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1 Introduction

Nowadays, the recordings of visual and audio data capturing various scenes of people’s daily life can be acquired
and collected anywhere and anytime through cameras and microphones on ubiquitous smart devices [27, 28, 34].
In the meantime, with the advent of the deep learning era, visual and audio data can be analyzed more efectively
for providing individuals with more accurate customized services. However, the evolution of technology is
a double-edged sword ś such data can also be malevolently used by attackers to infer individuals’ sensitive
information [5, 11, 20], causing severe privacy leakage and economic loss.

So far, many works have been proposed to investigate visual and audio data-oriented privacy inference models.
These visual-based approaches can successfully achieve the identiication of individuals [18], the inference of
individuals’ activities [22], and the recognition of individuals’ locations [13]. Nevertheless, these models sufer a
lot of performance loss because of the poor image quality and may even become infeasible due to the constraint
of camera coverage. Considering the omnidirectional coverage and easier deployment of audio sensors, some
researchers change their targets to study imperceptible privacy inference attacks on audio data. These audio-based
privacy inference models can be broadly classiied into three categories. (i) Audio-based person identiication
approaches are designed by discriminating the timbres of diferent people [9, 23]; (ii) Sound prediction models
have been developed to classify diferent activities’ sounds of human for human activity detection [1, 4]; (iii)
Environmental scene recognition schemes are devised to infer indoor and outdoor environments where human
locate through distinguishing the various environmental audios [6, 31]. But, the existing works are only able
to infer one speciic element of an event about human, such as who they are, what they do, or where they are.
Although these one-element prediction approaches can be combined to perform integral event inference, such a
method lacks scalability in reality as the number of elements needs to be known or determined before model
combination. What’s worse, this event inference model built in a simple combination way will become more and
more complicated with the increase of elements, greatly increasing implementation cost. Therefore, it is still
challenging to design an efective and scalable audio-based integral event inference model.
To ill this blank, we present an Audio-based integraL evenT infERence (ALTER) model that is composed of

three main components, including data preprocessing, sequential data feature learning, and multi-label inference.
Our ALTER model can successfully achieve the goal of integral event inference by simultaneously leveraging
the temporal correlation in the time-series audio data and the short-term co-occurrence dependency among
multiple labels. Additionally, to alleviate the information loss in the sequential data feature learning, we improve
ALTER model to the ALTER-p model by designing a new attention mechanism, in which we entirely exploit
the audio information and the importance of all data points to get the output data features. Besides, for the
purpose of inferring a sophisticated event with more various elements, the ALTER-p model is further upgraded
to the ALTER-pp model, where we devise another new attention mechanism to help represent the long-term
co-occurrence dependency among labels. Finally, the efectiveness of the three proposed models is evaluated
and compared by conducting comprehensive real-data experiments. The multifold contributions of our work are
concluded below.

• To the best of our knowledge, this is the irst work to investigate an audio-based integral event inference
task.

• We design ALTER, ALTER-p, and ALTER-pp models to perform the audio-based integral event inference
with considering diferent application requirements and data characteristics.

• In our models, one novel attention mechanism is developed to retain information as much as possible
in audio data feature learning, and another creative attention mechanism is implemented to capture the
long-term co-occurrence dependency among multiple labels.
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• We also propose a link-like multi-label inference scheme and a graph-like multi-label inference method
to realize the event inference based on the short-term co-occurrence dependency and the long-term
co-occurrence dependency among labels, respectively.

• Extensive real-data experiments are well conducted to validate the efectiveness of our proposed models on
integral event inference and to illustrate their superiority over state-of-the-art approaches.

The rest of this paper is organized as follows. The related works are briely summarized in Section 2. We detail
our methodology in Section 3, and then conduct real-data experiments and analyze the experimental results
in Section 4. After that, we propose some discussions and future works in Section 5. Finally, we end up with a
conclusion in Section 6.

2 Related Works

In this section, we summarize the related works on visual-based and audio-based privacy inference models.

