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Histological Staining and Hydrogen Peroxide Visualization
of the Ahscission Zone in Setaria viridis

Yunging Yu

Abstract

The abscission zone (AZ) consists of specialized cell layers where cell separation or breakage occurs that
result in organ detachment. Microscopic observation of the AZ is crucial for understanding its function.
The AZ undergoes cellular and physiological changes prior to abscission, such as cell death, loss of
chlorophyll, and the production of reactive oxygen species (ROS). These changes can be visualized using
specific dyes and indicators under light or fluorescent microscopes. However, one challenge of using these
dyes is their inefficient penetration into the tissue, especially when the epidermal layer has thick secondary
cell walls. In this chapter, a detailed protocol to overcome this challenge is described. Using the fruit AZ of
Setaria viridis, in which the epidermal cell wall is thick and lignified, we gently fix the dissected tissue,
embed it in the Cryomatrix, and trim off the outer cell layers using a cryostat. The tissue with exposed inner
cells can then be stained with fluorescent dyes to visualize organelles of interest, or 3,3’-diaminobenzidine
(DAB) to visualize hydrogen peroxide accumulated in the tissue.

Key words Abscission Zone (AZ), Chlorophyll quantification, DAPI staining, Calcofluor white,
3,3’-Diaminobenzidine (DAB), Reactive oxygen species (ROS), Hydrogen peroxide, Cryosection,
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1 Introduction

Abscission is a common process in which plants shed their
unwanted organs, such as leaves, floral parts, fruits, and seeds.
Abscission occurs at predefined cell layers at the abscission zone
(AZ) and is regulated by developmental and environmental signals.
In many species, the AZ exhibits particular anatomical character-
istics, including small cell size with isodiametric shapes, dense
cytoplasm, and differing cell wall compositions compared to the
adjacent cells [1, 2]. However, recent studies in grass species
revealed diverse anatomy of the AZ that may or may not be histo-
logically distinct [ 3—6]. Microscopic observations immediately fol-
lowing abscission reveal that abscission occurs through either cell
separation or cell breakage [7-10]. These observations
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demonstrate the importance of microscopy studies in understand-
ing AZ differentiation and abscission function. High-resolution
anatomical observations either use paraffin or resin-embedded
plant sections under a light or transmission electron microscope,
or whole-mount tissues under a scanning electron microscope.

Prior to abscission, the AZ undergoes a series of cellular and
physiological changes. For example, cell death and loss of chloro-
phyll are observed right before abscission in some species [10, 12,
13]. Abscission is activated by hormonal regulation, including
auxin, ethylene, and jasmonic acid [11]. Both the inhibitory effect
of auxin and the accelerating effect of ethylene on abscission occur
through the regulation of reactive oxygen species (ROS) at the AZ
[14]. Exogenous application of H,O, or induction of endogenous
superoxide by mutating a manganese superoxide dismutase MSD2
accelerates abscission, suggesting that ROS is involved in the
timing of abscission downstream of hormonal signaling [14, 15].

ROS is a group of highly reactive molecules derived from
oxygen (O,), including hydrogen peroxide (H,0O,), superoxide
(0O,7), singlet oxygen (*O,), hydroxyl radical (HO-), and other
forms of peroxides [16]. ROS can be visualized using dyes such as
3,3’-diaminobenzidine (DAB), nitro blue tetrazolium (NBT), or
2’.7’-dichlorodihydrofluorescein diacetate (H,DCFDA). DAB is
oxidized by H,O; and peroxidases to generate a dark brown pre-
cipitate [17]. NBT specifically reacts to O, and forms a blue
precipitate. H,DCFDA is ideal for detecting intracellular ROS in
live cells, as it requires permeating into the cells, being cleaved by
intracellular esterases, and being oxidized by ROS to convert to the
highly fluorescent 2’,7’-dichlorofluorescein (DCF) [18]. DAB,
NBT, and H,DCFDA have all been used for studying abscission,
such as in Arabidopsis petal AZ, and tomato and Capsicum leaf AZ
[12, 14, 15, 19]. Freshly prepared flowers or leaves are used for
these experiments.

