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Stability and dynamics of nonlinear excitations in a two-dimensional droplet-bearing environment
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We unravel stationary states in the form of dark soliton stripes, bubbles, and kinks embedded in a two-
dimensional droplet-bearing setting emulated by an extended Gross-Pitaevskii approach. The existence of these
configurations is corroborated through an effectively reduced potential picture demonstrating their concrete para-
metric regions of existence. The excitation spectra of such configurations are analyzed within the Bogoliubov—de
Gennes framework exposing the destabilization of dark soliton stripes and bubbles, while confirming the stability
of droplets, and importantly unveiling spectral stability of the kink against transverse excitations. Additionally, a
variational approach is constructed providing access to the transverse stability analysis of the dark soliton stripe
for arbitrary chemical potentials and widths of the structure. This is subsequently compared with the stability
analysis outcome demonstrating very good agreement at small wave numbers. Dynamical destabilization of
dark soliton stripes via the snake instability is showcased, while bubbles are found to feature both a splitting
into a gray soliton pair and a transverse instability thereof. These results shed light on unexplored stability and
instability properties of nonlinear excitations in environments featuring a competition of mean-field repulsion

and beyond-mean-field attraction that can be probed by state-of-the-art experiments.
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I. INTRODUCTION

Quantum droplets have been recently experimentally real-
ized in single- [1,2] and two-component dipolar gases [3,4]
and also in homonuclear [5-7] and heteronuclear [8,9] short-
range interacting bosonic mixtures. Their ultradilute liquid
nature manifests by their ability to assemble into flat-top den-
sity distributions [10], their incompressible character [11], and
surface tension [12]. Droplets may arise in completely differ-
ent contexts such as liquid helium [13], and photonic systems
[14—16]. This fascinating phase of matter heralded a new era
of investigations devoted to probing quantum fluctuation phe-
nomena in many-body weakly interacting cold atom settings
[17-19]. Quantum fluctuations are strongly dimension depen-
dent [20,21] and are commonly modeled by the perturbative
Lee-Huang-Yang energy (LHY) correction term [22]; see e.g.
also Refs. [23-25] for residual beyond LHY effects. The latter
is proved to be imperative for droplet formation as it is its
competition with the mean-field (MF) effects that gives rise
to such coherent structures in the realm of a suitably extended
Gross-Pitaevskii equation (eGPE) [26,27]. Within this frame-
work a plethora of droplet properties has been described such
as their collisional dynamics [10,11,28], collective excitations
[29-31], the conditions under which modulational instabil-
ity occurs [32-34], as well as their characteristic thermal
effects [35,36].

Another interesting, yet less explored research direction
refers to the study of nonlinear excitations building upon a
droplet background, as well as the existence of other self-
bound solutions forming in such environments and, in par-
ticular, in the realm of the above-mentioned eGPE model fea-
turing the intriguing competition of MF- and LHY-associated
nonlinearities. For instance, recently it was demonstrated that
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one-dimensional (1D) droplets can support stable dark soli-
ton configurations while trains of such composite objects are
generically unstable [37-40]. Moreover, the stability of two-
dimensional (2D) vortex-droplet states of different charges
[41] but also the dynamical generation of vortices through
droplet rotation [42-45], as well as defect dragging through
the condensate [37], were previously reported. A character-
istic mechanism of vortex production appearing in repulsive
Bose gases [46,47], but also in nonlinear optics [48], is the
well-known “snake” (transverse) instability that dark soliton
stripes (DSSs) undergo once exposed to a higher-dimensional
geometry such as the 2D one considered herein. One of the
principal aims of the present paper is to explore the poten-
tial of the eGPE model to feature such an instability. This
phenomenon is indeed well documented [49-52] as well as
the conditions under which it can be suppressed [53-55] in
the realm of atomic condensates. Indeed, the relevant phe-
nomenology has also been long experimentally observed in
the realm of condensates [46] and has been also of extensive
interest (including experimentally) in the context of nonlinear
optics [56]. Yet, it is intriguing to investigate if such an insta-
bility can be triggered in a droplet setting, an outcome that is
not a priori evident given the competing nature of the relevant
nonlinearities.

Additionally, different types of bound states such as kinks
[57] and the so-called bubbles [40,58] have been recently
reported as 1D states existing at comparatively more neg-
ative chemical potentials than droplets. These correspond,
respectively, to heteroclinic and homoclinic solutions of the
underlying phase space. In contrast to droplets, bubbles have
been found in such 1D settings to generically constitute unsta-
ble structures featuring core expansion and mutual attraction
when placed close to each other [58], while kinks have been
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identified as stable configurations. It is another aim of the
present paper to unravel the possible existence of such enti-
ties in 2D droplet setups and simultaneously examine their
potential robustness in the presence of transverse modes.

Here, we address the aforementioned open questions re-
sorting to a 2D short-range interacting homonuclear bosonic
droplet environment described by a corresponding eGPE
[18,26]. More concretely, by leveraging the uniform back-
ground along one spatial direction, we initially reduce the 2D
eGPE into an effective 1D model featuring the logarithmic
nonlinearity. The time-independent 1D version of this model
is recast into a Newtonian type of equation, reminiscent of
the particle picture within an effective potential utilized in
repulsively interacting gases [59,60]. This is used to unveil the
existence of a variety of distinct nonlinear states—in addition
to the well-known 2D droplets—within suitable ranges of
(negative) chemical potentials. In increasing chemical poten-
tial order, the identified states arise in the form of bubbles,
kinks, droplets, and DSSs respectively and suitably general-
ize their 1D counterparts of Ref. [58]. Concrete parametric
regions of existence of the relevant waveforms are show-
cased. Furthermore, importantly, we infer the stability of the
above stationary states within a Bogoliubov—de Gennes (BdG)
framework of the genuine 2D eGPE model. It is found that
kinks and droplets are stable structures, in contrast to the
generically unstable bubbles and DSSs.

Specifically, it is demonstrated that a DSS experiences
snake instability via which a chain of interacting vortical
structures is progressively formed. The growth rate of this
instability gradually increases as the chemical potential is
tuned all the way to positive values. However, suppression of
the instability occurs for DSSs closer to their lower boundary
of existence. On the other hand, bubble destabilization mani-
fests through its initial core expansion, and eventual emission
of gray solitons (subject to transverse breakup in their own
right), in addition to being accompanied by the formation of
density ripples suggesting the apparent emission of (nearly)
radially symmetric dispersive shock waves. Additionally, lack
of stationary states consisting of a DSS embedded in a finite
droplet is explicated. Here, direct dynamics reveals the forma-
tion of two counterpropagating droplet fragments separated by
an increasing in width DSS. The entire configuration experi-
ences structural deformations that depend on the flat-top or
Gaussian-like shape of the original droplet background.

