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Accurate prediction of electronic and optical excitations in van der Waals (vdW) materials is
a long-standing challenge for density functional theory. The recently proposed Wannier-localized
optimally-tuned screened range-separated hybrid (WOT-SRSH) functional has proven successful
in non-empirical determination of electronic band gaps and optical absorption spectra for various
covalent and ionic crystals. However, for vdW materials the tuning of the material- and structure-
dependent functional parameters has, until now, only been attained semi-empirically. Here, we
present a non-empirical WOT-SRSH approach applicable to vdW materials, with the optimal func-
tional parameters transferable between monolayer and bulk. We apply this methodology to proto-
typical vdW materials: black phosphrous, moldybdenum disulfide, and hexagonal boron nitride (in
the latter case including zero-point renormalization). We show that the WOT-SRSH approach con-
sistently achieves accuracy levels comparable to experiments and ab initio many-body perturbation
theory (MBPT) calculations for band structures and optical absorption spectra, both on its own
and as an optimal starting point for MBPT calculations.

Van der Waals (vdW) materials [1–7], comprised
of weakly interacting stacks of (quasi-)two-dimensional
(2D) layers, have attracted much interest owing to the
outstanding tunability of their electronic and optical
properties with the number, composition, and orientation
of individual 2D layers. The unique properties of these
materials have also motivated an ongoing effort in ac-
curate prediction of their electronic band structures and
optical absorption spectra [8, 9]. Often this is based on ab
initio many-body perturbation theory (MBPT) [10, 11]
within the framework of the GW method [12] and the
Bethe-Salpeter equation (BSE) [13, 14]. However, there
is significant interest in more readily affordable compu-
tational approaches rooted in density functional theory
(DFT) [15, 16]. Recent methodological developments
within DFT have greatly improved the quantitative accu-
racy of band gap predictions in solids. Notable examples
are Koopmans-compliant functionals [17–22], localized
orbital scaling corrections [23–25], dielectric-dependent
functionals [26–31], and screened range-separated hybrid
(SRSH) functionals [32–37].

Here, we focus on a recently introduced specific class
of SRSH functionals, Wannier-localized optimally-tuned
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(WOT)-SRSH functionals [37–40], because they combine
three advantages: They are non-empirical, with physi-
cal parameters derived directly from the pristine system
[37]; They can be applied to both molecules [41] and
solids [37]; They lend themselves naturally to computa-
tion of optical absorption directly from time-dependent
(TD) DFT [33, 40, 42].

In the SRSH approach, correct asymptotic dielectric
screening is introduced via screened long-range exchange,
while short-range exchange provides a good balance with
dynamic correlation and mitigates self-interaction errors
[32, 42, 43]. The transition between short- and long-
range exchange is governed by a range-separation pa-
rameter. For bulk solids, the fraction of short-range ex-
change and the range-separation parameter have been
successfully determined non-empirically via the Wannier-
localized optimal tuning procedure [37], elaborated be-
low. For vdW materials, however, the need to address
both monolayer and bulk with a consistent set of param-
eters has to date hindered use of the WOT approach.
In prior work, the requisite SRSH parameters were de-
termined semi-empirically by fitting to MBPT-computed
gaps [44, 45], thereby strongly limiting the predictive
power of the method for this important class of mate-
rials.

In this article, we obtain non-empirical SRSH function-
als suitable for vdW materials, entirely from first princi-
ples, via a generalized WOT procedure. Specifically, we
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present an internally self-consistent framework that ex-
ploits an ionization potential (IP) ansatz [17, 37] to deter-
mine optimal parameters of a fully non-empirical SRSH,
for both monolayer and bulk phases of any specific vdW
material. We apply this approach to three representative
vdW materials – black phosphorus (bP), molybdenum
disulfide (MoS2), and hexagonal-boron nitride (h-BN) –
that are prototypical examples of narrow, moderate, and
wide gap semiconductors, respectively. Our calculated
electronic bandstructures and optical absorption spectra
are in excellent agreement with both experimental and
MBPT studies for all materials. Even the gap of mono-
layer h-BN, which has previously been shown to be chal-
lenging for SRSH functionals [44], is now predicted cor-
rectly once zero-point renormalization (ZPR) of the elec-
tronic band gap is properly taken into account. This con-
firms the accuracy of the self-consistent tuning approach
and opens the door to truly predictive use of WOT-SRSH
functionals in, e.g., high-throughput screening and design
of vdW materials [46, 47].