2.1 Visual-based Privacy Inference

With the impressive growth of deep learning in computer vision [16], attackers can maliciously detect, extract,
and retrieve individuals’ sensitive information in visual data via deep learning models. When one person’s
visual data is public on social platforms, attackers can leverage deep learning tools to automatically steal his/her
private information, including who the person is, what the person does, and where the person is. For examples,
recognition models can be exploited to identify people in pictures [15, 18], detection models can be used to detect
human activities in videos [7, 22], and other inference models can be employed to infer individuals’ locations in
images [13, 30].

However, the performance of these visual-based models is greatly afected by the limited quality of visual data,
and these models even will not be able to work when an object in pictures is occluded, when an activity occurs in
the dark, or when an event happens in an area that is beyond the coverage of video cameras.

2.2 Audio-based Privacy Inference

Audio data can be used as a supplementary information source to achieve more stealthy privacy inference
attacks own to its omnidirectional coverage and audio sensors’ easy deployment in various environments [10, 11].
Therefore, a few research has begun to investigate the possibility of inferring privacy using audio data, which
can be broadly classiied into three mainstream applications. (i) Person identiication can be accomplished by
matching the newly captured timbre of a person from audio with the previously learned timbre of the same
person [8, 9, 12, 23]. (ii) Vocal sounds produced by humans can also be recognized through audio data [1, 3, 4],
which includes infants’ and adults’ screams, crying, coughing, clapping, whistling, sneezing, laughing, and the
sound of footsteps. (iii) Indoor and outdoor environmental scenes where humans locate, such as homes, oices,
and residential areas, can be detected by analyzing an audio stream as well [2, 6, 29, 31]. Although these existing
works have demonstrated that it is possible to infer a single speciic type of sensitive information about humans
in audio, there is no one to design a scheme to directly speculate an integral event related to humans by analyzing
polyphonic audio.
In this paper, three audio-based models are presented to realize the inference of human’s integral event by

processing polyphonic audio. The technical novelty of our models lies in two aspects. (i) The temporal correlation
and the importance of diferent data points are leveraged in the sequential data feature learning. (ii) The co-
occurrence dependency in multiple labels and the importance of these labels are exploited in the inal event
prediction.
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Fig. 1. Framework of Our Proposed Audio-based IntegraL Event Inference Model (ALTER)

3 Methodology

In this paper, we treat each element in an event as a label of one polyphonic audio. Accordingly, we aim to predict
multiple labels of one polyphonic audio and then combine these labels related to the same event to infer the
integral event. To this end, we propose an Audio-based integraL evenT infERence (ALTER) model as presented
in Fig. 1. Generally speaking, ALTER is composed of three components, including (i) data preprocessing, (ii)
sequential data feature learning, and (iii) multi-label inference. At the beginning, in data preprocessing, we
convert the continuous polyphonic audio into Mel-Frequency Cepstrum Coeicients (MFCCs) [25]. Then, a
sequential data feature learning scheme is used to capture the features of sequential input while considering the
temporal correlation in the sequential data. Next, the multi-label inference stage leverages the extracted data
features to predict multiple element labels. In the following, after introducing the design of three components of
ALTER in Section 3.1, we present two upgraded models, ALTER-p and ALTER-pp, in Section 3.2 and Section 3.3,
respectively.

3.1 ALTER

3.1.1 Data Preprocessing. Since MFCCs have shown efectiveness in capturing the features of the acoustic signal
in the speech recognition systems [19, 26, 33], we transform the polyphonic audio into MFCCs for our audio-based
event inference task. In Fig. 2, we illustrate the procedure for calculating MFCCs of audio step by step: (i) window
the original continuous polyphonic audio into a series of short frames; (ii) for each frame, calculate the energy
spectrum using Discrete Cosine Transform (DCT) [32]; (iii) apply a mel ilterbank [21], which is a series of
bandpass ilters with constant bandwidth and spacing on a mel frequency scale, to each frame’s energy spectrum
in order to get the multiple mel spectra; (iv) compute the logarithm of the mel spectra of each frame; and (v)
convert these frames’ logarithmic mel spectra back to the time domain via inverse DCT [32], which are MFCCs
of the polyphonic audio. For presentation simplicity, we denote the calculation procedure of MFCCs as a function
� (·) and use � (·) to transform the original continuous audio vector �� into MFCCs matrix��×� , i.e.,

��×� = � (�� ), (1)

where � is the dimension of the audio vector, and � is the number of ilters in the ilterbank.

