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ABSTRACT: Population growth, land use change, climate change, and
natural resource extraction are driving the salinization of freshwater
resources worldwide. Reversing these trends will require data-centric
approaches that identify salt sources, environmental drivers, and
ecosystem responses. In this study, we applied principal component
analysis and hierarchical clustering to identify ion covariance patterns,
or “ion clusters,” in Broad Run, an urban stream in the Mid-Atlantic
United States. These clusters correspond to distinct hydrologic regimes
and reveal specific salinization risks: (1) phosphorus pollution
mobilized during summer storms (Cluster 1); (2) elevated concen-
trations of sulfate and bicarbonate during baseflow (Cluster 2), likely
reflecting groundwater discharge; and (3) elevated specific conductance
and sodium, chloride, and potassium ion concentrations during
snowmelt and rain-on-snow events (Cluster 3), driven by deicer and anti-icer wash-off. These ion fingerprints offer a transferable
framework for diagnosing salt sources, assessing ecological risk, and identifying management targets. Our findings underscore the
need for next-generation stormwater infrastructure and smart growth policies to protect aquatic life in rapidly urbanizing watersheds.
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■ INTRODUCTION
Dissolved ions occur naturally in freshwater systems due to
atmospheric deposition1 and the weathering of soils and
bedrock.2 Yet across the globe, salinity levels in rivers, streams,
lakes, and groundwater are rising due to human activities.3 In
temperate urban and suburban areas, these changes are driven
by overlapping inputs from road deicers, construction
materials, fertilizers, storm runoff, and treated wastewater.3−8

As a result, ion concentrations are increasing even in regions
without historic salinization issues,9 prompting concern about
ecological degradation and long-term sustainability.10

Salinization can reduce freshwater biodiversity and ecosys-
tem function11−13 with impacts ranging from osmotic stress for
sensitive species to the mobilization of legacy pollutants.14−17

While regulatory efforts have historically focused on single-ion
thresholds (e.g., chloride18) or aggregate metrics (e.g., specific
conductance19), emerging research highlights the importance
of ion mixtures and their interactions.20,21 These mixtures can
differ substantially across space and time depending on the
source, transport pathway, and hydrologic context.22

In this study, we investigate patterns of stream salinization in
Broad Run, a rapidly urbanized watershed in Northern

Virginia. Using 3 years of stream monitoring data, we apply
principal component analysis (PCA) and hierarchical cluster-
ing to identify groups of samples with similar ion covariance
patterns, which we refer to as ion clusters. We interpret these
clusters with respect to seasonal hydrologic conditions and use
them to evaluate potential sources, ecological risks, and
management strategies.
This study is novel in its use of ion clustering as an

organizing framework for diagnosing salinity drivers and their
impacts on stream ecosystems. We hypothesize that distinct
ion mixtures reflect not only salt source types but also
transport mechanisms and retention times, which vary
seasonally and across flow regimes. Specifically, we ask: (1)
What are the statistically distinct ion mixtures in this urban
stream, and how do they relate to hydrologic conditions? (2)
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What do these mixtures reveal about the likely sources and
pathways of salinity inputs? (3) How do ion mixtures relate to
aquatic life stress, as inferred from regional bioassessment
thresholds? By addressing these questions, we demonstrate
how statistical pattern recognition tools can reveal actionable
insights for managing freshwater salinization in urbanizing
watersheds.

■ MATERIALS AND METHODS
Site Description. Our monitoring station (BL30;

39.024°N, 77.439°W) is located on a fourth-order reach of
Broad Run in the Potomac-Shenandoah River Basin (Figure S1
and Note S1). This portion of Broad Run drains a rapidly
urbanizing 152 km2 catchment in Loudoun County, Virginia,
USA. Impervious cover in this subwatershed increased from
approximately 19% in 2001 to approximately 32% in 2019.23

The drainage lies within the Mesozoic Lowlands hydro-
geomorphic region, underlain by siltstone, shale, sandstone,
diabase, and basaltic rock types24,25 (Figures S2 and S3). There
are no wastewater treatment plant discharges upstream of
BL30.
Sample Collection and Field Measurements. Baseflow

and storm samples were collected at BL30 over a three-year
period (2020-04-13 to 2023-05-03). Biweekly grab samples
were collected to represent the relatively stable conditions of
baseflow, whereas flow-weighted composite samples were used
to capture representative pollutant concentrations during
storm events, when concentrations can vary considerably
over the storm hydrograph.26 All water samples were
transported on ice to the Occoquan Watershed Monitoring
Laboratory either immediately (baseflow) or within 24 h
(storm samples) of collection. Field measurements of stream-
water temperature, pH, specific conductance (SC), and total
alkalinity were conducted during baseflow sampling. For safety
reasons, no field measurements were conducted during storm
events (Note S2).
Laboratory Analysis. Dissolved Ions. Filtered baseflow

and storm samples were analyzed within 1 day of arrival at the
laboratory for major dissolved ions (K+, Na+, Cl−, SO4

2−, Ca2+,
Mg2+) using ion chromatography (Dionex ICS-5000) follow-
ing ASTM D6919-09 and SM 4110 B-2011. In baseflow
samples, bicarbonate concentrations were calculated from
field-measured alkalinity (Notes S3 and S4).
Nutrients. Unfiltered samples were analyzed for total

nitrogen (TN) and total phosphorus (TP) following persulfate
digestion. Filtered subsamples were analyzed for dissolved
nitrate + nitrite (NO3

−/NO2
−) and orthophosphate (PO4

3−)
using Astoria Pacific autoanalyzers and Standard Methods
4500-P J-2011, 4500-NO3

− F-2011, and 4500-P F-2011.
Additional details, including sample preservation, instrumenta-
tion, and detection limits, are provided in Note S3 and Table
S3.
Total Suspended Solids. Total suspended solids (TSS)

were measured gravimetrically, following Standard Method
2540 D-2011.
Left-Censored Values and Charge Balance Error

(CBE). All left-censored values (i.e., values below the limit of
detection (LOD), Table S3) were set equal to one-half the
LOD. Charge balance error (CBE) was calculated for each
sample based on the normality of all measured or imputed
cations (K+, Na+, Ca2+, Mg2+, NH4

+, H+) and anions (HCO3
−,

Cl−, SO4
2−, NO3

−/NO2
−, PO4

3−) as described in Note S5.

Imputation of Missing Data. Missing values were
imputed using regularized iterative Principal Component
Analysis (PCA) via the estim_ncp and imputePCA
functions in the MissMDA package (R, version 4.4.1). The
estim_ncp function estimates the optimal number of
principal components which are then used by imputePCA
to perform the imputation.27 Imputed bicarbonate concen-
trations in storm samples were validated using two approaches:
(1) comparison to bicarbonate concentrations estimated via a
geochemical charge-balance method, in which all unbalanced
anionic charge is attributed to bicarbonate (Note S4); and (2)
evaluation of CBE calculated from the measured and imputed
ion concentrations for each storm sample (Note S5).

Environmental Variables. Stream Discharge. Stream
discharge was estimated from hourly stage measurements
collected with a pressure transducer (Pressure Systems, Inc., 10
PSI Transducers) fixed to a wooden monument near the
stream bank, just upstream of a stable cross-section provided
by a sewer line crossing. Stage measurements were converted
to discharge, stored in a data logger (Sutron 8210), and
retrieved during baseflow sample collection. Hourly stream
discharge measurements were averaged to daily discharge for
further analysis (Note S6). The stage-discharge relationship
was updated every 3 to 6 months (and after large storms)
following USGS Method 3-A8.28

Baseflow Index (BFI). Daily estimates of baseflow, QBF, were
computed by applying a Recursive Digital Filter to the
measured discharge data, Q (grwat package in R Software,
version 4.4.1, R Core Team 2024)29,30 (Note S7). The
baseflow index was calculated as BFI = QBF/Q.

Precipitation, Air Temperature, and Snow Melt. Hourly
precipitation and air temperature data were collected from the
weather station at Dulles International Airport (located within
the drainage area, 10 km to the south of BL30) (Note S6).
Snowmelt was estimated using the Hydrologiska Byråns
Vattenbalansavdelning (HBV) model31,32 (Note S8).

Local Groundwater Data. Groundwater data were obtained
from the U.S. Geological Survey’s National Water-Quality
Assessment (NAWQA) program.33 Specifically, we accessed
records from USGS well no. 385930077215901, located
approximately 7 km southeast of BL30 (Figure S2). Between
2003 and 2015, the USGS collected eight samples from this
well (at depths of 20−90 feet below ground surface) and
analyzed them for the same suite of inorganic ions and
nutrients described above for Broad Run.

