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We give a formula for the Chow rings of weighted blow-ups. Along the way, we also compute the Chow
rings of weighted projective stack bundles, a formula for the Gysin homomorphism of a weighted blow-up,
and a generalization of the splitting principle. In addition, in the Appendix we compute the Chern class of
a weighted blow-up.

1. Introduction

A short introduction to weighted blow-ups. The blow-up is an important operation that is ubiquitous
in algebraic geometry. When working with algebraic stacks, there is a natural generalization of the
blow-up, called a weighted blow-up. Weighted blow-ups appear naturally in the study of moduli spaces,
for example in [Inchiostro 2022, Theorem 2.6] M1,2 is obtained as the weighted blow-up of the weighted
projective plane P(2, 3, 4) at a point. This is a particular case of [Arena et al. 2023, Theorem 7.3], where
M1,n is obtained as the blow-up of the moduli space of pseudostable curves at the cuspidal locus.

See [Quek and Rydh 2021] for a thorough introduction to weighted blow-ups, or [Arena et al. 2023]
for a more condensed version. Intuitively, a weighted blow-up is like an ordinary blow-up, but with
positive integer weights on the normal directions at each point of the center. Weighted blow-ups preserve
many of the properties of (ordinary) blow-ups such as transforming the center into a divisor or being an
isomorphism outside of the center.

For example, the blow-up of !d at the origin {0} with weights a1, . . . , ad replaces the origin with the
weighted projective stack P(a1, . . . , ad), which is our exceptional divisor. Moreover, it is isomorphic to
!d ⊋{0} outside P(a1, . . . , ad). Formally, the weights are indicated by using a Rees algebra, as illustrated
in the following example.

Example. Suppose we wish to blow up the origin X = {0} in Y = !2 with weights 1 in the x-direction
and 2 in the y-direction. This is given by

BlX Y := ProjY
(⊕

In

)
=

[(
SpecY

(⊕
In

)
⊋ V (I+)

)
/"m

]
→ Y,
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where
I0 = k[x, y] ↑ I1 = (x, y) ↑ I2 = (x2, y) ↑ I3 = (x3, xy, y2) ↑ · · · .

The weights of x, y are the same as the maximum degree in the graded algebra
⊕

In in which they
appear as linear terms, and In consists of polynomials in x, y with weight at least n.

We also assume that all weighted blow-ups are regular in the sense of [Quek and Rydh 2021, Defini-
tion 5.2.7] or equivalently [Arena et al. 2023, Definition 2.13].

Content of the paper. Let f : Ỹ → Y be a regular weighted blow-up of X ↓ Y with positive weights
a1, . . . , ad and let X̃ be the exceptional divisor. For most of the paper we will assume X , Y are smooth
algebraic spaces over a field of characteristic 0. In Section 7 we will generalize to the case of X , Y

quotient stacks by a linear algebraic group.
Then we have the commutative diagram

X̃ Ỹ

X Y

j

g f

i

which is not Cartesian, unlike the ordinary blow-up case (an example of this can be found in [Quek and
Rydh 2021, Remark 3.2.10]).

In the case of a classical blow-up, a description of the Chow ring A↔(Ỹ ) and of its A↔(Y )-module
structure is given in [Fulton 1998, Exercise 8.3.9] or [Eisenbud and Harris 2016, Proposition 13.12]. The
purpose of this paper is to give a similar description for the Chow ring of a weighted blow-up.

We will use the functoriality of Chow rings including pull-backs, pushforwards and the Gysin map f !

with the key property of making the following diagram commute:

A↔(X̃) A↔(Ỹ )

A↔(X) A↔(Y )

j↔

i↔

f ! f ↔

The formula for the Chow ring will follow from the exact sequence in the theorem below, generalizing
the key sequence in [Fulton 1998, Proposition 6.7(e)].

Theorem 6.1 (key sequence). Let X, Y, X̃, Ỹ, f be as above. Then we have the exact sequence of Chow
groups

A↔(X)
( f !,↗i↔)↗↗↗↗↗→ A↔(X̃) ↘ A↔(Y )

j↔+ f ↔
↗↗↗→ A↔(Ỹ ) → 0.

