a € Z™, ¢(6,) = BZ(1).
Proof. From the above properties, it is clear that
B(1) = em, ¥(S.p) =B, (er) = e.e, — eqr1€p_1.
Hence the result is true for m < 2. Let f € NSym. We claim that
(B (f)) =By (b(f))- (3.6)

We have

V(B (f) =9 Z(—l)iheriF(Lp)(f) = Z(—l)iemﬂwF(Lp)(f)]

= S (1 ens i (0) = BR (),

where the penultimate equality is thanks to Proposition 3.12.
Since for a € Z™,

Ba(1> :Bal(f)? f:ch'”BOém(l)a

the result now follows by induction. O
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Theorem 3.19. The row-strict immaculate function RS, can be defined as the result of
applying a creation operator as follows:

RS, = B (1).

Proof. Immediate from the preceding lemma, since we already know that RS, =

¥(6a). O

Finally, just as left multiplication by h,, can be expressed in terms of creation oper-
ators [4, Remark 3.6], we have the following.

Lemma 3.20. Left multiplication by h,, in NSym can be expressed as applying the operator

by, =Y Bo1 Flpy,
i>0

and left multiplication by e,, in NSym can be expressed as applying the operator

>0

Proof. Immediate from Equation (3.6). O
3.2. Results obtained by using v

We can immediately obtain the row-strict analogue of many results in [4] by using
the involution . We list here the most pertinent for the remainder of the paper. We
leave results for skew row-strict dual immaculate functions to the next section, as the
combinatorial definition is not obviously equivalent.

Theorem 3.21.

(1) [4, Lemma 3.4] For s > 0,m € Z and f € NSym,

Bm(f)hs = Berl(f)hsfl + Bm(fhs)

<5 BE(f)es = B (f)es—1 + B (fes).

(2) [4, Theorem 3.5] (Multiplicity-free right Pieri rule) For a composition « and s > 0,

S.hy= Y 65 <5 RG.e,= > RS,

ac,f ac,fB
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(3) [4, Proposition 3.32] (Another multiplicity-free right Pieri rule) For a composition
a and s > 0,

GuS(e) = Gues = Y 65 €5 RERE(s) = RE.h, = Y RS,
B B

where the summation ranges over compositions of § of |a| + s such that a; < fB; <
a; +1 and a; =0 fori > £(w).
(4) [4, Corollary 3.31] For n > 0,

Sy =Y (~1)"h, =e, £ RSqny =Y (-1)" e, =h,.

aFn aFn

(5) [4, Theorem 3.27] (Jacobi-Trudi) For {(a)) = m,

U€S7YL

sgn(o
R&, = E : <_1> gn )e(a1+01*1’a2+02*2,~-»’am+0m7m)
og€Sm

where Sy, is the symmetric group on m elements and (—1)%8*() 4s the sign of o.
(6) From [}, Lemma 2.5] and Equation (3.6),

Fér)(G(ln)) = &(1n—ry, and for s > 1,Fé)(6(1n)) =0
which is equivalent via the map v to
Firy(R&ny) = RS (1n-r), and for s > 1, Fy.) (RS 1)) = 0.

(7) [4, Proposition 3.16 and Corollary 3.18]

hy=Y Kap®o <5 es= > KasRS,

ax,fB ax,p

and by Theorem 3.11
* P *
hg = 5 K. 3RG, < ez = E K7 5 6G.,.

(8) [4, Theorem 3.25] The ribbon function rg expands positively in both immaculate
bases:
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rs= > LapGa <= rse= Y LasR6,.
a>,f a>yf

(Recall that L, g denotes the number of standard immaculate tableauz of shape o
and descent composition 3.)

(9) [4, Theorem 3.38] The Schur function sy with £(\) = k expands into the dual im-
maculate and row-strict dual immaculate bases as follows:

sgn(o * ¥ sgn(o *
5)\ - Z (71) g ( )GU(A) <~ 5)\/ - Z (71) & ( )Rgo'(k)
ocESk oc€Sk

where, for X a partition and o € Sk, we define 0(A) = (Ao, +1—01,..., Ao, +k—0%)
provided Ay, +1i— o; > 0 for each i. If the latter condition is not satisfied, we define
&) = 0= RE% .

(10) [2, Theorem 1.1] For v a composition and cqag > 0,

62 = angSg é RGZ = anﬁRgﬁ,
B B

where 8 and RS are the Young quasisymmetric Schur and Young row-strict qua-
sisymmetric Schur functions.

