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We propose an «-separable graph Hamiltonian network («¢-SGHN) that reveals complex interaction patterns
between particles in lattice systems. Utilizing trajectory data, «-SGHN infers potential interactions without
prior knowledge about particle coupling, overcoming the limitations of traditional graph neural networks that
require predefined links. Furthermore, «-SGHN preserves all conservation laws during trajectory prediction.
Experimental results demonstrate that our model, incorporating structural information, outperforms baseline
models based on conventional neural networks in predicting lattice systems. We anticipate that the results
presented will be applicable beyond the specific on-site and intersite interaction lattices studied, including the

Frenkel-Kontorova model, the rotator lattice, and the Toda lattice.
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I. INTRODUCTION

The impact of lattice systems on the discoveries and tech-
nological progress of condensed matter physics, materials
science, biochemistry, medicine, and other scientific fields
is profound. For example, Fermi, Pasta, Ulam, and Tsingou
attempted to study the thermalization process through a pro-
totypical nonlinear lattice [1]. The Frenkel-Kontorova system
is commonly used to study heat conduction theory [2], DNA
dynamics [3-6], lattice defects/dislocations and crowdions
[3,7,8], hydrogen-bonded chains [9], and so forth; see also
[10]. The ¢* system describes possible domain walls in early
universe models in cosmology [11], studies structural phase
transitions in the displacive limit in condensed matter physics
[12-14], serves as a phenomenological model for nonlinear
excitations with exotic spin-charge relations [15,16], and so
forth; a recent recap of the relevant model and applications
can be found in [17].

These types of lattice systems can be generally described
by the Hamiltonian

d(a)_y(), j_(O I M
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ap
where q = (¢, ...,qy) and p = (py, ..., py) are the gener-
alized positions and momenta, respectively, of the system of

pointlike particles; N is the number of pointlike particles in
the system. I represents the identity matrix. Here, H = T +V
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denotes the Hamiltonian, with kinetic energy

N N p2
T(p) = ;T(m = ;ﬁ

and potential

N
Vig) =) (VO (g1 — ) + VP (g)- )

i=1

The intersite potential V1) encapsulates particle interactions
within the nearest neighbor, while the on-site potential V®
accounts for potential interactions with an external environ-
ment, such as a substrate. Additionally, m denotes the mass of
the pointlike particle, and we set m = 1 for simplicity.

Finding solutions to the differential equations based only
on the observed trajectories is an important task in scientific
fields. The emergence of artificial neural networks represents
a revolutionary development in the analysis and interpreta-
tion of complex data. Energy interactions between paired
or multiple particles in lattice systems can lead to inter-
esting phenomena in the system’s behavior, such as phase
transitions, phonon vibrations, magnetic behavior, and soli-
ton formation [10,17,18]. In the specific context of lattice
systems, machine learning methods, especially deep learn-
ing, have made significant progress in describing governing
equations, identifying phase transitions, and constructing pre-
dictive models [19-26]. Although they are useful, the methods
relying on conventional neural networks still present chal-
lenges. Some require knowledge or understanding of system
equations [24,25], while others necessitate the creation of an
overcomplete operator library [19,21,22].

On the other hand, data that exhibit relationships between
elements can be modeled as a graph. Elements are named

©2025 American Physical Society
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TABLE I. Network performance comparison. «-SGHN has the least input conditions and the most widely applicable prediction content.

Additional information required

Interaction prediction

Applicable scenaries

MLP
HNN
HOGN Particle interaction relationship
HGNN Particle interaction relationship

«-SGHN (ours)

No General

No Widely applicable

No Specific (e.g., even symmetry system)
No Specific (e.g., even symmetry system)
Yes Widely applicable

graph nodes, and relationships are represented by edges. A
graph can naturally serve as a comprehensive representation
of a lattice system, where the particles of the system corre-
spond to the nodes of the graph, and the interactions between
particles are represented as edges of the graph. Therefore,
graph neural networks (GNNs) have become a new field for
studying lattice systems. When dealing with lattice systems
involving many degrees of freedom and complex interactions,
compared to conventional neural networks, GNNs exhibit
a proficient ability to accurately identify key information
around nodes, which ultimately improves the accuracy of the
model. The outstanding performance of graph neural net-
works in some classic systems can be observed, for example,
in the works cited in [27,28]. An important advantage of
graph neural networks is that they encode the interaction re-
lationships of the system (i.e., the underlying structure of the
system). In some special cases, lattice systems such as grav-
itationally interacting celestial bodies can be modeled using
fully connected graphs, due to interactions existing between
all particles. The interactions in most lattice problems are
complex and diverse, and may exhibit irregularities [29] or
even demonstrate long-range interactions [30,31], and can-
not be observed in advance. This complexity makes visual
recognition of which particles interact (i.e., between which a
link exists) challenging. Therefore, although methods based
on graph neural networks are effective, they require more
input information, especially the linking of system particles,
compared to traditional neural networks.

To address these challenges, based on the previous work
of a subgroup of the present authors [32], we propose the
«-separable graph Hamiltonian network (e¢-SGHN) model,
which can extract the underlying particle link (associated
with each particle’s interactions) of the lattice system based
solely on its motion trajectory facilitating subsequent system
predictions and other applications. To our knowledge, this is a
prototypical example that can provide the underlying particle
link of a lattice Hamiltonian system solely based on its trajec-
tories. Table I compares our method with established models
such as multilayer perceptrons (MLPs) [33] and Hamiltonian
neural networks (HNNs) [34], Hamiltonian ODE graph net-
works (HOGNSs) [27], and Hamiltonian graph neural networks
(HGNN5s) [28]. Among them, HOGNs and HGNNs are based
on graph methods. Our method only requires trajectory data,
providing the most widely applicable predictive content. See
Sec. III for specific comparison. Considering that physics-
informed neural networks (PINNs) and symbolic regression
methods require prior knowledge of the governing equations,
they are not included in our comparison.

Our model is divided into two parts. The first part focuses
on learning the underlying particle interactions (links) in the

system, while the second part utilizes this graph structure
(including link information) for more accurate prediction,
as shown in Fig. 1. In addition, we investigate whether the
particle behavior predicted by «-SGHN preserves the sys-
tem’s conservation laws. The experiment shows that due
to the embedding of particle interaction information in the
GNN, it outperforms the baseline model based on conven-
tional neural networks. In the Appendix, we also explore the
predictive effect of «-SGHN on long-range interactions and
high-dimensional system structures.

The main contributions of our article are as follows:

(1) Under the assumption of only knowing the trajectory of
the system, our model learns the underlying interactions of the
system particles. This overcomes the limitation of GNN ap-
plications, which require typically prior knowledge of graph
structure information.

(2) Our model ensures maintenance of the system’s conser-
vation laws during trajectory prediction.

(3) We provide an explanation of why we anticipate that
graph neural network models will generally outperform tra-
ditional neural network models when dealing with lattice
systems.

(4) We provide a method for modeling directed graphs in
learning non-even symmetric potential energy systems.

Our presentation is structured as follows. In Sec. I we
present our methodology. Our numerical experiments are ana-
lyzed in detail in Sec. III. In Sec. IV we make a brief excursion
to the intriguing realm of complete integrability (in lattices).
Finally, in Sec. V we summarize our findings and present our
conclusions, as well as some interesting directions for further
work.

II. METHOD

Consider a dataset with N elements. When there are some
relationships between these elements, it can be represented
as a graph G = (V, &) with ¥V = {v; - - - vy} being the set of
nodes and & = {e;;} the set of edges between nodes. Each
data element corresponds to node v;, and each edge e¢; ; rep-
resents a directed edge originating from node v; and ending
at node v; reflecting the link between v; and v;. Obviously,
the lattice system can be modeled as a graph, with particles
corresponding to nodes and the interactions between particles
implying the existence of edges between them. In this work,
we are interested in the fact that we only have trajectory data
(q,p"),t=1,...,T, for N lattice particles, and the interac-
tion relationships between particles are unknown.

