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ABSTRACT. The mathematical activity of Tim Austin has been, since the very
beginning, quite abundant and versatile. We will describe and comment on
three of his results which were selected as most representative for the Brin
Prize Award and which culminated in the proof of the weak Pinsker structure
theorem.

1.

The first work of Tim Austin On the norm convergence of non-conventional
ergodic averages has an unusual history. The focus there was on the Fursten-
berg non-conventional averages: given an invertible measure preserving trans-
formation T of the Lebesgue space (X, </, m) and an integer k together with k
L™ functions (fi, f2,..., fr), the objects of study are the averages:

1 N
1) AN(fis oo fO) = Y AT @) L) fio(TF (x)).
n=1

Historically, in view of the applications to combinatorial number theory, the
important result was that, given A € « such that m(A) >0,

(2) liminf AN(lA,lA,...,lA)dm>O.
N—+o0
The interest in the convergence in L? of the averages (1) developed much
later [7, 32, 14]. However, it was already shown in Furstenberg’s paper [10] (and
a first building block in the proof of (2)) that when T is weakly mixing the limit
in (1) exists in L2 and equals

k
[1] fiam.
i=1

(Weak mixing implies weak mixing of all orders.) The remarkable answer was
given by Host and Kra [15] and independently Ziegler [33] who showed, based
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on a general structure theorem involving the precise description of “character-
istic factors", the L? convergence of the averages (1). Rapidly after his found-
ing result, Furstenberg, in a joint work with Katznelson [11] extended (2) to
the following situation: considering the action of kK commuting automorphisms
T, Ty,..., T; of the Lebesgue space (X,<f,m) together with k L* functions
(f1, f2,..., fx), the averages

1 N
) AN, To,..., Tk, f1, for- 0, [ (X) = N Z [T () (T3 (X)) ... fi( T (X))
n=1
satisfy, when m(A) >0,

liminf | An(T1, T2,..., Tk, 14,14,...,14)dm >0,

N—+o00

opening the gate to a new generation of results in combinatorial number theory.
The question of the L? limit of the averages in (3) remained open for some time
as a result analogous to the Host—Kra structure theorem did not seem to be
available. Then, Tao [28] produced a remarkable and quite unusual proof of the
I? convergence of these averages using, in sharp contrast with the “structural
viewpoint”, a purely finitary and combinatorial approach. It became some kind
of a challenge to the people in the field to produce a more conventional and
ergodic theoretical proof of this result. Actually, this was achieved by Tim Austin
who obtained a more general statement [2]:

THEOREM 1.1. Letr >0, (X,o/,m,T;), 1 <i <k, be k commuting Z" actions
on the Lebesgue space (X, <, m), (an)n=1, a family of base points and (I,) =1 a
Folner sequence in 7", f;,1 <i<d, L™ functions, then

1
@) — Y AT H(THX) .. fil T (X))

| In| neay+Iy
converges in L?> when N — +oco independently of the choice of the sequences ay
and I,,. Here, each T; should be understood as aZ" action.

The proof is very innovative in its own way. The L? limit theorem gives rise to
a joining of the product of k copies of the original Z" action (this interpretation
was first used by Furstenberg) and, therefore, in particular, to an action of T;
enlarged to a bigger space. By an inductive use of these extensions (starting
from the von Neumann ergodic theorem) and with a very clever control of the
successive algebras of invariant sets for the extensions of 77 and the T; T].‘l,
Austin produced a limit object for which the averages (4) converge.

Quite opposite to what happens in the proof of the Z case, this new object is
an extension of the original action, and, furthermore, it is not canonical.