4. Skew row-strict dual immaculate functions

Following the work of Berg et al. [4], we define the poset P of immaculate tableaux.
The labelled poset P is on the set of all compositions. Place an arrow from « to g if
B C a, and |a| — |B| = 1, denoted by B C; . The label of m on each cover a —= f3
denotes the row containing the single additional box. Denote a path from a to £ in P
by P = [a, f].

To obtain a standard skew immaculate tableau from a path P = [«, 3], for each m;,
1 <4 < k, label the rightmost unlabeled cell in row m; of o with k—i+1, see Example 4.3.
In order to understand the combinatorial models for skew dual immaculate and skew
row-strict dual immaculate functions we define two special types of paths.

g,

Definition 4.1. A path P = {a = (0 2% (1) ™% ... ™% g(k) — 3} in the poset P is a

o horizontal k-strip if m; < mg < --- < my, and a
o wertical k-strip if my > mg > -+ > my.

The horizontal 3-strip ((red) dotted path) and vertical 3-strip ((blue) dashed path)
in Fig. 1 give rise to the following tableaux.
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Fig. 1. The start of the poset P8 with edge labels. A horizontal 3-strip is shown in (red) dotted arrows and
a vertical 3-strip is shown in (blue) dashed arrows. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

[1]2
3

horizontal strip  vertical strip

We can now make the following definition.

Definition 4.2. A standard skew immaculate tableau of shape a/f is a filling of the shape
o/ B with the distinct positive integers {1,2,...,|a/S5|}, such that rows strictly increase
from left to right and the labels in a/8 in cells that are in the first column of o must
increase from bottom to top.

For a path P = [a, (] of length k, define the descent set of P to be D(P) = {k — i :
m; > m;y1} and the weak ascent set of P to A(P) = {k — i : m; < m;;1}. Each such
path P = [a, (] corresponds to a unique standard skew immaculate tableau T of shape
a/B, and conversely. Furthermore, the descent set D(P) coincides with the descent set
Dese«(T) = {i : i + 1 appears strictly above i in T'}, and similarly the ascent set A(P)
coincides with the descent set Desgpg«(T) = {i : ¢ + 1 appears weakly below ¢ in T'}.

Example 4.3. For o/ = (3,2,3)/(1,1,2),
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a7
T:235|
16

P=(232>(231)>1,31)31,21)320)301)3050

Fig. 2. The path P has D(P) = {1,3,6} and A(P) = {2,4, 5}, while Desg-(T") = {1, 3,6} and Desra-(T) =
2,4,5}.

|245|

T = 3
E

P=(3,23 3322 3321)336L1)3361)5 @21

Fig. 3. The standard skew immaculate tableau T" and its corresponding path can be decomposed into max-

imal horizontal strips (3,2,3) > (3,2,2) > (3,2,1), (3,2,1) > (3,1,1) = (3,1), and (3,1) = (2,1).

Alternatively, decompose P into maximal vertical strips (3,2,3) = (3,2,2), (3,2,2) = (3,2,1) = (3,1, 1),
and (3,1,1) 2 (3,1) 3 (2,1).

is a valid standard skew immaculate tableau. It corresponds to the path P = (3,2, 3) RN

(2,2,3) 5 (1,2,3) 3 (1,1,3) > (1,1,2). Further, Desge-(T) = {1,2,3}, D(P) is
empty, and A(P) = {1, 2, 3}.

Given a path P = [a, §)] corresponding to a standard immaculate tableau T', we have
that Desg+(T) = D(P) and Desrg~(T) = A(P), by comparing the definitions, and is
illustrated in Fig. 2.

Note that given a skew immaculate tableau, it can be decomposed into horizontal
or vertical strips in several ways. An example of decomposing a tableau into either
horizontal or vertical strips is given in Fig. 3.

In [4] the poset P and horizontal strips are used to define the skew dual immaculate
functions as follows.

Definition 4.4. For {7 : 8 C v C a} an interval in B, define the skew dual immaculate
function to be

wp = (Sshy, &L)M,.
Y

This can be rewritten in terms of both the fundamental basis and the dual immaculate
basis.
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Proposition 4.5. [/, Propositions 3.47 and 3.48] For {v: 8 C~ C a} an interval in B,

Sa/p = Z<6ﬂrv» Sa) Fy (4.1)
Yy
- Y (ese, 6 (42)
Y
= Z Fcomp(D(P)) = Z Fcomp(DcsG* (T))5 (43)
P=[B,a]eP T a standard skew immaculate

tableau of shape a/f3

in the last line, each path P from [ to o corresponds to a unique standard skew immac-
ulate tableau T of shape a/p.