Principal Component Analysis (PCA) and Hierarchical
Clustering. Prior to PCA, ion and nutrient concentrations
were log-transformed to reduce skewness and standardized (Z-
scored). The number of significant principal components
(PCs) was determined using a resampling-based stopping rule,
which identifies components that explain more variance than
expected by chance (p < 0.05)34,35 (Figure S8 and Note S9).
Hierarchical clustering was then applied in principal

component space using Euclidean distance and the Ward
criterion, as implemented in the HCPC function from the
FactoMineR package (R version 4.4.1).36 The optimal number
of clusters was identified based on the relative loss of inertia
(i.e., within-cluster variance), with the selected partition
corresponding to the point at which additional clusters result
in a substantially smaller gain in explanatory power. Permuta-
tional multivariate analysis of variance (perMANOVA) with
Euclidean distance was used to test for statistically significant
differences among the identified clusters.37 As a visual guide,
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ellipses were drawn to represent the approximate region of
principal component space occupied by each cluster;
specifically, each ellipse represents the region of principal
component space that would be expected to include 90% of
samples associated with a particular cluster, assuming a
multivariate normal distribution of the samples within each
cluster.
Median Comparison Tests. Nonparametric bootstrapping

was used to test for significant differences in group medians
(using the boot package in R version 4.4.1).38 Significance
was assessed at the p < 0.05 level using bias-corrected and
accelerated confidence intervals, with adjustments for multiple
comparisons made using the Bonferroni correction.39

Benthic Macroinvertebrate Responses. Since 2001, the
Virginia Department of Environmental Quality (VDEQ) has
collected stream ion concentrations and biological integrity
metrics�including the Virginia Stream Condition Index40�at
473 randomly selected monitoring stations across the state as
part of its probability-based monitoring program.41 To
contextualize the measurements at BL30, we compared them
to (1) concentrations measured at the VDEQ probability-
based monitoring sites within the Northern Piedmont
Ecoregion (for ecoregion-specific percentiles) and (2) state-
wide aquatic life stress thresholds established by the VDEQ,
which are currently not available at a finer ecoregional
resolution (see Note S10 for details).
First, for each ion and nutrient measurement at BL30, we

calculated its percentile ranking relative to concentrations
measured at VDEQ monitoring sites within the Northern
Piedmont Ecoregion, where BL30 is located, on the premise
that stream stations within the same ecoregion will support
similar macroinvertebrate assemblages and exhibit responses
similar to those of environmental stressors.
Second, we compared the ion and nutrient concentrations at

BL30 to statewide benthic community response thresholds
developed by VDEQ.41 These thresholds, derived from the
agency’s probabilistic monitoring data set using quantile
regression and conditional probability analyses,42 define
concentration ranges associated with increasing probability of
stress to aquatic life across all Virginia ecoregions: “No
Probable Stress” (background conditions), “Low Probability of
Stress” (minor biological response), “Medium Probability of
Stress” (substantial biological response), and “High Probability
of Stress” (significant degradation of the benthic community).

■ RESULTS
Stream Flow. Stream discharge at BL30 ranged from 0.113

to 4.94 mm/day during baseflow sampling (median = 0.310
mm/day) and from 1.59 to 22.0 mm/day during storm
sampling (median= 5.48 mm/day).
Water Quality Data Set. A balanced number of baseflow

(N = 79) and storm (N = 74) samples were collected at BL30
over the three-year study period. After the imputation of
missing values, four samples (two baseflow and two storm) had
an absolute charge balance error (CBE) >10% and were
excluded from further analysis (Note S5). The remaining
samples (N = 149) had CBEs ranging from −4.37% to +6.23%
(baseflow samples, N = 77) and from −4.2% to +7.01% (storm
samples, N = 72).
Ion concentrations were generally above their lower limits of

detection (LODs). The exceptions were NH4
+ and PO4

3−,
which were below their respective LODs in 2 and 27 samples,
respectively.

The final data set included 2,086 measured and 179 imputed
values for specific conductance (SC), total phosphorus (TP),
total nitrogen (TN), total suspended solids (TSS), and
dissolved inorganic cations (Ca2+, Mg2+, NH4

+, K+, Na+, H+)
and anions (Cl−, SO4

2−, NO3
−/NO2

−, PO4
3−, HCO3

−).
Principal Component Analysis (PCA). PCA was

performed on measured or imputed concentrations of cations
(Ca2+, Mg2+, K+, Na+, NH4

+, H+) and anions (Cl−, SO4
2−,

NO3
−/NO2

−, HCO3
−); because a relatively large number of

PO4
3− measurements were left censored (see last section), this

ion was not included in the PCA. The goal of the PCA was to
identify statistically distinct ion covariance patterns, and
therefore bulk nutrients (TP and TN) and TSS measurements
were also not included in the analysis.
Two significant principal components explained 73% of the

total variance in ion measurements (Figure 1). The first

principal component (PC1) reflects overall ion concentration,
with samples scoring positively along PC1 characterized by
elevated ion levels (gray arrows in the figure). The second
principal component (PC2) differentiates between samples
enriched in monovalent ions (positive PC2) and samples
enriched in divalent ions and carbonate system constituents
(negative PC2).

Hierarchical Cluster Analysis. Hierarchical clustering in
principal component space identified three statistically distinct
ion covariance patterns, or ion clusters, associated with the
samples collected at BL30 (Figure 1). As documented below,

Figure 1. 73% of the variance in ion concentrations measured at
Broad Run is captured by the two principal components PC1 (49.6%)
and PC2 (23.4%). The position in biplot space of all N = 77 baseflow
samples (circles) and N = 72 storm samples (triangles) are shown,
along with loadings for the ions included in the PCA (Ca2+, Mg2+,
NH4

+, K+, Na+, pH, Cl−, SO4
2−, NO3

−/NO2
−, HCO3

−). The colored
ellipses are included here only as a visual aid; the actual boundary
between clusters is not elliptical. Importantly, despite some overlap
between ellipses, the hierarchical clustering method assigned each
baseflow and storm sample to one of three clusters (Cluster 1, 2, or
3). Results from the perMANOVA test indicate that the three clusters
are significantly different (p < 0.05).
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these three ion clusters correspond to (1) summer storm
events (Cluster 1), (2) summer and winter baseflow conditions
(Cluster 2), and (3) winter snowmelt and rain-on-snow events
(Cluster 3).
Environmental Drivers. Cluster 1 is primarily composed of

samples collected during summer storm events, as indicated by
the high proportion of storm samples, elevated median air
temperature and rainfall, and a baseflow index (BFI) near zero
(Figure 2a).
Cluster 2 is primarily composed of summer and winter

baseflow samples, characterized by a median BFI near unity,
low median rainfall, and a wide range of air temperatures
(Figure 2a).
Cluster 3 is primarily composed of samples collected during

winter snowmelt or rain-on-snow events�a common con-
dition in this region. These samples are marked by low median
air temperatures, low median rainfall, intermediate median
BFI, and timing consistent with snowmelt predictions from the
HBV model (10 of 31 Cluster 3 samples occurred during
modeled snowmelt periods; data not shown) (Figure 2a).
Geochemical Signatures. Samples in Cluster 1 are

characterized by relatively low median concentrations of
most ions, consistent with the dilution by urban runoff during
summer storm events (Figure 2c−e). Two exceptions are
orthophosphate (PO4

3−) and potassium (K+) ion concen-
trations (Figure 2b,c). Potassium ion concentrations are
particularly elevated during winter deicing events (Cluster 3)
but remain high (relative to groundwater) during both

baseflow conditions and summer storms (Clusters 2 and 1).
Orthophosphate exhibits substantially higher concentrations in
Cluster 1 than in either groundwater or the other two clusters
(Figure 2b). PO4

3− is also weakly correlated with TSS in
Cluster 1 samples (Pearson’s R = 0.34, p < 0.05, data not
shown).
Samples in Cluster 3 exhibit elevated specific conductance

(SC) and markedly higher median concentrations of sodium
and chloride compared to the other clusters (Figure 2c),
consistent with the wash-off of NaCl-based road deicers and
anti-icers during snowmelt or rain-on-snow events.

■ DISCUSSION
The three ion clusters identified above reflect distinct
hydrologic regimes and geochemical signatures. In this section,
we explore their implications for: (1) identifying potential salt
sources; (2) assessing risks to aquatic life in Broad Run; and
(3) management actions and monitoring strategies.