Despite the availability of various microscopy techniques and
ROS dyes for studying the AZ, some are not suitable for certain
species. In our study focusing on green millet (Setaria viridis), a
model Cy grass species and a relative of foxtail millet (Sezaria
stalica), sorghum (sorghum bicolor), and maize (Zea mays), we
encountered difficulties in visualizing chlorophyll loss at the cellular
level and detecting ROS accumulation in the fruit AZ. For the
visualization and quantification of chlorophyll lost, conventional
microscopy methods require dehydration with alcohol before par-
affin or resin embedding, a process that removes chlorophyll. Due
to the small size of the fruit AZ in S. viridis (diameter
300400 pm), measuring chlorophyll using other methods such
as spectrophotometry or fluorometry is unlikely. Regarding ROS
staining, the dyes fail to penetrate the AZ when fresh tissues are
used due to the thick epidermal layer.
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To overcome these challenges, we developed a method involv-
ing gently fixed and cryo-trimmed AZ tissues. The method allows
staining of tissues with various dyes and indicators, facilitating
visualization under a light or fluorescent microscope. We stain our
tissues with the nuclei indicator DAPI (4/,6-diamidino-2-phenylin-
dole), the cellulose indicator Calcofluor White, and the H,0O,
indicator DAB. Confocal microscopy is used to detect chlorophyll
autofluorescence. With this method, differences in chlorophyll
intensity and H,O, accumulation between the wild-type and a
nonfunctional AZ mutant of S. viridis can be detected [10]. This
chapter provides a detailed description of the method.

2 Materials

2.1 Chemicals and
Reagents

1. 0.2 M PIPES (1,4-Piperazinediethanesulfonic acid) stock
buffer: Add 12.97 g of PIPES sodium salt (Na-PIPES) powder
to ~160 mL H,O. Under stirring conditions, adjust the pH
using 10 N NaOH to pH 7.4. Add additional H,O to reach a
final volume of 200 mL (see Note 1).

2. 0.1 M PIPES bufter: Mix equal volumes of 0.2 M PIPES stock
buffer and H,O.

3. 4% PFA (paraformaldehyde) fixative: For 40 mL of fixative,
combine 10 mL of 16% (w/v) PEA aqueous solution
(EM grade) (Electron Microscopy Sciences), 40 pL Tween
20 (final concentration 0.1% (v/v)), 20 mL of 0.2 M PIPES
buffer, and 10 mL of H,O.

4. Sucrose solutions: To make a 2.3 M sucrose stock solution,
dissolve 31.49 g of solid sucrose in H,O to a final volume of
40 mL. Keep shaking or stirring until fully dissolved. To make
25%, 33%, 50%, 66%, and 75% (v/v) of 2.3 M sucrose solution,
mix 2.3 M sucrose stock and H,O with ratios of 1:3, 1:2, 1:1,
2:1, and 3:1 (v:v).

5. Thermo Scientific™ Shandon Cryomatrix™ Frozen Embed-
ding Medium.

6. Dry ice.

7. DAPI and Calcofluor White solution: Add 4 pL of DAPI stock
solution (1 mg/mL) (Thermo Fisher Scientific) and 2 pL of
5 mM Calcofluor White stain (Biotium) to 2 mL of H,O. The
final concentrations of DAPI and Calcofluor White are 2 pg/
mL and 5 pM, respectively.

8. DAB solution: To make 10 mL of 0.1% (w/v) DAB solution,
add 10 mg of solid DAB to 10 mL of water. Adjust the pH to
3.8 with 1 N HCI (see Note 2).
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2.2 Consumables
and Equipment

N U R WD

. 95% (v/v) ethanol.
10.

Ultrapure H,O.

. Feather™ Micro Scalpel, 45° (Electron Microscopy Sciences).

. Fine forceps.

2 mL microcentrifuge tubes.

. Vacuum.
. mPrep/s™ Capsules (Microscopy Innovations).

