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Abstract—Recent advancement in generative Al influenced a
broad area with successful applications across multiple domains,
including computer vision, natural language processing, and the
Internet of Things (IoT). However, many existing implementa-
tions rely on centralized architectures, which introduce secu-
rity and privacy concerns while also increasing communication
overhead. Limited research has explored the development of
distributed generative models, particularly in scenarios where
training data originates from various heterogeneous sources. To
fill the gap, this paper introduces a distributed generative model
framework aimed at enhancing data generation in hierarchical
IoT systems. The proposed framework supports distributed data
generation across three distinct scenarios: feature-related data,
label-related data, and feature-label non-related data. Further-
more, both synchronous and asynchronous update mechanisms
are incorporated to accommodate diverse application require-
ments within IoT environments. Comprehensive experiments us-
ing simulated, image, and tabular datasets are conducted to assess
the performance of the proposed framework in comparison with
state-of-the-art methods. The results indicate that the framework
effectively produces high-quality synthetic data while preserving
the integrity of downstream tasks. Beyond large language models
(LLMs), these findings suggest that generative AI have the
potential to transform data generation in distributed IoT systems
and be extended to a broader range of applications.

Impact Statement—Generative Al is the most eye-catching star
in the AI field now, which relieves humans from the tedious
process of repeating tasks. However, the recent focus on large
general generative models with billions of parameters is not
prepared for some specific scenarios, such as the distributed
IoT settings with heterogeneous data. The distributed generative
model framework we introduce in this paper tries to mitigate
this limitation by using small models in distributed devices. The
proposed distributed generative model can produce realistic gen-
erated data in simulated data, image data, and even tabular data,
which are the most common data formats in IoT, with competitive
visual and statistical quality. This proposed framework can be
promising when facing a variety of distributed applications,
including healthcare and smart manufacturing, which will attract
more interest in specialized generative Al in industrial IoT apart
from the general generative AI models.
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I. INTRODUCTION

The impact of generative models has been revolutionary,
with many research areas and applications benefiting from the
recent products such as GPT and Midjourney. However, in
IoT scenarios, where various interconnected devices produce
heterogeneous data for data-driven applications, generative
models do not flourish impressively as in general Al applica-
tions. Many research and applications in IoT areas face special
data formats and thus need customized generative models.
In this vein, many customized generative models have been
applied in various domains, including traffic data analysis
[1], [2], video surveillance for anomaly detection [3], [4],
and Intrusion Detection Systems (IDS) to enhance system
reliability [5], [6]

In the above examples, many existing generative models
are implemented in a centralized manner, leading to chal-
lenges such as single points of failure, privacy risks, and
high communication costs, as highlighted in prior studies
[7], [8], [9]. These limitations make it increasingly difficult
to aggregate raw data from IoT users to a central server,
restricting data availability and impeding application devel-
opment. Additionally, transmitting large volumes of data to a
central server results in substantial communication overhead
for resource limited devices. Integrating generative models
with distributed frameworks offers potential benefits to solve
these problems for both individuals and society. For instance,
distributed generative models can synthesize medical imaging
patterns while preserving privacy, enabling data visualization
and the creation of training datasets for various applications.
Moreover, leveraging distributed generative models for feature
extraction from IoT devices can assist developers in assessing
data quality, identifying biases, and debugging misclassified
instances [10]. In scenarios where IoT data is non-i.i.d. across
multiple devices, learning a distributed generative model fa-
cilitates the capture of a mixed distribution, improving data
diversity and representation.

Some existing works have developed distributed generative
models but overlooked crucial issues in practical application
scenarios: (i) limited network and computation resources when
using the traditional federated learning framework. (ii) prior
literature focuses on non-i.i.d. data in feature space and does
not study more intricate data distribution. (iii) multi-source
heterogeneity of data in distributed settings is less explored.
Considering the above issues, designing a distributed genera-
tive model in non-i.i.d. and multi-source heterogeneous data
scenarios remains an open challenge.

To tackle this challenge, we introduce a novel distributed



generative framework designed to accommodate the unique
characteristics of IoT applications, including wide geographic
distribution, limited computational resources, non-i.i.d. data,
and diverse data domains. Our approach features a three-layer
hierarchical architecture for deploying distributed generative
models, marking one of the first efforts to address multi-source
heterogeneous data in distributed data generation. While our
framework shares similarities with the work by Xiong et al.
[11], we place greater emphasis on handling non-i.i.d. data
distributions and exploring asynchronous training strategies.
Additionally, we identify a feature-label non-related scenario
commonly found in real-world IoT applications and propose
an innovative method within our hierarchical framework to
generate data in this setting effectively. To summarize, the
contribution of this work is as follows:

o« We develop a three-layer hierarchical framework for
deploying distributed generative models, specifically de-
signed to accommodate the characteristics of IoT ap-
plications and support multi-source heterogeneous data
generation.

o Three distinct distributed generative schemes are for-
mulated within the proposed framework, aligning with
the realistic data distribution patterns observed in IoT
environments.

o We introduce both synchronous and asynchronous train-
ing strategies for edge-based data generators, allowing for
flexible adaptation based on application-specific require-
ments.

o Comprehensive experiments are conducted on a variety
of simulated and real-world datasets to evaluate the
performance of our generative models, demonstrating
their effectiveness in comparison with state-of-the-art
approaches across different scenarios.

This paper is organized as follows. We review the related
works on generative models in Section II. After presenting the
model framework in Section III, we design three distributed
generative models for three different scenarios in Section IV,
Section V, and Section VI. We then evaluate our proposed
methods through experiments in Section VII. Finally, this
paper is concluded in Section VIIIL.