Diagnosing Watershed Salinity Sources. The hydro-
logic and geochemical characteristics associated with each ion
cluster provide useful information for diagnosing salt sources
and biogeochemical processes in urban watersheds. In this
section, we focus on how relationships among ion concen-
trations, including how the molar concentration of one ion
changes relative to another within a cluster, can offer insights
into the drivers of freshwater salinization. We use this approach
to evaluate four potential sources of salinity at BL30: (1)

Figure 2. Violin plots of the (a) environmental drivers and (b)−(e) ion concentrations associated with each of the three clusters (C1 = Cluster 1
(summer storms), C2 = Cluster 2 (baseflow), and C3 = Cluster 3 (snowmelt and rain-on-snow events)). Ion concentrations are divided into those
for which the median concentrations are highest in (b) C1, (c) C3, (d) C2 and C3, or (e) C2. The median concentrations for each ion are
indicated by a thick black horizontal line. Baseflow and storm samples are indicated by yellow circles and teal triangles, respectively. Any pair of
median values are significantly different (at p < 0.05) when connected by starred brackets. Thin black horizontal line and gray region denotes the
median and range of ion concentrations measured in a nearby groundwater well. Orthophosphate concentrations below the limit of detection
(LOD) of 0.01 mg/L were set to one-half the LOD. Values of pH, SC, and HCO3

− in storm samples were imputed.
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sodium- and chloride-based road deicers, (2) potassium-based
airport deicers, (3) calcium- and magnesium-based deicers, and
(4) natural mineral sources associated with the local Triassic
basin geology.
Sodium- and Chloride-Based Road Deicers. The strong

molar relationship between Na and Cl across all clusters
(Pearson’s Correlation R = 0.99, 0.98, and 0.99 for Clusters 1,
2, and 3, respectively) points to NaCl-based deicers as a
plausible salt source at BL30 (Figure S9a). Cross-plotting
measured sodium and chloride concentrations, we find that the
resulting slopes (i.e., ΔNa+/ΔCl−, where the symbol Δ
denotes change) approach the 1:1 molar ratio expected for
rock salt in the following order: Cluster 2 (0.68 ± 0.04),
Cluster 1 (0.83 ± 0.02), and Cluster 3 (0.92 ± 0.03) (see Note
S11). The lowest slope occurs under summer baseflow
conditions (Cluster 2), when deicers are not being applied
and transit times through the watershed are relatively long.43

The highest slope occurs during winter (Cluster 3), when
deicer use is more likely. These patterns are consistent with
NaCl inputs along with cation exchange processes that
preferentially retard sodium transport (relative to chloride),
leading to observed slopes <1 across all flow and seasonal
conditions.2−45

While elevated concentrations of sodium and chloride
during baseflow (Cluster 2) may reflect a combination of
natural sources (such as mineral weathering from Triassic
basin sediments,46 see below) and legacy impacts from past
deicer applications that have infiltrated to groundwater,47 the
extremely high concentrations observed during snowmelt and
rain-on-snow events (Cluster 3) are more clearly attributable
to recent applications of road salt and anti-icing agents.
Potassium-Based Airport Deicers. A likely source of

potassium in Broad Run is potassium-based deicers used at
Washington Dulles International Airport, a major regional
facility serving over 24 million travelers annually.48 Because

chloride salts are corrosive to aircraft, the U.S. Federal Aviation
Administration permits alternatives such as potassium acetate
and potassium formate, which are widely used in the aviation
industry.49

Unlike NaCl, these potassium-based deicers lack inorganic
counterions, making ion slope analysis infeasible given the set
of ions measured here. However, useful information can still be
gleaned from the clusters. For example, a possible alternative
(nondeicer) source of potassium is the widely used fertilizer,
KCl. However, the highest potassium concentrations at BL30
are associated with snowmelt and rain-on-snow events (Cluster
3, Figure 2c) when fertilizer use would be extremely unlikely.
As noted earlier, potassium does not exhibit the dilution
response seen for most other ions. While median K+

concentrations are highest in Cluster 3, they remain elevated
(relative to groundwater) in both Clusters 1 and 2 (Figure 2c).
Two of the airport’s four runways drain into Broad Run,

both directly through a stormwater conveyance system and
indirectly via a detention pond (Figure S1). The elevated
potassium concentrations observed in Cluster 3 would be
consistent with inputs from the first flow path during snowmelt
or rain-on-snow events. In contrast, the persistently high values
in Clusters 1 and 2 are more consistent with the gradual release
of potassium from the airport detention pond.

Calcium- and Magnesium-Based Deicers. Calcium and
magnesium are active ingredients in several anti-icing products,
including calcium chloride, magnesium chloride, and calcium
magnesium acetate (CMA).21,50 Calcium and magnesium from
the first two deicers would be expected to covary with chloride
in a 1:2 molar ratio. However, Pearson correlation coefficients
between Ca2+ and Cl− and between Mg2+ and Cl− are low (R <
0.52) across all clusters, and the corresponding slopes are not
significantly different from zero (Figures S9b,c).
CMA (Mg2Ca(OAc)6) would be expected to yield a 2:1

molar increase in magnesium relative to calcium.51 However,

Figure 3. Contextualizing water quality in Broad Run and inferred probability of stress to aquatic life by cluster (C1 = Cluster 1 (summer storms),
C2 = Cluster 2 (baseflow), and C3 = Cluster 3 (snowmelt and rain-on-snow events)). (a) Percentile ranking of chloride, sodium, potassium, and
SC levels measured in samples collected from Broad Run (yellow circles or green triangles) relative to corresponding chloride, sodium, potassium,
and SC levels measured by VDEQ in Northern Piedmont Ecoregion streams (vertical axis). Color in each plot indicates the inferred probability of
stress to aquatic life (see the color key and text). The percentile rankings and inferred probabilities for aquatic life stress are highest for Broad Run
samples collected during snowmelt or rain-on-snow events (Cluster 3). (b) Percentiles and inferred probability of stress on aquatic life for sulfate
measurements on Broad Run. (c) Percentiles and inferred probability of stress on aquatic life for nutrients TP and TN.
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while Mg2+ and Ca2+ are strongly correlated at BL30 (R ≥
0.96), the observed Mg:Ca slope is approximately 0.4 (1:2.5),
inconsistent with the molecular formula of CMA (Figure S9d).
These patterns suggest that calcium and magnesium are not
primarily derived from deicers, pointing instead to geogenic
sources consistent with the local Triassic basin geology
discussed next.
Triassic Basin Sediments. Across all clusters, calcium and

magnesium are strongly correlated with sulfate (R > 0.85) and
bicarbonate (R > 0.77) (Figure S10a−d). The inferred slopes
(ΔCa2+/ΔSO4

2− = 3.74 to 5.73, ΔCa2+/ΔHCO3
− = 0.40 to

0.55, ΔMg2+/ΔSO4
2− = 1.9 to 2.5, and ΔMg2+/ΔHCO3

− =
0.17 to 0.25) are similar to the corresponding median (4.9,
0.42, 3.7, 0.32, respectively) and average (5.4, 0.50, 4.1, 0.38,
respectively) ratios of ion concentrations measured in the local
groundwater. Further, across all three clusters, the magnesium-
to-calcium ratio measured in groundwater (both median and
average equal to 0.76) is close to the 1:2.5 ratio inferred for the
stream (ΔMg2+/ΔCa2+ = 0.43 to 0.45) (Figure S9d). These
results are also consistent with USGS groundwater data from
nearby Fairfax County,46,52,53 which indicate that groundwater
in the underlying Triassic basin sediments is predominantly
calcium−magnesium type, with elevated sulfate concentrations
likely derived from gypsum in the rock matrix.54

Diagnosing Potential Salinity Stressors to Aquatic
Life in Streams. The three ion clusters can also be linked to
statewide thresholds for aquatic life stress, providing a
framework for identifying likely targets for management
action.15,55,56

The probability that chloride, sodium, and specific
conductance (SC) measurements at BL30 pose stress to
aquatic life ranges from low to high in Cluster 1, medium to
high in Cluster 2, and consistently high in Cluster 3 (Figure
3a). Across all clusters, potassium concentrations correspond
to a medium probability of stress.
Sulfate, despite being elevated during baseflow (Cluster 2),

is associated with mostly low or no probability of aquatic life
stress (Figure 3b). TP, in contrast, poses a high probability of
stress during summer storm events (Cluster 1; Figure 3c).
Because TP is highly correlated with both TSS (Pearson’s R =
0.86, p < 0.05) and flow (R = 0.62, p < 0.05), the ultimate
cause of risk to benthic invertebrate assemblages is likely
habitat disruption and sediment erosion associated with high-
flow events.57 TN concentrations fall mostly in the low to
medium risk range across all clusters (Figure 3c).
Together, these results point to three primary risk scenarios

for salt-sensitive macroinvertebrates such as mayflies, stone-
flies, and caddisflies, particularly during vulnerable life
stages:14,15,58,59 (1) high phosphorus concentrations and
associated sediment mobilization and benthic habitat dis-
turbance during summer storms (Cluster 1); (2) somewhat
elevated chloride, sodium, and SC under baseflow conditions
(Cluster 2), perhaps associated with legacy deicer use; and (3)
very high levels of chloride, sodium, potassium, and SC during
snowmelt and rain-on-snow events associated with active
deicer use (Cluster 3). These findings are consistent with low
biotic and Stream Condition Index (SCI) scores in urban
streams in the region,15,60 including Accotink Creek in
neighboring Fairfax County, for which chlorides from deicers
have been identified as a primary stressor.61