Utilizing a variational method that was earlier used to pre-
dict the snake instability of DSSs in a Bose gas [61], we derive
a generalized analytical (yet approximate) BdG formula relat-
ing the wave number of DSS modulation to its corresponding
frequency (if stable) or growth rate (if unstable). This de-
scribes the unstable nature of stripes in the droplet-bearing
environment considered herein. Good agreement of capturing
the slope of the relevant instability growth rate of a DSS esti-
mated by the most unstable eigenfrequencies identified in the
BdG spectrum with the variational prediction is revealed for
small transverse wave numbers, i.e., in the long-wavelength
limit. However, the variational outcome fails at larger wave
numbers, in line also with the discussion of Ref. [61].

The structure of this paper is organized as follows.
Section II introduces the considered 2D bosonic mixture and
the respective eGPE model utilized for the description of

droplets and study of nonlinear excitations. The reduced 1D
effective potential allowing one to infer the presence of the
different nonlinear excitations together with their parametric
regions of existence are discussed in Sec. III. In Sec. IV we
demonstrate the stability properties of the identified nonlinear
solutions and elaborate on the dynamical manifestation of
their ensuing instabilities. In Sec. V the transverse stability
analysis of a DSS embedded in the droplet-bearing environ-
ment is theoretically approximated by constructing a relevant
variational method whose predictions are compared with the
ones extracted from the BdG analysis. Section VI elaborates
on the absence of a stationary DSS solution in a 2D droplet
and showcases its dynamical response. We summarize our
findings and discuss future perspectives in Sec. VII.

II. TWO-DIMENSIONAL DROPLET SETUP

We employ a 2D box trapped homonuclear bosonic mix-
ture characterized by intracomponent repulsion of effective
strength g44 # g4 > 0 and intercomponent attraction with
coupling g4, < 0. The components of such a mixture can
be experimentally emulated, for instance, by the hyperfine
states [N =|F =1,mp =—1) and |]) = |F =1, mp =0)
of 3K as in Ref. [7]. Consequently, the interaction strengths,
depending on the corresponding three-dimensional (3D) scat-
tering lengths, are tunable via the available Fano-Feshbach
resonances [62] which e.g. for K are located in the vicinity
of the magnetic field B = 59 G [63-66]. It has been demon-
strated that in this magnetic-field region, the effective 2D
intercomponent attraction, g4, marginally exceeds the ef-
fective intracomponent mean repulsion ,/g11g]|. As such, it
holds that g = g4, + ,/g11&;; < 0 and therefore quantum
droplets can form [18,26].

To achieve the 2D geometry the atoms are constrained in
the x-y plane due to the presence of a tight harmonic trap along
the perpendicular z direction [67,68]. Across the plane a box
potential of length L, = L, = L exists which is adequately
extensive such that it does not impact the finite droplet con-
figurations. We remark that quantum droplets have been so
far experimentally realized for the *’K two-component mix-
ture only in three dimensions [5-7,11], although experimental
considerations do not suggest any fundamental limitation that
would preclude this from occurring in lower dimensions.!

In fact, we restrict our investigations to densities and in-
teractions satisfying n4 V8 =ny/80 [6,26,27,69]. Here,
n, denotes the o =1, | component density. In this case, it is
known that the genuine two-component system reduces to an
effective single-component one [26] which can be described
by a corresponding eGPE [41,42,70,71]. The aforementioned
constraint holds for the ground state and low-lying excitations
of the droplet [27], and it was experimentally verified in
three dimensions [7]. Under these considerations, the reduced
eGPE reads

'haq’ i Vi + " [W|>W In i (1)
m—=—-—— — .
ot 2m m?® no~/e

I'This stems, in part, from discussions with Prof. P. Engels who has
realized a *K condensate in his laboratory.
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The interaction strength encapsulating in two dimensions the
combined contribution of the mean-field interactions and the
LHY term takes the form

4
§= ayy Jarra ayy Jarra ’ (2a)
ln< IV w) ln( IV w)
ap ap, A
1n2 (ZH)
A=expy——T—1¢. (2b)

In these expressions, a,, refer to the 2D scattering

lengths within (o = o) or between (o # o) the components.

e—2r-3/2 47
Tar, Jaray, g
density in the thermodynamic limit [26] and y =~ 0.577 is the
Euler-Mascheroni constant [72]. For completeness, we remark
that the relation between the 2D scattering lengths and their
3D counterparts, a®? s given by [67,73]

oo’ °

_ 3 aLﬁ
Ao’ =2e VaJ_ lo—gexp{—agg—)ﬂ}. (3)

Notice that a peculiarity of the 2D geometry is that
quantum droplets can be also hosted for §a®P) = a%D) +

v a%tja ?fj 2 0 [26]. This is in contrast to three dimen-
sions where, in this region, a gas phase takes place, a result
that stems from the dimensional dependence of the LHY
contribution [20].

Rescaling the time and length scales in terms of

m/(gnohia/e) and ~ gng./e : respectively [74] and normal-
izing the macroscopic wave function to the total particle
number, [ [¥|?dxdy = gN = g(N; +N,), we arrive at the
respective dimensionless eGPE:

iﬂ = —lv2w+ W 12w In(|W)?). 4)
ot 2

Henceforth, all quantities are dimensionless unless stated oth-
erwise. It is important to recognize that the curious nature of
the logarithmic nonlinearity encompasses in a single term the
competition between MF- and LHY-type effects. In particular,
at low densities, the negativity of the logarithm effectively
translates into a focusing (attractive) type of effect, while
at large densities, the corresponding positivity amounts to a
defocusing (repulsive) nonlinearity.

For the stationary states, to be presented below, we solve
the time-independent version of Eq. (4) relying on a fixed-
point iterative Newton scheme [75]. Throughout our paper
homogeneous von Neumann boundary conditions are de-
ployed which are suitable especially for the asymptotics of the
bubble and kink states. On the other hand, for the real-time
evolution a fourth-order Runge-Kutta integrator is utilized
supported by a second-order finite differences method (cross
checked with a pseudospectral method) to take into account
the spatial derivatives. Characteristic values of the temporal
and spatial discretization used are df = (0.0001 and dx =
dy = 0.06 respectively.