II. RELATED WORKS
A. Multi-Source Data Generative Models

Multiple data source generation problems can be categorized
into conditional generation and joint generation. Conditional
generation aims to model the conditional distribution of one
data source given the presence of others as auxiliary infor-
mation. This approach is widely used in various applications,
including image-to-image translation [12], [13], [14], domain
adaptation [15], [16], [17], and domain generalization [18],
[19], [20], among others. Zhu et al.[12] proposed CycleGAN,
a framework for unpaired image-to-image translation between
multiple domains. Later, Isola et al.[13] developed pix2pix,
a universal image-to-image translation framework that maps
one image to its corresponding domain. Conditional genera-
tive adversarial networks (cGANSs) have also been used for
privacy-preserving image translation [14] and face attribute
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transfer [16]. Other works have focused on joint or multi-
domain generation. COGAN [21] was the first to learn a joint
distribution without paired images. Mao and Li [22] used
the domain label as a condition to train a single conditional
generator for joint distribution without paired data. Radial-
GAN [15] trained multiple autoencoder-based generators that
can capture the distribution of multiple joint data sources,
improving data augmentation quality and addressing missing
data issues. JointGAN [23] used multiple generators and a
single discriminator to learn the joint distribution from mul-
tiple marginal samples. Besides, shared representation in the
latent space has also been explored as a meaning of capturing
joint information. In [24], multiple autoencoder-based GANs
were used to extract the shared low-dimensional representation
between sources, which was then used as a domain-invariant
feature to train a classifier for domain adaptation. Gonzalez et
al. [25] trained a cross-domain disentanglement network to
decompose the latent space into domain-shared and domain-
exclusive representations, and then the domain-shared repre-
sentation was recovered to obtain the joint distribution through
training decoders.

B. Distributed Generative Models

GAP [26] is the first approach to integrate GANs into a
distributed framework, where each GAN model is trained
using a standalone dataset. Gossip GAN [27] adopted a similar
structure, where generators and discriminators exchange infor-
mation within local neighborhoods to collectively approximate
the global data distribution. Later, Durugkar er al.[28] and
Hardy et al.[29] refined this structure by replacing multiple
generators with a single one while retaining multiple dis-
criminators, enabling the generator to leverage an aggregated
discriminator loss for improved data generation. Expanding
on this direction, Yonetani et al. [30] explored distributed data
generation across multiple data sources, where the discrimina-
tors are averaged based on the weight of their loss values. Yet,
these distributed generative methods are mostly evaluated on
ii.d. data within traditional distributed storage and are time-
consuming during training. Another line of research combines
federated learning [31] and various distributed GANs for the
sake of the performance of FL in non-i.i.d data [32], [33],
[34], [10]. The differences among these methods are whether
to send generators [32], discriminators [10], or both [33], [34]
for aggregation. However, a high communication cost caused
by transmitting model parameters iteratively exists in these
FL-based generative models. To address this limitation, the
approaches in [35] and [36] introduce a central generator that
is updated using the loss values from local discriminators. This
method significantly reduces the amount of data exchanged
between the server and local clients compared to transmitting
entire models. Qu et al. [36] improves the above model by
introducing temporary discriminators, endowing the proposed
method with the capability to handle more flexible scenarios
where local clients can join and quit at any time. In [37], [6],
the authors utilize a similar framework to perform network
intrusion detection on distributed devices in IoT by training
a central generator/auto-encoder on a server. Although these
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distributed GANs methods can solve the non-i.i.d. data of
some trivial cases, none of them is specified for our realistic
multi-source heterogeneous data generation, which lacks a
solid ground for landing a practical application.

Moreover, as a more special yet commonly encountered
data generation problem, distributed data with different feature
and label spaces is more challenging due to its complex
feature type and distributions (e.g., continuous, categorical,
ordinal, multi-mode). To solve this problem in a distributed
setting, Zhao et al. [38] apply FL and TGAN [39] together
to design the first Fed-TGAN framework. Later, an improved
work GTV [40] is developed by the same authors to generate
such mixed data features and labels in vertical federated
learning scenarios. Their works are initial attempts at federated
mixed-type data generation, and some important details are
not considered, such as imbalanced category values. Duan
et al. [41], [42] also devise GAN-based federated generation
methods for this kind of data, but they use a strong assumption
that all clients’ feature distribution is the same, which violates
the essence of non-i.i.d. of FL.

In summary, all the existing generative models are not
prepared for distributed and multi-source heterogeneous data,
which limits their applicability to distributed IoT scenario. In
this work, we try to design a general framework for distributed
data generation, in which three realistic data distributions are
considered, including feature-related data, label-related data,
and feature-label non-related data are realized.

III. SYSTEM FRAMEWORK

The proposed distributed generative model framework is
described in Fig. 1, consisting of a set of IoT devices, a
set of edge servers K, and a cloud server G. In this setup,
each edge server in the community k& maintains a community
generator G;.. Within the community k, a set of IoT devices J
is covered and each device holds one discriminator Dy, where
Dy, is the discriminator on IoT device j € J; of community
keK

Given the proximity of data sources within a local commu-
nity, the data often exhibits correlations either in the feature
space or the label space. When analyzing data distribution
and relationships across different communities, this paper
categorizes the data generation problem into three scenarios:
(i) Feature-related scenario, where communities share the
same feature space but have distinct labels; (ii) Label-related
scenario, where communities have identical labels but differ
in feature space; and (iii) Feature-label independent scenario,
where neither features nor labels are necessarily the same
across communities. The details of data generation under these
three scenarios are illustrated in Section IV, Section V, and
Section VI, after introducing the training process and updating
strategy.

A. Training Process

In the distributed generative framework, the training process
contains two phases: local community training, where Gy, is
updated at the edge servers for Ij,. steps of local commu-
nity training, and global training, where G is aggregated at

the cloud server for I, iterations. In the local community
training process, the community generator GG is updated by
the discriminator information Dy; (j € Ji) from distributed
IoT devices. Different from most of the existing methods
that use federated learning to obtain GANSs, our local com-
munity training structure has a single generator and multi-
ple distributed discriminators. Unlike the existing FL-based
generative model that aggregates discriminators or generators
to obtain the GANs, our local community training uses a
single generator to collaborate with multiple discriminators
for information exchange. In addition, different from the FL-
GANs where the cloud server and local clients are transmitting
model parameters, our local community training only sends
two batches of generated data and the loss function value
of community generators in each iteration, resulting in much
better communication efficiency.

In the global training, the model parameters of the commu-
nity generator G, are aggregated on the global server side to
calculate the global generator (G, and one global iteration is
done. Next, the aggregated global generator GG is distributed
back to the community generators for the next local commu-
nity training iteration. It’s worth noting that during the entire
training process, the private data of each IoT device is always
stored on IoT devices locally without leakage. Therefore, the
proposed distributed generative framework can guarantee the
data generation by collaboration among server, edge and IoT
devices with privacy preservation.