Low SCI scores in Broad Run have resulted in its recent
listing as impaired for aquatic life uses by VDEQ.62,63 Upon
completion of the required stressor identification study, salinity

is likely to again be identified as a primary aquatic life stressor
in this urbanized watershed, for which management actions
will be required. By directly relating our ion measurements to
VDEQ’s aquatic life stress thresholds, the results presented
here should help local jurisdictions, state agencies, and natural
resource managers prioritize monitoring efforts, particularly
under resource constraints, and focus on the ion mixtures and
hydrologic regimes most likely to affect the biological integrity
of Broad Run.64

Watershed-Based Integrated Management. The stat-
istical pattern recognition tools employed here offer a new
“tool-in-the-toolbox” for designing targeted streamwater
quality management actions. Further, these tools provide a
statistically grounded alternative to subjective sample classi-
fication based on presumed hydrologic regimes (e.g., see
Figure S12) and may be particularly useful in settings where
discharge data are unavailable or uncertain. Our findings
suggest at least three key opportunities for improved
streamwater quality management at BL30.

Targeting Seasonal Flow Regimes for Monitoring and
Nutrient Reduction. Clusters defined by patterns in stream ion
chemistry reveal when and how risks to aquatic life and
downstream uses arise. For example, phosphorus concen-
trations pose risks to aquatic life during summer storms
(Cluster 1), suggesting that storm-driven erosion and sediment
transport are key phosphorus sources.65 Riparian buffers, street
sweeping, and stormwater controls such as bioretention or
filtration basins could be deployed to reduce particulate and
particle-bound phosphorus loads.65

Confirming Source Hypotheses with Targeted Monitor-
ing. The elevated potassium concentrations observed in
Cluster 3 (snowmelt events) and persistent potassium signals
in Clusters 1 and 2 suggest both event-driven and delayed
contributions from airport deicers. To confirm this source
attribution, follow-up grab sampling immediately downstream
of the airport, timed with winter deicing events and summer
pond drawdowns, could help trace potassium acetate/formate
usage. Similarly, a focused winter sampling campaign at road-
adjacent outfalls could help verify whether NaCl-based deicers
explain the elevated chloride and specific conductance values
in Cluster 3.

Supporting Smart Growth and Best Management
Practices. By resolving overlapping sources through ion ratios
and covariance patterns, our results can also inform efforts to
reduce salt inputs to streams via smart growth strategies and
best management practices (BMPs).
Riparian and conservation zones are a smart growth strategy

that mitigate salt pollution,22,66 attenuating ions through plant
uptake, ion exchange, and biogeochemical cycling. Their
effectiveness depends on factors such as buffer width,
vegetation type, and site-specific conditions.67 Our ion clusters
reveal that ion and nutrient concentrations and their implied
risks to aquatic life vary seasonally. For instance, phosphorus
concentrations are highest during summer storms (Cluster 1),
whereas ions linked to deicers and anti-icers peak during
winter snowmelt and rain-on-snow events (Cluster 3). These
patterns can inform hypotheses about dominant nutrient and
salt attenuation mechanisms in riparian and conservation
zones�for example, plant uptake of phosphorus during the
growing season and soil-mediated ion exchange during winter
months�for future evaluation.
While traditional BMPs were designed primarily to reduce

peak flows,68 modern green infrastructure�including green
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roofs, permeable pavements, bioswales, and bioinfiltration
systems�can also reduce sediment, phosphorus, and bacterial
loading during storms.69,70

The next generation of these systems could also target
dissolved salts, for example, by incorporating ion-exchange
media or real-time monitoring and control systems to capture
salt in runoff from roads and parking lots during deicer washoff
events (Cluster 3).71−73 For example, Long et al.74 recently
reported that cattails in a standard-sized highway detention
basin (2000−3000 m2) could remove up to 200 kg of deicer-
associated Cl− per year. Alternatively, high-frequency specific
conductance sensors could trigger retention of salt-rich runoff
when conductivity spikes,75−77 followed by longer-term
treatment (e.g., phytoremediation74) or controlled disposal
(e.g., pump-and-haul). Retained runoff could also be gradually
released during subsequent deicer-free storms, effectively
diluting the water of Cluster 3 with the water of Cluster 1.
Information gleaned from the ion clusters could also help

local jurisdictions select locally tailored deicing formulas likely
to have the least impact on aquatic life, for example, by
mimicking ion mixtures already contributed to streams by the
local geology. However, for these bespoke deicers to be
effective, the applied concentrations of individual ions would
still need to be high enough to achieve a desired eutectic
temperature.78

While further research is needed to evaluate the feasibility,
scalability, costs, and potential unintended consequences of
these strategies,5,70,74,79 the ion covariance patterns identified
through ordination and clustering offer a powerful starting
point for generating hypotheses and guiding the design of next-
generation solutions to reverse freshwater salinization.
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(19) Cañedo-Argüelles, M.; Hawkins, C. P.; Kefford, B. J.; Schäfer,
R. B.; Dyack, B. J.; Brucet, S.; Buchwalter, D.; Dunlop, J.; Frör, O.;
Lazorchak, J.; et al. Saving freshwater from salts. Science 2016, 351,
914−916.
(20) Kaushal, S. S.; Wood, K. L.; Galella, J. G.; Gion, A. M.; Haq, S.;
Goodling, P. J.; Haviland, K. A.; Reimer, J. E.; Morel, C. J.; Wessel, B.
Making ‘chemical cocktails’−Evolution of urban geochemical
processes across the periodic table of elements. Appl. Geochem.
2020, 119, 104632.
(21) Hintz, W. D.; Fay, L.; Relyea, R. A. Road salts, human safety,
and the rising salinity of our fresh waters. Front. Ecol. Environ. 2022,
20, 22−30.
(22) Shelton, S. A.; Kaushal, S. S.; Mayer, P. M.; Shatkay, R. R.;
Rippy, M. A.; Grant, S. B.; Newcomer-Johnson, T. A. Salty chemical
cocktails as water quality signatures: Longitudinal trends and
breakpoints along different U.S. streams. Sci. Total Environ. 2024,
930, 172777.
(23) DewitzJon, U. G. S. National Land Cover Database (NLCD)
2019 Products (ver. 2.0 June 2021); USGS, 2021.
(24) Blackburn, A. C. Interpretive Guide to the use of Soils Maps of
Loudoun County, Virginia; Loudoun County Cooperative Extension
Office, 1998.
(25) Horton, J. D. The State Geologic Map Compilation (SGMC)
Geodatabase of the Conterminous United States (Accessed 30 May
2025). 2017; https://www.sciencebase.gov/catalog/item/
5888bf4fe4b05ccb964bab9d.
(26) Han, Y.; Lau, S.-L.; Kayhanian, M.; Stenstrom, M. K.
Characteristics of highway stormwater runoff. Water Environ. Res.
2006, 78, 2377−2388.
(27) Josse, J.; Husson, F. missMDA: a package for handling missing
values in multivariate data analysis. J. Stat. Soft. 2016, 70, 1−31.
(28) Turnipseed, D. P.; Sauer, V. B. Discharge Measurements At
Gaging Stations; USGS, 2010.
(29) Rets, E. P.; Kireeva, M. B.; Samsonov, T. E.; Ezerova, N. N.;
Gorbarenko, A. V.; Frolova, N. L. Algorithm grwat for Automated
Hydrograph Separation by B.I. Kudelin’s Method: Problems and
Perspectives. Water Resour. 2022, 49, 23−37.
(30) Li, L.; Maier, H. R.; Partington, D.; Lambert, M. F.; Simmons,
C. T. Performance assessment and improvement of recursive digital
baseflow filters for catchments with different physical characteristics
and hydrological inputs. Environ. Model. Softw. 2014, 54, 39−52.
(31) Merz, R.; Parajka, J.; Blöschl, G. Time stability of catchment
model parameters: Implications for climate impact analyses. Water
Resour. Res. 2011, 47, W02531.
(32) Bergström, S. The development of a snow routine for the HBV-
2 model. Hydrol. Res. 1975, 6, 73−92.
(33) Rosen, M. R.; Lapham, W. W. Introduction to the U.S.
Geological Survey National Water-Quality Assessment (NAWQA) of
Ground-Water Quality Trends and Comparison to Other National
Programs. J. Environ. Qual. 2008, 37, S−190-S-198.
(34) Peres-Neto, P. R.; Jackson, D. A.; Somers, K. M. How many
principal components? stopping rules for determining the number of
non-trivial axes revisited. Comput. Stat. Data Anal. 2005, 49, 974−
997.
(35) Rippy, M. A.; Deletic, A.; Black, J.; Aryal, R.; Lampard, J.-L.;
Tang, J. Y.-M.; McCarthy, D.; Kolotelo, P.; Sidhu, J.; Gernjak, W.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.5c04512
Environ. Sci. Technol. 2025, 59, 14053−14062