An interest remains in giving some kind of identification of the limit in Theo-
rem 1.1. For this let us stick to the case r = 1. One way is to consider the Cesaro
averages of the images A, by (Id x T{" x T} x --- x T}") of the diagonal measure A
on the product of k + 1 copies of the original action. The convergence of these
joinings is equivalent to the weak convergence of the averages (4) (this was first
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used by Ryzhikov to give a joining proof that weak mixing implies weak mixing
of all orders). The limit joining gives rise to a new action of (Id x Ty x To x -+ - x Tj)
on the product of k+ 1 copies of (X, ., m) . The question then is to understand
how this new action is built. For instance, is it true that the algebra of invariant
sets for this new action is entirely contained in the first coordinate of the pre-
ceding product? (This implies that the weak convergence of the averages (4) is
in fact L?.)

2.

The second work of Tim Austin which we are going to look at is Amenable
groups with very poor compression into Lebesgue spaces.

Originating from insights of M. Gromov, the compression exponent a;(X ,0))
of a metric space (X, p) is defined, given a Banach space ¥%, as the supremum of
the a’s for which there exists an injection f: X — X such that

e N SIfX) - fWMINS plx, )

with the usual meaning “up to a multiplicative constant” for <. It measures
how well (X, p) can be “coarsely Lipschitzly embedded” into ¥X. In what follows,
(X, p) will be a finitely generated group G equipped with a left invariant word
metric d and the Banach spaces ¥ will only be LP’s. In this situation, which
was first considered and studied in [12], we will denote c,(G) = azp(G, d). The
compression exponent has been mainly studied for amenable groups (however
there is a nice result [1] that ¢, (F) = 1/2 where F is the Thompson group). It was
shown in [12] that when the larger quantity c;f (G) is larger than 1/2, this forces
G to be amenable (cg (G) is obtained by restricting to the case where the f’s in
the definition of the compression exponent are equivariant mappings from G to
the affine isometries of ¥). The 1/2 value looked for a long time as a threshold
for amenable groups. The question first appeared in [1] where it was asked
whether ¢, (G) < 1/2 could be possible for amenable groups. The remarkable
and unexpected result of Tim Austin is the following theorem [3]:

THEOREM 2.1. There exists a finitely generated amenable group G that does not
admit any embedding into LP with a positive compression exponent for any
pEll,00) (ie., cp(G) =0).

As it is playing a great role, let us describe the distortion rate of a mapping

f: X — Z between two metric spaces (X, p) and (Z,6):
O(f(w), f() su p(u,v)

wveX,utv PW,V) u,yeX,u;éve(f(u),f(U)) )
The construction of the group G by Tim Austin is quite remarkable. It is ex-
hausted by a succession of finite groups with growing diameters which embed
with bounded distortions in G but which have high distortions in LP. These
high distortions are the main tool which makes good compression embeddings
impossible. These finite groups, the building blocks of the construction, were
first described by Khot and Naor [18]. They have produced for all integers d

distortion(f) =
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subgroups V,; c Zg such that Zg/ V; have distortion rates in LP growing like d.
The group G, starting with an amenable countable group K with exponential
growth, is produced by Tim Austin as a semidirect product of (Zg!K) (the wreath

product of K by Zg) with (Z3“*'®)/V) where V is a Z-subspace in Z§**'® in

such a way that a family Zg "/ Vy, of the type described above is embedded in
this semi direct product with uniformly bounded distortions and controlled ex-
pansion ratios. The construction is quite intricate and subtle as antagonistic
constraints have to be taken care of (it is also difficult to describe).

We see that the final group G

@301 vy (261 K)

is a two fold abelian extension of an amenable group K with exponential growth.
It can actually be made four step solvable.

3.

I come now to the third article of this selection, Measure concentration and
the wealk Pinsker property.

It deals with the fundamental of abstract ergodic theory. Following the early
developments which started with Kolmogorov and Sinai, a first conjecture was
made by Pinsker [25] that every ergodic automorphism of a Lebesgue space
would be isomorphic to the direct product of a zero entropy system with a K-
automorphism. This followed the proof by the same Pinsker that, expressed in
modern language, 0-entropy and K-automorphisms are disjoint. This conjec-
ture was refuted by Ornstein [23] who constructed a mixing transformation for
which it failed (this followed a previous example of his [22] using a K-automor-
phism with no square root, leading to a counterexample with an atomic Pinsker
algebra).