Further, if we use rational coefficients, then this becomes a split short exact sequence with g↔ left inverse
to ( f !, ↗i↔):

0 → A↔(X, #)
( f !,↗i↔)↗↗↗↗↗→ A↔(X̃ , #) ↘ A↔(Y, #)

j↔+ f ↔
↗↗↗→ A↔(Ỹ , #) → 0.



The integral Chow ring of weighted blow-ups 1233

Note that since our blow-up diagram is not Cartesian, the codomain of f ! is A↔(X ≃Y Ỹ ), but X̃ is the
reduction of X ≃Y Ỹ so we can identify their Chow groups.

Moreover, when working with integral coefficients, the sequence is no longer exact on the left as shown
in Example 6.2. Passing to rational coefficients however, allows us to maintain exactness on the left and
to define a left inverse of ( f !, ↗i↔) via g↔. In fact, it is enough to pass to $[1/a1, . . . , 1/ad ]-coefficients.

From the sequence, we can get the following description of A↔(Ỹ ).

Theorem 6.4 (Chow ring of a weighted blow-up). If Ỹ → Y is a weighted blow-up of Y at a closed
subvariety X, then the Chow ring A↔(Ỹ ) is isomorphic as a group to the quotient

A↔(Ỹ ) ⇐= (A↔(X)[t]) · t ↘ A↔(Y )(
((P(t) ↗ P(0))ω, ↗i↔(ω)), ⇒ω ⇑ A↔(X)

) ,

with P(t) = c"m
top (NX Y )(t) (defined below) and [X̃ ] = ↗t .

The multiplicative structure on A↔(Ỹ ) is induced by the multiplicative structures on A↔(X) and A↔(Y )

and by the pull-back map in the following way:

(0, ε) · (t, 0) = (i↔(ε)t, 0).

Equivalently A↔(Ỹ ) can be expressed as a quotient of the fiber product

A↔(Y ) ≃A↔(X) A↔(X)[t]
((i↔ω, P(t)ω), ⇒ω ⇑ A↔(X))

,

with i↔ : A↔(Y ) → A↔(X) on the left and A↔(X)[t] → A↔(X) on the right given by evaluating t at 0.

In order to use the key sequence, we need to give a presentation for the Chow ring of the exceptional
divisor X̃.

In the classical case, X̃ is a projective bundle over X and the Chow ring of a projective bundle can be
described via the formula [Eisenbud and Harris 2016, Theorem 9.6]. In the case of a weighted blow-up,
the exceptional divisor is a projective stack bundle, i.e., the projectivization of a weighted affine bundle
(Definitions 3.2, 3.4). In Section 3 we define the top "m-equivariant Chern class for a weighted affine
bundle E in terms of its homogeneous pieces as

c"m
top (E) =

∏
c"m

top (Ei ) =
∏

i

(cni (Ei ) + ai tcni ↗1(Ei ) + · · · + ani
i tni ),

and we give a formula for the integral Chow ring of a projective stack bundle (which was proven for
rational coefficients in [Mustaţă and Mustaţă 2012, Lemma 2.10(b)]).

Theorem 3.12 (weighted projective bundle formula). Let E be a weighted, affine bundle over X of rank n.
Let c"m

top (E)(t) be its "m-equivariant top Chern class. Then

A↔(P(E)) ⇐= A↔(X)[t]
c"m

top (E)(t)
.
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Finally, to have a complete description of the exact sequence in Theorem 6.1, we need the appropriate
generalization for the excess intersection formula [Fulton 1998, Theorem 6.3]. Unlike the case of an
ordinary blow-up, in the weighted blow-up case we don’t have an excess bundle and we describe f ! as
the multiplication by a difference quotient of the top "m-equivariant Chern class of the normal bundle.