It should be noted that typical box sizes L = 300 in the
dimensionless units adopted herein correspond to 564 um.
Also, evolution times of the order of r ~ 500 refer to 1.14 s in

Moreover, ng = is the droplet equilibrium

physical units upon considering a transverse oscillator length
a; = 0.22 um (v, = 27 x5.2 kHz).

III. EFFECTIVE DESCRIPTION
AND STATIONARY STATES

When searching for stationary nonlinear solutions whose
density profile extends primarily in one dimension (while re-
maining uniform along the transverse direction), the reduction
of the 2D eGPE [Eq. (4)] to a quasi-1D equation serves as
a guide for identifying parameter regimes where such struc-
tures may exist. To do so, we assume the following ansatz,
W(x,y,t) = u(x)v(y)e ™, where u is the chemical poten-
tial. Also, u(x) stands for the stationary solution along the
elongated direction and |v(y)|> = const is a uniform function
in the y direction which can then be absorbed in u(x). This
solution, without loss of generality, is taken to be real. It
is important to appreciate that one-dimensional solutions are
always trivially also solutions of the two-dimensional problem
and then the fundamental question is that of their potential
stability or instability under transverse perturbations, which
is what we are exploring herein. With this ansatz the 2D
eGPE reduces to the following quasi-1D equation featuring
a logarithmic nonlinearity:

d%u

pu(x) = —%@ + 16 (x) In[* (x)]. (5)
The above equation can be rearranged, such that it resembles
a classical Newtonian particle of unit mass in an effective
potential V (u) in the form Zi” = —4YW = The consideration
of this effective potential problem will enable us to identify
systematically the quasi-one-dimensional equilibrium states
of the system.

Specifically, the aforementioned potential V (1) reads

, ut u?

V(u) = pu > In (ﬁ) (6)
The chemical potential p dictates the number and form of
the extremal points of V (u) [Figs. 1(a)-1(d)]. In particular,
for u < —0.367879 = u! [see e.g. Fig. 1(a)] no minima
exist, and thus no stationary solutions are expected to appear.
Increasing u past this critical value, two symmetric potential
wells arise [Fig. 1(b)], along with a global maximum at u = 0
and two symmetrically placed local maxima u, and u_. Here,
stationary solutions called bubbles are identified [Fig. 1(e)].
They are restricted between two positive u values, namely u
and u,, as indicated by the black dashed line in Fig. 1(b).
These two u values are close to each other as long as p ~
,ugl), and tend further apart while simultaneously V (u,) and
V(uy) increase as u — p® = —1/(24/e) from below. This
deformation of V (u) dictates the region of existence of bubble
states, i.e. ugl) <u< /ng).

The corresponding density profiles of such bubble con-
figurations obtained as stationary solutions of the time-
independent 2D eGPE [Eq. (4)] are depicted in Fig. 1(e) for
different u values, spanning their entire region of existence.
For visualization purposes, |W(x, 0)|? is displayed, featuring
a density dip in the vicinity of x = 0, while being on top of
a finite background. Despite their structural similarity to dark
solitons, it is important to appreciate that such solutions do
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FIG. 1. Quasi-1D profiles of the effective potential, V (u), for distinct chemical potential values (see legend). (a) For u < uV = —0.3679
no coherent structures are present in the system. (b) Bubbles occur for u(V < u < u® = —1/(24/e). (c) A kink solution is identified for

w=p?. (d) Self-bound quantum droplets and dark solitons coexist in the interval 0 > o > . Selected density profiles, |¥(x, 0)|?, of the
different numerically obtained 2D stationary states of the eGPE of Eq. (4). (e) Bubble states progressively acquire wider cores tending to
infinitely broad entities towards their lower boundary of existence, 1. (f) The kink structure appears only for 1 = (. (g) Droplet solutions
are seen to deform from Gaussian-like profiles towards flat-top ones for progressively more negative p values. (h) DSS solutions extend beyond
> 0 becoming gradually wider (and supported on a shallower background) as p decreases while being highly localized (on top of a taller
background) for positive chemical potential values (see legend). In contrast to bubbles, these states display a 7w phase jump across their core
[see also Figs. 4(b1) and 4(d1)] and their width is significantly smaller compared to the one of bubbles. All parameters are dimensionless.

not exhibit a phase jump and show a prominent width. These
2D bubble entities are the siblings of their 1D counterparts
discussed in Refs. [38,58]. This is in line with what has been
well known for such waveforms in different classes of nonlin-
ear Schrodinger (NLS) models of relevance, e.g., to nonlinear
optics [76,77]. As it can be seen from Fig. 1(e), they become
progressively deeper and wider as u© — u®, with their depth
delineated by the u, — u, difference in the effective potential
picture.

For p = u®, the above-mentioned local maxima V (u. )
and V (u_) become zero, and thus equal the global one V (0);
see Fig. 1(c). Here, the respective classical trajectory connects
uy >~ 0.77 and u = 0, implying that the wave function u(x)
is a heteroclinic orbit connecting these two values. The rele-
vant density profile satisfying the time-independent version of
Eq. (4) refers, accordingly, to a kink configuration, which is in
essence a domain wall. It displays an abrupt density jump in-
terlinking a zero background (at x < 0) to a finite one at x > 0
as illustrated in Fig. 1(f). The values of these backgrounds are
in line with the effective potential predictions, zero and u. .
We remark that a kink exists also in the relevant 1D eGPE
model (and has been found to be stable therein) [38,58].

A further increase of pu(® < pu < 0 leads to pronounced
positive valued V (u_) and V (u.), while the previous global
maximum transitions to a local one [see Fig. 1(d)]. In this