. Tissue-Tek™ Cryomold® 15 mm x 15 mm x 5 mm (Sakura

Finetek).

. Epredia™ Peel-A-Way™  Disposable Embedding Molds

(Thermo Fisher Scientific) (see Note 3).

. Coverslips, 24 x 40 mm and 22 x 22 mm.

. Compartment Petri dishes (100 mm x 15 mm).
10.
11.
12.
13.
14.
15.
16.
17.

Benchtop centrifuge.

Benchtop open-air shaker.

Single-edge razor blades.

—80 °C laboratory freezer.

Common stereo microscope.

Leica CM1950 cryostat (Thermo Scientific).

TCS SP8-X confocal microscope (Leica Microsystems).

ZEISS Axio Zoom.V16 Fluorescence Stereo Zoom Micro-
scope (Zeiss).

3 Methods

3.1 Tissue
Dissection and
Fixation

3.2 (Optional)
Sucrose Infiltration
(See Note 8)

. Dissect the AZ and the immediately surrounding tissues using a

micro scalpel under a stereo microscope (see Note 4).

. Immediately transfer the dissected tissues into the PFA fixative

in a 2 mL microcentrifuge tube and keep them on ice (see Note

5).

. Vacuum infiltrate for 10 min or until most tissues sink to the

bottom (see Note 6).

4. Incubate samples at 4 °C overnight (see Note 7).

. Rinse samples in 0.1 M PIPES buffer three times for

10 min each.

. Place samples in an mPrep/s™ Capsule using forceps. Add

another capsule on top and place the pair of capsules into an
empty 2 mL centrifuge tube.



3.3 Sample
Embedding

3.4 Sample
Sectioning
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. Add 25% (v/v) of 2.3 M sucrose solution to the centrifuge

tube, ensuring that samples are completely submerged in the
solution.

. Briefly centrifuge the tube using a benchtop centrifuge (see

Note 9).

. Gently shake samples on a benchtop shaker at about 40 rpm at

room temperature for 1 h (see Note 10).

. Take out the capsule pair from the centrifuge tube and remove

excess sucrose solution by placing the bottom on a paper towel.

. Replace the sucrose solution with 33% in the centrifuge tube.

Place the capsule pair back into the tube.

. Repeat steps 3-6 for 50%, 66%, and 75% (v/v) of 2.3 M

sucrose.

. Replace the 75% sucrose solution with 100% and incubate

overnight at 4 °C [20].

. Remove samples from the 2.3 M sucrose or rinsing buffer and

place them in a cryomold filled with Cryomatrix embedding
medium.

. Hll a clean cryomold with Cryomatrix embedding medium

without introducing bubbles.

. Place four to six samples longitudinally at the bottom of the

Cryomatrix embedding medium. Avoid introducing bubbles
around the samples.

. Carefully transfer the cryomold to dry ice to freeze the samples

and Cryomatrix embedding medium.

. Proceed to the next step or seal the samples in a plastic bag and

store at —80 °C (see Note 11).

. Place a new blade on the blade holder of the cryostat. Precool

the cryostat at —20 °C before use (see Note 12).

. Place samples in the cryostat and remove the cryomold (see

Note 13). Leave samples in the cryostat for a few minutes to
equilibrate the sample temperature to that of the cryostat.

. Use a single-edge razor blade to cut and separate individual

samples in the same cryomold.

. Add a small amount of Cryomatrix embedding medium on a

specimen chuck in the cryostat.

. Quickly place one sample on the Cryomatrix embedding

medium with the sample side facing up. Try to keep the block
surface parallel to the specimen chuck. Allow the embedding
medium to freeze.
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3.5 Sample Staining
and Image Acquisition

3.5.1 DAPI and
Calcofluor White Staining,
Imaging, and Chlorophyll
Quantification

3.5.2 H,0, Staining with
DAB

1.

. Transfer trimmed frozen samples with forceps into the staining

. Clamp the specimen chuck onto the cryostat. Adjust the orien-

tation of the sample so that the front face of the block is parallel
to the blade.