14060

https://doi.org/10.1016/j.scitotenv.2020.144179
https://doi.org/10.1016/j.scitotenv.2020.144179
https://doi.org/10.1016/j.scitotenv.2020.144179
https://doi.org/10.1002/lol2.10248
https://doi.org/10.1002/lol2.10248
https://doi.org/10.1038/s43017-023-00485-y
https://doi.org/10.1038/s43017-023-00485-y
https://doi.org/10.1038/s41893-021-00713-7
https://doi.org/10.1038/s41893-021-00713-7
https://doi.org/10.1021/acs.est.2c01555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c01555?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1620211114
https://doi.org/10.1016/j.scitotenv.2014.12.012
https://doi.org/10.1016/j.scitotenv.2014.12.012
https://doi.org/10.1016/j.scitotenv.2014.12.012
https://doi.org/10.1016/j.scitotenv.2014.12.012
https://doi.org/10.1073/pnas.1711234115
https://doi.org/10.1073/pnas.1711234115
https://doi.org/10.1021/acs.est.9b05344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.9b05344?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10533-025-01219-6
https://doi.org/10.1007/s10533-025-01219-6
https://doi.org/10.1007/s10533-025-01219-6
https://doi.org/10.1111/brv.12480
https://doi.org/10.1111/brv.12480
https://doi.org/10.1111/1462-2920.16628
https://doi.org/10.1111/1462-2920.16628
https://doi.org/10.1111/1462-2920.16628
https://doi.org/10.1016/j.scitotenv.2012.07.066
https://doi.org/10.1016/j.scitotenv.2012.07.066
https://doi.org/10.1016/j.scitotenv.2012.07.066
https://doi.org/10.1016/j.envpol.2012.10.011
https://doi.org/10.1016/j.envpol.2012.10.011
https://doi.org/10.1002/etc.5466
https://doi.org/10.1002/etc.5466
https://doi.org/10.1002/etc.5466
https://doi.org/10.1007/s10533-024-01131-5
https://doi.org/10.1007/s10533-024-01131-5
https://doi.org/10.1098/rstb.2018.0017
https://doi.org/10.1098/rstb.2018.0017
https://doi.org/10.1098/rstb.2018.0017
https://doi.org/10.1126/science.aad3488
https://doi.org/10.1016/j.apgeochem.2020.104632
https://doi.org/10.1016/j.apgeochem.2020.104632
https://doi.org/10.1002/fee.2433
https://doi.org/10.1002/fee.2433
https://doi.org/10.1016/j.scitotenv.2024.172777
https://doi.org/10.1016/j.scitotenv.2024.172777
https://doi.org/10.1016/j.scitotenv.2024.172777
https://www.sciencebase.gov/catalog/item/5888bf4fe4b05ccb964bab9d
https://www.sciencebase.gov/catalog/item/5888bf4fe4b05ccb964bab9d
https://doi.org/10.2175/106143006X95447
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.18637/jss.v070.i01
https://doi.org/10.1134/S0097807822010146
https://doi.org/10.1134/S0097807822010146
https://doi.org/10.1134/S0097807822010146
https://doi.org/10.1016/j.envsoft.2013.12.011
https://doi.org/10.1016/j.envsoft.2013.12.011
https://doi.org/10.1016/j.envsoft.2013.12.011
https://doi.org/10.1029/2010WR009505
https://doi.org/10.1029/2010WR009505
https://doi.org/10.2166/nh.1975.0006
https://doi.org/10.2166/nh.1975.0006
https://doi.org/10.2134/jeq2008.0049
https://doi.org/10.2134/jeq2008.0049
https://doi.org/10.2134/jeq2008.0049
https://doi.org/10.2134/jeq2008.0049
https://doi.org/10.1016/j.csda.2004.06.015
https://doi.org/10.1016/j.csda.2004.06.015
https://doi.org/10.1016/j.csda.2004.06.015
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.5c04512?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Pesticide occurrence and spatio-temporal variability in urban run-off
across Australia. Water Res. 2017, 115, 245−255.
(36) Le, S.; Josse, J.; Husson, F. FactoMineR: an R package for
multivariate analysis. J. Stat. Soft. 2008, 25, 1−18.
(37) Skalski, J. R.; Richins, S. M.; Townsend, R. L. A statistical test
and sample size recommendations for comparing community
composition following PCA. PLoS One 2018, 13, No. e0206033.
(38) Davis, J. C.; Sampson, R. J. Statistics and data analysis in geology;
Wiley New York, 1986; Vol. 646.
(39) Cabin, R. J.; Mitchell, R. J. To Bonferroni or not to Bonferroni:
when and how are the questions. Bull. Ecol. Soc. Am. 2000, 81, 246−
248.
(40) Burton, J.; Gerritsen, J. A Stream Condition Index for Virginia
Non-Coastal Streams; USEPA,2003.
(41) USDA Virginia Department of Environmental Quality; USDA,
2017.
(42) EPA Causal Analysis/Diagnosis Decision Information System
(CADDIS). https://www.epa.gov/caddis, 2017;(Accessed 30 May
2025).
(43) Hrachowitz, M.; Benettin, P.; Van Breukelen, B. M.; Fovet, O.;
Howden, N. J.; Ruiz, L.; Van Der Velde, Y.; Wade, A. J. Transit times-
the link between hydrology and water quality at the catchment scale.
Wires Water 2016, 3, 629−657.
(44) Norrström, A. C.; Bergstedt, E. The Impact of Road De-Icing
Salts (NaCl) on Colloid Dispersion and Base Cation Pools in Roadside
Soil; Springer, 2001.
(45) Price, J. R.; Szymanski, D. W. The effects of road salt on stream
water chemistry in two small forested watersheds, Catoctin Mountain,
Maryland, USA. Aquat. Geochem. 2014, 20, 243−265.
(46) Larson, J. D. Chemical composition of streams during low flow;
Fairfax County; United States Geological Survey: Virginia, 1978.
(47) Mazumder, B.; Wellen, C.; Kaltenecker, G.; Sorichetti, R. J.;
Oswald, C. J. Trends and legacy of freshwater salinization: untangling
over 50 years of stream chloride monitoring. Environ. Res. Lett. 2021,
16, 095001.
(48) Flydulles.com Washington’s Airports Set New Passenger Record
(Accessed 6 March 2025). https://www.flydulles.com/news/
washingtons-airports-set-new-passenger-record.
(49) Federal Aviation Administration Advisory Circular 150/5200−
30D, Change 2: airport Winter Safety And operationsadvisory Circular;
Federal Aviation Administration, 2020.
(50) Evans, M.; Frick, C. Effects Of Road Salts On Aquatic Ecosystems;
Stoney Creek Environment Committee, 2001.
(51) Miller, J. R.; LaLama, M. J.; Kusnic, R. L.; Wilson, D. E.; Kiraly,
P. M.; Dickson, S. W.; Zeller, M. On the nature of calcium magnesium
acetate road deicer. J. Solid State Chem. 2019, 270, 1−10.
(52) Froelich, A.; Zenone, C. The Relation of Water Quality to
Geology and Land Use Changes in Fairfax County and Vicinity; Virginia,
1985.
(53) Webber, J. S.; Chanat, J. G.; Porter, A. J.; Jastram, J. D.
Evaluating Drivers of Hydrology, Water Quality, and Benthic Macro-
invertebrates in Streams of Fairfax County, Virginia, 2007−18; Virginia,
2023.
(54) Posner, A.; Zenone, C. Chemical Quality of Ground Water in the
Culpeper Basin; Virginia, 1983.
(55) Dinar, A.; Quinn, N. W. Developing a decision support system
for regional agricultural nonpoint salinity pollution management:
application to the San Joaquin River, California. Water 2022, 14,
2384.
(56) Borah, D. K.; Zhang, H. X.; Zellner, M.; Ahmadisharaf, E.;
Babbar-Sebens, M.; Quinn, N. W. T.; Kumar, S.; Sridharan, V. K.;
Leelaruban, N.; Lott, C.; et al. Advances in Total Maximum Daily
Load Implementation Planning by Modeling Best Management
Practices and Green Infrastructures. J. Environ. Eng. 2024, 150,
03124003.
(57) Askarizadeh, A.; Rippy, M. A.; Fletcher, T. D.; Feldman, D. L.;
Peng, J.; Bowler, P.; Mehring, A. S.; Winfrey, B. K.; Vrugt, J. A.;
AghaKouchak, A.; Jiang, S. C.; Sanders, B. F.; Levin, L. A.; Taylor, S.;
Grant, S. B. From Rain Tanks to Catchments: Use of Low-Impact