regime, the effective potential can host two kinds of 1D solu-
tions uniformly extending along the transverse direction. For
the energetically lowest-lying one u(x) is limited between a fi-
nite background i and zero; see Fig. 1(d). In fact, this solution
corresponds to a 1D droplet structure [18,26] which is homo-
geneous along the transverse direction and obeys Eq. (5) with
logarithmic nonlinearity. It gradually deforms upon chemical
potential variations from a Gaussian (4 — 0) to a flat-top
state (u — /ng)), characterized by exponentially decaying
tails at large |x|. The respective |W(x, 0)|> of such station-
ary states extracted from the time-independent 2D eGPE are
presented in Fig. 1(g). Notice that at u = u?, the thermo-
dynamic limit is reached [see also the inset of Fig. 2(a)],
whereas it = e~!/4 ~ (.77 [78] corresponds to the equilib-
rium density predicted by the effective potential. The interval
of existence as well as the shape deformation of droplets
can be inferred by monitoring the ensuing particle number,
N = fdxdy |W(x, y)|?, with g = 1 without loss of generality.
Indeed, close to the thermodynamic limit, i.e. u© — u® [ver-
tical dashed line in the inset of Fig. 2(a)], N increases, leading
to wider planar droplets [78], maintaining a (wide region of)
nearly constant flat-top density around ng [Fig. 1(g)]. It is
worth mentioning that the lower bound of the chemical po-
tential in the thermodynamic limitis ©® = —1/(2/e), which
coincides with our numerical predictions. On the other hand as
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FIG. 2. Complementary particle number, N, of (a) DSS and
(b) bubble solutions indicating their regions of existence upon chem-
ical potential variations for g = 1. The inset in panel (a) presents the
particle number, N, vs 1 of self-bound droplet solutions. In all cases
vertical dashed lines indicate the boundaries of existence of each
distinct solution. The lower bounds of the droplet and DSS coincide,
while the bubble zone starts at 1>, where droplets cease to occur,
extending to more negative u, up to u{". Kinks are “special” within
such a diagram as they only exist at the vertical dashed line point
with & = u®. The chemical potential outlined here is unitless.

u — 0, solely Gaussian-shaped droplets with comparatively
smaller particle number are sustained, eventually ceasing to
exist [inset of Fig. 2(a)].

The energetically higher-lying second kind of solutions
within #® < 4 < 0 is bounded by u and u_; see the black
dashed line in Fig. 1(d). More concretely, the wave func-
tion has a heteroclinic form (reminiscent but not equal to
the familiar tanh-shaped black soliton of the standard cubic
nonlinear Schrédinger model) which changes sign between
the two equal in magnitude but opposite in sign backgrounds.
The stationary excitation associated with this V (u) is the DSS
[Fig. 1(h) for u < 0]. Recall that the latter is a well-known
nonlinear structure existing in repulsive gases [79], but con-
stitutes a suitably modified entity as per the 2D eGPE model
under consideration. These fully dipped (down to zero in their
density) configurations existing on top of a homogeneous
background exhibit narrower cores as w — 0~. Turning to
u > 0, the aforementioned local maximum transitions to a
global minimum (not shown), resulting in DSSs that are pro-
gressively more localized, as shown in Fig. 1(d). In line with
the effective potential outcome the related background shifts
to larger values when compared to © < O [Fig. 1(h)].

Since both DSSs and bubbles are characterized by particle
depletion across their cores, the dependence of their width on
W variations is captured through the complementary particle
number:

N, = / dxdy [[W(x — o0, y)* — [W(x, I’ (7)

Here, |W(x — 00, y)|*> refers to the finite DSS or bubble
background at g = 1. Focusing on the DSS solutions we ob-
serve that for u — u® their cores become wider, and thus
N, diverges, while for increasing p towards positive values,
their width (background) is narrower (larger), reflected by the
saturated N, [Fig. 2(a)]. Turning to bubbles, their zone of
existence can also be inferred from N,; see vertical dashed
lines in Fig. 2(b). Concretely, the bubble is shallower (deeper)

as p — wD (u — u®), implying that N, — 0 (N, — 00)
[Fig. 1(e)].

IV. SPECTRUM AND DYNAMICS
OF NONLINEAR SOLUTIONS

Having identified the plethora of different possible non-
linear structures that emerge in an effective 1D form within
the 2D eGPE model, we subsequently explore their excitation
spectra and unstable dynamics.

A. Stability properties of nonlinear states

The stability of the above-discussed solutions is addressed
by means of a BdG linearization analysis [41]. In this context,
each stationary state is perturbed through the ansatz

W(x,y) = [Wo(x, y) + €alx, y)e ™ + b’ (x, y)e e,
®)

where € is a formally small perturbation parameter. Also,
a(x,y) and b(x, y) denote the relevant eigenvectors and w the
eigenfrequencies. Assuming that the wave function is real, and
Taylor expanding the logarithmic contribution of Eq. (4) while
keeping terms of order O(€), one arrives to the following
eigenvalue problem:

L“ L12 a a

A R T
Here, Lij = —Lyn =—1V? — u+ W} +2|¥[’In(¥}) and
Lix = =Ly = W2 + ¥2In(¥3), while V2 =92+ 32 is the
2D Laplace operator. )

It turns out that DSSs are unstable solutions throughout
their interval of existence. This outcome can be inferred by
inspecting the 2D BdG spectra presented in Fig. 3(a) e.g., for
u = —0.1 where the real, Re[w], versus the imaginary, Im[w],
is illustrated. It is the presence of a finite Im[w] that signals
the destabilization of the relevant waveform, as dictated by
the first 14 eigenfrequency pairs presented herein. As we will
explicate in detail below, dynamical destabilization occurs
due to the exposure of these entities to transverse excitations
amplified via the so-called snake instability [46,56,79] also
within the 2D eGPE model under consideration.

Similarly to the DSS, 2D bubble configurations are found
to be genuinely unstable solutions for all values of © spanning
their domain of existence. This result aligns with the unstable
nature of bubbles in the relevant extended 1D model [80]. A
characteristic BdG spectrum is shown in Fig. 3(b) correspond-
ing to a bubble solution with u = —0.3495, namely close
to the lower bound of existence [Fig. 1(e)] of this relatively
shallow waveform. This bubble’s spectrum entails the pres-
ence of a single eigenfrequency pair having (Re[w], Im[w]) =
(0, 0.009). Note however, thatas u — ', i.e. for deeper and
wider bubbles, the growth rate of the ensuing instability be-
comes significantly suppressed. For instance, it is found to be
(Re[w], Im[w]) = (0, 6x107%) for ;& = —0.3033. Therefore,
these deep bubble waveforms remain robust for long evolution
times, which could potentially facilitate their experimental
observation.

Strikingly, and also in contrast to the above stability prop-
erties, precisely for u = u'?, where the effective potential

c
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FIG. 3. Selected 2D BdG spectra of the ensuing waveforms demonstrating their stability properties. The existence of a finite imaginary
part, Im[w] # 0, designates the unstable nature of the relevant stationary state. (a) DSSs and (b) bubbles are genuinely unstable configurations
in their respective domains of existence, whereas (c) the kink and (d) the droplets are stable solutions throughout their interval of existence.
The eigenvalues and chemical potentials are measured in dimensionless units.

maxima become degenerate, spectral stability of the kink en-
tity is observed. The latter can be readily seen in Fig. 3(c)
where the absence of a finite imaginary eigenfrequency
(Im[w] = 0) is evidenced. To the best of our knowledge,
this is a prototypical manifestation of spectral stability of
1D topological defects, like the kink solution, in nonlinear-
Schrodinger-type models, upon their exposure to transverse
perturbations. Clearly, it is worthwhile to investigate this re-
markable finding more systematically, yet we defer such a
detailed study for future work. As a next step, the ensuing
BdG analysis of droplets is examined. A case example demon-
strating the stability of these self-bound states [41] is shown
in Fig. 3(d) e.g. for u = —0.1.