Our method is based on the previous work of [32], but the
difference lies in that in this work, we can learn the interac-
tion relationship (edge link) between particles in the lattice
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FIG. 1. The architecture of «-SGHN.

system. Since we do not have any prior knowledge about the
particle interaction relationship in lattice systems, we model
the trajectory data observed at each time as a directed fully
connected graph without self-loops, denoted as G = (V, £);
see Fig. 1(a). We first assume that each particle has inter-
actions with other particles. Then, by learning the o-SGHN
model, the true interaction relationships are preserved to ob-
tain the underlying structure of the system which is denoted
as ga =, ga)~

Our method consists of two parts. The first part is to adjust
the weight of the edge in the fully connected graph through
trajectory data to extract the underlying interaction between
particles. The second part utilizes the learned underlying inter-
actions for more accurate and effective trajectory prediction.
Next, we provide a detailed introduction to our model.

A. Part 1: Structural learning

Our network model consists of two components, one learn-
ing the potential energy at each sampling time named V net,
and the other learning the kinetic energy at each sampling time
named 7 net.

V net. The V net is the parametrization of the potential
energy, Vy, within the lattice system. In the graph G, for each
sample time ¢, each node and edge is tied to a node feature
vector, hgo), and an edge feature vector, e; ;, respectively. To
kickstart the process, the position g; is utilized as the initial
feature of node v; within the lattice graph, thereby defining
hfo) = g;. In an adaptive fashion, edge features are learned
through neural networks as follows:

e = Folqi — q))- 3)

Here, F, is a function approximated by neural networks to
enhance the expression of edge features.

Further, we prescribe the K-layer node update and edge
update operations as follows:

h§k+1) — Z o j]:'(k) (e(k))’ (4)

2JY nu \7i,j
vjeNg (i)

S
el =1/8) (el + FEV (P onl)). )
s=1

In these expressions, F*) and F9, with 0 <k <K — 1,
are node update and edge update functions approximated by
neural networks, respectively. k represents the kth layer of
the graph neural network and the maximum number of layers
is K. Ng(i) indicates the neighbor of v;, and © signifies the
Hadamard product used to assess node interactions. & = {«; ;}
is the key to learning graph structure in the «-SGHN model. It
is a parameter matrix initialized by a neural network that acts
on each edge and adaptively labels the strength of the edges
through the training process.

Subsequently, we amalgamate the node and edge informa-
tion to depict the final node features:

a; = .Fa(]:vl (hz@)) I ]:vz (hz('K)) I Xi)’ (6)
where
X; = Z Oli,j-/__.v_z (el(jK)) (7)
U/E./\/'g(i)

Fu, 1s used to enhance the expression of initial node features
in the network, F,, is used to enhance the expression of node
features in the last layer of the network, and F,, is used to
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enhance the expression of edge features in the last layer of the
network. F, is used to aggregate these features. They are all
functions approximated by neural networks. || represents the
concatenation operation.

Finally, we use a function approximated by neural net-
works to aggregate the features of all nodes and output a real
number,

V = F,{a;lv; € V), 8

where V € R is the approximate value of potential energy by
the neural network model Vj.

T net. This involves the parametrization of the kinetic
energy, Ty. We define the node feature vector as ﬁ,(,o) = p; for
each time ¢. Then, we use K-layer node update operations as
follows:

b = 7,0 (). ©

Finally, we obtain the kinetic energy of the system by aggre-
gating node features through addition:

7= Z h". (10
v;eV

Loss function. The loss function of the first part is
defined as

Ezﬁpred—i_ycGL’ (11)
where
aTy dq aVy dp
Loed = ||— — — _ = — 12
prod H o, H g arl, 7

This loss component is to make the output of the o-SGHN
approximate the energy of the system. Z—? and % are tar-
gets. Where possible, we use analytic time derivatives as
targets. Otherwise, we calculate finite difference approxima-
tions. Notice that this selection of the loss function assumes
the decomposition of the system’s energy into 7 and Vj,
presupposing the former as being a function of p and the latter
as being a function of q.

The graph learning loss Lg;, is designed to prevent the
model from only recognizing the nearest neighbors, specifi-
cally represented as

Lo = llalZ, (13)

where || - ||F denotes the Frobenius norm of a matrix. y € R
is a hyperparameter that balances the two terms.

Link extraction. By reducing the loss function, if there
is interaction between particles v; and v;, the corresponding
lat; ;| value is relatively large; otherwise, the |a; ;| is set to
zero. According to these rules, we can extract the link re-
lationship of particles in the lattice system. Through linking
relationships, we can get a new directed graph G, = {V, &,}
for more accurate prediction in the next part. We take the
direction with maximum value between |c; ;| and |« ;| as the
direction of the edge.

B. Part 2: Prediction

We repeat part 1 and replace G with G,, where the follow-
ing two formulas in V net need to be modified.

(1) Replace (4) with
(k+1) _ k) (k)
h; = Z }:En)(ei.j)' (14)
v; NG, (i)
(2) Replace (7) with
xi= Y Fulel). (15)
vjeNg, (i)

The loss function of the second part is defined as £ = Lpreq.
Figure 1 shows the architecture of «-SGHN.

After training, in order to obtain the predicted trajectory
(', p"), we integrate neural network models according to

t
@.p)="p")+ / «-SGHNd!, (16)

fo

where (q°, p°) represents any initial value.

III. EXPERIMENT

In this section, we use three test examples: the Frenkel-
Kontorova lattice (one conserved quantity), the rotator lattice
(two conserved quantities), and the Toda lattice (multiple—
i.e., as many as the degrees of freedom—conserved quanti-
ties). To ascertain the effectiveness of our proposed model’s
prediction performance, we conduct experiments comparing
a-SGHN with established network structures such as the
MLP and the HNN. Due to our assumption that the particle
linkage of the system is unknown, i.e., we do not know the
graph structure of the system, the existing graph neural net-
work models cannot serve as our primary baseline model as
they all require knowledge of the exact particle link. But we
also present the results of learning HOGN and HGNN using
fully connected graphs (assuming that there are interactions
between all particles) in Table III. We will verify through
experiments that our graph neural network model o-SGHN
can effectively learn multiple conserved quantities due to
its ability to learn potential particle linkage relationships in
the system, and is superior to conventional neural network
models.

A. Lattice system
1. Frenkel-Kontorova lattice

The Frenkel-Kontorova (FK) model was introduced by
Frenkel and Kontorova as a prototypical way to describe the
structure and dynamics of a crystalline lattice near a disloca-
tion. In solid-state physics, the model is, arguably, one of the
first instances where a two-dimensional bulk defect is repre-
sented by a straightforward one-dimensional chain [35]. The
characteristics of the FK model provide deep physical insights
and significantly simplify the understanding of nonlinear dy-
namics in various problems of solid-state physics, classical
mechanics, and biophysics, among many others [3,10]. Its
Hamiltonian is given by

2 X 42
H=) <% 4 @ —ai)f . W - cos(qi)). a7

i=1
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TABLE II. Piecewise learning rate.

FK Rotator Toda-3 Toda-4 Toda-5
MLP-gelu 1073, 1074, 1073 1073, 1074, 107 1073, 1074, 1073 1073, 1074, 107 1073, 1074, 1073
MLP-silu 1072,5 x 1073, 10~ 1073, 1074, 107 1072,5 x 1073, 10~ 1072,5 x 1073, 10~ 1072,5 x 1073, 10~
MLP-tanh 1073, 1074, 107 1073, 1074, 107 1073, 1074, 107 1073, 1074, 107 1073, 1074, 1073
HNN-gelu 1073, 1074, 1073 1073, 1074, 107 1073, 1074, 1073 1073,107%, 1073 1073,1074, 107
HNN-silu 1072,5 x 1073, 10~ 1073,1074, 107 1072,5 x 1073, 10~ 1072,5 x 1073, 10~ 1072,5 x 1073, 10~
HNN-tanh 1073, 1074, 107 1073, 1074, 1073 1073, 1074, 1073 1073, 1074, 1073 1073, 1074, 1073
o-SGHN 1073, 1074, 1073 1073, 1074, 1073 1073, 1074, 1073 1073, 1074, 1073 1073,1074, 107

2. Rotator lattice

The rotator lattice is, arguably, one of the simplest ex-
amples of a classical spin 1D model with nearest-neighbor
interactions, and has a potential function governed by 1 —
cos(gi+1 — ¢q;)- This model can also be viewed as an array of
N-coupled pendulums. As an example of a chaotic dynamical
system, when it is reduced to a harmonic chain and free
rotator, it is integrable in both small and high energy limits
and has been widely studied [36].