The SRSH functional is based on a decomposition of
the Coulomb interaction, 1/r [48], in the form [49]

1

r
=

α+ β erf(γr)

r
+

1− [α+ β erf(γr)]

r
, (1)

where erf(·) is the error function and α, β, γ are pa-
rameters. The first term of Eq. (1) is treated using ex-
act (Fock) exchange (XX) whereas the second term is
treated using semilocal (SL) DFT exchange. This natu-
rally partitions the exchange interaction into short-range
(SR) and long-range (LR) components, where the XX
fraction is α in the SR and α + β in the LR (with com-
plementary SL exchange, SLx, fractions), and γ is the
range-separation parameter.

To enforce asymptotic screening of the Coulomb re-
pulsion in a three-dimensional (3D) solid (neglecting
anisotropy), we set α + β to 1/ϵ∞, the high-frequency
scalar dielectric constant (obtained as the average of the
diagonal terms of the dielectric tensor) [32, 50]. The cor-
responding non-multiplicative exchange potential, vSRSH

x ,
obtained within generalized Kohn-Sham theory [51–55],
is then given by

vSRSH
x = αvSR

XX+(1−α)vSR
SLx+

1

ϵ∞
vLR
XX+

(
1− 1

ϵ∞

)
vLR
SLx.

(2)
For 2D solids, we set ϵ∞ = 1, as this is the formal exact
asymptotic limit for screening in 2D materials [56–58].
While this is the correct asymptotic limit in all three
directions, anisotropy in the division between short range
and long range is still not accounted for explicitly, but we
show below that this is already sufficient for obtaining
excellent results nonetheless.

While ϵ∞ can be calculated routinely from first princi-
ples [59, 60], α and γ must be determined by other means.
Previously, this has only been accomplished by simulta-
neous fitting to benchmark band gaps of monolayer and
bulk phases [44, 45], an approach denoted henceforth as

semi-empirical (SE) SRSH. Here, we move beyond it by
generalizing the non-empirical WOT scheme,[37–40] pre-
viously used in 3D solids. WOT enforces the IP ansatz
for removal of charge from the maximally localized Wan-
nier function, ϕ, with the highest one-electron expecta-
tion energy, such that for any given value of α we seek γ
that obeys

∆Iγ = Eγ
constr[ϕ](N − 1)− Eγ(N) + ⟨ϕ| Ĥγ

SRSH |ϕ⟩ = 0,
(3)

where Eγ(N) is the total energy of the neutral N -
electron system, Eγ

constr[ϕ](N − 1) is the total energy
(calculated via a constrained minimization procedure
[37]) of the system with one electron subtracted from ϕ,
and ⟨ϕ| Ĥγ

SRSH |ϕ⟩ is the expectation value of the SRSH
Hamiltonian, Ĥγ

SRSH, with respect to the Wannier func-
tion. An example of ϕ, for h-BN, is given in Fig. 1(a)
[Section I of the Supporting Information (SI) contains
the equivalent of Fig. 1 for black phosphorus (bP) and
molybdenum disulfide (MoS2)].