B. Dynamical destabilization

To further shed light on the aforementioned (in)stability
analysis findings, we next explore the dynamical evolution
of the obtained waveforms. Even though our primary focus
is to investigate the destabilization of DSSs and bubbles, we
note in passing that we confirmed the robust spatiotemporal
evolution of the kink structure and the droplets for times up
to t ~ 2x10? in the dimensionless units adopted herein (not
shown for brevity). This corresponds to 4.5 s, suggesting the
relevance of these states and their potential observation in
current state-of-the-art experiments.

In contrast to the longevity and coherent evolution of the
above entities, the unstable dynamics of DSSs entails their
structural deformation. Such a progressive shape alteration is
depicted in Figs. 4(al)-4(a6) regarding a DSS obtained for
u = —0.1 and characterized by a 7 phase jump across the
x direction [Fig. 4(bl)]. Particularly, in order to trigger the
relevant destabilization at earlier times, the DSS is perturbed
by adding to it the eigenvector associated to the most un-
stable mode appearing in its BdG spectrum [see Fig. 3(a)].
This mode corresponds to the maximum growth rate of the
ensuing instability. Around ¢ =~ 300, the solitary wave un-
dergoes undulations in the transverse y direction manifesting
the initiation of the snake instability. These density undu-
lations progressively expand over the entire extent of the
former stripe state [Figs. 4(a2)—4(a4)]. This behavior becomes
pronounced for ¢ > 300 [Figs. 4(a2) and 4(a3)], and it is ac-
companied by an increasing spatial heterogeneity of the phase

jump profile [Figs. 4(b2) and 4(b3)]. Subsequently, transient
vortex dipoles start to develop, as captured by the respective
27 phase jump at their locations [Figs. 4(b4)]. Eventually,
vortices of alternating charge appear throughout the original
stripe soliton [Figs. 4(a5) and 4(a6)]. This can be readily
seen by the characteristic 27 phase jumps appearing in the
corresponding phase contour plots [Figs. 4(bS) and 4(b6)].
A similar to the above discussed response occurs upon ex-
citing the DSS with one of the lower-lying eigenfrequencies,
predicted by the BdG spectrum [Fig. 3(a)], bearing smaller
Im[w]. The latter naturally implies slower onset of the snake
instability (not shown). The relevant unstable eigenmodes ef-
fectively constitute a band of unstable perturbations with a
corresponding interval of imaginary eigenfrequencies as will
also be demonstrated in Sec. IV below.

Far more intriguing is found to be the destabilization of
bubbles depicted in Figs. 4(c1)-4(c6). As in the preceding
scenario, also here, the wave function is initially perturbed
through the eigenvector associated with the single unstable
mode present in the BAG spectrum of Fig. 3(b). Evidently, at
the early stages of the dynamics bubble core expansion takes
place leading to a splitting of the initial waveform into an array
of gray solitary wave structures [Fig. 4(c2)]. This process is
accompanied by the creation of density ripples, in addition
to the definitive emergence of phase jumps associated with
the emerging gray solitary structures. Moreover, the resulting
density ripples are reminiscent of counterpropagating (nearly)
radially symmetric dispersive shock waves in analogy to their
1D counterparts [58], and certainly deserve a separate inves-
tigation to understand their nucleation and characteristics. All
of the newly formed gray solitary structures propagate with
their respective (opposite) speeds, while themselves becoming
subject progressively to a weaker (given their gray nature)
transverse instability [Figs. 4(c3)—4(c6)]. Inspecting the phase
profiles during dynamics reveals that the original uniform
phase [Fig. 4(d1)] experiences, in addition to the gray soliton
phase jumps, slight local undulations along the solitonic gray
stripe in the course of the evolution; see Figs. 4(d2)—4(d6).

V. STABILITY ANALYSIS OF A DSS IN THE 2D eGPE

Next, we aim to investigate further the destabiliza-
tion of the DSS in this environment featuring competing
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FIG. 4. Density snapshots, |W(x, y)|?, at different times (see legends) during the dynamical evolution of a (al)—(a6) DSS and (b1)-(b6)
bubble solution for © = —0.1 and —0.3495 respectively. The corresponding phase profiles of (al)—(a6) [(c1)—(c6)] are depicted in (b1)—(b6)
[(d1)—(d6)]. The relevant in each case nonlinear waveform is perturbed by adding to it the eigenvector associated with the most unstable (in the
case of the DSS) and single unstable eigenfrequency (for the bubble) mode. Snake instability of the DSS manifests itself leading to the breakup
of the stripe into an array of interacting vortices that progressively covers the entire extent of the initial soliton; see e.g. the developed 27 phase
jumps in panels (b3)—(b6) denoted with dashed magenta circles. Dynamical destabilization of bubbles is initiated through a core expansion
accompanied by the splitting to smaller and shallower bubbles and eventually leading to two counterpropagating stripes. The density ripples
appearing in the splitting process are reminiscent of counterpropagating radially symmetric dispersive shock waves. All quantities depicted are

given in dimensionless units.

nonlinearities. To this end, we generalize a variational ap-
proach (VA) that was employed to analytically probe the
excitation spectra of multiple DSSs embedded in 2D repul-
sive condensates [61]. In this context, it was argued that the
VA predictions display good qualitative agreement with the
numerical BdG outcome.

More concretely, motivated by the observed dislocation
of the DSS center associated with the snake instability
[Figs. 4(al)—-4(a6)], the following variational ansatz is em-
ployed [61,81]:

WY (x, y, 1) = B(y, t) tanh {D(y, )[x — X (v, )]} + iA(y, 7).
(10)

Evidently, three independent variational variables are intro-
duced, namely the position of the stripe X (y, t), the soliton
inverse width D(y, t), and the soliton depth parameter B(y, t).
All of them depend explicitly on time and the y coordinate,

since the DSS destabilization at the initial dynamical stages
primarily occurs along this direction [see e.g. Fig. 4(a2)] due
to the presence of transverse modes. The velocity-associated
quantity A(y,t) is related to the original DSS background
ug = B(y, 0), through A*(y, t) + B*(y, 1) = u}. For the well-
established case of the cubic repulsive nonlinearity, it is
known that in the case of a dark soliton its inverse width is
equal to its depth parameter B [79]. Moreover, utilizing the
above VA it was found that D(y, t) = B(y, t) adequately holds
also for relatively small perturbations on both the DSS width
and center across the transverse direction [61].