The Hamiltonian for the coupled rotator lattice dynamics
amended with harmonic interactions reads [37]

H_i p—%+M+l—cos(< —an ). 18
— o 2 2 6]z+1 Qt .

It has two conserved quantities of energy and momentum,
with the latter being equal to

N N
P= ZP:‘ = Z%-
i—1 i—1

3. Toda lattice

The Toda lattice model [38—41] has garnered significant
attention in the physical sciences as a paradigm of a nonlin-
ear lattice system where specific (solitonic) wave forms are
known to propagate unaltered in shape, a property rigorously
demonstrated in the literature [42]. The system’s dynamics are

governed by the Hamiltonian

N 2
H=Y" <% +exp(gi — 6]i+1)>~ (19)

i=1

This system is known to feature N constants of motion [43].
Under periodic boundary conditions (BCs), i.e., g;+ny = ¢g; and
pi+n = pi, the 2N phase-space coordinates can be used to
define a symmetric, periodic tridiagonal N x N matrix (time
dependent),

D1 vy 0 e Uy
v, pp vz -0
L=10 v ps -+ 0]
w0 UN-1 PN
where v; = —e@~4+)/2_ All the quantities
N

C, = Z A =TrL"
i=1
then represent the constants of the motion; see [43] for details.
The first two are familiar and physically meaningful; namely,
they represent the system’s momentum and energy.

B. Dataset acquisition

For the FK and rotator lattices, we set N = 32. For the Toda
lattice, we set N = 3, 4, and 5 to verify the conservation laws

TABLE III. The test results for FK system with N = 32. The best results are emphasized by bold font.

Test loss

Trajectoryygg

Energyysg

MLP-1-100-silu
MLP-1-100-tanh
MLP-1-50-gelu
MLP-2-100-gelu
MLP-1-200-gelu
MLP-1-100-gelu
HNN-1-100-silu
HNN-1-100-tanh
HNN-1-50-gelu
HNN-2-100-gelu
HNN-1-200-gelu
HNN-1-100-gelu

a-SGHN (ours)

3.70 x 1073 £ 1.20 x 1073
2.36 x 1073 £8.52 x 1074
331 x 1072 4+5.95 x 1073
3.58 x 1073 £9.57 x 10~*
1.89 x 1072 £ 4.72 x 1073
2.06 x 1073 £ 6.09 x 1074

1.91 x 103+ 573 x 107*
1.66 x 1073 £ 6.79 x 1074
3.68 x 1072 £ 6.57 x 1073
9.06 x 107+ £2.90 x 107*
1.43 x 1073 4+ 3.99 x 1074
7.44 x 1074 +£2.62 x 10~

4.26 x 1077 £ 1.22 x 10~¢

1.32 x 107! £ 1.43 x 107!
8.81 x 1072 £ 1.04 x 107!
7.91 x 107! +8.00 x 107!
7.30 x 1072 4 7.45 x 1072
6.15 x 107! £ 7.14 x 107!
391 x 1072 £3.72 x 1072

457 x 1072 4£4.27 x 1072
5.06 x 1072 4 5.40 x 1072
7.62 x 107! +9.03 x 107!
1.41 x 1072+ 1.31 x 1072
3.20 x 1072 £ 3.08 x 1072
1.36 x 1072 4 1.29 x 1072

4.85 x 1076 £2.37 x 10~5

1.56 x 10° 4 1.83 x 10°
3.70 x 1071 £3.55 x 107!
9.57 x 10" & 1.90 x 102
4.18 x 1071 £3.61 x 107!
1.70 x 10* £ 2.79 x 10?
1.33 x 107 + 1.17 x 107!

6.76 x 1073 +4.64 x 1073
9.34 x 1073 £ 1.21 x 1072
2.53 x 102 4 5.30 x 102
3.29 x 1073 £2.90 x 1073
4.61 x 1073 +£3.36 x 1073
2.21 x 1073 £ 1.65 x 1073

9.70 x 107 £3.13 x 1076

015309-5



GAO, GENG, KEVREKIDIS, ZHANG, AND ZU

PHYSICAL REVIEW E 111, 015309 (2025)

TABLE IV. The test results for rotator system with N = 32. The best results are emphasized by bold font.

Test loss

Trajectoryygg

Energyysg

MomentumMSE

MLP-1-100-gelu
MLP-1-100-tanh
MLP-1-50-silu
MLP-2-100-silu
MLP-1-200-silu
MLP-1-100-silu
HNN-1-100-silu
HNN-1-100-tanh
HNN-1-50-gelu
HNN-2-100-gelu
HNN-1-200-gelu
HNN-1-100-gelu

1.00 x 1073 4 3.94 x 1074
9.90 x 107* £ 4.67 x 107*
1.36 x 1072 4 3.68 x 1073
1.31 x 1073 +£4.91 x 107*
1.11 x 1072 £2.32 x 1073
6.65 x 1074 4+ 1.94 x 107*

8.61 x 1074 £2.25 x 107*
1.47 x 1073 £ 6.57 x 1074
1.61 x 1072 £ 4.03 x 1073
478 x 1073 £ 1.14 x 1073
4.83 x 1073 £ 1.17 x 1073
8.08 x 107 £2.60 x 10~*

4.71 x 10~° £ 4.26 x 10~°

1.93 x 1072 £ 3.20 x 1072
430 x 1072 £ 6.24 x 1072
6.01 x 107! +5.82 x 107!
1.53 x 1072 £ 2.68 x 1072
2.35x 1071 +£2.72 x 107!
6.14 x 1073 4-8.84 x 1073

1.43 x 1072 4 1.90 x 1072
4.76 x 107° 4 2.94 x 10!
2.63 x 10! & 1.60 x 102
9.38 x 1072 4 1.60 x 107!
1.26 x 107! +2.28 x 107!
1.55 x 1072 £ 1.94 x 1072

1.97 x 1077 £ 3.57 x 1077

7.00 x 1072 4 7.27 x 1072
5.22 x 1072 £ 5.09 x 1072
9.52 x 10" 4 1.57 x 102
7.49 x 1072 4 8.44 x 1072
1.76 x 10' 4+ 1.73 x 10!
3.15x 1072 £2.86 x 1072

2.84 x 1072 4 1.46 x 1072
9.50 x 10* & 4.14 x 10°
7.03 x 105 & 3.07 x 107

1.47 x 107" 4 6.84 x 1072

333 x 1071 £ 1.18 x 107!

1.92 x 1072 £ 1.05 x 1072

1.32 x 1076 £ 4.05 x 10”7

1.03 x 1072 £ 1.03 x 1072
8.28 x 107¢ £9.70 x 10~°
8.06 x 107> £+ 1.41 x 1073
2.56 x 1072 4+ 2.33 x 1072
7.48 x 1075 +£9.21 x 1073
3.95x 1072 £2.58 x 1072

1.17 x 107" 4 3.65 x 1072
1.46 x 10! & 6.35 x 10!
2.74 x 1071 £ 3.79 x 1072
7.25 x 107! +£2.65 x 107!
1.68 x 1070 4 3.58 x 107!
7.38 x 1072 £ 3.26 x 1072

4.25 x 107 £ 8.99 x 107

a-SGHN(ours)

of the system in the cases of 3, 4, and 5 conserved quantities,
respectively. We use the explicit, symplectic Runge-Kutta-
Nystrom algorithms (Sec. 8.5.3 in [44]) with 5 time units and a
time step 0.0025 to find 50 trajectories. The initial conditions
are

qo(@) ~U@©,1), i=1,...,N, (20)

po(i) ~U(O, 1),

where U represents the uniform distribution. Their BCs are
periodic, i.e., ¢iyny = ¢; and p;y = p;. We subsample the
trajectories at a fixed time step of 0.05 as the training set.

We use the same method to generate 20 trajectories as the
test set, where the integration time is three times that of the
training set, i.e., 15 time units.

i=1,...,N, 1)

C. Network model settings

For the baseline model MLP and HNN, we carefully se-
lect the hyperparameters of the model to achieve the best
predictive performance. We start from a layer of 200 hidden
units, continuously adjusting the network width and depth,
and replacing different activation functions tanh, SiLU, and
GELU until the network performance reaches the level we
estimated as optimal. For the «-SGHN model, Eq. (9) rep-
resents the feedforward neural network with 2 hidden layers,
each containing 10 hidden units. Equation (8) denotes the
feedforward neural network with 2 hidden layers, each having
60 hidden units. The neural network parametrization functions
in Egs. (3) to (6) are all represented by the feedforward neural
network, each with 2 hidden layers and 5 units per layer. The
activation functions used in this networks are all SiLU. In
Eq. (6) and Eq. (10), the layers for node and edge updates
are K =1.5§ =2inEq. (4). y = 0.05in Eq. (11).