The Pinsker algebra is a canonical object associated to every transformation:
it is its greatest 0 entropy factor. The Bernoulli (and non Bernoulli) theory as de-
veloped by Ornstein [21], and then by Feldman, Rudolph, Shields, Smorodinsky,
Weiss and many others had evolved in various directions, one of them being its
relativization which is closely linked to the possibility of expressing a transfor-
mation as a direct product, one of the factors of this product being isomorphic
to a Bernoulli shift [29]. It was then first noticed that the Ornstein—Shields K non
Bernoulli examples [24] could be expressed as such products, and furthermore,
that the entropy of the non Bernoulli factor could be made arbitrarily small. It
was quickly realized that all known examples (which were not numerous at that
time) satisfied this property, naturally called the weak Pinsker property. It is
clearly weaker than the product described by the Pinsker conjecture as it does
not single out a precise deterministic factor, but is at the same time stronger as
the large entropy factors are just Bernoulli shifts which are the simplest possi-
ble positive entropy transformations, entirely described by their entropies (as
a consequence of the Ornstein isomorphism theorem). The real meaning of
this property is that there is no specific complexity attached to positive entropy

JOURNAL OF MODERN DYNAMICS VOLUME 19, 2023, 835-845



THE BRIN PRIZE WORKS OF TIM AUSTIN 839

and that the structure of every transformation is entirely described by factors of
arbitrarily small entropy.

The objects which we are going to deal with are (X, </, m, T), where T is an
invertible measure preserving transformation of the Lebesgue space (X, <, m).
We shall frequently condense, when there is no ambiguity, the term (X, o/, m, T)
into, simply, T. In this category of measure preserving actions on Lebesgue
spaces, whose theory was developed by Rokhlin [26], we are going to use the
following facts concerning factors and the decomposition into direct products:

(A) Given (X, o, m, T) and a factor map f to (V,%,1,S) (.e., S.f = f.T), call-
ing % = f~1(%) which is a T invariant sub o-algebra of 2, the restriction of
T to % which we denote T is isomorphic to (Y, 9%, u,S). We shall therefore
identify the restrictions of T to invariant sub-o algebras to factor actions onto
a Lebesgue space;

(B) In the same way, it is equivalent, for an invertible transformation T of a
Lebesgue space (X, </, m) to be isomorphic to a direct product (Y, %, y1, T1) x
(Y2,%,, 12, To) or to possess two T-invariant sub-calgebras of «f, of; and of,
such that &/ and < are independent and <1 \/ &> = & .

DEFINITION 3.1. Ifa transformation T is isomorphic to a direct product Ty x T>,
where T, is isomorphic to a Bernoulli shift, we say that the factor o -algebra of T
which corresponds to Ty splits.

The theorem of Tim Austin which solves a question that goes back to 1976 is
the following [4]:

THEOREM 3.1. Let (X, o/, m, T) be an ergodic invertible transformation with en-
tropy h(T) > 0. Let e > 0. Then there exists an invariant factor o-algebra <\
which splits such that Ty, (the restriction of T to «/1) has entropy smaller than €.

There are two extensions of this theorem (which Tim concentrates in only
one statement):

THEOREM 3.2. Let (X, </, m,T) be an ergodic invertible transformation and 98
an invariant factor o -algebra of </ such that the relative entropy of the action
of T conditioned on 9 is positive. Then, given ¢ > 0, there exists another factor
o-algebra € such that % c €, the entropy of the restriction of the action of T to
€ conditioned on 9B is <€ and € splits.

Furthermore:

THEOREM 3.3. All the preceding results extend to the action of countable amen-
able groups.

It is the consequence of a result by Fieldsteel [8] that these theorems for Z
actions extend to flows.