B. Updating Strategy

Synchronous Updating. Synchronous updating means that
G, is updated after collecting the loss value Lp, (Gy) from
covered IoT devices inside the community & during this train-
ing cycle, in which the updating time unit is pre-determined
by the system. Compared with the traditional aggregation
methods that adopt average aggregation for all loss functions,
the proposed synchronous updating is able to capture the
non-i.i.d data scenario. The complete loss value aggregation

Lp,,,.(Gy) is computed as follows:

LDy (Gr) =Y

Lp, . (Gk)
. k
jely Z]"@]k € 7

The exponential weighted aggregation method has shown its

performance on non-i.i.d. data in recent research [28], [30].
Asynchronous Updating. Asynchronous updating is pro-
posed to handle the slow IoT devices in the system, due
the limited computation and transmission power. In the asyn-
chronous manner, the edge generator G, is updated immedi-
ately upon the received loss function value from a local dis-
criminator. In the general asynchronous scenario, the receiving
time of a loss function value is vital to compute its weight
during aggregation. For a loss function, the time gap between
its receiving time and the last updating time is defined as its
“staleness™: sp; = Tp7° — T}, where 1,7 is the timestamp
when Lp, (G}) arrives at the server Gy, and T,é‘” is the
time of G’s last updating. Accordingly, G can be updated
asynchronously through Eq. (2).
1 e
[’Dasync (Gk) = W Z e ki L‘,ij (Gk) 2)

JEM

eﬁij (Gk)

Loy (Gi). (D)

Here, M, represents the set of local IoT devices whose loss
function arrive at GG, simultaneously. As shown in Eq. (2), a
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smaller staleness is given a higher weight in the aggregated
loss value when updating G. In addition, the staleness sy;
of a device is used to improve the learning rate of Dy; as a
multiplier e®* X 7, so that the straggler IoT device can have
a larger step size to reconcile the local training time.

IV. DATA GENERATION IN FEATURE-RELATED SCENARIO

In this scenario, the goal is to learn a unified data dis-
tribution across all communities using the global generator
G in the cloud server. In this case, datasets from different
communities share the same feature space but have distinct
labels. An illustration of this setup is provided in Fig. 1.
Ultimately, the global generator G in the cloud server can
synthesize a comprehensive data distribution encompassing all
digits and clothing labels. The design of generators, discrim-
inators, and their interactions in this proposed framework are
similar in three scenarios. Therefore we only describe the basic
components in this section and leave the detailed design in the

supplementary materials Appendix-A.
1) Generator: In the generator setting, the community gen-
erator G, and the global generator GG share the same network
structure. Community generators () generate two batches
of data, which are used as fake data to update Dy; and to
calculate the loss function value Lp, . (Gj) of Gj on local
devices Dy; for back propagation. The global generator G
is aggregated from all cover community generators Gy via
Eq. (3).
exp(Lp. (Gk))

o 2wex exp(Lp. (Gr))

where the loss function £p, (Gy) is calculated by Eq. (1) or
Eq. (2) as detailed in supplementary materials.

2) Discriminator: On each IoT device, the discriminator
Dy,; operates in two steps: (i) updating its parameters and (ii)
computing the loss function. (i) Specifically, to update Dy,
it is trained using both real local data z, which follows the
data distribution py;(x), and synthetic data G (z4) generated
by Gy, as formulated in Eq. (4).

G =

G, 3)

max L(Dyj) =Eqrp, ; (2) [log Dy (z)]+
e ' “
E.p.(2)[log(1 — Dij(Gr(24)))]-

(ii) Then, the fake data Gj(z,) is fed into the discriminator
for calculating the loss function of G, as follows,

Lp,;(Gr) = E.np.(»)[log(l — Di;(Gr(zg)))]- ®)

Algorithm 1: Feature Related Data Generation.
Input: K, Jx, T4, and Ijoc
Output: G
1 System initialization G, G, and Dy; with j € J;
2 while I, > 0do // global training

3 for £ € K do

4 while [;,c > 0do // local training

5 Select zq and z4 from N(0,1);

6 Synthesize G (zq) and G (z4);

7 Send Gi(zq) and G (zg) to Dy; for j € Ji;
8 for j € Ji do

9 Train Dy; via Eq. (4);

10 Calculate £ Dy (Gk) based on Eq. (5);

11 end

12 if Synchronous then

13 | Train G}, via Eq. (1);

14 end

15 if Asynchronous then

16 | Train Gy via Eq. (2);

17 end

18 Iloc — Iloc - la

19 end

20 Send G to server;
21 end
22 Update GG based on Eq. (3) ; // global aggregation
23 for £ € K do

24 ‘ Gr < G ; // distribute G to communities
25 end
26 Tgio < 1g1o — 1;
27 end
28 Return G

—— Upload Local Model
— - = » Download Model
....... >Send Loss Value

Send Generated Data

Dy, “* //"jf’“‘?“x\ : D
= ;oA . K2
D;” / L& oy
/43206 i ! Ds
Doy @ D 6/43205

Sy
Dy Da4
6/43205

Fig. 2. The illustration of label-related data generation.

The value Lp,;(Gy) is transmitted back to Gy to calculate
gradients and update G.

The entire training process contains I, iterations of the
global training, each of which has I;,. iterations of the local
community training, which are described in Algorithm 1.

V. DATA GENERATION IN LABEL-RELATED SCENARIO

In this scenario, local datasets across different communities
have distinct feature distributions but share the same labels,
indicating that the data from each community belongs to a
different domain. An example of label-related data generation
is illustrated in Fig. 2, where three communities generate data
with the same digit labels 0,1,2,...,9 but different feature
distributions. The global generator G in the cloud server aims
to generate data from two separate feature spaces (i.e., two
domains) simultaneously. A domain classifier C' is introduced
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in the cloud server to differentiate between the feature spaces
of the generated data, as depicted in Fig. 3. Further details of
the label-related data generation process, including conditional
generators, discriminators, and the training procedure, can be
found in the supplementary materials Appendix-B.