We adopt a learning rate piecewise constant decay strategy
[45]; see Table II. The piecewise learning rates are adjusted
at 3500 and 5000 epoch points. We record the loss function
during the training process to ensure the steady convergence.
The total epoch for all model training is set to 10 000. The
optimizer is Adam, and the batch size is set to 256. Through
experiments we find that «-SGHN is far superior to the base-
line model’s optimal performance.

D. Test metrics

To evaluate our model in the test set, we log the following
metrics: testing loss, the mean square error (MSE) of the
predicted trajectories, and the MSE of the predicted conserved
quantities in the system.

To determine the predicted conserved quantities and tra-
jectories metric over long time spans, we integrate neural
network models according to (16) by explicit, symplectic
Runge-Kutta-Nystrom algorithms with a time step 0.0025.
(q°, p°) is the initial value in the test set, and the initial
time is set to 0 s. While we are cognizant of the interesting
recent work of [46] which suggests that even such symplectic
integrators can yield adverse (integrability or conservation
law-breaking features), this is only relevant for times much
longer (and time steps much bigger) than considered herein.

The MSE of the predicted trajectories is defined as

N
MSEwy = 3 ((a! — )" + (b — p1)°).

i=1

E. Link extraction

Figure 2(a) illustrates |o; ;|, where the x axis and y axis
represent nodes, and the color indicates the strength of the
interaction between nodes. We can define a hyperparameter
as a threshold to obtain the interaction relationship between
particles from Fig. 2(a). When |«; ;| is less than this threshold,
it indicates that there is no interaction between particles, and
when |o; ;| is greater than this threshold, it indicates that
there is interaction between particles. In this paper, we set
the threshold as %(maxlgi,j@; |Oli,j| + minlgi,jgN |Ol,',j|). To
ensure stability, if at least one of |o; ;| and |} ;| is preserved
by the threshold, we assume that there is an interaction rela-
tionship between i and j. The interaction (link) relationship
obtained based on the threshold is shown in Fig. 2(b). Then,
we apply a directed graph in the network model, where the
direction of the edges is the direction of the |o; ;| preserved
by the threshold. If both |¢; ;| and |« ;| are preserved by the
threshold, we will determine that the edges are directed toward
the nodes with higher (or lower) |o; ;| values, as shown in
Fig. 2(c).
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FIG. 2. (a). The x axis and y axis represent nodes, and the color-coded |o; ;| values. (b) shows the particle link relationship extracted from
(a). Obviously, this relationship satisfies the periodic boundary conditions. (c) is a directed graph constructed through (b), with edge directions

corresponding to the maximum value between |e; ;| and |o; ;.

F. Prediction results

Table III compares the predictive performance of «-SGHN
and baseline models for FK system. We trained the baseline
model to its optimal performance and recorded the effects
of changing the depth, width, and activation function of the
network, which did not further improve the performance of
the baseline model. It is evident that «-SGHN outperforms
the baseline models considered herein in terms of testing
loss, long-term trajectory prediction, and energy conservation
properties. This is because the interior of the lattice system
largely depends on the interactions between particles. Con-
ventional neural networks can only process data for each
particle equivalently, making it difficult to discover interac-
tions between particles. ®-SGHN can effectively predict the
particle interactions within the system and learn the lattice
system more effectively by utilizing the predicted interactions.

It can also be seen from Table IV that the performance of «-
SGHN is still significantly superior to the baseline models we
examined in the case of the rotator lattice. In this case, there
exist two conservation laws and both of them are retrieved
by numerous orders of magnitude better in the present setting
rather than by the MLP or the HNN.

Table V shows the prediction comparison results of the
Toda system with N = 3. Due to the fact that there are only
three particles (in the setting of this table) and the interac-
tions between particles are simple, the results of MLP and
HNN training are not as poor as those of the FK and rotator
systems with N = 32, and are indeed only slightly inferior
to «-SGHN (e.g., lower only by 1 or 2 orders of magnitude
with respect to «-SGHN as concerns the conservation laws).
Compared to the FK and rotator models, when the number of
particles is small, the width of the baseline model is cor-
respondingly reduced to achieve the best effect. And an
increase in the number of particles will greatly weaken the
performance of the baseline model. However, based on graph

models, the number of particles has little effect on the network
model. This strongly suggests the scalability of the current
approach to a larger scale conservative system and its com-
parative advantage in comparison to earlier methodologies.

Table VI shows the predicted comparison results of the
Toda system with N = 4. «-SGHN once again outperforms
the baseline models in terms of test loss and trajectory predic-
tion. This Toda system has four conserved quantities, and, as
can be seen, the baseline models’ predictions for the third and
fourth conserved quantities are progressively getting worse,
while o-SGHN still performs better. This may be because
a-SGHN retrieves the underlying structure of the system,
making predictions for various quantities more stable. In an
interesting outlier, in comparison to what was seen in earlier
tables, for the momentum prediction, the MLP performs the
best, but the corresponding result of «-SGHN is also satisfac-
tory and not too far worse. Overall, however, the comparative
advantage of «-SGHN when one views all the relevant diag-
nostics is demonstrable.

Table VII shows the predicted comparison results of the
Toda system with N = 5. The system contains five conserved
quantities, and it is evident that the baseline model cannot
guarantee the conservation of the relevant quantities. This
issue is especially prominent for the third, fourth, and fifth
conserved quantities. Indeed, here we see a degradation of
MLP and HNN the higher the relevant conservation law.
a-SGHN predicts the interactions between system particles,
making the learning of conserved quantities more stable. By
the way, once again, the momentum conservation law is still
not optimal in the case of the «-SGHN, yet the overall evi-
dence is even more overwhelmingly in favor of our discovery
of the network structure.

Figure 3 shows the evolution of the average true conser-
vation law values and average predicted conservation values
over time for 20 samples. The method used to obtain these
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FIG. 3. The evolution over time of the average true conservation values and the average predicted conservation values of 20 samples. C.Q.
represents conserved quantity.
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TABLE V. The test results for Toda system with N = 3. The best results are emphasized by bold font.

Test loss

Trajectoryysg Energyysg

MLP-1-25-gelu
MLP-1-25-tanh
MLP-1-10-silu
MLP-2-25-silu
MLP-1-50-silu
MLP-1-25-silu

HNN-1-50-gelu
HNN-1-50-tanh
HNN-1-25-silu
HNN-2-50-silu
HNN-1-100-silu
HNN-1-50-silu
a-SGHN(ours)

MLP-1-25-gelu
MLP-1-25-tanh
MLP-1-10-silu
MLP-2-25-silu
MLP-1-50-silu
MLP-1-25-silu
HNN-1-50-gelu
HNN-1-50-tanh
HNN-1-25-silu
HNN-2-50-silu
HNN-1-100-silu
HNN-1-50-silu

2.36 x 1074 £2.93 x 10~*
3.06 x 1077 £9.31 x 1077
1.02 x 107% 4 3.58 x 1076
1.58 x 1077 4 4.04 x 1077
435 x 1077 £ 1.50 x 1076
2.53 x 1077 +4.69 x 1077

1.02 x 107* £ 1.47 x 1074
5.88 x 1076 £7.03 x 107°
8.78 x 1078 +2.42 x 1077
3.04 x 1077 £1.02 x 107°
9.07 x 1072+ 1.79 x 107!
1.02 x 1077 +£2.20 x 1077

7.66 x 10~1° £ 2.53 x 10~°
Momentumysg

3.14 x 1073 £ 5.62 x 1073
3.09 x 1076 £4.35 x 10°°
3.96 x 107° £ 4.40 x 10~°
5.07 x 1071 £ 1.03 x 10~°
1.15 x 1078 £ 1.65 x 1078
2.24 x 107 £ 3.85 x 107°
1.96 x 1073 4+ 3.29 x 1073
4.47 x 1076 £ 8.55 x 1076
1.45 x 1077 £ 1.38 x 1077
2.38 x 1078 £ 4.28 x 1078
1.12 x 107% £ 4.30 x 107°
512 x 1078 +£7.22 x 1078

a-SGHN(ours) 6.39 x 1071 £+ 1.09 x 10710

1.56 x 1073 £ 2.80 x 1073
1.46 x 107 £ 5.97 x 1073
5.57 x 1076 £2.12 x 1073
2.28 x 1076 +9.58 x 1076
1.02 x 107 £ 4.29 x 1073
6.27 x 1077 £2.20 x 107°