The main Theorem 3.1 is extremely striking. It has a considerable value as
it is universal and gives very strong informations concerning the structure of
measure preserving transformations; it says that one cannot hope for rigidity
properties of positive entropy measure preserving transformations. They have,
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coming from the Bernoulli factor in the decomposition into a direct product, a
big centralizer, they cannot be coalescent (a coalescent transformation is one
which cannot have strict factors which are isomorphic to itself), etc. It was
not even known, before Tim’s result, whether every ergodic positive entropy
transformation could be written as a direct product.

As one might expect, the proof is extremely remarkable. and quite intricate.
Tim Austin proceeds with tools coming from information theory as created by
Shannon (which is some kind of return to the origin), an important part does
not contain any dynamics and only deals with measures on finite partitions in
(finite) product spaces. In this framework, I am just going to give a list of the
most important statements and information theoretic concepts which are used.

First of all the Kantorovich—-Rubinstein duality linking two apparently differ-
ent distances on measures on metric spaces. Let (K,d) be a compact metric
space and p and v two probability measures on K. A coupling of ¢ and v is a
probability measure on K x K with respective marginals p and v. Let

d(p,v) = inf{f d(x,y)dA: A coupling of 1 and v}
the Wasserstein transportation metric and
d*(u,v) = sup fdA-fdu
feLip,(K)

the d* metric which was first devised by Fortet and Mourier [9]. The duality
theorem of Kantorovich and Rubinstein is that d* = d.

The next important object is the Kullback-Leibler (K.L.) divergence between
two probability measure p and v, it is +oo if v is not absolutely continuous with
respect to . otherwise,

dv dv
Dl = f d_plogd_pdu'

We recall the Hamming metric: let A be a finite set, n an integer, the Ham-
ming distance between two elements of A" , x = (x;,i < N) and x’ = (x;.,i <N)
is

1 n
dn(x,x') ==Y 8(xi,y).
niz

Here 6(x;, y;) =1if x; # y; and 6(x;, y;) =0if x; = y;.
As a first nice example of a connection between the K.L. divergence and the

Wasserstein distance of measures associated to the Hamming metric on product
spaces, let us mention the following result of Marton [19]:

THEOREM 3.4. If A is a finite set and u a product measure on A", then

_ 1
dp(v,p) < \/;D(VHIJ)

for all probability measures v on A",
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This implies that if v is the restriction of u to a set of u measure > 27", then
d, (v, ) < /€, which is a nice presentation of the “concentration of measure"
phenomenon.

Let us introduce the total correlation (T.C.) defined for a measure u on a
product space A”. Let u;,1<i<n, be the marginals of u in A”. Then

TC(w) = D(pllpr x p2.. x tn).

The other very important quantity is the dual total correlation (D.T.C.) of a finite
family of partitions P;,1 < i < n, of a measure space (X, «/, m). Recall that for a
k sets partition P of X whose atoms py, p, ..., px have measures m(p), m(p2),
...,m(py), its Shannon entropy is

H(P)=-)_ m(pi)logm(p;).

k
i=1
The conditional entropy of P given Q is then H(P|Q) = H(PV Q)—H(Q). Coming
back to our n partitions P;, define

pi=\/P;.
J#i
Then [13]:
i=n i=n .
DTC(Py,Py,...., Py) = H( \/ P;) - Y H(PilB).
i=1 i=1

Note that DTC(Py, Ps,...,P;) =0 and that if DTC(Py, Ps,...,P,) =0, the P;’s are
independent.

Tim Austin also needs a substitute to finite partitions, which he calls fuzzy
partitions (commonly called partitions of unity): A fuzzy partition of a space
(X, ) is a finite sequence p = (fi, f>,..., fn) of positive functions which satisfy

;ﬁzl

A related important number is, calling y; the measure m filh

I/,t(fl;ny--nfn):Z ﬁD(ﬂ1||ﬂ)

i=1
If the fuzzy partition is an actual partition P, i.e., f; =1,
Iy, 1p,,...,1p,) = H(P).