The above-explained WOT procedure is demonstrated
in Fig. 1(b), which shows ∆I(γ) curves for various values
of α, for both bulk (3D ϵ∞) and monolayer (ϵ∞ = 1).
The Figure shows that even over the relatively limited
range of α and γ values depicted, the bulk band gap can
change by ∼1 eV and the monolayer gap can change by
as much as ∼6 eV. This establishes the expected need for
parameter tuning. Enforcing the IP ansatz, the spread
of predicted band gap values is reduced to an insignif-
icant ∼0.1 eV for the bulk, but in the monolayer the
spread in band gap values is reduced to a smaller but
not negligible ∼0.6 eV, which also affects computed op-
tical spectra. Moreover, there are still many α-γ pairs
for bulk or monolayer that satisfy the IP ansatz, and fur-
ther unequivocal choice of α and γ is needed. Therefore
we introduce an additional optimization step, where we
plot curves in the α-γ plane that satisfy the IP ansatz
of Eq. (3), i.e. ∆I = 0, for both bulk and monolayer.
The curves, shown in Fig. 1(c), feature a unique crossing
point, denoted by (α∗, γ∗), which specifies optimal val-
ues that are both non-empirical and transferable between
monolayer and bulk, thereby combining the advantages
of WOT-SRSH for 3D solids with SE-SRSH for 2D ma-
terials, respectively.

We examine the accuracy of the proposed approach
by applying it to bP, MoS2, and h-BN, in both mono-
layer and bulk form - see Section II and III of the SI
for computational details. First, we examine bP and
MoS2, for which SE-SRSH has already produced accu-
rate band structures and optical absorption spectra, al-
beit with empirical parameters [44, 45]. We choose MoS2

because it has been characterized extensively both ex-
perimentally and theoretically [1–7, 74–77]. We choose
bP because its narrow (∼0.3-0.6 eV), strain-sensitive
[23, 78–80] bulk band gap provides a stringent perfor-
mance test. For MoS2, the generalized-gradient approx-
imation of Perdew, Burke, and Ernzerhof (PBE)[81] has
already proven to be a useful starting point for GW and
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TABLE I. GW band gaps based on SE-SRSH (EGW@SE
g ) and WOT-SRSH (EGW@WOT

g ), as well as SE-SRSH (ESE
g ) [44, 45]

and WOT-SRSH band gaps (EWOT
g ) for the materials studied in this article, compared to computational literature band gaps

(Elit.
g ). All band gaps are direct, obtained at the Γ point for black phosphorus and at the K point for MoS2 [61] and h-BN.

Numbers in parentheses correspond to calculations with spin-orbit coupling for MoS2. Numbers in squared parentheses for
h-BN correspond to band gaps after subtraction of a ZPR correction (0.26 eV for bulk, 0.38 for 1L).
ARef. 62, value from GW0. BRef. 63, value from G0W0. CRefs. 46 and 64, values from G0W0. DRef. 65, value from GW0. ERef.
66, value from G0W0. FRef. 67, value from G0W0. GRef. 68, value from G0W0. HRef. 69, value from eigenvalue-self-consistent
GW0.

Material Phase EGW@SE
g [eV] EGW@WOT

g [eV] ESE
g [eV] EWOT

g [eV] Elit.
g [eV]

bP Bulk 0.50 0.47 0.56 0.40 0.58A, 0.3B

1L 2.04 1.98 1.95 1.77 2.00B (2.03C)

MoS2
Bulk 2.12 2.13 2.03 2.11 (2.00D)
1L 2.67 (2.61) 2.54 (2.60) 2.65 (2.55) 2.61 (2.51) 2.47E, (2.78F, 2.53C)

h-BN Bulk 7.36 [7.10] 7.77 [7.51] 6.63 [6.37] 7.78 [7.52] 6.99G

1L 8.26 [7.88] 8.70 [8.32] 7.26 [6.88] 8.51 [8.13] 8.14H

TABLE II. Optical gaps obtained from GW-BSE and TD-SRSH (EGW-BSE
opt ), (ETD-

opt ) based on SE- or WOT-SRSH, compared
to literature reference values (E lit.