1) Domain Invariant: In the label-related scenario, the
common class labels of all communities are defined as “do-
main invariant”, which resides in high-level representation
space [22], [43]. As a neural network generator, the high-
level representation is the output of its first layer. The “domain
invariant loss” is defined as the distance between the first-layer
outputs of G under two different domain conditions, and it
serves to guide the generator in producing the desired high-
level representation. By optimizing this distance, the generator
forces the output G(z,cx) to maintain the same class labels
for the latent vector z, regardless of the domain condition.

To compute the loss, we first aggregate G in the cloud server
by combining the G models sent by the communities, as
described in Eq.(3). Then, using the domain condition ci, G
generates G(z,c) for different ¢, each corresponding to a
distinct data domain. Based on this generated data, we can
extract the first-layer output, G'**(z,cy), and calculate the
domain invariant loss using Eq. (6), where the Lo norm is
employed to measure the difference in the high-level repre-
sentation space.

Lino(@)= Y G (ze0) = G (zoew)]2e (©)

k#k! €K

Therefore, optimizing the loss function £;,,(G) can enforce
the global generator G to generate similar high-level represen-
tations given distinct conditions, which can help strengthen the
association between domain invariant and latent vector z.

2) Domain Specific: Domain specificity refers to the unique
information associated with each domain (i.e., feature space).
The domain condition ¢ represents this domain-specific in-
formation, and it is used to self-label the generated data
G(z,ck), which can then be used as a dataset to train a
supervised domain classifier C. During the evaluation of C,
we compute the domain-specific loss for G using the cross-
entropy loss function Lg,e(G) = >, cx H(C(G(z,cr)), ck)-
Since the global generator G is expected to generate data
with different features based on the domain condition cy,
minimizing L. (G) encourages G to encode domain-specific
semantics within cy. The training process for label-related data
generation is outlined in Algorithm 2.

Algorithm 2: Label Related Data Generation.

Input: K, Jx, T4, and Ijoc
Output: G
1 System initialization G, C, G, Dy; with j € Jy,
first=TRUE;
2 while I, >0do // global training

3 for £ € K do

4 while [;,c > 0do // local training

5 if first=FALSE then

6 | Train Gi via A1 Lino(G) + XaLspe(G);
7 end

8 Select z4 and z4 from N(0,1);

9 Synthesize Gg(zq, cx) and Gg(z4, ck);

10 Send Gi(z4, cr) and Gi(za, ck) to D;; for

7€ ks

11 for j € Ji do

12 Train Dy;;

13 Calculate Lp,; (Gx);

14 end

15 if Synchronous then

16 | Train Gy via Eq. (1);

17 end

18 if Asynchronous then

19 | Train G}, via Eq. (2);

20 end

21 Lioc < Iioc — 1, first=FALSE;

22 end

23 Send Gy, to the server;

24 end

25 Update G based on Eq. (3) ; // global aggregation
26 Update classifier C' on {G(z, ck), ck|k € K},

27 Calculate 10ss Liny(G) and Lspe(G) with C;

28 for £ € K do

29 ‘ G+ G ; // distributed G to communities
30 end

31 Iglo — Iglo —1;
32 end
33 Return G

VI. FEATURE-LABEL NON-RELATED DATA GENERATION

In real applications, not all distributed communities ideally
have the same feature or same label spaces. The data distri-
bution often has different feature/label spaces across the IoT
devices. For example, some devices in one community collect
a set of features and labels, while other devices in another
collect different features and labels under the same domain.
Moreover, these features may have different data types, such
as numerical, boolean, and categorical data. To provide a
clear sense, tabular data is the most commonly encountered
data type with these specific properties, where the column
(attribute) types are numerical, categorical, boolean, etc.

In Fig. 4, some communities collect users’ data with fea-
tures (i.e., columns) [age, job, balance,loan] and the others
collect data with columns [age, education, pay/h, rent]. The
different columns will cause different distributions of tables
in both feature and label spaces among different communi-
ties, which brings the problem of feature-label non-related
scenario. To get a full understanding of the financial data,
it is necessary to combine these tables with one generator
to synthesize a complete tabular dataset with full columns
[age, education, job, pay/h, balance, rent,loan|. Therefore,
handling such different features, different labels, and mixed-
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Fig. 4. The illustration of feature-label non-related data generation.

type data is our focus in this section.

To achieve this purpose, we need to solve three subprob-
lems: (i) designing data representation for mixed-type data;
(i1) formatting conditional generator and discriminator; (iii)
using the proposed 3-layer framework to learn feature-label
non-related data distribution.

A. Data Representation

It’s non trivial to formulate feature-label non-related data
because of the following challenges: (i) the existence of mixed
type numerical data and categorical data requires different
functions during generating data, e.g., tanh and softmax func-
tion; (ii) the numerical values in each feature are not Gaussian
distribution in most cases, which need more complex distri-
bution to model these values; (iii) in categorical features, the
categories are not balanced, where certain categories appear
much more frequently than others.

Without loss of generality, we use the tabular data as an
example of feature-label non-related data and denote its rows
as follows. Suppose a table has numerical type columns as
aset N = {Ny,Ns,..., Ny} and categorical type columns
set C = {C1,Cy,...,C|c|}, where |N| and |C| are the size of
numerical column set and categorical column set, respectively.
Each column is considered as a random variable, and the to-
be-learned joint distribution of tabular data is represented by
P(Ny,..., Ny, C1,...,Cc). Then, the r-th row (record)
of this table is denoted by {n,1,..., % |N|;Cr,1,s- -+, Cr|C|}>
where n,.; until ¢, |c| are the original data of each column
in the table. We need to pre-process these numerical and
categorical type data to scalar or vector so that they can be
used as input for learning models.