3.1.2 Sequential Data Feature Learning. We treat the obtainedMFCCsmatrix as a sequence��×� = {�1, �2, · · · , �� },
where each element is a �-dimensional vector. LSTM neural network [14] provides an extraordinary function to
learn the features of sequential data with the consideration of temporal correlation in data. In light of this, we
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use the LSTM unit to extract the features from the sequence��×� , which can be formulated as follows:

�� = � (�� [ℎ�−1, �� ] + �� ), (2)

�� = � (�� [ℎ�−1, �� ] + � � ), (3)

�� = � (�� [ℎ�−1, �� ] + �� ), (4)

�̃� = � (�� [ℎ�−1, �� ] + �� ), (5)

�� = ����−1 + �� �̃� , (6)

ℎ� = �� · ���ℎ(�� ), (7)

where �� ∈ ��×� ;� ∈ [2, �]; �� , �� , and �� are the input gate, forget gate, and output gate, respectively; � (·) is the
activation function;�� ,�� ,�� , and�� are the weights, and �� , � � , �� , and �� are the biases; �̃� is the immediate
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state, and �� is the long-term state during sequential data feature learning process; ���ℎ(·) is the hyberbolic
tangent activation function; and �� and ℎ� are � -th input and output information, respectively. The LSTM-based
sequential data feature learning process is presented in Fig. 3, where we can get the inal output features ℎ� from
��×� .
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Fig. 8. Data Flow of ATLER-p Model

3.1.3 Multi-label Inference. It is known that an integral event can be described by several elements, such as who
is a person, what is a person talking, and where is a person. In this paper, we assume that an integral event is
composed of � elements, each of which can be taken as one label of continuous polyphonic audio. Thus, we can
consider the event inference task as a multi-label inference task. Our multi-label inference process contains two
phases, i.e., multi-label feature learning and multi-label inference.
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As a matter of fact, one event is usually composed of more than one concurrent element, including object,
activity, environment, etc. For example, in an event that ła girl has a laughter at home”, the coccurrent elements
are gender (i.e., female), activity (i.e., laughter), and location (i.e., home). That is, the elements in an event are
co-occurrence dependent. Hence, for multi-label feature learning, we attempt to learn the features of multiple
labels while considering the co-occurrence dependency among these element labels. We can treat these correlated
labels as a label sequence and denote the label sequence as � = {�1, �2, · · · , ��}, where �� is the �-th element label
in the event. In Fig. 4, we exploit LSTM neural network to extract the multi-label features with incorporating
label correlation. Furthermore, taking into account that the data features mainly afect the labels’ prediction, the
output data features ℎ� are also used in our LSTM-based multi-label feature learning, which can be formulated
below:

�
(�)

�
= � (�

(�)
� [ℎ

(�)

�−1, �� ] +��ℎ� + �
(�)
� ), (8)

�
(�)

�
= � (�

(�)

�
[ℎ

(�)

�−1, �� ] +�� ℎ� + �
(�)

�
), (9)

�
(�)

�
= � (�

(�)
� [ℎ

(�)

�−1, �� ] +��ℎ� + �
(�)
� ), (10)

�̃
(�)

�
= � (�

(�)
� [ℎ

(�)

�−1, �� ] +��ℎ� + �
(�)
� ), (11)

�
(�)

�
= �

(�)

�
�
(�)

�−1 + �
(�)

�
�̃
(�)

�
, (12)

ℎ
(�)

�
= �

(�)

�
· ���ℎ(�

(�)

�
), (13)

where �� ∈ � ; � ∈ [2, �]; � (�)
�

�
(�)

�
, and �

(�)

�
are the input gate, forget gate, and output gate for label feature

learning, respectively;� (�)
� ,� (�)

�
,� (�)

� , and� (�)
� are the weights, and � (�)

� , � (�)

�
, � (�)

� , and � (�)
� are the biases

in the label feature learning process; �̃ (�)
�

is the immediate state, and � (�)
�

is the long-term state during the label

feature learning; �� and ℎ (�)

�
are � -th input and output label information, respectively; and �� , �� , �� , and ��

are the weights of data features in the LSTM-based label feature learning architecture. Consequently, we can

obtain the inal label features ℎ (�)
� for further inference.