Note that the number of standard skew immaculate tableaux T of shape «/8 with
comp(Desg+(T)) = v is (Sary, GF).

Definition 4.6. For {~ : 8 C v C «} an interval in B, define the skew row-strict dual
immaculate function to be

R&; 5 =Y (RSsh, RS:)M,.
Y

We now quickly obtain the following.

Theorem 4.7. For {v: 8 C v C a} an interval in B,

R&; 5 =Y (RSsry, RES;)F, (4.4)
Y
=9(8;,/5) (4.5)
=Y (RE6sRE,, RS, )RS, (4.6)
y
= Z Fcomp(A(P)) = Z Fcomp(DcsRG* (T))- (47)
P=[B,a]eP T a standard skew immaculate

tableau of shape o/

Proof. The first equality is immediate from Definition 4.6 by using (2.3) to expand h, in
terms of the ribbon basis, interchanging the order of summation, and finally using (2.1):

’RGZ//@ - Z<R6/B Z r., R&)M, = Z(ReﬁrT’RGZ> Z M,

Y TEY T VST

= (R&sr,, RE,)F;.
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The second line then follows by applying v to the first equality in Proposition 4.5, and
using the invariance of the pairing under v, which gives

B(855) = > _(W(6p) ¢(r)),%(62)) ¥(Fy) =Y (RS} 14, REE) Fie,

Y Y

where we have used (3.1), (2.8) and (2.4). The last two lines are now immediate by
applying ¥ to the last two equations in Proposition 4.5, since A(P) and D(P) are com-
plementary by definition, and each path P from (8 to a corresponds to a unique standard
skew immaculate tableau T of shape o/5. O

Definition 4.8. Let « and 8 be compositions with 8 C «. Then a filling T of the diagram
of a/B with positive integers is a skew immaculate tableau provided

(1) the entries in the first column of « (if any remain in «/f3) are strictly increasing
from bottom to top, and
(2) rows weakly increase from left to right.

Similarly, T is a skew row-strict immaculate tableauw if

(1) the entries in the first column of « (if any remain in /) are weakly increasing from
bottom to top, and
(2) rows strictly increase from left to right.

We now have the needed interpretation of the coefficients in Definitions 4.4 and 4.6
to rewrite &7, /8 and RS, /5 a8 generating functions of skew immaculate tableaux.

Theorem 4.9. Let o and 8 be compositions with B C a. Then
s =D 7"
T
where the sum is over all skew immaculate tableauz of shape /B, and
R&L/s =2 "
T
where the sum is over all skew row-strict immaculate tableauz of shape /(.

Proof. By Point (3) in Theorem 3.21, we know that for v = y192 - -y%, a can be ob-
tained from [ by a series of vertical strips of lengths 1,72, ...,7x. Thus the coefficient
(RG&gh,, RG}) represents the number of ways to add a sequence of vertical strips of
lengths 1,72, - ..,k from 3 to a, which counts the number of skew immaculate tableaux
T of shape a/f such that the descent composition of T is coarser than +, since adding
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a vertical strip after another one may or may not create a descent. See Example 4.10
below. Thus

<6ﬁh"/7 62)
is the number of skew immaculate tableaux of shape «/f8 of content v and
(R&sh,, RS?)

is the number of skew row-strict immaculate tableaux of shape a/j of content ~. The
result now follows immediately from the definitions. O

Example 4.10. Consider

4
7= 3]
2]

and corresponding path
P=(2,22) 22213211 > (1,1,1) > (1,1).
Note that T can be considered to be formed from vertical strips corresponding to
v =(1,3) or (1,1,2), or (1,2,1) or (1,1,1,1) since comp(Desges~(T)) = (1,3) and is

coarser than the listed options for ~.

In analogy with the well-known Schur function identity [14, Chapter 1 Eqn. (5.9)],

SA(Xa Y) = Z SM(X)'S)\/M(Y)a (48)
pHCA

Theorem 4.9 immediately gives us the following:

Theorem 4.11. Suppose we have two sets of variables, X and Y, ordered so that the
alphabet X precedes the alphabet Y. Then

SLX,Y) =) S5(X)6} 4(Y), (4.9)
BCa
and
RGL(X,Y) = > RE5(X)RE,,4(Y). (4.10)

BCa



E. Niese et al. / Advances in Applied Mathematics 149 (2023) 102540 25

4.1. Hopf algebra approach

We consider the Hopf algebra approach to defining skew dual immaculate functions
and establish that it is equivalent to the previous definition. To start, we provide a brief
introduction to the necessary Hopf algebra background.