8.61 x 107* £ 1.58 x 1073
2.20 x 1076 £ 4.71 x 107°
5.82 x 1078 £ 7.52 x 1078
543 x 1077 £ 8.79 x 10~°
7.30 x 10! 4 3.18 x 107
1.31 x 1078 £ 1.75 x 1078

3.64 x 10711 £3.05 x 10711

3.00 x 1073 £ 1.40 x 1072
2.14 x 1075 £ 8.34 x 1073
1.18 x 1075 £ 4.14 x 1073
6.15 x 1076 4+ 2.95 x 1073
5.25 x 1076 £2.27 x 1073
1.28 x 1076 +1.69 x 1076

2.91 x 1073 £ 1.50 x 1072
6.13 x 107> £ 1.83 x 10~*
1.98 x 1076 £ 7.29 x 1076
8.52 x 107 £ 4.60 x 1073
6.64 x 107! £ 8.55 x 107°
1.14 x 1076 £ 3.57 x 1076

1.25 x 1078 £2.95 x 1073
C3mse

2.04 x 1072 £ 3.85 x 1072
3.32 x 1075 £ 9.64 x 1073
4.05 x 107% £ 1.05 x 1073
4.58 x 1077 £ 1.39 x 1076
4.61 x 1076+ 1.87 x 1073
1.67 x 107% £ 6.62 x 1076
1.23 x 1072 £ 2.06 x 1072
4.72 x 1075 £ 8.61 x 1073
4.89 x 1076 £ 1.52 x 1073
1.71 x 1076 £ 6.57 x 1076
1.11 x 10* + 4.85 x 10*
7.96 x 1077 £2.33 x 107°
3.96 x 10~ £1.70 x 10”7

20 samples can be found in Sec. III B. The baseline model
adopts the network configuration with the best performance.
Please note that the range of the y axis differs between plots.
It can be seen that «-SGHN exhibits the best performance.
The a-SGHN prediction of momentum in Toda with N = 4
appears to have a significant attenuation, but its error variation
is around 1 x 1074, Generally, over the timescales of a few
tens of units considered, it is clear that the «-SGHN has the
weakest fluctuations. Figure 4 shows the evolution of Toda-4's
predicted conservation laws over time when the prediction
time increases by 20 times the training time. It can be seen
that overall, «-SGHN performs better than the baseline model
(when taking into account all the conserved quantities and
their deviation from the original value).

G. Why graph neural networks have advantages
over traditional neural networks

In this section, we provide an intuitive explanation of why
graph neural network—based models are superior to traditional
neural networks. Figure 5 shows a comparison of network
structures for learning energy part between HNN and SGHN.

On the left is an HNN, which is mainly learned by an MLP
denoted as fyyy to learn the Hamiltonian of the system. That
is to say, it uses fynn(q1,.--, 4N, P1s---, PN) tO approxi-
mate H = vazl T(p:)+ vazl V(qi, qn,), wWhere the input is
qi,---,49N, D1, - - - » Pn. From the left panel of Fig. 5, it can
be seen that there is no connection between the input data

and they are connected to the neurons of the next layer of the
network in an identical manner.

Toda-4 t=100s

Energy Momentum
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FIG. 4. The evolution over time of the average true conservation
values and the average predicted conservation values of 20 samples.
C.Q. represents conserved quantity.
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TABLE VI. The test results for Toda system with N = 4. The best results are emphasized by bold font.

Test loss

Trajectoryygg

Energyysg

MLP-2-25-gelu
MLP-2-25-tanh
MLP-2-10-silu
MLP-1-25-silu
MLP-3-25-silu
MLP-2-50-silu
MLP-2-25-silu
HNN-1-25-gelu
HNN-1-25-tanh
HNN-1-10-silu
HNN-2-25-silu
HNN-1-50-silu
HNN-1-25-silu
a-SGHN(ours)

MLP-2-25-gelu
MLP-2-25-tanh
MLP-2-10-silu
MLP-1-25-silu
MLP-3-25-silu
MLP-2-50-silu
MLP-2-25-silu
HNN-1-25-gelu
HNN-1-25-tanh
HNN-1-10-silu
HNN-2-25-silu
HNN-1-50-silu
HNN-1-25-silu

a-SGHN(ours)

1.03 x 107* £ 9.57 x 1073
2.49 x 1075 £ 3.43 x 1073
7.71 x 1076 4+ 1.69 x 1073
5.04 x 1075 £ 5.37 x 107°
3.80 x 1075 £ 6.97 x 1076
544 x 1076 £ 1.11 x 1073
4.34 x 1076 £ 6.36 x 1076

4.56 x 1076 £ 1.05 x 1073
2.32 x 1075 £ 7.00 x 1073
3.95 x 107% 4 8.89 x 107°
3.86 x 1075 £ 1.42 x 1073
2.91 x 1075 £ 9.00 x 1075
1.17 x 107% 4+ 3.36 x 1076

1.96 x 10~° £ 6.09 x 10~°
Momentumysg

4.17 x 1075 £ 8.30 x 1073
3.40 x 1075 4+ 7.44 x 1073
7.29 x 10710 £ 1.83 x 10710
6.88 x 107 £5.02 x 10~°

1.15 x 1071 £ 1.48 x 10710

1.02 x 107° £ 1.08 x 107°
4.59 x 1071 £ 5.68 x 10710

1.77 x 107 £ 1.11 x 107°
7.87 x 1077 £ 7.56 x 1077
5.85 x 1075 £+ 4.47 x 1077
1.29 x 1077 £ 1.18 x 1077
1.19 x 1077 4+ 1.24 x 1077
6.46 x 1078 £ 5.70 x 1078

2.11 x 1078 £ 3.17 x 1078

1.22 x 1073 £ 3.36 x 1073
8.08 x 107* £3.33 x 1073
2.11 x 107* £ 7.35 x 1074
3.92 x 1073 £ 8.15 x 1073
428 x 1075 £ 1.08 x 107*
3.56 x 1075 £ 8.72 x 1073
3.00 x 107 £ 8.03 x 1073

8.85x 107> £3.74 x 10~*
6.83 x 1074 £ 3.38 x 1073
3.68 x 107> £1.02 x 107*
6.23 x 1075 £ 3.15 x 1074
1.76 x 1075 £ 8.77 x 1073
8.98 x 1070 £ 2.66 x 107>

3.41 x 1078 £1.23 x 107
C3nmse

6.78 x 107* £ 7.61 x 107*
2.14 x 107* £ 4.07 x 1074
5.93 x 1075 £9.14 x 1073
9.75 x 1075 £2.27 x 107*
8.02 x 107 £3.19 x 107™*
1.57 x 1074 £ 3.93 x 1074
5.50 x 1075 £ 9.84 x 1073

4.04 x 1075 £6.32 x 1073
6.53 x 1074+ 1.91 x 1073
1.51 x 1074 £ 3.17 x 1074
9.15x 1076 +£2.61 x 1073
1.64 x 107 £ 4.67 x 107>
3.17x107° £1.31 x 107*

1.64 x 1077 £ 2.30 x 107

2.39 x 107* +£ 6.61 x 10~
7.73 x 107> +1.83 x 1074
2.07 x 1075 +£3.87 x 1073
2.00 x 1075 +£3.95 x 10~
447 x 1075 £ 1.69 x 1074
1.31 x 107> £2.99 x 107?
4.00x 1079 +1.33 x 1074

1.15x 1076 & 1.41 x 1076
3.79 x 1075 £ 1.28 x 1073
2.70 x 1076 4 3.43 x 107
5.00 x 1077 4 1.86 x 107
7.46 x 1077 £ 2.66 x 1075
1.95 x 1077 +£4.22 x 1077

1.03 x 1073 £ 1.81 x 1078
Céyise

6.82 x 1072 £ 9.65 x 1072
2.06 x 1072 4+ 4.33 x 1072
1.09 x 1072 £ 2.20 x 1072
1.38 x 1072 £ 3.31 x 1072
1.94 x 1072 4+ 7.53 x 1072
1.11 x 1072 £2.91 x 1072
8.03 x 1073 £ 1.80 x 1072

1.48 x 1073 £ 1.72 x 1073
2.59 x 1072 £ 8.09 x 1072
470 x 1073 £7.58 x 1073
734 x 1074 +£2.70 x 1073
8.54 x 10™* +£2.38 x 1073
7.46 x 1074 +£2.64 x 1073

8.33 x 107* £ 1.30 x 105
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FIG. 5. Comparison of network structures for learning energy part between HNN and SGHN.
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TABLE VII. The test results for Toda system with N = 5. Nan = not a number. The best results are emphasized by bold font.