Moreover, as presented in Fig. 5, we propose a link-like multi-label inference, during which we consider the
fact that the current predicted label ˆ�� can be inluenced by the previous one predicted label �̂�−1, the output

data features ℎ� , and output label features ℎ (�)
� . So, we design the inal layer using �� � ���� (·) function shown in

Eq. (14).

�̂� = �� � ���� (��� (�� [ℎ
(�)
� , ℎ� , �̂�−1]) + �� ), (14)

where�� ,�� , �� are the parameters of �� � ���� (·) to be learned.
At the end, we present the data low of our proposed ATLER model in Fig. 6 by combining the aforementioned

three components. The ALTER model is trained by minimizing the summation of the cross entropy between the
predicted label �̂� and the corresponding ground-truth label �� .

3.2 ALTER-p

In ALTER, we use LSTM to extract the data features to get the output ℎ� , which, however, compresses too much
original data information. In order to make full use of all data information and the importance of data points
at the same time, we update our sequential data feature learning by using LSTM and attention mechanisms
simultaneously. In Fig. 7, we show the LSTM-Attention-based sequential data feature learning scheme. First of all,
we can compute the unnormalized relevance score �� of the data �� by using the following attention function:

�� = �� · ���ℎ(��ℎ� +���� + �� ), (15)

ACM J. Data Inform. Quality
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where � ∈ [1, �], and �� ,�� ,�� , and �� are the parameters in the attention function. Then, we can calculate the
corresponding attention weight �� in Eq. (16) via normalizing the relevance scores.

�� = ��� (�� )/

�︁

�=1

��� (�� ). (16)

Based on these attention weights, we deine the new output data features as:

�� =

�︁

�=1

���� . (17)
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Accordingly, the inal prediction function in Eq. (14) should be updated as:

�̂� = �� � ���� (��� (�� [ℎ
(�)
� , �� , �̂�−1]) + �� ). (18)

Finally, we replace the original LSTM-based one in ALTER with the LSTM-Attention-based sequential data
learning to obtain our ALTER-p model, the data low of which is shown in Fig. 8. ALTER-p is be trained in the
same way as the ALTER model.

3.3 ALTER-pp

Similarly, we expect to obtain the label features by using all label information while considering the importance of
multiple labels. For this purpose, the LSTM-Attention architecture shown in Fig. 9 is applied to update our original
LSTM-based multi-label feature learning component. In this architecture, we irst calculate the unnormalized

relevance score � (�)
�

of the label �� , i.e.,

�
(�)

�
= �

(�)
� · ���ℎ(�

(�)
� ℎ

(�)

�
+�

(�)
� �� + �

(�)
� ), (19)

where � ∈ [1, �], and � (�)
� ,� (�)

� , � (�)
� , and � (�)� are the parameters of the attention function in label feature

learning. Then, the attention weight of the � -th label �� can be computed as:

�� = ��� (�
(�)

�
)/

�︁

�=1

��� (�
(�)

�
). (20)

Consequently, we deine the new label features to be:

�� =

�︁

�=1

���� . (21)

Moreover, inspired by the attention-based learning process, we propose a new graph-like multi-label inference
presented in Fig. 10, where the prediction result of current label ˆ�� is afected by all previously predicted labels
{�̂1, · · · , �̂�−1}. Thus, by using the newly learned label features �� and the graph-like multi-label inference idea,
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we can further improve the prediction function in Eq. (22).

�̂� = �� � ���� (��� (�� [��, �� ,

�−1︁

�=1

� ��̂ � ]) + �� ) . (22)

After all, ALTER-pp is constructed by employing LSTM-Attention-based sequential data feature learning,
LSTM-Attention-based multi-label feature learning, and graph-like multi-label inference, the data low of which
is demonstrated in Fig. 11. We will also train ALTER-pp using the same way of training ALTER.