1) Numerical Data Representation: Existing research has
found that the numerical data in a column emerges as a multi-
mode distribution instead of a standard gaussian distribution.
Thus, we adopt a mode-specific normalization to represent the
numerical data in each column. For each numerical column
N; € {N1,..., Niyj}, we denote it independently. Each value
in this column N; is represented as a one-hot vector indicating
the mode, and a scalar indicating the normalized value with the
mode. This normalization method includes three steps as fol-
lows. (i) The variational Gaussian mixture model (VGM) [44]
is used to fit the column values to a Gaussian mixture. The
learned Gaussian mixture of column NN; is represented as
P, (ny.;) Z%zl Wi N (N i fomy om, ), Where M is the
number of modes, u,, and o, are the mean and standard
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deviation of the m-th gaussian distribution. (ii) For each value
n,; in the numerical column [V;, the probability density that
n,; comes from the m-th gaussian distribution is calculated
as Pm = W N (N i i, o). (iii) Based on the probability
density, we can select a gaussian distribution and use its mean
value to normalize the value n, ;. For example, if the m-th
mode is selected, the numerical value n,.; is represented by an
one-hot vector v, ; = [0,...,1,...,0] where the m-th element
is 1, and a normalized value 7, ; = “=—=_ Following this
idea, each numerical value n, ; can be regfesented as Vpi|vri
by appending the vector and scalar. And then, all numerical
columns of the r-th row {n,1,...,n, |y} can be modeled as
P = vyt @ Vealye2 @ - @ V[, vy Where @ is
concatenating operation.

2) Categorical Data Representation: Generally, each cat-
egorical data can be easily represented by a one-hot vector,
where the length of the vector is the number of categories in
this column. While, in the distributed scenario, a local client
may not have all categories of a column, which will cause
mismatch in representing the one-hot vector for global data
generation. Thus, local clients need to upload some crucial
but non-private information (i.e., categorical column names
and category names of each column) to the server for system
initialization. Specifically, each client j in community £ can
construct a small table with format T};[col,ame][catname],
where col,gme is the name of the categorical column and
catname 1S the category names appeared in this column with-
out repeat. On the server side, we can combine all tables from
clients and create a whole table T'[col,ame][catname] to guide
one-hot vector encoding. Therefore, each categorical column
data ¢, ; in column C; € {C4,Cq,... ,C’|(C|} is represented
as a one-hot vector 8,; = [0,...,1,...,0], where the length
of B, is the number of categories in column C; calculated
from the full table T'[col,qme][catname]- Based on the one-hot
vector, all categorical values of the r-th row {c,1,..., CT-,\NI}
is denoted as 25" = B,1 ® B2 D -+ ® B¢

Finally, the representation of a complex row data z, =

{nr1,...snp N, Crty -5 ¢y} is modeled as Eq. (7)

Ty =" D szlt. @)

B. Condition of Mixed Data Generation

Our goal is to use one generator on the server to generate
data with different features and label distributions. So, a naive
generator can not handle this problem without more auxiliary
information. There are two challenges we need to solve:
(i) Constructing different columns for different clients; (ii)
Generating imbalanced distribution as real categorical data.

1) Column Condition: The initialized generator on the
server is a global generator that can generate a fixed size of
|C|+ |N| columns. While different columns appear in different
local clients, which requires a column condition to indicate
what columns should be generated and evaluated in output.
We design a condition vector con$® with the same length as
x,, which is filled with 0 and 1 to represent the existence of
a specific column. For example, if the 1st numerical column
appears in the real tabular data, the corresponding position
of V1|1 in the vector coni"l is filled with 1. If the 2nd
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categorical column does not exist, the corresponding position
of B2 is filled with 0. The column condition vector conz"l
will be used in the generators and discriminators to produce
those appeared columns.

2) Imbalanced Data Condition: The elements in a cate-
gorical column are not evenly distributed. For example, in
column “education”, there will be much more “high school”
values than “doctorate”. Such imbalanced data distribution is
hard to learn if we randomly sample data points to train the
model [45]. Therefore, during training, an imbalanced data
condition con}glb is useful to capture the real distribution
of columns in local clients. The imbalanced data condition
con};mb has the same length as categorical column representa-
tion xﬁ‘” and is filled with 0 and 1 as follows: (i) a categorical
column is randomly selected with equal probability; (ii) one
category of this column is selected based on the frequency
distribution within this column; (iii) the selected category is
represented as a one-hot vector of this column, and other

columns in con’,@"j?b are filled with 0. For instance, when the

first category of the 3rd column is chosen, the value of confg;?b
in the corresponding location of 3, 5 becomes [1,0, ..., 0] and

all other columns 3, ;3 are filled with 0. When we select the
condition con}gbb in this method, the sampled training data
and generated data can have very similar class distribution as
real tabular data for categorical columns.

The column condition con$®’ and imbalanced data condition
con}glb will be used together during data generation and
discrimination as discussed in Section VI-C below.

C. Conditional Generator and Discriminator

1) Generator: Same as the previous scenario, we adopt
conditional GANs to generate and discriminate tabular data.
In each community, the edge generator G, takes latent vectors
z and con°! as input for data generation, where the column
condition con$®! indicates what columns are needed on local
clients. During the local community training process, the
generated data G (24, con$®') and Gy(z,, con$®), are used
for updating the discriminators and generator. While, due to
different columns in each community, only the columns with
value 1 in con{® are valid in local data, which requires
extracting these columns from generated data G (24, con§?)
and G (24, con$®!) before sending to local clients. We design a
column extracting matrix M gOl based on the column condition
cong! to reduce the column of raw generated data. Mo is
a |con$®!| x |con$®!|; matrix, where |con$®!| is the length of
condition con§! and |con$®|; is the number of 1s in con§.
The matrix M ,501 is made up by following steps: (i) making a
diagonal square matrix with con§® as the diagonal elements;
(ii) removing all-zero columns and the remaining matrix is
Mgl For example, let con§®! = [1,0,1,0,1], then Mg is
constructed as

0000\
Mot = 0100 (8)
0 0 01

O O

Therefore, for generated raw data Gy(z4,con§?!) and
Gr(zg, cong®'), we can multiply M¢° on the right side to

get the same tabular data size as local real data. And then, the
processed data G (zq, con§?!)- M¢° and G (z,, con$ot)- Mot

are sent to local client for training.

2) Discriminator: Upon receiving two batches of processed
generated data, the discriminator Dy, first calculates loss and
updates parameters through maximizing Eq. (9)

max L(Dy;) = Eznpy (o) [l0g Drj (z|coni?™)]+
s ©)
E.np. (2)[10g(1 — Dij (G (2a, coni’) - M |coni;®))].