opt). The optical band gap is dominated by the Γ point for black phosphorus and by the K
point for MoS2 and h-BN. Numbers in parentheses correspond to the position of the first absorption peak upon inclusion of
spin-orbit coupling. Numbers in squared parentheses correspond to the position of the peaks upon inclusion of ZPR values
(0.26 eV for bulk, 0.38 eV for 1L).
ARef. 63, value from GW-BSE. BRef. 46 and 64, values from GW-BSE. CRef. 65, experimental value. DRef. 70, experimental
value. ERef. 71, experimental value. FRef. 69, value from GW-BSE. GRef. 72, experimental value. HRef. 73, experimental
value.

Material Phase EBSE@SE
opt [eV] EBSE@WOT

opt [eV] ETD-SE
opt [eV] ETD-WOT

opt [eV] Elit.
opt [eV]

bP Bulk 0.39 0.37 0.32 0.26 0.25A

1L 1.44 1.40 1.37 1.28 1.20A (1.45B)

MoS2

Bulk 1.98 1.99 1.94 1.99 (1.88C)

1L 2.09
(A: 2.03, B: 2.20)

2.00
(A: 2.03, B: 2.18)

2.03
(A: 1.94, B: 2.16)

2.06
(A: 1.97, B: 2.18)

2.12D

(2.07B)

h-BN Bulk 6.00 [5.74] 6.25 [5.99] 5.83 [5.57] 6.52 [6.26] 5.99E

1L 5.96 [5.58] 6.22 [5.84] 5.94 [5.56] 6.57 [6.19] 5.95F, 6.03G, 6.3H

for determining SE-SRSH parameters [44]. It is therefore
used here as well to calculate the dielectric constant in
the initial step of the WOT-SRSH procedure. For bP,
owing to the narrow bulk band gap, PBE is known to
erroneously predict a metallic ground state [82–84] and
in this case we use the short-range hybrid functional of
Heyd, Scuseria, and Ernzerhof (HSE)[85, 86] instead of
PBE [45].

Using the above-described procedure, we obtain op-
timal (α∗, γ∗) pairs of (0.152, 0.027Å−1) and (0.126,
0.030Å−1) for bP and MoS2, respectively (see Section II
of the SI for detailed parameters). These values differ (by
12-16% for α∗ and 24-26% for γ∗) from those obtained
with the semiempirical procedure (see SI),[44, 45] which
is expected given that the IP ansatz is satisfied in one
case (WOT-SRSH) whereas target band gaps are fitted in
the other (SE-SRSH). The band structures obtained from
each method are compared in Figs. 2(a-b) and 3(a-b) for
bP and MoS2, respectively. Remarkably, despite their
different parameters, WOT-SRSH and SE-SRSH produce
bandstructures that are in strikingly good agreement. As
the SE-SRSH band structures were already shown to be

in excellent agreement with GW calculations [44, 45], so
too are our WOT-SRSH results. Quantitatively, corre-
sponding fundamental band gaps, also compared to lit-
erature values, are given in Table I. Once again, the SE-
and WOT-SRSH values agree very well with each other
(maximum deviation of ∼0.18 eV, for bulk MoS2). Even
more importantly, Table I shows that our results compare
very well with reference literature data, i.e., are within
the range of reported band gaps. This establishes the
predictive power of our approach for fundamental band
gaps and band structures.

The calculation of accurate optical absorption spectra
presents an even more stringent test for the predictive
capacity of the SRSH functionals, as a correct descrip-
tion of exciton (de-)localization is needed. Results ob-
tained from time-dependent SRSH (TD-SE-SRSH/TD-
WOT-SRSH) calculations for bulk and monolayer bP and
MoS2 are given in Figs. 2(c-d) and 3(c-d), respectively.
Clearly, the spectral lineshapes obtained with either ap-
proach, for both bulk and monolayer are essentially the
same, with very small shifts between the two spectra
(maximal shift of ∼ 0.15 eV, for monolayer bP). Further-
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more, optical gaps, reported in Table II, are in excellent
agreement with literature values. The Table also shows
that for the MoS2 monolayer we can accurately resolve
the A and B spin-orbit split exciton peaks.