Table 1. Gender Prediction Results (Ours v.s. Baseline 1)

Model Data Learning Label Learning Acc Pre Rec F1 Auc

Baseline 1 / / 0.834 0.902 0.698 0.832 0.916
ALTER LSTM LSTM 0.844 (↑ 1.20%) 0.911 (↑ 1.00%) 0.699 (↑ 0.14%) 0.842 (↑ 1.20%) 0.918 (↑ 0.22%)
ALTER-p LSTM + Attention LSTM 0.845 (↑ 1.32%) 0.916 (↑ 1.55%) 0.707 (↑ 1.29%) 0.843 (↑ 1.32%) 0.922 (↑ 0.66%)
ALTER-pp LSTM + Attention LSTM + Attention 0.846 (↑ 1.44%) 0.919 (↑ 1.88%) 0.718 (↑ 2.87%) 0.844 (↑ 1.44%) 0.926 (↑ 1.09%)

Table 2. Vocal Sound Prediction Results (Ours v.s. Baseline 2)

Model Data Learning Label Learning Acc Pre Rec F1 Auc

Baseline 2 / / 0.900 0.925 0.800 0.901 0.975
ALTER LSTM LSTM 0.908 (↑ 0.89%) 0.944 (↑ 2.05%) 0.833 (↑ 4.13%) 0.908 (↑ 0.78%) 0.980 (↑ 0.51%)
ALTER-p LSTM + Attention LSTM 0.914 (↑ 1.56%) 0.949 (↑ 2.59%) 0.836 (↑ 4.50%) 0.914 (↑ 1.44%) 0.986 (↑ 1.13%)
ALTER-pp LSTM + Attention LSTM + Attention 0.918 (↑ 2.00%) 0.954 (↑ 3.14%) 0.898 (↑ 12.25%) 0.918 (↑ 1.89%) 0.993 (↑ 1.85%)

Table 3. Environment Prediction Results (Ours v.s. Baseline 3)

Model Data Learning Label Learning Acc Pre Rec F1 Auc

Baseline 3 / / 0.987 0.964 0.503 0.979 0.976
ALTER LSTM LSTM 0.989 (↑ 0.20%) 0.975 (↑ 1.14%) 0.511 (↑ 1.59%) 0.984 (↑ 0.51%) 0.985 (↑ 0.92%)
ALTER-p LSTM + Attention LSTM 0.997 (↑ 1.01%) 0.985 (↑ 2.18%) 0.534 (↑ 6.16%) 0.994 (↑ 1.53%) 0.993 (↑ 1.74%)
ALTER-pp LSTM + Attention LSTM + Attention 0.998 (↑ 1.11%) 0.988 (↑ 2.49%) 0.567 (↑ 12.72%) 0.997 (↑ 1.84%) 0.995 (↑ 1.95%)

Table 4. Event Prediction Results (Ours v.s. Baseline)

Model Data Learning Label Learning Acc Pre Rec F1 Auc

Baseline / / 0.718 0.521 0.828 0.704 0.945
ALTER LSTM LSTM 0.734 0.534 0.890 0.729 0.966
ALTER-p LSTM + Attention LSTM 0.778 (↑ 5.99%) 0.587 (↑ 9.93%) 0.896 (↑ 0.67%) 0.776 (↑ 6.45%) 0.970 (↑ 0.41%)
ALTER-pp LSTM + Attention LSTM + Attention 0.781 (↑ 6.40%) 0.675 (↑ 26.4%) 0.897 (↑ 0.79%) 0.779 (↑ 6.96%) 0.975 (↑ 0.93%)
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(a) Accuracy (b) Precision (c) Recall

(d) F1 Score (e) Auc

Fig. 12. Gender Prediction Results (Ours v.s. Baseline 1)