When Dy is trained, the discriminator loss of G}, can be

calculated based on the other batch of data Gy (24, con§?) -

Mgt as follows.

LD, (Gr) = Eerp. () [log(1=Dij (Gre(zg, coni™)- Mg Iconi’}l(bl)gg-
Besides, we need to ensure that the generated categorical data
is as imbalanced as real data. So, the categorical part ¢

of data should be consistent between real and generated data
with the given condition con?c’;-lb. When §,; of generated data
is equal to the corresponding position of con};’?b, the generated
categorical data is the same as the sampled training data. Thus,
we can use cross-entropy to evaluate the loss of generator Gy,

on categorical data as follows.

en L ,
ﬁqD;w (Gk) = ECE(BUHBT,Z)? (1])

where B is the batch size of generated data and f3;.; is the

corresponding elements of /3, ; in the generated data.

Finally, the total loss of generator (i) is calculated by
adding Eq. (10) and Eq. (11) together as shown in Eq. (12),
which was transmitted back to the local community to update
G.

Lp,,(Gx) = LB (Gy) + LE (G).- 12)

The training process of feature-label non-related data gen-
eration is shown in Algorithm 3.

VII. EXPERIMENTS

1) Experiment Settings: Datasets. In feature-related data
generation, two datasets are used in the experiments, includ-
ing (i) simulated Gaussian mixed data and (ii) image data,
including MNIST, Fashion-MNIST, and EMNIST datasets.

In the label-related data generation, 5 dataset pairs are used,
including (i) MNIST and inverse MNIST dataset; (ii) MNIST
and edge MNIST dataset; (iii) MNIST and USPS dataset; (iv)
sketch and photo handbag dataset; and (v) sketch and photo
shoe dataset.

For the feature-label non-related scenario, 6 tabular datasets
are adopted as benchmarks with various numbers of numerical
and categorical columns, including Adult, Census, CovType,
Intrusion, Credit, and Alarm datasets.

A. Evaluation on Feature Related Data Generation

Baselines. The centralized GAN model, federated
GAN [33], and multi-discriminator GAN [35] are used as the
baselines of feature related data generation.

The experiment results of feature-related scenario for 3
datasets combination [MNIST+F-MNIST+EMNIST] is pre-
sented in Fig. 5 respectively. The generated images on i.i.d
data is marked in green square and non-i.i.d. data is marked
in red square. As can be seen from the results of Fig. 5,
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(a) Centralized GAN. (b) Federated GAN.

Fig. 5.

Algorithm 3: Feature-Label Non-related Generation.

Input: K, Jx, Ig0 and Ijoc
Output: G
1 Collect columns’ names and categories of columns;
2 Initialize G, Gk, and Dy; with j € Ji;
3 while I, > 0do // global training
4 for £ € K do

5 while [}, > 0do // local training
6 Generate data G (zq, con§®) - Mg and
G (g, cone") - Mgl

7 Send two batches of data to Dy; for j € Ji;
8 for j € Ji do

Update Dy; via Eq. (9);
10 Calculate Lp, ;(G) based on Eq. (12);
11 end
12 if Synchronous then
13 | Update Gy via Eq. (1);
14 end
15 if Asynchronous then
16 | Update Gy via Eq. (2);
17 end
18 Iloc <~ -[loc - 1,
19 end
20 Send Gy, to the server;
21 end

22 Update G based on Eq. (3) ; // global aggregation
23 for £ € K do

24 ‘ Gr < G ; // distribute G to communities
25 end

26 Iglo %Iglo—l;

27 end

28 Return G

the centralized GAN model can not generate complete data
from all of the three data distribution. Specifically, it can only
produce digits and some clothes as the centralized GAN is
notorious for model collapse in complex dataset. Among the
4 distributed generators, federated GAN can generate most of
the data but it can not perform well well in certain labels,
such as row 4. In multi-discriminator GAN, the results shows
a very similar performance to our feature-related generation,
but it achieved a slightly worse statistic score as shown in the
supplementary materials. Our feature-related data generation
with an async updating strategy looks good in data generation
since it can produce all classes but the image quality is a bit
lower. In summary, our feature-related generation method in
either sync or async scenario can earn satisfied performance
in the i.i.d. situation.

Jumping to non-i.i.d. data, it is obvious that our feature-
related data generation with sync updating strategy outper-

(c) Multi-disc GAN.
Feature related data generation results on MNIST, Fashion-MNIST, and EMNIST (A-J) dataset in i.i.d./non-i.i.d. setting.
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(d) Feature (sync). (e) Feature (async).

forms the other baselines in comparison. In particular, the
performance degradation from i.i.d. to non-i.i.d. on our method
is negligibly small, which justified the general application
scenario of our method.

B. Evaluation on Label Related Data Generation

Baselines. In the label-related generation experiment, a
self-built federated GANGAN [33] and the centralized GAN
modelRegGAN [22] are used as the baselines.

Two new datasets are employed in this evaluation. The
Edge MNIST dataset and the USPS dataset are presented in
Fig. 6, and Fig. 7, where the result of i.i.d. data is in green
square, and non-i.i.d.data is in red square. For the centralized
model, RegGAN excels the best generation quality as all of the
data sources are collected in a central server and trained. The
conditional GAN framework behind it can process the different
domain information. Thus, the RegGAN is used as the baseline
upper bound for comparison. In the three distributed generator
frameworks, the federated GAN and our label-related data
generation (sync) showed the extremely similar data quality,
and the label-related data generation (async) was a little bit
lower. However, it is worth noting that in the federated GAN
method, the generated data in each column is not in the same
label sometimes because of the lack of our designated domain
spe/inv loss. Therefore, the federated GAN can not guarantee
such multi-domain generation in one shot. While in our label-
related data generation, either the sync or async setting would
produce the same semantic data (i.e., same label or object).

Similar observations can be obtained from the non-i.i.d.
data in the green boxes. Though the data generation quality
of federated GAN is comparable to our methods, the unique
domain classifier showcase the effect in generating such multi-
source data distribution. In summary, our proposed label-
related data generation method, especially in the sync setting,
can achieve not only better data quality but also maintain the
semantic label information.