Theorem 5.5 (weighted key formula). Let X, Y, X̃, Ỹ, f be as above. Let us identify A↔(X̃) ⇐=
A↔(X)[t]/P(t) with P(t) = c"m

top (NX Y )(t). Then we have the following formula for the Gysin homomor-
phism f ! : A↔(X) → A↔(X̃):

f !(ω) = P(t) ↗ P(0)

t
ω.

The proof of our formula for the Gysin homomorphism relies on a generalization of the splitting
principle, Theorem 4.9, stated in terms of maps to classifying stacks BT, B GLn, BGa,n.

Theorem 4.9 (the splitting principle). Let E → X be a weighted affine bundle defined by a map
X → BGa,n. Let T be the standard maximal torus in GLn. Then the map X ⇓⇓ → X in the fiber diagram

X ⇓⇓ BT

X ⇓ B GLn

X BGa,n

induces an injection of Chow rings A↔(X) ϑ→ A↔(X ⇓⇓) via pull-back.

Here Ga,n is the structure group of the weighted affine bundle E and GLn is the structure group of its
associated weighted vector bundle. Note that the upper square of the diagram is equivalent to the classical
splitting principle in [Fulton 1998, page 51] as in [Totaro 2014, Theorem 2.13].

2. Equivariant intersection theory

From now on Y, X will be smooth quasiseparated algebraic spaces, of finite type over a field k of
characteristic 0, with "m actions. We will also assume the "m action is trivial on X.

Let us first recall the following definitions of equivariant Chow groups for a linear algebraic group G.

Definition 2.1. [Edidin and Graham 1998, Definition-Proposition 1] Let Y be a d-dimensional quasi-
separated algebraic space of finite type over a field k, together with a G action. Let g be the dimension
of G. The i-th G-equivariant Chow group of Y is defined as

AG
i (Y ) := Ai+l↗g(Y ≃ U/G),

where U is an open subspace of an l-dimensional representation, on which G acts freely and whose
complement has codimension greater than d ↗ i .

In this article we will mostly use this definition in the particular case of a "m action. In particular, this
leaves us with very convenient choices for representations: V will be an l-dimensional vector space with
the standard "m action with weight 1 and U = V ⊋ {0}.
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Example 2.2. We have A↔
"m

(X) ⇐= A↔(X)[t]. Indeed, since the "m action is trivial on X

Ai
"m

(X) = A"m
d↗i (X) = Ad↗i+l↗1(X ≃ U/"m) = Ai (X ≃ %l↗1) =

i⊕

k=0

Ak(X)t i↗k,

with t = c1(O%l↗1(1)) and the isomorphism follows.

Definition 2.3 [Edidin and Graham 1998, Definition 1]. Let E be a G equivariant vector bundle over Y.
The equivariant Chern classes of E are the operators

cG
j : AG

i (Y ) → AG
i↗ j (Y ), with cG

j (E) ⇔ ω = c j (E ≃ U/G) ⇔ ω ⇑ Ai+l↗ j↗g(Y ≃ U/G) = AG
i↗ j (Y ).

As mentioned in [Molina Rojas and Vistoli 2006, Section 2] many of the standard properties of Chow
groups still hold in the equivariant case. Below we collect some that will be used later.

Proposition 2.4. The following are true:

(1) The first Chern class of the tensor product of line bundles is the sum of the first Chern classes of each
line bundle: cG

1 (L ↖ L ⇓) = cG
1 (L) + cG

1 (L ⇓).

(2) Let E be a G-equivariant vector bundle over Y and f : Y ⇓ → Y a map such that f ↔E has a filtration
of G-equivariant vector bundles f ↔E = Fr ↑ · · · ↑ F0 = 0. Let Ei = Fi/Fi↗1. Then

cG( f ↔E) =
∏

i

cG(Ei ).

(3) If Z is a closed G-invariant subscheme of Y, we have the exact sequence

A↔
G(Z) → A↔

G(Y ) → A↔
G(Y ⊋ Z) → 0.

(4) Let ϖ : E → Y be a G-equivariant vector bundle over Y and s0 : Y → E be the zero section. Then
the Gysin pull-back map s↔

0 : A↔
G(E) → A↔

G(Y ) is an isomorphism equal to the inverse of ϖ↔.