We have that NSym and QSym form dual Hopf algebras using the pairing (-, ) :
NSym ® QSym — Q defined by (h,, Mg) = 0,3 where 6,5 = 1 if @ = § and 0 otherwise.

Given dual bases {B;}icr and {D;}ier,

B;-Bj =Y b B, <« ADy=)» b¥,D;®D,
k 1,5
D;-D;=> df;Dy < AB,=)» df;Bi®B;

k

(2]

where - is the product and A is the coproduct.
For the fundamental quasisymmetric functions, we have that

AFy= > F3®F, (4.11)
(B,y) with
B-y=a or
BOY=a

where for § = (B1,...,0k) and v = (Y1, -, V), B-v = (B1y- -y Brs Y1y - -5 Yn) Is the
concatenation of § and v, and 8 © v = (B1,..., Bk—1,Bk + Y1,725 - - -, ¥n) i the near-
concatenation of B and ~.

Following [5], we can define the coproduct AG% in terms of skew elements éi; .

Definition 4.12. Let o« E n. Then we define

—

AGL =) 612 6:;
v

a/y

—_—

We show that & =G /vy 85 described in Proposition 4.5.

*
a/y

Lemma 4.13.
Sopn = So/y = ZFCOI‘HP(DGSS*(T))
T

where the sum is over all standard skew immaculate tableauz T of shape /7.

Proof. We use the technique of [5, Proposition 3.1]. Let T be a standard skew immaculate
tableaux such that |T'| = n. For any k with 0 < k < n, let Ux(T) be the standardization
of the skew tableaux consisting of cells of T' with entries {n—k-+1,...,n}. Also let Q(T)
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4)5]8 (4] x| 1|4
* * 6 rd * * * * 3
T= Q4(T) = Us(T) =
* | x |23 * | * | 3 | x| ok | % | *
x| 119 * [ 1 * | x5
Fig. 4. An example of Q,,_,(T) and Uy (T).
be the skew tableaux consisting of the cells of T' after removing the entries {k+1,...,n}

as in Fig. 4.

Note that if T is a standard immaculate tableau of shape «, then T' = Q,,_(T) U
(Ok(T)+ (n—k)) where U, (T)+(n—k) is Ux(T) with n—k added to each entry. Suppose
Desg+(T) = a with |&| = n. Then we can rewrite (4.11) as

AF, = iFﬁi ®F,
=0

where |5;| = n — i, || = 4, and either 3; -7, = a or §; ® v; = «. Observe that
Bi = comp(Desg+(2,—i(T))) and ; = comp(Desg+(U;(T))).
Then

AGH = A (Z Fcornp(DGSG*(T))>
T

- Z AFomp(Dese= (T))
T

=) > FuokR,

T =0

where T is a standard immaculate tableau of shape a.
Further, by Definition 4.12 we have

A&, =) 6526,
§
= Z ZFcomp(Des@)*(S)) ® 62/5
§ S

where S is a standard immaculate tableau of shape 9.

For a fixed S of shape ¢ with |§| = n—k for some k, there exists a standard immaculate
tableau T of shape « such that S = ,,_4(T). Then Ux(T) has shape a/d. Similarly,
given a standard immaculate tableau T of shape o, T = Q, _(T) U (Ox(T) + (n — k))
where Q,,_(T") has shape § with |§| = n — k and Uy (T) has shape a/§. Thus



E. Niese et al. / Advances in Applied Mathematics 149 (2023) 102540 27

62/5 = Z Feomp(Desg - (1)) = 62/5
T

where T is a standard skew immaculate tableau of shape a/é. O
By the above lemma and Theorem 4.7, we have the following.

Theorem 4.14. Let o be a composition. Then

AG:L =) 6586, ad ARG, =) REj;2RE),.
8 B

4.2. Expansions of skew Schur functions

We can also use a Hopf algebra approach to establish skew versions of Point (9)
in Theorem 3.21, from where we recall that for A a partition and o € Syy), define
o(A) = Aoy +1—01,..., Ay, + k — o)) provided Ay, + ¢ — o; > 0 for each i.