Test loss

Trajectoryygg

Energyysg

MomentumMSE

MLP-1-50-gelu
MLP-1-50-tanh
MLP-1-25-silu
MLP-2-50-silu
MLP-1-100-silu
MLP-1-50-silu
HNN-1-25-gelu
HNN-1-25-tanh
HNN-1-10-silu
HNN-2-25-silu
HNN-1-50-silu
HNN-1-25-silu
a-SGHN(ours)

MLP-1-50-gelu
MLP-1-50-tanh
MLP-1-25-silu
MLP-2-50-silu
MLP-1-100-silu
MLP-1-50-silu
HNN-1-25-gelu
HNN-1-25-tanh
HNN-1-10-silu
HNN-2-25-silu
HNN-1-50-silu
HNN-1-25-silu
a-SGHN(ours)

1.87 x 1075 £ 2.60 x 1073
3.82 x 1075 £4.72 x 1073
1.23 x 1075 £ 1.14 x 1073
9.59 x 1076 £ 1.13 x 1073
3.29 x 107! £ 1.41 x 107°

6.39 x 107° + 1.60 x 1073
1.81 x 107* £2.00 x 10~*
417 x 1075 £ 8.75 x 1073
7.26 x 1075 £ 1.21 x 10~
525 % 1070+ 1.99 x 1073
6.28 x 107° £ 2.05 x 1073
2.14 x 1076 +5.47 x 107°

2.98 x 10~° £5.19 x 10~
C3mse

193 x 107* £ 1.59 x 1074

534 x 107* £5.24 x 10~

543 x 1075 £7.75 x 107

433 x 107 £6.74 x 1073
Nan

592 x 1075+ 1.11 x 10~

2.71 x 1072+ 3.97 x 1072

3.90 x 107* £ 5.42 x 107*
6.72 x 107* 4+ 1.44 x 1073
2.74 x 1074 £ 1.12 x 1073
6.32 x 1075 £ 1.86 x 10~*
2.97 x 1075 £ 4.69 x 1073

1.13 x 1077 £ 1.64 x 1077

144 x 107 £3.19 x 1074

8.90 x 107* +3.68 x 1073

7.41 x 107> £ 1.59 x 10~*

5.59 x 107 £ 1.25 x 10~
Nan

5.25x 1075 £ 1.25 x 10~*
2.20 x 1073+ 7.00 x 1073
1.77 x 1073 £ 9.10 x 1073
3.18 x 1073 £ 1.36 x 1072
1.26 x 107* £5.90 x 107*
1.06 x 107* £ 5.45 x 1074
3.08 x 1075 £9.12 x 1073

4.14 x 108 £1.79 x 1077
Cdyise

2.52 x 1072 £ 5.80 x 1072

2.96 x 1072 £ 3.24 x 1072

7.96 x 1073 £1.04 x 1072

1.68 x 1072 £5.20 x 1072
Nan

6.62 x 1073 £ 1.33 x 1072

1.29 x 1079+ 2.32 x 107°

3.11 x 1072 £ 6.44 x 1072
4.28 x 1072 4+ 9.68 x 1072
2.14 x 1072 £ 8.97 x 1072
3.20 x 1073 £ 8.26 x 1073
1.27 x 1073 £ 2.06 x 1073

591 x 107¢ £ 9.53 x 10~¢

938 x 107> £2.75 x 10~

6.44 x 107> £ 7.88 x 107>

1.74 x 107> £ 2.06 x 1073

523 x 1072 £1.91 x 107
Nan

2.69 x 1075 £ 4.05 x 1073
1.73 x 1073 £ 3.07 x 1073
1.74 x 1075 £ 2.85 x 1073
2.32 x 1075 £ 5.05 x 1073
9.85 x 1077 4+ 3.43 x 107°
1.32 x 107 £ 4.32 x 107¢
1.07 x 1076 £ 1.53 x 107°

7.53 x 10~° £1.19 x 1078
CSmse

1.92 x 107" £2.38 x 107!

3.84 x 1071 +3.95 x 107!

7.48 x 1072 £1.24 x 107!

8.22 x 1072+ 1.68 x 107!
Nan

5.78 x 1072 £ 1.05 x 107!

1.66 x 10" +2.78 x 10!

4.78 x 107! £ 8.33 x 107!
6.94 x 107! 4+ 1.65 x 1070
2.96 x 107! £ 1.21 x 1070
6.14 x 1072+ 1.73 x 107!
1.96 x 1072 4 3.07 x 1072

7.99 x 1075 £ 1.22 x 1074

242 x 107 4+ 2.71 x 1073

6.31 x 1073 4+ 5.59 x 1073

232 x 1078 + 2.80 x 1078

5.35x10~° £ 5.95 x 10~°
Nan

1.09 x 1078 &+ 8.26 x 10~°
416 x 1073 £+ 5.77 x 1073
1.72 x 1075 £ 2.22 x 1073
3.67 x 1075 £ 2.80 x 1076
415 x 1077 £ 3.16 x 1077
2.15x 1077 £ 1.57 x 1077
1.36 x 107 &+ 9.82 x 107’

1.25x 1078 £+ 1.81 x 1078

On the right is the «-SGHN part 2. It can be seen that
the input data are first assigned to the system graph struc-
ture learned in the first part (the graph structure encodes
the interaction relationships between particles in the system).
Subsequently, the information of the nodes and edges is ag-
gregated through MLPs placed on the nodes and edges. In
other words, «-SGHN has a deep understanding of the interac-
tion information within the system compared to HNN, which
makes it more effective.

H. Comparison with graph neural networks

In this section, we will compare our method with the
two graph neural network methods Hamiltonian ODE graph
network (HOGN) [27] and Hamiltonian graph neural network
(HGNN) [28], and the parameter settings of the graph neural
network model are the same as those in [28]. We define the
initial conditions as follows:

(i) = Ausi (i—Dm
= A;sin | ——— ),
qo(t N_1
i=1,...,N,

(22)

po(i) =0,

where A; ~ U(0, 1). Under the same input conditions, i.e.,
without knowing the links of the particles, a fully connected
graph is used like «-SGHN (assuming that particles all have
interactions between them), and the test results are shown in
Table VIII. It can be seen that other graph-based methods

(23)

cannot work without knowing the particle links within the sys-
tem (i.e., the particle interactions). Our method works because
it can predict the particle links of the system, uncovering the
matrix of the interparticle interactions. In the case of known
lattice particles links, the accuracy of HOGN and HGNN
cannot support learning systems with non-even symmetric
potential energy; see Table IX.

IV. THE RELATIONSHIP BETWEEN THE COMPLETE
INTEGRABILITY OF A SYSTEM AND THE LEARNING
PERFORMANCE OF NEURAL NETWORKS

In this section, we explore the impact of the system’s
conservation laws on the predictive performance of neural
network models. We construct a hybrid system of FK and
Toda (FK-Toda), as shown here:

N 2 N
Pi
H = 27 + 1y exp(qi — giv1)
i=1 i=1

o — )2
+(1_M)<(Qt+12 Qt)

+1—- cos(q,-)). 24)

When p =0, it is an FK system with a conserved quantity,
which is energy. When p = 1, it is a Toda system, completely
integrable, with N conserved quantities. Notice that this is an
interesting dynamical system in its own right, inspired by the
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TABLE VIII. The test results for HGNN, HOGN, and o-SGHN. The best results are emphasized by bold font. The link relationship of the

lattice system is unknown, so a fully connected network is used.