However, for the eGPE considered here, our simulations
indicate that such a condition is approximately met only at
large positive chemical potentials. In sharp contrast, at nega-
tive u, the inverse width becomes smaller than the background
[Fig. 1(h)]. Recall that in both cases, u = ujIn (u3) for a
uniform background ug; see also Eq. (4). In fact, according
to our eGPE simulations for varying w it turns out that the
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inverse width with respect to ug in the interval —0.3 < u <0
can be best approximated by alIn(uy — b) + cup + d, where
a,b,c, andd are fitting parameters.” In part this fitting is
inspired by the linear behavior for large u( as anticipated in
the limit of large positive chemical potentials [60], where
the defocusing NLS-like behavior dominates the dynamics.
These aspects motivate the extension of the variational ansatz
introduced in Ref. [61], where the adapted inverse width reads
D(y,t) = f[B(y,t)] = aln[B(y,t) — b] + ¢B(y,t) + d, hold-
ing for the stationary states and small perturbations as well.
While this approximation, slaving the dynamics of the inverse
width to those of the soliton depth, is a priori valid for the
stationary case, we will also justify it a posteriori in what
follows for the dynamically evolving case.

We start from the 2D Lagrangian pertaining to the DSS
[81,82]:

j BN aw* 2
L=/dxdy Y (VA 1—&2
2 ot ot |

1 1 |w|? ul u2

VU + W n| — | - 2In | 2

+2| |+2||“(¢z> Znﬁ

+ ug In(ug) (g — |\y|2)}. (11)

The term —u3/|W|*> ensures the momentum renormaliza-
tion of the DSS within the Lagrangian formulation known
for nonlinear-Schrodinger-type models, without affecting the
equation of motion [81]. In a similar vein, the last two terms
serve as renormalization constants, removing divergences that
occur due to the finite background u, extending in the entire
x-y plane.

Subsequently, we plug the variational ansatz of Eq. (10)
into the above Lagrangian, and integrate out the x direction,
where the soliton lies. As such, it is viable to obtain the
reduced L, Lagrangian with two independent variables, the
time ¢ and the y coordinate. The background on which the
localized DSS is mounted remains almost constant during
the initial stages of the dynamics [Figs. 4(a2) and 4(a3)].
In contrast, the inverse width and position of the soliton are
modified, allowing us to approximate the y derivative of the
wave function as (in a way reminiscent of the corresponding
calculation of Ref. [61])

W™~ BIf'(B)B,(x — X) — f(B)X,]
x sech’[f(B)(x — X)]. (12)

Notice that here we are accounting for the contribution of the
y variation that remains square integrable. In addition to the
above motivation, we will seek to justify this approximation
a posteriori also via its comparison to the numerical results
discussed later in this section. For simplicity, all variable

2Based on the effective quasi-1D equation [Eq. (5)] and assuming
u(x) = up tanh(Dx) and p = u3 In (1), it is possible to predict the
inverse width, D = ’1‘—3\/ 972 — 80 + 121n (u3). The latter is a good
approximation at ; > 0, in contrast to the fitted function describing
the entire p region of DSS existence.

arguments have been dropped. Moreover, to derive a closed
expression for the integral of the two last terms in Eq. (11),
the following trigonometric identity and variable substitu-
tions have been employed, i.e., sech?(x) + tanh?(x) = 1 and
B/uy = cos(¢) respectively.’

Upon these considerations, the integrated Lagrangian den-
sity Ly, such that L = f dyL,, takes the form (where we have
integrated with respect to x)

30 o, 10 B

L=5m" " 9 5B

0B s B (s + 2B2 in (2
—— e — ) arcsin { —
9 7B 2 2 ”

s (D) 2 () ani 4 2]
Hmnggﬂm+fwﬁ«¢9 2By + 3B

2 2 B’BX[f'(B)I*
ZBf(B)+ =B*f(B)X>+ ————(n* -6
+3 f()+3 FBX; + 18/3(8) (m )
B
+2Xx,{B,/u? — B2 — 2 arctan | ——
1) Py o 0 2

2 » B

2ug In —_—.
+ Uy (140) f( B)
The equations of motion for the X and B variational parame-
ters are then derived from the Euler-Lagrange equations as a
function of the two independent variables (¢, y). To capture the
initial stages of the snake instability, we assume small pertur-
bations of the A and X variational theory dependent variables
around their stationary values, i.e. A(y, 1) = Ag(y, 1) + A(y, 1)
and X(v,t) = Xo(y,t) + &(y,t), where A, & < 1. Since the
stationary solution is a DSS it holds (without loss of gener-
ality in connection to DSS translations) that Xy = Ay = 0.
Consequently, the Euler-Lagrange equations are linearized to
first order in A and &, resulting in the equations of motion for

the perturbations

U
M=—§MMW-M+WMMEW

13)

(14a)

A
" T2udlaln (uy — b) + cup + d

&
X {24u0[a In (uy — b) + cugy + d]3

+ 12u5<ﬁ + c)[aln (ug — b) + cuy +d]2
0 —

+ 16uo[3ugln(ug) + ug|laln (o — b) + cup + d]

a 4 4 2 4”2
+2 p— +c|| — 26u, —6u01n(u0) +9u07 .

(14b)

3Note that when performing the integrals, one needs to use the
formula of the dilogarithms [83], L,(e*®) 4 L,(e %¢) = —2/6 +
(2¢ — )*/2, holding for ¢ € (0, ).
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FIG. 5. (a) Stability spectra of the DSS solution in a homogeneous background for different chemical potentials spanning its entire domain
of existence (see legend). The imaginary eigenfrequency, Im[w], i.e., the growth rate of the corresponding instability obtained from the BdG as
a function of the wave number, k, is illustrated. In all cases dashed lines correspond to the analytical prediction obtained through the variational
approach [see Eq. (15)]. The latter estimates a linear growth of the instability rates as k increases that matches nicely with the slope obtained
by our 2D BdG numerics for small & values, i.e., at the long-wavelength limit. However, for increasing k the BdG shows a different behavior
compared to the variational result for the instability branches which acquire a maximum value for each p, in a way similar to what is known for
the cubic defocusing NLS model. (b) Maximum growth rate, maxIm[w], upon u variations showcasing its nearly linear increase for different
coupling constants (see legend). All variables are provided in dimensionless units.