3.4 Model Comparison

We design ALTERmodel to infer an audio-based integral event by leveraging the temporal correlation in audio and
the co-occurrence dependency among multiple element labels. However, in ATLER, the LTSM-based sequential
data feature learning, which compresses the audio data into the output data features, may lead to data information
loss when processing relatively longer audio. To reduce such information loss, ALTER-p is proposed by making
full use of audio information and the importance of all data points, which is more helpful to analyze an audio with
a relatively longer time period. Nonetheless, in the link-like multi-label inference of ALTER-p, we only consider
a short-term co-occurrence dependency among labels, which may be limited in predicting a complicated event
with relatively more elements. While, in order to efectively predict a sophisticated event with diverse elements,
ALTER-pp is further presented by taking advantage of the long-term co-occurrence dependency among labels
(i.e., the graph-like multi-label inference).
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(a) Accuracy (b) Precision (c) Recall

(d) F1 Score (e) Auc

Fig. 13. Vocal Sound Prediction Results (Ours v.s. Baseline 2)

4 Experiments

In this section, we irst introduce the experiment settings and then conduct comprehensive experiments to
evaluate the efectiveness of our proposed ALTER, ALTER-p, and ALTER-pp models on a real-world dataset.
Besides, more extensive experiments are done to compare our proposed models with the state-of-the-art.

4.1 Experiment Setings

The datasets, baselines, performance metrics, network architectures, and parameter settings are described below.

4.1.1 Dataset. We adopt two public datasets, including VocalSound [17] and TUT Acoustic Scenes 2016 [24].
VocalSound is a dataset consisting of males’ and females’ recordings of "laughter, sigh, cough, throat clearing,
sneeze, and snif". TUT Acoustic Scenes 2016 includes recordings from various acoustic environments, such as
homes, oices, and residential areas. Since we aim to test the performance of our audio-based integral event
inference models in the experiments, we synthesize these two datasets to obtain a polyphonic audio dataset,
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(a) Accuracy (b) Precision (c) Recall

(d) F1 Score (e) Auc

Fig. 14. Environment Prediction Results (Ours v.s. Baseline 3)

which contains human gender information, human vocal sound information, and environmental information. In
this synthetic dataset, for instance, one polyphonic audio records an event that ła female has a laughter at home”,
and the corresponding labels of this audio record are łfemale”, łlaughter”, and łhome”.

4.1.2 Baselines. Although no work has been proposed to predict an integral event based on audio so far, there are
some related works to infer one element in an event. The one-element event inference can be treated as a special
case in our models. Thus, we choose the following baselines to conduct comparison experiments so as to further
illustrate the superiority of our models in this special case. (1) An EicientNet-based model proposed in [17] is
a state-of-the-art model for the gender prediction on VocalSound dataset. (2) In [17], another state-of-the-art
EicientNet-based approach is presented to make human vocal sound inference on VocalSound dataset. (3) A
GMM-based model in [24] is the state-of-the-art to achieve environment recognition on TUT Acoustic Scenes
2016 dataset.
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(a) Accuracy (b) Precision (c) Recall

(d) F1 Score (e) Auc

Fig. 15. Event Prediction Results (Ours v.s. Baseline)

4.1.3 Performance Metrics. Since the audio-based integral event inference can be considered as a multi-label
classiication task, we use ive typical metrics for classiication tasks as the performance measurements, including
accuracy (Acc), precision (Pre), recall (Rec), F1 score (F1), and area under the receiver operating characteristic
curve (Auc). A higher value of Acc indicates a more precise prediction outcome, and the same principle applies to
Pre, Rec, F1, and Auc.

4.1.4 Network Architectures. In ALTER model, we use two LSTM layers for sequential data feature learning and
another two LSTM layers in the multi-label inference phase. For ALTER-p, we maintain the design of multi-label
inference in ALTER and update the sequential data feature learning in ALTER by applying two LSTM layers and
an attention layer concurrently. For ALTER-pp, we follow the sequential data feature learning architecture in
ALTER-p while achieving multi-label inference via two LSTM layers plus an attention layer.

4.1.5 Parameter Setings. In data preprocessing, we window each audio sample into short frames every 10�� and
use a ilterbank with 128 ilters to convert the audio vector into the MFCCs matrix. We train the neural networks
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in our proposed ALTER, ALTER-p, and ALTER-pp models using an Adam optimizer for 80 epochs with an initial
learning rate at 1� − 4 and a batch size of 100.