Development To Address Hydrologic Symptoms of the Urban Stream
Syndrome. Environ. Sci. Technol. 2015, 49, 11264−11280.
(58) Pond, G. J. Biodiversity Loss in Appalachian Headwater
Streams (Kentucky, USA): Plecoptera and Trichoptera Communities.
Hydrobiologia 2012, 679, 97−117.
(59) Pond, G. J. Patterns of Ephemeroptera Taxa Loss in
Appalachian Headwater Streams (Kentucky, USA). Hydrobiologia
2010, 641, 185−201.
(60) Jastram, J. D. Streamflow, Water Quality, and Aquatic
Macroinvertebrates of Selected Streams in Fairfax County; Virginia,
2014.
(61) Virginia Volume I Stressor Analysis Report for the Benthic
Macroinvertebrate Impairments in the Accotink Creek Watershed, Fairfax
County; Virginia. 2017.
(62) Virginia. Integrated Report; Virginia, 2024
(63) Appendix 1b Supplemental List of Category 5 Waters Newly
Impaired in 2024 (303(d) List).
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BL30	stream	station

Streams
Broad	Run	Watershed

Land	Cover
Type:
Open	Water
Developed,		Open	Space
Developed,		Low	Intensity
Developed,		Medium	Intensity
Developed,		High	Intensity
Barren	Land	(Rock/Sand/Clay)
Deciduous	Forest
Evergreen	Forest
Mixed	Forest
Shrub/Scrub
Grassland/Herbaceous
Pasture/Hay
Cultivated	Crops
Woody	Wetlands
Emergent	Herbaceous	Wetlands

Figure S1: Broad Run drains a highly urbanized 152 km2 portion of Loudoun County,
Northern Virginia, USA (shown in the inset map). Our 3-year study analyzes hydrology
and water quality measurements at stream station BL30 (39.024◦N, 77.439◦W), shown as
a purple filled circle at the north-central edge of the delineated drainage. The Washington
Dulles International Airport, which serves over 24 million travelers per year, is visible in the
south-central portion of the drainage. The orange circle is the approximate location of the
Corbalis drinking water treatment plant, which serves a population of over 1 million people.
The Corbalis raw water intake is located approximately 10 km downstream of the confluence
of Broad Run and the Potomac River.
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Table S1: Land cover types in the portion of the Broad Run watershed that drains to BL30.

Cover type Area ( km2) Percentage (%)
Developed, Medium Intensity 34.2 22.4

Developed, Low Intensity 28.7 18.8
Developed, Open Space 20.6 13.5

Developed, High Intensity 16.8 11.0
Deciduous Forest 14.0 9.21

Pasture/Hay 12.6 8.28
Mixed Forest 8.19 5.37

Evergreen Forest 6.33 4.15
Cultivated Crops 4.06 2.66

Grassland/Herbaceous 2.60 1.71
Woody Wetlands 1.97 1.29

Shrub/Scrub 1.25 0.818
Open Water 0.473 0.311
Barren Land 0.428 0.281

Emergent Herbaceous Wetlands 0.192 0.126

USGS well
#385930077215901
 

Mesozoic Lowland 
Hydrogeomorphic Region

BL30

Figure S2: The location of the USGS groundwater well, relative to the BL30 monitoring
station on Broad Run. The groundwater well and BL30 drainage area are located within
the Mesozoic Lowland (Triassic Basin) hydrogeomorphic region of Virginia.

Page S3



Note S1: Watershed LULC and Geology

Land Use and Land Cover data were retrieved from the National Land Cover Dataset 1

and are shown in Figure S1 and summarized in Tables S1 and S2. The watershed lies

within Virginia’s Mesozoic Lowland Hydrogeomorphic Region, which is underlain primarily

by siltstone, shale, sandstone, diabase and basalt rock types (Figures S2 and S3).

Table S2: Grouped land cover types within Broad Run watershed.

Cover type Area ( km2) Percentage
Developed 100.25 65.78

Forest 28.54 18.73
Cultivated 16.67 10.94

Grassland/Herbaceous 2.60 1.70
Wetlands 2.16 1.41

Shrub/Scrub 1.24 0.81
Open water 0.47 0.31
Barren land 0.42 0.28

38.90°N

38.92°N

38.94°N

38.96°N

38.98°N

39.00°N

39.02°N

77.60°W 77.55°W 77.50°W 77.45°W 77.40°W

Igneous, volcanic Metamorphic, schist Metamorphic, sedimentary clastic Sedimentary, clastic

Figure S3: Geology outcrops within the portion of the Broad Run watershed that drains to
BL30.2
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Note S2: Sample Collection and Field Measurements

Water samples were collected from station BL30 during baseflow and storm events as follows.

Base Flow Sampling. Baseflow grab samples were collected every other week during dry

weather periods. During each baseflow sampling event, two grab samples were collected from

the stream, one for dissolved ions and another for nutrient analysis. The grab sample for

dissolved ions was filtered in the field through a 0.45 micron syringe filter (Filtrous Lab, 30

mm GFP filters). Stream water temperature, specific conductance, and pH were measured

onsite with a multimeter (YSI Multimeter, ProDSS), which was calibrated prior to each

sampling event. Stream water total alkalinity was measured onsite by sulfuric acid titration

(Hach Digital Titrator). Field measurements of pH and total alkalinity were used to estimate

bicarbonate concentration in each sample (HCO−
3 )3 (see Note S4). For safety reasons, no

field measurements were conducted during storm events. All samples were transported to

the Occoquan Watershed Monitoring Laboratory on ice within 4 h for further processing. A

total of 79 baseflow samples were collected and analyzed over the three-year study.

Storm Flow Samples. Automated flow-weighted composite samples of storm events were

triggered when the rate of increase in stream stage exceeded 3.3×10−5 feet per minute.

Once triggered, a Manning Portable Vacuum Sampler (Model VST3a) was programmed to

accumulate 200 mL of sample volume for every 1 million cubic feet of stream flow. For

safety reasons no onsite measurements (e.g., for pH, temperature, specific conductance, or

total alkalinity, see above) were collected during storm sampling events. Composite samples

were transported to the Occoquan Watershed Monitoring Laboratory on ice within one day

following the end of a storm. At the lab, 25 mL of the composite sample was filtered through

a 0.45 micron syringe filter (Filtrous Lab, 30 mm GFP filters) for dissolved ion analysis. A

total of 74 storm samples were collected over the three-year study.
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Note S3: Laboratory Analysis

Within 1 day of arriving at the lab, the pre-filtered baseflow and storm samples (see above)

were analyzed for dissolved ions (K+, Na+, Cl−, SO2−
4 , Ca2+, Mg2+) using ion chromatogra-

phy (Dionex, ICS 5000) following ASTM D6919-09 and Standard Method 4110 B-2011.

The unfiltered baseflow and storm samples were analyzed for total and dissolved nutrients

as follows.

For total nutrients, 10 mL unfiltered sample was immediately persulfate digested, stored

at 4°C, and analyzed within 28 days for total nitrogen (TN, the sum of dissolved inorganic

N, dissolved organic N, and particulate N species) and total phosphorus (TP, the sum of

dissolved inorganic phosphorus, dissolved organic phosphorus, and particulate phosphorus)

using an Astoria Pacific Model 411S Autoanalyzer with a 307 Detector (Standard Method

4500-P J-2011).

For dissolved nutrients, immediately upon arrival at the lab, approximately 200 mL of

the unfiltered field sample was filtered through glass microfiber filters (Whatman, 934-AH).

The filtrate was stored at -20◦C and, within 28 days of arrival, analyzed for dissolved nitrate

plus nitrite (NO−
3 /NO−

2 =NO−
3 + NO−

2 ) and orthophosphate (PO−3
4 ) using an Astoria Pacific,

Model 311 Autoanalyzer with a 305D Detector (Standard Methods 4500-NO3- F-2011, 4500-

P F-2011).

All analyses were conducted in accordance with the Occoquan Watershed Monitoring

Laboratory’s Virginia Environmental Laboratory Accreditation Program (VELAP #460026).

The lower-limit of detection (LOD) for each analyte is indicated in Table S3.
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Table S3: List of constituents measured in this study and associated LODs.