He then introduces a main quantity which will be essentially put to work:
Let (K, d, n) be a metric probability space, x and r > 0. (K, d, y) is said to have
the property T'(x,r) if every probability measure v on K satisfies

- 1
dv,p) < ;D(vllu) +7r.

Let us note that, in case X = A" and d = d,, when « is large compared to n and
r small, this means that under these conditions, the measure p satisfies that, for
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every set E in A" whose measure is not exponentially small, d(ug, i) is small,
which is an instance of the important extremality condition.

We quote now a proposition which presents the DTC decrement argument
which constitutes a fundamental ingredient in the proof:

LEMMA 3.1. Let n >0, A be a finite set and p be a probability measure on A"
which does not satisfy T (rn/200,r). Then there is a fuzzy partition (p1, p2) such

that:

1 _—-n

Li(p1,p2) = r*n"te

and
1
fpld,u.DTC(,uml)+fp2du.DTC(Mp2)sDTC(,u)—EI”(pl,pg).

This says that, in a quantified way, one can split ¢ into two parts, its restric-
tion to every one being more concentrated. Let us note that, in case DTC(u) <
r’n~le™", then u satisfies T'(rn/200,r).

The proof is extremely interesting, and uses many different ideas and tools,
starting with the use, if the suitable inequalities for DTC are not satisfied, of the
duality theorem and of an analogue of some “logarithmic Sobolev inequalities”.
It is also the beginning of a long fractional distillation out of which the "struc-
ture" will eventually emerge. It takes the following form (note that part of the
work is also to go from DTC to TC):

THEOREM 3.5. Given €,r > 0, there exist ¢ > 0 and x > 0 such that for any fi-
nite set A the following will hold for sufficiently large n: Let u be a probability
measure on A" and E = TC(u), then there exists a family of disjoint sets in A",

Ui, U,..., Uy, such that:

(1) m<ce‘E,

@) pUETU) >1-¢,
(3) wu, satisfies T (xn,r) forall 1<i<m.

Closely related to the preceding we say that a measure y on A” is €,0 ex-
tremal if for every partition into less than e sets, Uy,U,,..., U, there is a
subcollection S of them whose union has measure > 1 —¢ such that for every
U; €S, dp(wu, ) <e. (Actually Tim Austin uses a continuous version of the
extremality condition. For this presentation we shall not need it.) The Mar-
ton result already quoted says that if u is a product measure on A" with all
its marginals equal, then it is /€ ,¢ extremal. We shall now describe in a very
sketchy way the dynamical version of this theorem which leads to the final re-
sult through the more classical use of the relative Bernoulli theory [29]. We
shall only deal with finite entropy transformations therefore equipped, using
Krieger’s theorem, of a finite generator.

Given an ergodic invertible measure preserving transformation T of the prob-
ability space (X, «,u) together with a finite generating partition ¢, and a set
A € of we will look at 4 restricted to &g, which we call pli"" as a measure
on &,
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THEOREM 3.6. Given (X, </, m,T) ergodic with positive entropy and ¢ as above,
for every €, there exists ny, there exists 6, such that for all n > ngy, one can produce
a family of disjoint sets in &, Uy, Us,..., Uy, m < e" such that

pUiulUu---ulUy)>1-¢€

and all the ufU'j aree,d extremal.

In a way, there is meaning to say that what has been achieved by Tim Austin
is some kind of extremal decomposition. (This is written by a former student
who attended in 1966 a Choquet course in Paris.)