4.2 Comparison between Ours and Baselines

In order to verify the efectiveness of ALTER, ALTER-p, and ALTER-ppmodels on the one-element event inference,
we compare the performance of our proposed models with three state-of-the-art baselines. Firstly, we show
the gender recognition results of our models and baseline 1 in Table 1 and Fig. 12, where it can be seen that
our proposed models’ performance is comparable and even better than baseline 1. Secondly, the vocal sound
prediction results of our models and the baseline 2 are presented in Table 2 and Fig. 13. From these results, we can
ind out that the proposed models outperform baseline 2 with regard to human vocal sound inference. Thirdly,
by comparing the results of Acc, Pre, Rec, F1, and Auc in Table 3 and Fig. 14, we can notice that our models
are superior to baseline 3 in terms of environment prediction. To sum up, our models have superiority over the
previous state-of-the-art approaches in terms of one speciic element inference since the temporal correlation
and the importance of diferent data points are leveraged in our proposed sequential data feature learning. The
names of the baselines and their corresponding models are shown in Table 5.

Table 5. Baseline Models

Baseline 1 EicientNet-based Model [17]
Baseline 2 EicientNet-based Model [17]
Baseline 3 GMM-based Model [24]

4.3 Evaluation on Our Models

Since the problem of integral event inference has not been address by existing works, we combine baseline
1, baseline 2, and baseline 3 to obtain a event inference model, which is used as a baseline to investigate the
efectiveness of our proposed models. To be speciic, after training our models and the baseline model, we use the
trained models to test the polyphonic audios in the testing dataset to predict the multiple element labels. Then,
the predicted element labels and the corresponding ground-truth ones are used to calculate the event prediction
performance to measure the event inference efectiveness, for which we present the values of Acc, Pre, Rec, F1,
and Auc in Table 4 and Fig. 15. The results demonstrate that ALTER model outperforms the baseline in terms of
integral event inference on polyphonic audio thanks to the incorporation of the temporal correlation in audio
and the short-term co-occurrence dependency among multiple labels simultaneously. Besides, by comparing
ALTER-p with ALTER, we can see that the values of all performance metrics are increased. Signiicantly, Acc and
F1 are increased by about 6.00%, and Pre is increased by about 10.00%. The comparison indicates that ALTER-p
can enhance the performance of the event prediction due to the full utilization of data information and the
importance of all data points. In addition, compared with ALTER-p, ALTER-pp can obtain more improvements in
the event prediction performance thanks to the consideration of the long-term co-occurrence dependency among
labels.

5 Discussion and Future Work

In this section, we discuss two limitations of this work and present our future research directions.
(i) Although the experimental results have shown that ALTER-p can improve the performance of event

prediction by considering the whole data information and the importance of all the data points, the performance
improvement is not too much since the audio samples in our synthetic dataset are short. Therefore, in the future,
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it is desirable for us to highlight the advantage of ALTER-p by collecting longer real-world audios via extensive
experiments.

(ii) Similarly, due to the limitation of data source, we use our ALTER-ppmodel to predict the three-element event.
As a result, the graph-like multi-label inference in ALTER-pp cannot bring too much performance improvement.
We will conduct more comprehensive experiments after collecting polyphonic audios of human events with more
diverse elements so as to better evaluate the beneit of considering the long-term co-occurrence dependency
among labels.

6 Conclusion

This paper is the irst work to investigate an audio-based integral event inference. Firstly, we propose an ALTER
model to efectively achieve event inference by leveraging the temporal correlation in audio and the short-term
co-occurrence dependency among multiple labels. Moreover, ALTER-p is designed by fully exploiting data
information and the importance of all data points so as to enhance event prediction performance. Furthermore,
ALTER-pp is proposed by further considering the long-term co-occurrence dependency among multiple labels for
event inference performance improvement. Finally, via comprehensive real-data experiments, we demonstrate the
efectiveness of our proposed models on the integral event inference and their advantages over the state-of-the-art
methods.
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