Chemical measures Units Limit of detection
Chloride mg/L 5.0 mg/L

Magnesium mg/L 0.5 mg/L
Calcium mg/L 1.5 mg/L
Sulfate mg/L 5.0 mg/L

Bicarbonate NA NA
Sodium mg/L 1.5 mg/L

Potassium mg/L 1.0 mg/L
Total Alkalinity mg/L as CaCO3 0.1 mg/L as CaCO3

Total Phosphorus mg/L 0.01 mg/L
Total Nitrogen mg/L 0.25 mg/L

Specific Conductance µS/cm NA
Dissolved Orthophosphate mg/L 0.01 mg/L

Ammonium mg/L 0.01 mg/L
Oxidized Nitrogen Species mg/L 0.01 mg/L

Note S4: Bicarbonate Ion Concentrations

Bicarbonate ion concentrations were estimated using two different approaches, one approach

for baseflow samples and another for storm samples. Bicarbonate concentrations in baseflow

samples were estimated directly from measured total alkalinity expressed in units of mg/L

as CaCO3; over the pH range (6.7 to 8.1) measured in baseflow samples, most of the total

alkalinity is in the form of bicarbonate. However, this approach could not be used to estimate

bicarbonate ion concentrations in storm samples, because safety concerns precluded field

measurements of total alkalinity during storms (see Note S2).

Instead, bicarbonate ion concentrations in storm samples were imputed using a regular-

ized iterative PCA method that identifies dominant water quality patterns across the entire

dataset (baseflow + storm samples, N = 153) and “fills in” missing values based on the

dominant patterns identified (see Methods Section in the main text for details). By this

approach, missing bicarbonate ion concentrations were imputed for all 74 storm samples.

The accuracy of the imputed bicarbonate concentrations was checked in two ways: (1)

by assessing the charge balance error (CBE) associated with measured and imputed ion
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concentrations in each storm sample (see Note S5); and (2) by comparing to bicarbonate

concentrations estimated using a geochemical approach, in which all unbalanced (anionic)

charge is attributed to bicarbonate. Bicarbonate concentrations estimated by the latter ap-

proach are highly correlated with bicarbonate concentrations estimated by the regularized

iterative PCA method (Pearson Correlation, R =0.84) and fall close to, but consistently

above (PBIAS=13.8%), the 1:1 line (Figure S4); note that the outlier in the cross-plot corre-

sponds to a sample that was ultimately removed (i.e., not included in subsequent analyses)

because it did not meet the requirement that absolute value of the CBE should be less than

10% (see Note S5).

This result—that bicarbonate concentrations estimated by charge balance are strongly

correlated but biased high relative to bicarbonate concentrations estimated by the regularized

iterative PCA method—is reasonable given that unquantified organic acids in our storm

samples likely also contribute negative charge. 4 Taken together, these results provide strong

support for the accuracy of bicarbonate concentrations imputed by the regularized iterative

PCA method.
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Figure S4: A comparison of bicarbonate concentrations imputed for storm samples based on
either charge balance (vertical axis) or regularized iterative PCA (horizontal axis). The bi-
carbonate concentrations estimated by these two approaches are highly correlated, although
values estimated using the geochemical approach are consistently biased high, likely due to
the presence of unquantified organic acids in the storm samples.
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Note S5. Electroneutrality analysis

The measured and imputed ion concentrations in each baseflow and storm sample were

checked for overall electroneutrality. Specifically, we calculated a Charge Balance Error

(CBE) based on the normality, N , of all measured or imputed cations (H+, K+, Na+, Ca2+,

Mg2+, NH+
4 ) and anions (HCO−

3 , Cl−, SO2−
4 ,NO−

3 /NO−
2 , PO3−

4 ):

CBE(%) =

∑
Ncation,i −

∑
Nanion,i∑

Ncation,i +
∑

Nanion,i

∗ 100 (1)

Of the 153 baseflow and storm samples screened, only four (two baseflow and two storm

samples) had an absolute CBE greater than 10%, a generally accepted criterion for assessing

electroneutrality of ion measurements in low-ionic-strength surface waters. 4 The fact that all

but two storm samples conformed to this electroneutrality criterion lends credibility to the

bicarbonate concentrations imputed for all storm samples (see Note S4). The four samples

with absolute CBE >10% were excluded from further analysis (i.e., they were not included

in the PCA and clustering steps). The CBE for the retained 77 baseflow samples ranged

from −4.37% to 6.23%, while the CBE for the retained 72 storm samples ranged from −4.2%

to 7.01% (Figure S5).4
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Figure S5: Charge Balance Error (CBE) calculated based on measured or imputed ion
concentrations in each baseflow (left histogram) or storm (right histogram) sample. The
vertical dashed red lines denote the ±10% CBE criteria typically applied to ion measurements
in low ionic strength surface waters like Broad Run.

Note S6: Environmental Data

The sources of environmental data are summarized in Table S4, while the data themselves

are plotted as a time series in Figure S6 and described in more detail below.

Table S4: Environmental data included in this study

Variable Time period Source
Streamflow 2010-2023 OWML

Precipitation 2010-2023 NOAA
Temperature 2010-2023 NOAA

Rainfall 2010-2023 HBV model
Snowmelt 2010-2023 HBV model

Stream Discharge. Stream discharge was measured at station BL30 at an hourly time

step by the Occoquan Watershed Monitoring Laboratory (OWML) from 2020 to 2023. These

hourly discharge data were averaged to a daily time step for further analysis. Continuous
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discharge data were missing on only five days, due to routine maintenance of the gauge at

BL30: 2020-06-10, 2021-01-21, 2021-05-26, 2022-06-13 and 2023-02-12. These one-day long

data gaps were filled using linear interpolation (zoo package in R). 5

Precipitation. Daily precipitation measured at the Washington Dulles International Air-

port station was retrieved from NOAA. For input to the HBV model (Note S8), these daily

data were extrapolated to an hourly time step using the persistence model. Trace measure-

ments of precipitation were taken as equal to zero.

Air Temperature. Daily air temperature measured at the Washington Dulles International

Aiport weather station was retrieved from NOAA, including daily average, minimum and

maximum temperatures. For input to the HBV model (described below), these daily data

were converted to an hourly time step using the package ChillR in R, 6 which generates

hourly temperature records for a particular location based on minimum and maximum daily

temperature, along with the location’s latitude.
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Figure S6: Daily timeseries of: a) ion measurements (Ca2+, Mg2+, NH+
4 , K+, Na+, Cl−,

SO2−
4 , NO−

3 /NO−
2 , HCO−

3 ) in baseflow and stormflow samples; b) snowmelt and rainfall; c)
discharge and BFI; and d) air temperature.
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Note S7: Baseflow Index (BFI)

To estimate base flow we applied a Recursive Digital Filter (RDF) to the stream discharge

measurements at BL30. The RDF method isolates the high-frequency (i.e., quick flow) and

low-frequency (i.e., base flow) signals from the stream discharge hydrograph using a digital

filter.7 For these calculations we used the grwat package in R, and adopted the Lyne and

Hollick (LH) digital filter as follows:

qf(i) = aqi−1 +
1 + α

2
(qi − q(i− 1)); qf(i)≥0 (2)

qb(i) = qi − qf(i) (3)

Here, the subscript i is the time step, qi is the total streamflow at time step i, qf(i) and qb(i)

are the filter quickflow and baseflow at time step i, and a is a dimensionless filter parameter

which can vary from. a ∈ {0, 1}.7 For our analysis we adopted the value a = 0.925 as

recommended by Zhang et al.8 Base Flow Index (BFI) was then computed from the ratio of

the estimated baseflow and measured streamflow. Measured stream flow at BL30 is compared

with baseflow estimates in Figure S7.

Note S8: Hydrologiska Byråns Vattenbalansavdelning (HBV)

Model Estimates of Snowmelt

The HBV model is a rainfall-runoff model with routines for different components of the water

cycle (e.g., snow routine, soil routine, groundwater routine for response and routing, etc.) 9

The snow routine of the HBV model was used to capture (1) the partitioning of precipita-

tion, P (t), between rainfall, r(t), and snowfall, and (2) the accumulation of snowpack and

generation of snow melt, s(t). Model parameters include (1) the threshold temperature, TT
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Figure S7: Measured streamflow at BL30 station compared to base flow estimated using a
recursive digital filter. For the recursive filter we adopted the Lyne and Hollick method with
a = 0.925.

(in ◦K), below which all precipitation is considered to fall as snow, (2) the snowfall correc-

tion factor, SFcf , which accounts for snowfall undercatch due to wind turbulence, catchment

vegetation, and other factors,10,11 (3) the degree-day factor, DF , which is a proportionality

constant for estimating snow melt, (4) the water holding capacity of the snowpack, WH ,

and (5) the refreezing coefficient, F , which allows for refreezing of the melted water when

air temperature, Tair(t) (in ◦K), falls below TT . Model parameters for snow accumulation

were selected to represent weather conditions in the Mid-Atlantic region of the United States

(Table S5). Accumulated snow depth at Dulles International Airport, downloaded from the

NOAA website (www.ncei.noaa.gov), was used to verify that the timing of HBV model-

predicted snow melt events aligned with the date of zero accumulated snow depth reported

at Dulles Airport after snow events. From these comparisons, we estimated that the HBV

snow model accurately predicts snow melt at Dulles roughly 83% of the time.
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Table S5: HBV model parameters.