FK system with N = 32

Test loss Trajectoryygg Energy,se Momentumysg
HOGN 3.35 x 1072 £ 5.82 x 1072 1.26 x 107° £ 4.59 x 107° 4.77 x 10° + 1.43 x 10*
HGNN 3.44 x 1072 £ 6.44 x 1073 1.82 x 107" £9.33 x 1072 8.60 x 1072 4+ 1.06 x 107!
«-SGHN 2.46 x 10~° £ 1.61 x 10~° 2.73 x 1078 + 3.67 x 10~8 1.72 x 1073 £ 2.14 x 10~3

Rotator system with N = 32

Test loss Trajectoryygg Energyyse Momentumysg
HOGN 1.90 x 107" £5.23 x 1072 Nan Nan Nan
HGNN 1.43 x 107" £3.04 x 1072 3.02x 107" £1.21 x 107! 8.92 x 107! +8.31 x 107! 2.38 x 10" +7.93 x 107°
«-SGHN 3.90 x 10~° + 1.66 x 10~° 3.93 x 1078 + 5.08 x 108 527 x 108 +£2.13 x 1073 8.07 x 1078 £+ 3.03 x 10~8

Toda system with N = 5

Test loss Trajectoryygg Energy,se Momentumysg
HOGN 3.44 x 1072 £3.11 x 1072 1.89 x 107" £1.94 x 107! 2.92 x 1072 £5.20 x 1072 1.92 x 107" £2.62 x 107!
HGNN 1.37 x 1072 £ 1.01 x 1072 2.00 x 107" £1.84 x 107! 481 x 1073 £5.92 x 1073 6.17 x 1073 £ 8.51 x 1073
«-SGHN 4.80 x 10~° + 6.40 x 10~° 8.61 x 1078 +1.10 x 1077 7.56 x 10710 + 6.83 x 10~1° 1.60 x 10~ £ 1.50 x 10~°

well-known Salerno model in the context of discrete nonlin-
ear Schrodinger equations [47]. The latter has been explored
recently in the vicinity of the integrable limit as concerns
the sensitivity of higher-order conserved quantities [48] and
the “detectability” of a model’s integrable nature. Here, we
explore the predictive performance of the FK-Toda system
and how it changes for the model when u € [0, 1].

For evaluation, we use the mean absolute percentage error
(MAPE), which is defined as

ZZ

where I:’,, ; and F, ; are the predicted value and the correspond-
ing ground truth at the 7th time for the ith particle.

Figure 6 shows the changes in the predicted MAPE of
trajectory and energy of the network model as p increases
when N = 5. To display this clearly, the y axis uses a semilog
scale. It can be seen that the MAPE of «-SGHN has always
been the lowest. As p increases, the system becomes more
complex and the predictive performance may decrease. How-
ever, when p approaches 1, the predictive performance of the
model improves. When u = 1, we retrieve the completely
integrable model, and there we can see how the a-SGHN
predictions visibly capture the integrable structure; we ob-
serve similar MAPE trends for HNN and MLP. That is to say,

Fll_ ,i

MAPE = , (25)

when complex systems approach integrability, the predictive
performance of the model will improve, and when the system
is completely integrable, the predictive performance of the
model will reach its best. This is an interesting feature worth
exploring further in the future (e.g., its potential validity in
other settings).

To avoid the above conclusion being an exception, we also
constructed in the same spirit a hybrid system of the Fermi-
Pasta-Ulam-Tsingou [1,49,50] and Toda (FPUT-Toda):

N 2 N
= Z%’ +MZCXP(611' = qi+1)
i=1

i=1

R%
+ (1 _ M)((QHIZ ) + (Qz+16 Qt) > (26)

When i = 0, it is an FPUT system with two conserved quan-
tities, which are energy and momentum. When p = 1, itis a
Toda system, completely integrable, with N conserved quan-
tities.

Figure 7 shows the results of the FPUT-Toda system test-
ing. The MAPE of «-SGHN has always been the lowest.
When the system is fully integrable, i.e., u = 1, the perfor-
mance of the three neural network models becomes optimal.
Overall, our results indicate that neural networks have better

TABLE IX. In the case of known lattice system links, HOGN and HNN cannot learn systems with non-even symmetric potential energy.

Toda system with N =5

Test loss

Trajectoryygg

Energyysg Momentumysg

HOGN with graph  2.42 x 103 £ 2.66 x 103
HGNN with graph  2.62 x 1073 £2.93 x 1073
a-SGHN 4.80 x 10~° £ 6.40 x 10~°

1.20 x 1072 £ 1.62 x 1072
5.30 x 1073 £ 7.25 x 1073
8.61 x 10 £1.10 x 1077

2.67 x 1073 £2.45 x 1073
1.88 x 1074 +2.90 x 107*
1.06 x 10~ £ 1.50 x 10~°

2.61 x 1073 £ 3.78 x 1073
1.97 x 1073 £ 3.35 x 1073
7.56 x 1071 £+ 6.83 x 10710
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FIG. 6. The mean of MAPE of 20 test samples when p changes from O to 1 for FK-Toda system with N = 5. HNN has a hidden layer with
25 units per layer, while MLP has a hidden layer with 50 units per layer. The activation functions are all SiLU. In order to display this clearly,

the y axis uses semilog scale.

performance in modeling fully integrable systems, as also
discussed above.

V. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we introduced our model o-SGHN for study-
ing lattice systems. First, it can capture the interactions
between particles in complex, strongly nonlinear Hamiltonian
lattice systems with multiple degrees of freedom. Second,
a-SGHN can utilize the predicted particle interaction for
further and more accurate system behavior prediction. It
eliminates the limitation of knowing the system structure in
advance when studying lattice systems based on graph neu-
ral networks, and provides a method for inferring particle
interactions based solely on particle trajectories. a-SGHN
can discover particle interactions in lattice systems solely
from their motion trajectories, without requiring any prior
knowledge of structural information. In addition, we also
investigated whether the particle behavior predicted by «-
SGHN preserves the system’s conservation laws. We tested
a variety of systems ranging from one and two conserved
quantities, to controllably many conserved quantities and
ultimately to (in the case of as many as the degrees of free-
dom, the scenario of) complete integrability. The experimental

results show that the trajectory predicted by «-SGHN
preserves all the conserved variables of the system, and
generically features a performance that is far superior to
the baseline model, although we did find isolated exceptions
of other networks performing better (e.g., the momentum
conservation in some of the Toda lattice examples). Never-
theless, overall, the performance of ¢-SGHN was found to
be considerably superior to that of the baseline models to
which it was compared herein, lending considerable promise
to it for future applications. This may be due to the graph
structure in «-SGHN implying information about particle
interactions.

These findings seem to suggest the relevance of extending
considerations of the «-SGHN approach to a variety of other
models, including ones with beyond-nearest-neighbor inter-
actions and even ones associated with long-range interactions
and the related fractional derivatives, a number of examples
of which have been recently explored in [51]. This may be
quite useful in not only discovering such models and recon-
structing their trajectories, but also toward examining their
potential conservation laws and exploring their integrability,
as was done herein in a range of benchmark cases. Such
studies are currently in progress and will be reported in future
publications.
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FIG. 7. The mean of MAPE of 20 test samples when p changes from O to 1 for FPU-Toda system with N = 5. HNN has a hidden layer
with 25 units per layer, while MLP has a hidden layer with 50 units per layer. The activation functions are all SiLU.
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TABLE X. The test results for a system with multiple beyond-nearest-neighbor interactions, where N = 32. The best results are emphasized

by bold font.