To examine further the accuracy of the SRSH func-
tionals, we perform full-frequency, single-shot, G0W0

(henceforth, “GW”) calculations,[87] starting from the
SE-/WOT-SRSH wavefunctions and eigenenergies, fol-
lowed by BSE calculations for optical absorption spec-
tra. The results are also shown in Figs. 2 (c-d) and 3(c-
d), with fundamental (GW) and optical (GW-BSE) gaps
reported in Tables I and II; the dashed vertical lines in
the figures indicate the calculated direct GW quasipar-
ticle gaps. Importantly, the line-shapes obtained from
TDDFT and from GW-BSE are essentially identical and
quantitative shifts between the spectra obtained from ei-
ther methods are within the typical accuracy of either
calculation, i.e., 0.1-0.2 eV. The fact that GW corrections
to WOT-SRSH change the band gap for bulk by ∼0.2 eV
at most, and usually less (as found previously for non-
layered materials [39, 40]), reflects the quantitative ac-
curacy of the WOT-SRSH approach. Thus, WOT-SRSH
is shown to be equally useful in itself or as an optimal
starting point for ab initio many-body perturbation the-
ory [39, 40].

We now turn to h-BN, a wide-gap semiconductor. Par-
ticularly in monolayer form, it has proven challenging to
predict accurately from first principles in general [88] and
using SE-SRSH in particular [44]. Recent work has re-
ported that obtaining accurate quasiparticle gaps (and
subsequent absorption spectra) for monolayer h-BN re-
quires eigenvalue-self-consistent GW0 calculations for a
semilocal functional starting point.[69] We therefore ex-
amine whether the WOT-SRSH method can overcome
these challenges.

Figure 4(a,b) displays optical absorption spectra for
bulk and monolayer h-BN, obtained from TD-SE- and
TD-WOT-SRSH calculations, as well as from GW-BSE
calculations based on SE-/WOT-SRSH ground states as
a starting point. Corresponding fundamental and optical
band gaps are reported in Tables I and II, respectively.
In agreement with Ref. [44], we find that the TD-SE-
SRSH absorption spectra suffer from both qualitative
and quantitative shortcomings, in the form of spurious
satellite peaks and incorrect absorption onsets, respec-
tively. These deficiencies are ameliorated by performing a
GW calculation based on the SE-SRSH ground state and
naively one could deduce that at least for the bulk (Figure
4), quantitative agreement with experiment is obtained,
an issue we return to below. Importantly, spectra based
on WOT-SRSH do not show a spurious line-shape even
in the absence of GW-BSE corrections, thereby resolving
a significant disadvantage of SE-SRSH while removing
empiricism. And once again, spectral shifts upon appli-
cation of GW-BSE from a WOT-SRSH starting point are
small and the lineshapes are essentially the same.

Here, we note that electron-phonon interactions [89,
90] can lead to significant ZPR of electronic band gaps

in materials with light elements, such as the B and N
atoms found in h-BN [88, 91, 92]. To account for this,
we compute ZPR corrections to the fundamental gap of
both bulk and monolayer h-BN using a finite difference
approach [93–95] (see Sections I and II of the SI for de-
tails). We obtain ZPR shifts of 0.26 eV and 0.38 eV for
the bulk and monolayer, respectively. Computed optical
spectra that are shifted by these ZPR values are given
in Figure 4(c,d). For bulk h-BN, inclusion of the ZPR
worsens the agreement between the GW-BSE@SE-SRSH
absorption spectrum and experiment, indicating a partly
fortuitous agreement in the absence of ZPR. For mono-
layer h-BN, GW-BSE@SE-SRSH calculations improves
the spectral lineshape with respect to SE-SRSH, but does
not fully address disagreement with experiment, which is
already evident without ZPR corrections and only wors-
ens upon inclusion of the latter. In contrast, results based
on the WOT-SRSH functional show improvement upon
inclusion of the ZPR.