Parameter Value

TT 0◦ C
SFcf 1.1
DF 7.29× 10−5 m ◦C-1 h-1

WH 0.1
F 0.05

Note S9: Resampling-Based Approach for Identifying Sig-

nificant Principal Components

A resampling-based stopping rule was used to identify the principal components (PCs) that

explained significantly more variance in the ions measurements than would be expected

by chance (at the 95% confidence level) (Figure S8). The method was implemented as

follows:12 1) Principal Component Analysis (PCA) was performed on log-transformed and

Z-scored data and the eigenvalues for each principal component were saved (EIGdata); 2)

Variables in the data matrix were randomized 10,000 times; 3) PCA was conducted on

these randomized matrices and the eigenvalues for each principal component were saved

(EIGrand); 4) percentile-based 95% confidence intervals were calculated for each principal

component using the generated EIGrand values (10,000 realizations per mode); 5) PCs for

which EIGdata exceeded ≥ the 95th percentile value of EIGrand were determined to be

significant and retained as dominant dimensions.

Note S10. Benthic Community Response Thresholds

The VDEQ state-wide ion thresholds and probability monitoring data described in the main

text were compared to ion and nutrient measurements at BL30 as follows (see also 13): (1)

VDEQ’s probability monitoring dataset was filtered to include only sites in the Northern

Piedmont Ecoregion where BL30 is located; (2) A set of cumulative distribution functions
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mates for the eigenvalues expected by chance for a random threshold of 95%, 90%, and %50
(red, black, and blue lines, respectively). PC1 and PC2 exceed the upper 95% confidence
threshold (red line) implying that they these two principal components are significant at a
p ≤ 0.05.
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(CDFs) (one for each ion and nutrient) were prepared for VDEQ’s stream ion and nutrient

measurements in the Northern Piedmont Ecoregion; (3) using the CDFs from (2), each

ion and nutrient measurement at BL30 was converted into a corresponding non-exceedance

probabilities (i.e., the percentage of stream sites in the Northern Piedmont Ecoregion with

that concentration or lower); and (4) results from (3) were combined with VDEQ’s state-wide

benthic community response thresholds, to estimate probable impact on aquatic life.

Note S11. Ion Slopes

The salt ion concentrations measured in an urban stream likely reflect a time-varying mixture

of various watershed salt sources, each with its own set of potentially unique ion ratios, along

with myriad biogeochemical reactions that occur as the ions transport along flow paths

through the watershed.14 The overprinting of multiple sources and biogeochemical processes

implies that ion ratios measured in the stream are unlikely to have much diagnostic value.

On the other hand, if a particular source is driving sample-to-sample variability in mea-

sured salinity, its ion ratio might manifest as a consistent molar increase in one ion relative

to another; i.e., the slope obtained when the molar concentrations of the two ions are cross-

plotted. For example, at BL30 we might predict that an increase in the molar concentration

of sodium, ∆Na+ (where the symbol ∆ denotes increase), is associated with a near equal

increase in the molar concentration of chloride, ∆Cl−, given the dominant use of NaCl (in

either its crystalline or brine forms) for road and parking lot deicers and anti-icers. 15

To test this idea, we cross-plotted the molar concentrations of ion pairs commonly as-

sociated with deicers (Figure S9) and geogenic sources (Figure S10). The deicers evalu-

ated included NaCl (Figure S9a), CaCl2 (Figure S9b), MgCl2 (Figure S9c), and magnesium

calcium acetate (Mg2Ca(OAc)6) (Figure S9d). Geogenic sources are assumed to lead to

correlated increases in the molar concentrations of magnesium and sulfate (Figure S10a),

calcium and sulfate (Figure S10b), magnesium and bicarbonate (Figure S10c), and calcium
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and bicarbonate (Figure S10d).

(a) (b) (c) (d)

R=0.99

R=0.98

R=0.99

R=0.48

R=0.99

R=0.96

R=0.99

Figure S9: Cross-plots of the molar concentrations of ion pairs associate with specific deicers
and anti-icers, including: (a) NaCl, (b) CaCl2, (c) MgCl2 and (d) (Mg2Ca(OAc)6).
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Figure S10: Cross-plots of the molar concentrations of ion pairs associate with geologic
sources, including: (a) magnesium and sulfate, (b) calcium and sulfate, (c) magnesium and
bicarbonate, and (d) calcium and bicarbonate.

Note S12. Nutrient Concentrations within Clusters

The concentrations, forms, and stoichiometry of N and P measured at BL30 also vary across

the three clusters. The median concentration of TP—which includes dissolved inorganic

PO3−
4 along with particulate and organic forms of P (“other-P")—is highest during summer

storms (Cluster 1, Figure S11a). Cluster 1 also has elevated concentrations of PO3−
4 (Figure

2b in the main text) and TSS (Figure S11a) consistent with the idea that summer storms

mobilize particle-associated P (e.g., from fertilized residential and urban soils, pet waste, and

yard waste such as leaves and grass clippings) thereby increasing the concentrations of both

dissolved PO3−
4 and other-P.16–20 Yang et al.16 noted that PO3−

4 was the dominant form of

P in > 90% of stormwater runoff from the residential community in Florida, while in Broad

Run we find that other-P, not PO3−
4 , is the dominant form in most baseflow and stormwater

samples (i.e., median PO3−
4 /TP ratios are all less than 0.5 across the three clusters, Figure
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S11a).

(a)

C1 C2 C3

*
*

C1 C2 C3

*
*

C1 C2 C3

C1 C2 C3C1 C2 C3

(b)

C1 C2 C3

*
*

(c)

C1 C2 C3

Key

Groundwater 
Concentration:

median

max

min

Baseflow Samples

Storm Samples

Nutrient 
Limitation:

P-Limited

Transitionally N- 
and P-Limited

N-Limited

Medians Significantly 
Different at p < 0.05:

*

Figure S11: Breakdown by cluster of: (a) total phosphorus (TP), total suspended solids
(TSS), and the fraction of TP that is dissolved orthophosphate (PO3−

4 ); and (b) total nitrogen
(TN), NO−

3 /NO−
2 (nitrate plus nitrite), and ammonium. The black horizontal lines and gray

regions for TN, NO−
3 /NO−

2 , and ammonium indicate the median and range of concentrations
measured in the local groundwater. Groundwater concentrations of TP and TSS were not
reported. (c) The stoichiometry of TN and TP in storm and baseflow samples and by cluster.
The green, purple, and orange regions in (c) represent conditions under which algal growth is
likely to be P-limited (TN /TP > 50), N-limited (TN/TP < 20), and transitional between P-
and N-limited (20 < TN/TP < 50), where TN and TP are expressed as molar concentrations
of N and P, respectively.

Most of the TN measured at BL30 is in the form of NO−
3 /NO−

2 , and to a much lesser

extent NH+
4 (compare three graphs in Figure S11b). The median concentrations of all three

forms of N evaluated here (TN, NO−
3 /NO−

2 , NH+
4 ) are not significantly different across the

three clusters but are similar to local groundwater concentrations (Figure S11b).

Based on a global assessment of algal growth in freshwater lakes and oceans, Guildford

and Hecky21 proposed a set of stoichiometric relationships for TN and TP when algal growth

is P-limited (TN/TP > 50), N-limited (TN/TP < 20), or transitional between N and P

limited (20 < TN/TP < 50), where TN and TP are expressed as molar concentrations

Page S20



of N and P, respectively. Similar stoichiometric N and P thresholds have been applied to

stormwater runoff.20

Applied to our Broad Run dataset, we find that a subset of baseflow samples fall in the

P-limited range, a subset of the storm samples fall in the N-limited region, and a subset

of both storm and baseflow samples are transitionally P- and N-limited (top graph, Figure

S11c). Roughly half of the stream samples collected during summer storms (Cluster 1) are

N-limited while the other half are transitionally N- and P-limited (bottom graph, Figure

S11c). On the other hand, about half of samples collected during baseflow (Cluster 2) and

during winter snow-melt or rain-on-snow events (Cluster 3) are P-limited, while the other

half are transitionally N- and P-limited.
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Note S13. Ion and Nutrient Concentrations vs Flow
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Figure S12: Concentrations of major ions and nutrients plotted against log-transformed
discharge for baseflow (yellow circles) and storm flow (teal triangles) samples.
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