. Start sectioning with a thickness of 20-30 pm and reduce to

10 pm when the sample is visible. Stop sectioning when the
central vascular tissues in the pedicel are exposed (see Note 14).

. Remove the sample from the specimen chuck with a single-

edge razor blade and keep samples in the cryostat or on dry ice
before staining.

. Prepare the DAPI and Calcofluor White solution in a dispos-

able embedding mold.

. Using forceps, transfer the trimmed frozen samples into the

staining solution with samples facing down (se¢ Note 15).

. Incubate samples for 10 min in the dark.

. Rinse samples for 5 min by transferring them into H,O in a

clean embedding mold.

. Mount samples with 40 pL of HO on a 24 x 40 mm coverslip.

Cover with a 22 x 22 mm coverslip (see Note 16). Gently press
the edge of the coverslip to make samples flat (see Note 17).

. Observe and image samples on a TCS SP8-X confocal micro-

scope with an HC PL APO CS2 63x/1.20 water objective lens.
DAPI and Calcofluor White are excited at a wavelength of
405 nm and imaged with an emission wavelength window of
415-630 nm. Chlorophyll autofluorescence is excited at a
wavelength of 649 nm and imaged with an emission wave-
length window of 660-780 nm. An example of the images is
shown in Fig. 1.

. To quantify the chlorophyll signal, download TIFF images

from the Leica software. Open the image in FIJI. Select
Image —> Color —> Split Channels. Keep the red chlorophyll
channel. Then select Image —> Adjust —> Threshold (see Note
18). Adjust the maximum threshold to 255 and the minimum
threshold to a value that the signal only overlaps with chloro-
plasts (see Note 19). Use the polygon tool to select the AZ
area. Select Analyze —> Measure (Fig. 2). The average intensity
of the chlorophyll in the selected AZ area was calculated as
Mean x %Area,/100.

Pour the DAB solution into a compartment Petri dish.

solution with samples facing down.

. Incubate the samples for 2 h at room temperature in the light.
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DAPI and CW chlorophyll __merge bright field

-
.......

ST

Fig. 1 Confocal microscopy reveals differences in cellular features between wild type (WT) and a non-shatter
mutant (MU) in Setaria viridis. Nuclei and cellulose are stained with DAPI (4’,6-diamidino-2-phenylindole) and
Calcofluor White (CW), respectively. The abscission zones (AZ) are marked with white dotted circles. Cell
separation in WT is indicated by white arrows within the AZ. ¢, chloroplasts; n, nuclei. Bars, 50 pm

4. Transfer samples into 95% (v/v) ethanol in a 2 mL centrifuge
tube and incubate for 1 h in the dark at room temperature on a
benchtop shaker at about 40 rpm. Chlorophyll will be removed
at this step (see Note 20).

5. Transfer samples into water in a compartment Petri dish (see
Note 21). Place samples on a cover slide with water on the
slide. Take images within an hour using a ZEISS Axio
ZoomV16 fluorescence stereo zoom microscope (see Note
22). An example of the stained tissues is shown in Fig. 3 (see
Note 23).

4 Notes

1. PIPES does not dissolve under low pH. It is necessary to use
highly concentrated NaOH to increase pH. The solution grad-
ually becomes clear when the pH is above 6. PIPES solution
can be stored at 4 °C for 1 month without contamination.
Sterilization may prolong the storage time.

2. DAB solution needs to be prepared freshly within an hour of
the experiment. DAB is light-sensitive, so the solution needs to
be kept in darkness before the experiment. Often, the DAB
powder cannot be fully dissolved. It may be filtered before
usage. However, we did not find any interference of the crystals
in our experiments.
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Fig. 2 Screenshot of chlorophyll quantification using FIJI. The image threshold has been set between 10 and
255. In other words, signal intensity below 10 is considered as background (shown in blue); signal intensity
between 10 and 255 is considered as true signals (shown in black). The polygon tool was used to select the
region of interest, which is the left half of the AZ in the example image. The results show selected
measurement parameters, including Area (area within the polygon that has signals between 10 and 255),
Mean (the sum of the gray values of all pixels between 10 and 255 in the selected polygon divided by the
number of pixels), Min (minimum gray value within the polygon), Max (maximum gray value within the
polygon), %Area (the ratio between area with pixels between 10 and 255 and the total selected area in the
polygon), MinThr (minimum threshold), and MaxThr (maximum threshold)

3. The holder can be replaced by any similar products. We selected
this product based on its small size, availability in the lab, and
convenience in manipulating samples.