The above discussion immediately clarifies the origins
of the limitations of the SE-SRSH functional for h-BN
[44], as well as why it is apparent only in this large gap
material. The SE-SRSH was fit to a significantly un-
derestimated fundamental gap (7.26 eV at the K point)
because GW with a local density approximation (LDA)
starting point was used, whereas the WOT-SRSH band
gap is substantially larger (8.13 eV at the K point), con-
sistent with self-consistent GW results [69]. This under-
estimate by SE-SRSH and GW-BSE@PBE was partly
offset by the neglect of ZPR, but errors remained. With
WOT-SRSH, in contrast, the pertinent physical effects
(single-particle excitations, exciton formation, phonon
renormalization) are all accounted for systematically.

In conclusion, we have presented a non-empirical and
internally self-consistent approach to designing screened
range-separated hybrid functionals that can deliver quan-
titatively accurate predictions of electronic and optical
properties of layered van der Waals materials. These
functionals already rival more expensive state-of-the-art
methods such as GW-BSE at reduced computational cost
and, moreover, if so desired can provide excellent start-
ing points for higher-levels of theory. In particular, the
straightforward resolution of the inaccuracies in quasi-
particle and optical gaps for h-BN demonstrates the ro-
bustness of this approach and highlights its potential for
modeling a broad range of 2D/layered semiconductors
and insulators.
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FIG. 1. Demonstration of the non-empirical WOT-SRSH method, as applied to h-BN: (a) highest-expectation-value occupied
maximally-localized Wannier function; (b) The IP ansatz target function, ∆I (top) and the fundamental band gap, Eg, at the
K-point (bottom), for both bulk (ϵ∞ of the solid, left) and monolayer (ϵ∞ = 1, right), as a function of the range-separation
parameter, γ, for different values of the fraction of short-range exact exchange, α. Circles indicated computed data points
and the lines are a guide to the eye. Closed circles have been obtained from (α, γ) pairs that obey the IP ansatz, with the
parameter values shown; (c) IP ansatz fulfillment (∆I = 0) curves in the (α, γ) plane for monolayer and bulk, with their point
of intersection, (α∗, γ∗), obeying the IP ansatz for both phases simultaneously and used for predictive calculations.
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FIG. 2. (a), (b) Bandstructures of bulk and monolayer black phosphorus, calculated using SE- and WOT-SRSH functionals.
(c), (d) Optical absorption spectra for bulk and monolayer black phosphorus, obtained from TD-SE-SRSH and TD-WOT-
SRSH, as well as from “single-shot” GW-BSE using SE- and WOT-SRSH as starting points. Dashed vertical lines represent
the fundamental band gap. SE-SRSH data are taken from Ref. [45].
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FIG. 3. (a), (b) Bandstructures of bulk and monolayer MoS2, calculated using SE- and WOT-SRSH functionals [61]. (c), (d)
Optical absorption spectra for bulk and monolayer MoS2, obtained from TD-SE-SRSH and TD-WOT-SRSH, as well as from
“single-shot” GW-BSE using SE- and WOT-SRSH as starting points. Dashed vertical lines represent the fundamental band
gap. SE-SRSH data are taken from Ref. [45]. All monolayer calculations include spin-orbit coupling.
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FIG. 4. Optical absorption spectra for (a, b) bulk and (c, d) monolayer h-BN. Experimental absorption spectra are extracted
from Ref. [71] for bulk h-BN and from Ref. [73] for the monolayer. Dashed vertical lines represent the fundamental band gap.
(a, c) and (b, d) show results without and with subtraction of ZPR corrections, respectively.
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