C. Evaluation on Feature-Label Non-related Data Generation

Baselines. In this scenario, federated GAN and a state-of-
the-art method HTGAN [41] are selected as baselines. Since
the baselines are not able to handle different feature and label
spaces, we randomly split the whole dataset to each local client
to construct a realistic scenario.

We evaluate the quality of synthetic tabular data from
column distribution similarity and machine learning efficacy.
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Fig. 6. Label-related data generation results on MNIST and USPS dataset in i.i.d./non-i.i.d. setting.

(a) RegGAN.
Label-related data generation results on MNIST and edge MNIST dataset in i.i.d./non-i.i.d. setting.

(b) Federated GAN.
Fig. 7.
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Fig. 8. Selected column distribution comparison on Adult dataset.
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Fig. 9. Selected column distribution comparison on Census dataset.

1) Columns Distribution Similarity: We compared the prob-
ability distributions of the same column in the real tabular data
and the synthetic data of different models. The comparison
results are visualized from Fig. 8 to Fig. 12, which can clearly
illustrate the statistical similarity between real data and our
synthetic data against the baselines.

Due to the page limit, we can not show the distribution
of all columns. Therefore, we display one numerical and
one categorical column as representative. In Fig. 8(a), the
black curve is the probability density distribution of real data
for numerical column ‘fnlwgt’. We can see that the density
distribution of our model in the red curve is very similar to
the real distribution, and can also recover different modes
of real tabular data. While the generated result of FedGAN
in the green curve, it only generates data with one mode
surrounding the high-density area. This is because the original
GAN is easy to fall into mode collapse when facing this
multi-mode data without proper representation. The density
curve of HTGAN can capture the multi-mode information of
real data in density distribution, but the probability density
does not fit very well. The reason is that HTGAN uses a
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(c) Label-related (sync).

(d) Label-related (async).
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Fig. 10. Selected column distribution comparison on CovType dataset.
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Fig. 11.  Selected column distribution comparison on Intrusion dataset.

federated Gaussian mixture model to estimate the local data,
which causes more errors in local data representation. For the
categorical column, the frequency histogram of ‘relation’ is
shown in Fig. 8(b). Similarly, our generated data in red color
has a closer frequency to the real data in the black bar for
each category in the column, which is better than FedGAN
and HTGAN. The results on both numerical and categorical
columns indicate better synthetic data quality of our method.
The visual performance of another 5 datasets is plotted in
Fig. 9, Fig. 10, Fig. 11, and Fig. 12. And we can draw similar
conclusions from these datasets by observing these numerical
and categorical column distributions.

2) Machine Learning Efficacy: The generated synthetic data
is supposed to be used for downstream tasks, which are mainly
machine learning models for classification. Thus, we use the
synthetic data to train machine learning models and then test
these models on real data. We use the F1 score and macro-F1
score as the metrics for binary classification models and multi-
classification models, respectively. For both metrics, the higher
the score, the better the utility for the synthetic data. In Table I,
we show the F1 scores and macro-F1 scores of the machine
learning models and compare the quality of synthetic data. The
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TABLE I
THE COMPARISON OF MODEL PERFORMANCE AND EFFICIENCY THROUGH
QUANTIZATION.

| Time/batch | IS 1+ | FID | | Accuracy

Training D w/o quantization | 498.25(ms) - - -
Training D w/ quantization 542.99(ms) - - -
Inference G w/o quantization | 275.47(ms) | 4.31 14.02 90.65%
Inference GG w/ quantization 24.35(ms) 4.12 17.74 86.75%
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Fig. 12. Selected column comparison on Credit and Alarm datasets.

TABLE 1
QUANTITATIVE COMPARISON OF FEDGAN, OUR MODEL, AND HTGAN
ON ADULT, CENSUS, COVTYPE, INTRUSION, CREDIT DATASETS. THE
ALARM DATASET HAS NO LABEL AND THUS NOT COMPARED

Binary Classification (F1) Multi-Classification (macro-F1)
Model Adult | Census [ Credit | CovType | Intrusion
Real Data 0.6851 | 0.5679 | 0.7515 0.6151 0.8128
FedGAN 0.5686 | 0.4490 | 0.6641 0.4226 0.4359
Ours 0.6770 | 0.5341 | 0.7319 0.5613 0.7345
HTGAN 0.6528 | 0.5113 | 0.7142 0.5090 0.6672

average F1 scores of different classifiers trained on real data
and generated data are shown in the “Binary Classification”
column of Table I. We can observe that for the Adult dataset,
the F1 score of real data is the highest since the classifiers are
trained and tested on the original real data. Among the three
generative models, our method reaches 0.6770 F1 score, which
is the best and very close to the real data performance. This
reveals that our method can achieve quite similar performance
on downstream classification applications as real data. Besides,
in the two baselines, FedGAN fails with the lowest F1 score
because of its bad generative capability, and HTGAN has a
slightly lower F1 score than ours due to the same reason
we’ve seen in the column distribution comparison. The result
of the F1 score on other datasets can also be found in Table I,
which expresses the same trend as the Adult dataset. The
same testing procedure is adopted in multi-classification as
binary classification, where we train different classifiers on
the generated data and then evaluate the macro-F1 scores on
real data. For the CovType dataset, the macro-F1 score of
our method is 0.5613, which is the best among all generated
data and much higher than FedGAN and HTGAN. The reason
is that we use the column condition and imbalanced data
condition to improve the data generation in the conditional
generator and discriminator. The comparison of the macro F1-
score on the Intrusion dataset also agrees that our generated
data has better quality in multi-classification tasks. The results
in Table I demonstrate that our method outperforms the two
baselines in the feature-label not-related data generation.

D. Evaluation on Complexity vs. Performance

Considering that the generated model will be deployed on
IoT devices, the computation cost and efficiency should be
important given the limited resources. We explore the state-of-
the-art Quantized FL methods [46] during the training process

and then deploy the trained generative model on the physical
development board through quantization to evaluate the actual
performance for inference time efficiency and generated data
quality. This physical board Maix-III is an IoT terminal device
equipped with an AX620 chip, an Al SoC chip with an NPU
that has a computing power of 3.6TOPs@INTS, a high energy
efficiency ratio, and low power consumption, which can build
an Al operating environment at a lower cost.