For the linearization, the explicit fitting function f(B) has
been employed.

Differentiating Eq. (14b) with respect to time, and substi-
tuting A, from Eq. (14a), one arrives at a wave equation de-
scribing the propagation of perturbations of the DSS position.
To emulate the perturbation of the DSS position, as identified
in Fig. 4(a2), we use a plane-wave ansatz £ (y, t) = gpelr—en,
with transverse wave number k and eigenfrequency w. In
this way, an expression reflecting the transverse stability of
the DSS is established determining the stability of the small
perturbations:

w? = — K
216uglaln (ug — b) + cup + d|

X {24140[61 In (ug — b) + cup + dI?

+ 12u(2)( 4

uy —

b +c>[aln(u0 —b)+ cup +d)?

+ 16uo[3ugin(ug) + ug]laln (ug — b) + cup + d|

a 4 4 2 47T2
+2 uo—b+c —26u0—6u01n(u0)+9u0? .

(15)
As it will be evidenced below such a relation admits imaginary
eigenfrequencies w, manifesting the unstable nature of the
DSS.

A direct comparison of the aforementioned VA predictions
with the relevant outcome obtained upon numerically solving
the eigenvalue problem of Eq. (9) is provided in Fig. 5(a).
Specifically, Fig. 5(a) depicts the spectra of DSS solutions
for distinct chemical potentials, w, covering the region of
existence of this configuration that ranges from negative (© >
,ugz)) all the way to positive u values. The imaginary eigenfre-
quency, Im[w], as a function of the permitted transverse wave

number, k, = k, is illustrated, demonstrating the growth rates
of instability along with the most unstable wave numbers,
kmax, and the relevant stability cutoffs k.. The former wave
number, kp,x, refers to the mode that maximizes the imaginary
part of the eigenfrequency o, i.e. maxIm[w], whereas the
latter critical wave number is associated with Im[w(k.)] = 0
and designates the threshold of the unstable region. Recall that
due to the effectively 1D nature of the DSS along with Eq. (4),
the transverse perturbation can be decomposed into Fourier
modes, i.e. a(x,y) = fdky e hya(x, ky). Their effect on the
stability is assessed here by solving the eigenvalue problem
described by Eq. (9) for every transverse wave number k,
permitted by the von Neumann boundary conditions imposed
along the transverse direction boundary.

It turns out that the parametric window of DSS destabiliza-
tion becomes wider for progressively more positive chemical
potentials being significantly suppressed as u® is approached
[Fig. 5(a)]. Notice that the relevant stability equation of
Eq. (15) matches nicely the corresponding slope of our sta-
bility analysis outcome for small k values [dashed lines in
Fig. 5(a)]. Namely, upon suitable fitting, it accurately captures
the long-wavelength limit where we expect such a variational
theory to be accurate. Importantly, it adequately captures the
relevant slope for chemical potentials closer to the lower
boundary of existence of this waveform generalizing in this
way earlier findings appearing in cubic NLS models [61] now
within the eGPE framework.*

Next, the trend of the different maximal growth rates is
monitored for completeness in Fig. 5(b) upon considering u
variations. In the case of g =1 considered throughout the

40f course, it does not elude us that Ref. [61] has sought to provide
a systematic description of the instability spectrum throughout the
range of unstable wave numbers. While we do not address this
aspect within the eGPE herein, it is an interesting avenue for further
exploration.
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FIG. 6. Time evolution of the density, |W(x, y)|?, of a composite structure consisting of a DSS immersed in a finite droplet background
with (al)—(a5) u = —0.1 and (b1)—(bS) u = —0.29. Insets depict the respective phase profiles. In all cases the unstable dynamics of the DSS
in the finite Gaussian (© = —0.1) or flat-top (© = —0.29) droplet is observed accompanied by its breakup into two counterpropagating droplet
fragments. This response suggests the absence of a relevant stationary state. Time and spatial coordinates are depicted in dimensionless units.

paper, a linear growth of the instability of the DSS is observed,
as (u is increased. Apparently, instability is suppressed at 1,
which coincides with the thermodynamic limit value of the
chemical potential, while it is linearly enhanced towards pos-
itive values of w. This is in line with the identified stability at
that critical value of the kinklike structure replacing the DSS
in the limit of u© — Mgz). Furthermore, this evinces that snake
instability manifests at smaller time scales for progressively
more repulsive interaction dominated environments. To unveil
the general dependence of the growth rate on the interaction
strength we employ a different dimensionalization® of Eq. (4).
In this sense, we calculate the growth rate exemplarily for
g = 0.5, shown in Fig. 5(b). As it can be seen, the overall
phenomenology is persistent for different couplings, but being
shifted to more positive chemical potentials. This shift reflects
the relevant window of existence of the DSS solution. It can
be also inferred that the growth rate is smaller for reduced
interactions and fixed .

VI. DYNAMICAL RESPONSE OF A DSS IN A 2D DROPLET

Finally, we have also investigated the possibility of the
potential existence of a DSS embedded in a finite Gaussian or
flat-top droplet instead of a homogeneous background. How-
ever, despite our efforts, it was not possible to numerically
obtain, utilizing a Newton iterative scheme, relevant station-
ary states even though, according to the quasi-1D effective
potential picture discussed in Sec. III, both entities coexist
in the same p interval. The lack of such stationary states
is attributed to the energetics of the effective potential of

3In this case the time and length units are rescaled in terms of

m)(fing /) and /e .

the system, V (u), depicted in Fig. 1(d). Namely, the DSS
corresponds to a higher energy than the droplet and hence
cannot be “harbored” inside the latter. We remark that our ex-
ploration involved different chemical potentials of the droplet
background and widths of the DSS. For simplicity, below, we
discuss only the case of a soliton inverse width D = 3.