Also recall that sy, = det(hx,—,,—it;j). If we consider compositions o C A, we can
define s5) /o = det(hx,—a,;—i+;). Note that if there exists some a; —j = oy, —Fk for some j #
k, sx/a = 0 since two columns of the matrix will be equal. If no such pair j, k exists, then
there exists a unique permutation 7 such that 7(«a) = (@r, +1—71,.. ., 0, +k—7T1) = p
where p is a partition. In this case,

Sx/p = (1) sy . (4.12)

Theorem 4.15. Let A and u be partitions with u C X. Then

s =y (F)EtEOey
G’GS@(A)

for any choice of T such that T(u) is a composition.

Proof. Recall that A(sx) = >_, $x/u ® S = >_, Su @ 85/, because the Hopf algebra of
symmetric functions is cocommutative. We can rewrite A(sy) using Theorem 3.21, Point
(9). Then

Al )=A D (-6,

UES,@()\)

= Y (F)¥asy,

O'ES[(A)

PN DI LR
B

O'ES[Q\)
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=Y G| > (U8,
5

UGS@(A)

On the other hand,

ZS“ ® 5/\/H = Z Z (71)Sgn(7)6j(“) ® 5)\/”
w

14 TES@(H)
=Y. > (y=@ <6i<u> ®8A/u)
B TESe()

=2 650 Y (1T
5

TGS@(/;)

where 3 is a composition and 7-!(3) is a partition. Thus for a fixed choice of 3,

Do OO p= Y (FDE sy

G’ES@(,\) TeSf(ﬁ)

Note that for each 3, there is at most one 7 € Sy(g) such that sy /-1y = sr/, # 0 for
a partition p. Thus

Syw= D (F1EOTEROS
UES@(A)

for any valid choice of 7. O
Choosing 7 as the identity gives the following corollary.

Corollary 4.16. For partitions \ and p with p C A,

sve= Y, (CUEIE) .
UESg(A)

Applying 1 to both sides of Theorem 4.15 gives us an expansion in terms of the
row-strict dual immaculate functions.

Corollary 4.17. For partitions X\ and p with i € X and 7 € Sy, such that 7(u) is a
composition,

sy = D (FIEITEORS, () .
UES@(A)
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5. Hook dual immaculate functions

Now that we have skew row-strict dual immaculate functions, we can define hook
dual immaculate functions in a combinatorial manner analogous to the hook Schur func-
tions [18] and hook quasisymmetric Schur functions [16].

Definition 5.1. Let A = {1,2,...,¢} and A" = {1’,2/,... K’} be two alphabets with
1<2<---<tl<1 <2 <. <K. Then a semistandard hook immaculate tableau of
shape «a is a filling of the diagram of o with entries from A U A’ such that

(1) the first column increases from bottom to top with the increase strict in .4 and weak
in A’, and
(2) each row increases from left to right, weakly in A and strictly in A’

Denote the set of all semistandard hook immaculate tableaux of shape a by HI,.
The content monomial of a semistandard hook immaculate tableau T is a monomial

in two alphabets, x1,..., 2, and y1,...,yx, where
H z;#: of i’sin T
iCAUA

where z; = x; if i € Aand z; = y; if i € A'.

Example 5.2. Let a = (3,1,2,4,3). Then T, as shown below, is a semistandard hook
immaculate tableau with content monomial 27 = z2zo22y3y2y312ys.

V]2«
1]3']4'[5]
1/

1[3]

Definition 5.3. The hook dual immaculate function indexed by « is

HGZ(X’Y):HGZ(I17"'7xl7yla"'ayk Z Z
TeHI,

It follows immediately from the definition that

HEL(X,Y) =D &H(X)RE),, (V). (5.1)

1Ca

We can also expand HG/(X,Y) in terms of the super fundamental quasisymmetric
functions. We use the definition in [16].
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Definition 5.4. For o E n, the super fundamental quasisymmetric function indexed by «
is

Qa(XaY): E RaiRas """ Rag
a1<az<--<an
a;j=a;+1EA=1¢set(a)
a;=a;t+1€EA =i€set(a)

where z, =z, if a € A and 2z, =y, for a’ € A'.

Theorem 5.5. [16, Theorem 4.1] For a E n,

n

Qa(X,Y) =) Fa(X)E,(Y)

=0

where B-v =« if i € set(a) and Oy =« if i ¢ set(w).