Extremality is closely related to the Bernoulli property. Actually, for a system
(X,o,m, T) equipped with a finite generator ¢, the Ornstein isomorphism theo-
rem can be stated in the following way: it is equivalent for this system to be
isomorphic to a Bernoulli shift with entropy h(T) or to satisfy that for every €
there exists ny and & > 0 such that for all n > ng, m restricted to " is €,0 ex-
tremal. Using then a relative version of extremality, and a relative version of the
above isomorphism, an almost direct corollary of the previous Theorem 3.6 is
that there exists for every € a factor algebra 28 of (X, </, m, T) restricted to which
the entropy of T is smaller than ¢ and which e-splits. This means that there
exists a joining (1) of (X, </, m, T) with the direct product (T x S) where S is a
Bernoulli shift in such a way that A when restricted to 48 is the identity and ¢ is
e-embedded in this direct product, that is ¢ EBxS (A). This is then promoted
to exact splitting, as in [30].

Let us point out one fact about the organization of the splitting factors inside
a transformation: there is an example, due to Kalikow [16], of a transforma-
tion T which possesses two splitting factors 98; and %, such that 98, A %, = v.
However, it is always true that, given T, if 98, and %, are two splitting factors
of equal entropy, T, and Tg, are isomorphic. There are many questions con-
cerning the structure of the splitting factors. For instance, does there exist a
K-automorphism T such that any factor 28 such that T¢ is not isomorphic to a
Bernoulli shift is isomorphic to a splitting factor?

4.

Although it is not part of the Brin Prize selection, I want to mention briefly
a fourth work of Tim Austin which very closely belongs to the circle of ideas
which have appeared in this presentation. It is Scenery entropy as an invari-
ant of RWRS processes. This (unfortunately unpublished) work deals with a
generalization of the famous T, T~! transformation which we now describe.

Given a probability space (P, ), the Bernoulli action B(x) is defined on the
product space X = P%, equipped with the product measure m = 7% as the shift
T: (xp),ne€eZ — (xp—1),n € Z. When P is the two sets space (+1—-1) equipped
with the measure 7 = (1/2,1/2), the T, T~! skew product is the map T from X x X
to X x X defined by (x, y) — (Tx, T*™y). It is clearly a "random walk on a random
scenery" (R.W.R.S). It was shown by Meilijson [20] that T is a K-automorphism
and by Kalikow [17] that it is not Bernoulli.
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It is easy to give a more general form to the preceding skew-product, namely,
given a >0 and T, the Bernoulli shift with entropy a acting on Y to consider T,
acting on (X x Y) by (x,y) — (Tx, T, y). Clearly, for every a > 0, these transfor-
mations remain K with entropy log2. The theorem established by T. Austin is,
in this simplest description, that when a # b, T, is not isomorphic to Tj. This is
quite remarkable and a new source of examples to the fact, already mentioned
in this note [24], that there exist uncountably many K-automorphisms, with the
same entropy, pairwise not isomorphic. Actually, the real statement of the theo-
rem, resting on a continuous version of the T, T~! transformation [27], is the
following [5]:

THEOREM 4.1. Let (Y,%8,1,S) be a subshift of finite type equipped with an S-
invariant measure |t which is a Gibbs measure for an Hélder continuous potential
onY, thenifo, Y — R,y — o(y) is Holder continuous, is not a coboundary, and
satisfies [o(y)du = 0 together with an "enhanced invariance principle" and if
(X1, T}, my) and (X, T?, my) are two ergodic flows such that h(T}) # h(T?), the

skew products (Y x X;,Si, mx ;) (i =1,2) defined by S;(y, x) = (Sy, Té(y)x) are not
isomorphic.

The enhanced invariance principle was shown by Bromberg [6] (also, unfor-
tunately, unpublished) entailing the following quite remarkable consequence:

THEOREM 4.2. For any h > 0, there is a compact manifold with a smooth vol-
ume form that admits continuously many smooth volume preserving K -automor-
phisms of entropy h which are pairwise non isomorphic.

As Tim Austin explains himself, the idea of building an invariant analogous
to the “slow entropy” by counting the number of distributions that exhibit a
high concentration does not seem to be relevant and the proof is closer to the
“secondary entropy" as defined by Vershik [31]. However it is beautiful, quite
elaborate, and the reader enjoys its meanders.
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