Without loss of generality, we evaluate the proposed dis-
tributed generative model framework in the feature-related
scenario, and all of the statistics presented in Table. II
are calculated based on the MNIST/Fashion-MNIST/EMNIST
datasets with fixed input dimension (28 x28) and batch size 32.

It’s worth noting that in our framework, each IoT device
only needs to train a discriminator model Dy,;. Therefore we
only evaluate the training time for Dy;. For the trained gen-
erative model, we evaluate the inference time and generated
data quality. Based on the results in Table. II, we find that
the quantization operation during training IoT discriminator D
will increase the time cost. The possible reason is that there are
extra operations included in the quantization operation such
as parameter mapping and calculation quantization. However,
the overall training time for the discriminator w/ or w/o
quantization is around 0.5s, which is very efficient and decent
for resource-limited devices. The quantization operation stands
out in the inference time of generator G, which is about
11.5x faster than w/o quantization. But in real evaluation, it
also costs a one-time initialization time (1094.88ms) to enable
the inference process with quantization. As for the generated
data quality, since the quantitation operation tradeoff precision
for efficiency, the IS, FID, and accuracy of generated data
are slightly reduced but not much, which is still acceptable
for general application. In summary, we argue that for small
datasets on IoT devices, adopting quantization during the
model training stage may not be always beneficial for all tasks
due to the extra cost of quantization operation. A better option
of quantization may be in the development stage after the
model has been trained on more powerful devices, which will
drastically increase inference speed with minor utility loss.

E. Evaluation on Permutation Invariance

The global training process of our proposed framework
is like a model-merging approach. Based on the findings
of paper [47] about permutation invariance in discriminative
models, we conjecture that there might be a positive impact
of permutation invariance on merging generation models. We
adopt the “weight matching” [47] mechanism to evaluate the
impact of permutation by merging our local community gen-
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Fig. 13. The impact of permutation invariance in feature-related generation

eration models for training and testing, where the comparison
involves permuted aggregation, averaging aggregation, and our
proposed loss-based aggregation. The experiment results are
shown in Fig. 13, Fig. 14, and Fig. 15.

It can be seen from Fig. 13 that the permutation invariance
does impact generative model merging. In Fig. 13(a), the
permuted invariance aggregation method achieves smaller loss
values in the peak compared with the naive averaging aggrega-
tion method, i.e., FedAvg. However, our loss-based aggrega-
tion (irrelevant to \) is very close to the permuted invariance,
though slightly worse. This phenomenon demonstrates that
our aggregation method can also find a good aggregation
approach in terms of loss value without permutation invari-
ance. Besides, the generated data quality comparison is shown
in Fig. 13(b). The data quality (IS) of permuted invariance
aggregation is much better than that of the naive averaging
aggregation, similar to the loss function. However, our loss-
based aggregation can achieve comparative (sometimes better)
data generation results. Fig. 14 and Fig. 15 depict the same
pattern for label-related and feature-label non-related data
generation. In summary, the performance in loss and generated
data quality confirms that the permutation invariance somehow
exists in generative models and it outperforms the averaging
aggregation methods in both metrics. In addition, our loss-
based aggregation has a slightly worse loss than permutation
invariance but with a similar data generation quality. We
assume this is caused by the following reasons: (i) In the
original analysis of permutation invariance, different training
subsets are from the same dataset and may lead to close local
minima. In our problem, the datasets of different community
generators are from different distributions (different features,
labels, or both). Therefore, the local minima of the different
communities might not be very close, causing worse perfor-
mance for permutation invariance projection. (ii) Our loss-
based aggregation method already considered a designated
weighting strategy, assigning more weight to the generators
with better generation quality. Based on this, our method can
still generate good data compared with the optimization-based
permutation invariance method.

F. Evaluation on Asynchronous Updating

We conduct the ablation study on the proposed asyn-
chronous updating strategy and report the running time of
different approaches to reach convergence in Table III, in
which [Async w/o Ir] is the proposed Async without adjusting

Other Models

Other Models Model A
2 A

Other Models

(a) impact on loss (b) impact on generation quality
Fig. 14. The impact of permutation invariance in label-related generation
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Fig. 15. The impact of permutation invariance in feature-label non-related

learning rate based on staleness, and [Async w/o dw] is
the proposed Async without dynamic weight adjustment by
staleness. As can be seen from this table, the Sync method
has the highest computation cost across all three scenarios.
This is expected given that in the synchronous protocol, the
community generator has to wait for the slow IoT device
to finish and send their updates. Among the comparison
of asynchronous strategies, Async is the most time-efficient
compared with the other two, while [Async w/o dw] is closer
to Async in running time. From the empirical results, we
conclude that the dynamic learning rate (Ir) is a promising
strategy and effective when there are delays in IoT devices.
[Async w/o Ir] is slightly better than [Async w/o dw] in the
feature-label non-related scenario, for which we suspect that
in this scenario, a smaller model dimension converges faster
and overtakes the learning rate effect. For larger datasets and
complex models, we observe that the learning rate is more
important than dynamic weighing in terms of time efficiency.

VIII. CONCLUSION & FUTURE WORK

In this work, the generative adversarial network, a classic
generative Al model, is studied from the view of distributed
computation. Considering the realistic case where distributed
data possesses feature and label correlations, authors model a
distributed generative framework to handle explored scenarios.
Three detailed methods for solving the feature-related, label-
related, and feature-label non-related scenarios are designed
and implemented to compare with existing state-of-the-art
models, illustrating the superior performance in dedicated
applications. To comprehensively evaluate the proposed frame-
work, intensive experiments are conducted on aspects such as
data quality, time efficiency, computation complexity, and so
on. In future work, we are working towards extending the
proposed framework to more general data such as text and
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TABLE III

COMPUTATION TIME (IN MINUTES) TO REACH CONVERGENCE. THE 10T
DEVICE DELAY OF EACH CLIENT WAS SET TO BE A RANDOM VALUE

BETWEEN 10 TO 60 SECONDS. BEST AND SECOND

| Sync | Async | Async w/olr | Asyng w/o dw

Feat-R 260.86 | 241.72 251.36 244.97
Label-R 338.48 | 320.24 330.45 326.54
Feat-Label Non-R | 181.36 | 155.81 158.46 160.92

video, to broaden the generative Al field.
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