Test loss

Trajectoryygg

Energyysg

MLP-1-100-silu
MLP-1-100-tanh
MLP-1-50-gelu
MLP-2-100-gelu
MLP-1-200-gelu
MLP-1-100-gelu
HNN-1-100-silu
HNN-1-100-tanh
HNN-1-50-gelu
HNN-2-100-gelu
HNN-1-200-gelu
HNN-1-100-gelu
a-SGHN(ours)

1.83 x 10724+ 7.18 x 1073
3.49 x 1072 £ 1.47 x 1072
1.28 x 107! 4 3.78 x 1072
2.45 x 1072+ 8.77 x 1073
7.20 x 1072 4 1.99 x 1072
1.96 x 1072 4 8.07 x 1073
1.63 x 10724+ 5.49 x 1073
1.83 x 1072 £ 1.11 x 1072
1.23 x 107! £ 3.79 x 1072
8.58 x 1073 +£2.71 x 1073
9.67 x 1073 4 3.05 x 1073
6.07 x 107> £ 1.74 x 1073
1.19 x 1077 £ 9.34 x 1078

5.66 x 1071 £ 1.08 x 107°
1.26 x 107+ 1.18 x 107°
3.68 x 10! 4 4.99 x 10!
7.89 x 107! £9.77 x 107!
8.14 x 1071 £8.74 x 107!
3.75 x 1071 £ 4.43 x 107!
3.49 x 1071 £2.93 x 107!
4.13 x 107! 4-3.88 x 107!
9.27 x 10! & 1.05 x 102
1.20 x 107! +1.32 x 107!
1.75 x 107! £ 1.77 x 107!
8.89 x 1072 £9.10 x 1072
5.52 x 1077 £5.89 x 10~/

3.18 x 10* £ 1.07 x 10°
1.27 x 10* + 1.27 x 10?
9.88 x 10° 4 2.46 x 109
1.01 x 10* + 1.61 x 10?
1.78 x 10* 4 1.88 x 107
1.24 x 10" £ 1.34 x 10!
7.36 x 1072+ 4.54 x 1072
7.77 x 1072 4 4.56 x 1072
5.08 x 10% 4 9.09 x 109
3.57 x 1072 £ 2.50 x 1072
3.31 x 1072 £2.46 x 1072
2.07 x 1072 £ 1.26 x 1072
1.81 x 1076 £ 5.98 x 107’
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APPENDIX: SUPPLEMENTARY EXPERIMENT

1. Supplementary experiment on the system
with long-range interaction

To further validate the effectiveness and generality of our
method, we construct an irregular lattice system with multiple
beyond-nearest-neighbor interactions, whose Hamiltonian is
as follows: H =32, (39} + 347 + jaf + 5(gi = g1 +
1(gi — qi+3)* + 2@ — qivs)* + 3@ — gD + $(q17 —
g30)* + %(qn — q30)*. In this example, each particle interacts
with its Ist, 3rd, 5th, and 7th order neighbors, and the
30th particle also interacts with the 17th and 11th particles.

|cij|

0.040
0.035
0.030
0.025
0.020
0.015
0.010

0.005

0.000

123456 78 91011121314151617181920212223242526272829303132

Figure 8 shows the structure matrix learned by «-SGHN and
the system particle interaction relationships inferred from the
structure matrix, indicating that our method correctly captures
the interaction relationships of the system.

The second step of training our model is to approximate the
differential control equation of the unknown system. By inte-
grating the trained model, we can predict the motion trajectory
of the system under any initial conditions. Table X records the
comparison of our model’s predictive ability with the baseline
model, indicating that our method has the best performance.
In addition, the results also show that compared to previous
examples, regardless of whether there is long-range interac-
tion between system particles, the system’s predictive ability
is robust.

2. Supplementary experiment on structural prediction

To explore the universality of «¢-SGHN, we conducted
data analysis on systems with long-range interactions in two
dimensions to see if particle interactions can be accurately
learned.

Link relationship

FIG. 8. Particle interaction learning results for a system with multiple beyond-nearest-neighbor interactions.
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FIG. 9. Left: The x axis and y axis represent nodes, and the color-coded |; ;| values. Right: The particle link relationship is extracted from
the left. It satisfies the periodic boundary conditions.

TABLE XI. Taking the FK system as an example, as the number of particles N increases, the performance of the model changes while the
model parameters remain unchanged.

Energyysg

N =32

N =064

N =132

N =200

MLP-1-100-gelu
HNN-1-100-gelu
«-SGHN

1.33 x 107! £ 1.17 x 107!
2.21 x 1073 £ 1.65 x 1073
9.70 x 1077 £3.13 x 10~¢

2.13 x 10° £ 2.14 x 10?
5.61 x 10* & 3.56 x 10*
1.39 x 1077 £ 1.28 x 1077

Trajectoryysg

7.82 x 10° &+ 1.03 x 10*
1.54 x 10° &+ 2.49 x 10°
8.66 x 1077 £2.39 x 10”7

5.61 x 10* &+ 3.56 x 10*
5.12 x 10° £ 1.11 x 10°
2.43 x 107 £2.54 x 10~¢

MLP-1-100-gelu
HNN-1-100-gelu
a-SGHN

3.91 x 1072 £3.72 x 1072
1.36 x 1072 4 1.29 x 1072
4.85x107¢ £2.37 x 10~5

1.46 x 107+ 1.27 x 107°
2.73 x 1079 £ 1.59 x 1070
1.93 x 1077 %+ 6.91 x 1077

1.75 x 107+ 1.27 x 107
2.91 x 1079 £ 4.58 x 1070
1.70 x 1077 & 2.62 x 1077

2.73 x 1079 £ 1.59 x 107°
2.33x 1079 4+5.95 x 1070
8.24 x 1077 £2.10 x 10~¢
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TABLE XII. For the FK system, the performance of the model with K = 1 and K = 2, where N = 132.

Train loss Test loss Trajectoryygg Energysg
K=1 1.02 x 1078 2,62 x 1078 £2.52 x 1078 1.70 x 1077 £ 2.62 x 1077 8.66 x 1077 £2.39 x 1077
K=2 2.40 x 1078 1.52 x 1077 £ 1.78 x 1077 7.02 x 1077 £ 1.86 x 1076 4.33 x 1076 £ 2.60 x 1076

We consider the Klein-Gordon (KG) lattice system with
long-range interactions (KG-LRI) [52] and the 2D FK system
[53]. The methods for obtaining datasets and predicting trajec-
tory results have been extensively studied in previous work;
see [32]. Here we will only explore the results of structural
learning.

The KG-LRI system is described by

N 2 2 2 2 4
. D; (qi+1 — qi) (Gis2 —ai)” g7  q;
H=) (? +a +b + £+ 7).
i=1

2 2 2 4
(AD)

where a > 0, b > 0. We extend our investigation to the pe-
riodic KG-LRI model, presuming a = b =1 and a total of
N = 32 nodes.

The 2D FK system is described by

N 2 2 2
_ Pij . Giv1j—qij—P) (gi,j+1 — qi,))
H = E (7 +a > +b )

i j=1

— cos(q,-’j)>, (A2)
where a > 0, b > 0, and p denotes the average particle dis-
tance. In our 2D FK model framework, we set a, b, and p to
1. Assuming M = N = 12, this model portrays a square grid
with a total of 144 particles.

In fact, in our model, the edge link is easily learned. We set
the number of epochs to 1200, and the learning rate is reduced
to 1 x 1073 after 4600 epochs. The remaining settings of the

model are unchanged, and remain the same as before.

Figure 9 shows the value of || and the particle interaction
relationship inferred from them. We have displayed partial
particle IDs in the 2D FK system. Obviously, these systems
satisfy the periodic boundary conditions.

3. The influence of particle number on model performance

In this section, we take the FK system as an example to
explore the variation of model performance with the num-
ber of particles while keeping the model parameter settings
unchanged. The parameters of the models are the ones with
the best performance in Table III. The results are shown in
Table XI. Note that the degree of freedom of the system is 2N.
Obviously, as N increases, the performance of the o-SGHN
model remains relatively stable.

4. The influence of the layer of graph neural
networks on model performance

In this section, we investigate the impact of the number
of layers K of graph neural networks on model performance.
Table XII records the performance prediction of the FK sys-
tem for K = 1 and K = 2 when N = 132. Table XIII records
the performance prediction of the rotator system for K = 1
and K = 2 when N = 32. The effect is better for K = 1 than
for K = 2. It can be seen that using only one layer of graph
neural network can effectively learn the features of the system,
and the model performance is robust and not affected by the
number of particles. From the results of training loss and
testing loss, K = 2 shows a slight overfitting phenomenon.

TABLE XIII. For the rotator system, the performance of the model with K = 1 and K = 2, where N = 32.

Train loss Test loss Trajectoryygg Energyysg
K=1 4.78 x 107° 4.71 x 107° £ 4.26 x 10~° 1.97 x 1077 £ 3.57 x 1077 1.32 x 1076 £ 4.05 x 1077
K=2 4.18 x 107 2.09 x 1078 £ 1.11 x 1078 9.52 x 1077 £3.12 x 1076 5.13 x 1075 £ 4.36 x 1073
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