Nevertheless, we attempted to tackle these types of states
also dynamically and two case examples of our exhaustive
studies showcasing the ensuing evolution are provided in
Fig. 6. In both cases a DSS is embedded in either a Gaussian-
shaped droplet for © = —0.1 [Figs. 6(al)-6(a5)] or a flat-top
background for u = —0.29 [Figs. 6(b1)-6(b5)]. The initial
state then reads W(x,y, t = 0) = Yy(x, y)tanh(Dx), where
Wy(x,y) is the droplet ground state, while the hyperbolic
tangent represents the embedded DSS with inverse width D.
In the presence of a Gaussian droplet it can be seen that,
from the early stages of the dynamical evolution, the DSS
begins to expand its core instead of destabilizing through a
snake instability. This expansion is naturally accompanied
by the progressive separation of the initial droplets into two
oppositely moving fragments, maintaining their individual
droplet character. Importantly, the DSS character is retained
in the course of the evolution as can be inferred from the
respective phases exhibiting a 7 phase jump in the location of
the original stripe [see insets of Figs. 6(al), 6(a3), and 6(a5)].
Naturally, this is mandated by the topological protection of the
relevant phase jump profile.

An alternative example of dynamical response takes
place in Figs. 6(b1)-6(b5). Indeed the original configuration
[Fig. 6(b1)] bearing the characteristic signature of a DSS [see
the corresponding phase provided in the inset of Fig. 6(bl)]
substantially deforms along both spatial directions already at
early evolution times [Fig. 6(b2)]. Particularly, the two droplet
fragments transversely bend while moving further apart due to
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the DSS core expansion. The emergent butterflylike pattern
progressively transforms into two highly elongated density
lumps along the x direction [Fig. 6(b3)], which are pushed
even further apart in the course of the evolution [Figs. 6(b4)
and 6(b5)]. This tendency of the DSSs to acquire wider cores
during evolution is reminiscent of the stationary DSS solu-
tions for more negative chemical potentials, when embedded
in a homogeneous background [Fig. 1(h)]. Interestingly, the
above patterns reappear at later times (not shown), in their
original form and in a mirrored version along the x = 0 axis.

VII. SUMMARY AND PERSPECTIVES

In the present paper we explored the existence, stability,
and dynamics of nonlinear waves that can be supported within
a 2D extended GPE framework encompassing the competition
of attractive and repulsive interactions at different densities.
The relevant model featured a logarithmic nonlinear coupling
encapsulating the contribution of both the mean-field interac-
tions and first-order LHY quantum correction. To understand
the origin of the different transversely homogeneous non-
linear structures, a quasi-1D effective potential picture was
analytically extracted, capturing also their concrete parametric
regions of existence. Specifically, by considering chemical
potential variations it was possible to infer the presence of
DSSs, bubbles, kinks, and droplets. These configurations and
their intervals of existence were also confirmed by solving
numerically the 2D eGPE.

The stability properties of the aforementioned configura-
tions were examined utilizing a generalized Bogoliubov—de
Gennes analysis. The latter reveals that DSSs and bubbles
are generically unstable solutions throughout their domain of
existence. Remarkably, kink states that exist only for a specific
value of the chemical potential are found to be stable solutions
against the presence of transverse modes. This important find-
ing certainly merits further investigation since it constitutes, to
the best of our knowledge, a prototypical dynamically stable
one-dimensional topological state that persists upon its expo-
sure to transverse excitations. Additionally and in line with
earlier findings [41], the spectral stability of 2D droplets is
verified.

Furthermore, in order to shed light on the destabiliza-
tion of the DSS that is found to be enhanced for positive
chemical potentials as compared to negative ones, we devel-
oped a variational approach. Analytically approximating the
stability features of these structures allowed for a direct com-
parison with the relevant numerically obtained 2D spectra.
Such a comparison revealed an adequate agreement between
the variational and the numerical BdG predictions in terms
of estimating the actual slopes of the underlying instability
growth rates at small transverse wave numbers, i.e., at the
long-wavelength limit. However, for increasing wave number
the variational approach fails to capture the dispersion rela-
tion, an outcome that is corroborated by the BdG spectrum.
The latter topic remains an interesting open avenue for future
investigation.

Moreover, in all cases the dynamical evolution of the en-
suing waveforms served as a confirmation of the identified
stability properties, revealing among others, the emergence
of snake instability for a DSS. This instability leads to the

production of alternating charge multivortex patterns within
the system. Interestingly, a rather intriguing destabilization
of bubbles occurs. In this context the underlying instability
entails the structural deformation of bubbles through an ini-
tial core expansion and associated production of a pair of
gray solitonic structures accompanied by density wave rip-
ples, which suggest the spontaneous generation of radially
symmetric shock waves. The gray solitary waves are them-
selves subject to transverse breakup and the radial or nearly
radial shock wave patterns are also a topic worthy of further
consideration in future studies.

Furthermore, we investigated the existence of stationary
droplet-DSS states with the droplet background being either
Gaussian or flat top. Here, due to the energy and amplitude
difference of the two entities, identification of such com-
posite configurations did not come to fruition. Nevertheless,
the imprinting of a phase jump within a droplet enabled the
observation of such phase pattern-segregated droplets. The
dynamics of the resulting structures unveiled the breakup of
the original droplet into two fragments being separated by a
continuously expanding region preserving the imposed phase
jump. The ensuing structural density deformation was found
to crucially depend on the droplets’ Gaussian or flat-top char-
acter.

There is a multitude of intriguing pathways, based on our
findings, to be pursued in the future. A straightforward one
would be to extract the stability conditions of moving soliton
configurations in two dimensions. This can be achieved by
extending the above-discussed variational method and com-
paring with the predictions of the BAdG analysis as it was
demonstrated in the repulsive gas phase [61]. An additional
technical (yet nontrivial) problem is that of developing a
variational formulation that accounts for the transverse direc-
tion without any additional assumptions (such as herein or in
Ref. [61] the assumption of practically constant background).
Moreover, it would be worthwhile to develop a particle picture
as it was recently done in the relevant 1D setup [58], in
order to study the interactions of at least two dark soliton
stripes. Another central direction concerns the further inves-
tigation of the remarkable stability of the kink structure in
similar higher-dimensional (2D, but also 3D) models from
both atomic and optical physics settings featuring examples
of competing nonlinearities. Additionally, the study of the sta-
bility properties of more complex nonlinear structures, such
as dark-bright and vortex-bright solitons, that may appear in
heteronuclear genuine two-component droplet settings is an
interesting direction. Finally, the observation of density rip-
ples during bubble destabilization motivates the exploration
of the dynamical generation and properties of dispersive shock
waves in the 2D droplet settings. Here, it would be important
to realize for instance oblique [84] dispersive shocks which
are known to occur in the absence of quantum fluctuations.
Such studies are presently under consideration and will be
reported in future publications.
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