4. This step helps with fixative infiltration. Smaller samples with
more uniform hardness are essential for obtaining intact sam-
ples in the later sectioning step.

5. A 2 mL centrifuge tube was chosen due to the small AZ size
(~1 mm) of §. viridis. Use larger containers for larger samples.
The volume of the fixative should be at least ten times the
sample size.

6. Multiple vacuum infiltrations with short durations are better
than one long infiltration step. We keep the cap open during
infiltration. In between the infiltration steps, gently tapping the
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Fig. 3 DAB staining reveals differences in H,0, accumulation next to the AZ
between wild-type (WT) and a non-shatter mutant (MU). Brown color indicates
H,0, accumulation. The AZ is marked by black dotted circles. Bar, 500 pm

11.

12.

13.

tube helps remove the bubbles attached to the samples and
facilitates sample sinking.

. Shorter fixing times, such as 30 min to 2 h at room tempera-

ture, may be used for small samples.

. High concentrations of sucrose preserve cell morphology and

protect the cells from the formation of ice crystals during
freezing. We found that omitting this step resulted in cell
collapse and irregularly shaped nuclei. If cellular and subcellular
morphology is crucial for downstream experiments, then this
step is essential. However, for visualization at the tissue level as
demonstrated in DAB staining, this step can be omitted.

. This step removes bubbles in the lower capsule.
10.

The incubation time can be adjusted. Samples sink to the
bottom when infiltration is complete, which is a sign to move
on to the next step.

We stored samples for up to 6 months without affecting down-
stream experiments.

The specific temperature of the cryostat and the sample holder
should be tested. In general, when the temperature is too cold,
sections are brittle and tend to shatter; when the temperature is
too warm, sections tend to stick on the knife and compressed
folds occur. Since our goal is not to obtain individual sections,
but to trim oft the outer layers of cells, the requirement for
sectioning temperature is less stringent. We tested a range from
—18 °C to —22 °C, and they all worked.

Samples should be kept on dry ice during the transfer between
—80 °C and the cryostat.
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

The vascular tissue may not be visible due to small sample size.
Since the AZ of S. viridis is in a sphere shape, our trick is to
section until we observe the largest diameter of the AZ. There-
fore, it is essential to cut thin sections to avoid over-trimming.
We also section multiple samples to identify ideal ones for
imaging.

There is no need to remove the Cryomatrix embedding
medium as it will melt during incubation.

We use two coverslips instead of a coverslip and a cover slide
because the trimmed face of samples may either face up or
down. We image the samples with the correct orientation and
then flip the coverslip to image the rest of the samples.

It is important to only press the edge of coverslips gently, as
pressure may damage samples.

After setting the threshold, do not click “Apply,” otherwise,
the signal values become binary, either 0 or 255. Directly go to
the measurement step. The results will show the minimum gray
value as the set minimum threshold.

The autofluorescence may vary among samples even with the
same acquisition setting. We normally test a few images and
select a minimum threshold that removes background noise in
most images. Because of the background noise, it is essential to
repeat the experiments with enough replicates. We used 6-10
replicates in our experiments.

The incubation time depends on the size of the tissue. Larger
samples may need larger containers and longer
incubation time.

Tissues are softer and easier to manipulate in water compared
to those in ethanol.

Keep incubation time at each step the same among samples and
replicates, including the last water incubation. This is because
the brown precipitate keeps developing over time.

We failed to detect O,  using NBT staining with the same
sample preparation, probably due to the instability of O,".
This sample preparation is also not suitable for DCF staining,
which requires living cells.
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