As usual, we must have a standardization procedure for semistandard hook immacu-
late tableaux and an appropriate descent set to index the super fundamental quasisym-
metric functions. To standardize a semistandard hook immaculate tableau T, first replace
the entries of T' from A by scanning unprimed entries from left to right, starting with the
top row, replacing 1’s as they are encountered by 1,2, ... in this reading order, followed
by 2’s, etc. Next continue with the entries of A’ by scanning from right to left starting
with the bottom row. The result is denoted by stdz(T).

Example 5.6. The reading order of T', as shown below, is 3,2,1,1,3,1’,5,4/,3,1/,4’,2", 1/,
giving rise to stdz(T") below.

]2/ ][4 8912
[3'[4/]5] 7 [10[11]13]
T=[3]1 stdz(T) =[ 4] 6
3
1]1]3] 1]2]5]

Note that the standardization of a hook immaculate tableau is a standard im-
maculate tableau. Recall that the descent set of a standard immaculate tableau S is
Desg=(S) = {i : i + 1 is strictly above ¢ in S}. The descent set for stdz(7T") in Exam-
ple 5.6 is Desg~« (stdz(T)) = {2,3,5,6,7,11}. From the definition of standardization, we
note that if T' is a hook immaculate tableau of shape a with T'= S U U where S is an
immaculate tableau of shape  and U is a skew row-strict immaculate tableau of shape
a/B, then

Desg= (stdz(T')) = Desg= (stdz(S)) U (Desge« (stdz(U))° + |5])

if || 4+ 1 is weakly lower than |8| in stdz(T) and
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Desg+ (stdz(T)) = Desg~ (stdz(S)) U (Desgea- (stdz(U))¢ + |8]) U {|B|}

if | 8]+ 1 appears strictly above |3| in stdz(T). (Here we have written J+ & for the subset
obtained from a nonempty set of integers J by adding the integer k to each element of
J.If J=0, then J+ k= 10.)

Theorem 5.7. Let o« En. Then

HEL(X,Y) =D, Qeomp(Dese- (5))(X,Y)
S

where the sum is over all standard immaculate tableauz of shape o.

Proof. We show that each polynomial consists of the same monomials. Suppose
ZTay  TapYby - Yb,, 1S the content monomial associated with a hook immaculate tableau
T of shape a with a; < as < --- < a; and by < by < --- < b,,. Note that if
a; = a;y1, then ¢ ¢ Desg«(stdz(T)) by the standardization procedure. Similarly, if
b; = biy1, i + k € Desg~(stdz(T')), since b must occur in a lower row of T than b; .
Thus x4, - - e, Yb, - - Yb,, IS & monomial in Qcomp(Dese*@tdz(T)))(X, Y).

Now suppose Zq, * - Ta, Y, =+ Yb,, 15 a monomial in Qeomp(Dese-(5))(X,Y) for some

standard immaculate tableau S of shape a. We must show that there exists a hook
immaculate tableau with content as,...,a, b},...,b,. We do this by replacing n in S
with b/, n—1in S with b/, _; and so on. Since b; = b; 1 implies that i + k € Desg~(5),
we have that each primed entry in a row is distinct and increasing from left to right.
Similarly, if a; = a; 1, then i ¢ Desg«(S), guaranteeing that the first column is increasing
bottom to top and has distinct unprimed entries. Thus the result is a hook immaculate

tableau of content x4, -+ Zq, Yoy -+ Yb,,. O

m

Berele and Regev [3] defined hook Schur functions indexed by a partition A as

Hsxn(X,Y) =) 5(X)sx (V).
HCEA

We have the following analogue of Theorem 3.21, Point (9).

Theorem 5.8. Let \ be a partition. Then

Hsn(X,Y) = Y (—1)=B0HS;, (X,Y).

TESg(A)

Proof. Let A be a partition. Then by Theorem 3.21, Point (9) and Corollary 4.17,

Hsxn(X,Y) = 5,u(X)s (V)
HCA
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= | 2 CUEOS, (X)snw(Y)

nCA UGS[(H)

=D | D SewX) Yo CUEOIRE ) o ()

pnCA O’ES@(M) TES@()\)

= > O N S (RS oY) |- (5:2)

TES@()\) pnCA O'ES@(H)

Note that the only terms o(u) that appear in (5.2) are those such that o(u) = g for a
composition 8. We rewrite (5.2) as

HSA(X7Y): Z ( sgn(-r) Z Z 617(;;) RG )\)/o-(p)( )

TGS@(A) /,LE)\O’GS@(H)

= D (O SHXRE; () 5(Y)
TESp(n) BCT(N)

= Y (~1EOne,(XY). O
TES@(A)
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