Proof. We will prove (3). The proofs of the remaining parts are analogous. Let U have dimension l
high enough that AG

i (Y ) is defined as Ai+l↗g(Y ≃ U/G). Then, also by definition, we have AG
i (Z) :=

Ai+l↗1(Z ≃ U/G). In particular, Z ≃ U/G and Y ≃ U/G are algebraic spaces, and the localization
sequence

A↔(Z ≃ U/G) → A↔(Y ≃ U/G) → A↔(Y ≃ U/G ⊋ Z ≃ U/G) → 0

is exact. Therefore statement (3) holds as well. ↭

Another proposition, that will be very useful later, is [Molina Rojas and Vistoli 2006, Lemma 2.2], for
which we will quote the statement and the proof.

Lemma 2.5 [Molina Rojas and Vistoli 2006, Lemma 2.2]. Let G be an affine linear group acting on
a smooth scheme Y. Let ϖ : E → Y be a G-equivariant vector bundle of rank n. Call E0 ↓ E the
complement of the zero section s : Y → E. Then the pull-back homomorphism ϖ |↔E0

: A↔
G(Y ) → A↔

G(E0)

is surjective, and its kernel is generated by the top Chern class cG
n (E) ⇑ An

G(Y ).
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Proof. Consider the diagram
A↔

G(Y )

A↔
G(Y ) A↔

G(E) A↔
G(E0) 0

ϖ |↔E0

s↔

s↔

where the bottom is the localization sequence. Since s↔ is an isomorphism, inverse to ϖ↔, we see that
ϖ |↔E0

is surjective with kernel generated by the image of s↔s↔. By the self-intersection formula, s↔s↔ is
multiplication by cG

n (E). ↭

3. Chow groups of weighted projective stack bundles

In this section we will give a formula for the Chow ring of a weighted projective stack bundle. Weighted
projective stack bundles appear as the exceptional divisor of a weighted blow-up. We start by computing
the Chern classes of weighted affine bundles, and then show we can apply Lemma 2.5 to them. A similar
formula for rational coefficients appears in [Mustaţă and Mustaţă 2012, Theorem 2.10(b)].

Definition 3.1. An affine bundle is a smooth affine morphism E → X such that E is, locally in the
smooth topology, isomorphic to X ≃ !n.

Definition 3.2 [Quek and Rydh 2021, Definition 2.1.3]. A weighted affine bundle is a "m-equivariant
affine bundle E → X, where locally in the smooth topology "m acts linearly on !n with positive weights
a1, . . . , an ⇑ $.

We note in Remark 4.2 that the structure group is special, which means weighted affine bundles over
a scheme are Zariski-locally trivial. This is used to apply [Stacks 2005–, Tag 0GUB] in the proof of
Corollary 3.11.

It will sometimes be convenient to emphasize the distinct weights of a weighted affine bundle. When
we do this we will list the distinct weights as a1, . . . , ar , and use ni to refer to the dimension of the
subspace of !n where the action has weight ai . In these cases, we will highlight the fact that the weights
are distinct in the relevant statements.

Definition 3.3. A weighted vector bundle is a weighted affine bundle whose underlying "m space is a
vector bundle. Equivalently, it is a weighted affine bundle with linear transition functions.

Notice that our terminology is slightly different from that of [Quek and Rydh 2021]. What they call
twisted/untwisted weighted vector bundles, we call weighted affine/vector bundles respectively. Also note
that the "m action on a weighted vector bundle must preserve the degree. In particular, the bundle splits
into homogeneous vector bundles, where "m acts with the same degree.

Definition 3.4 [Quek and Rydh 2021, Definition 2.1.5]. A weighted projective stack bundle over X is
the stack-theoretic Proj of a graded algebra corresponding to a weighted affine bundle with strictly
positive weights. Precisely, if R is a graded algebra such that E = SpecX (R) then ProjX (R) =
[SpecX (R)⊋ V (R+)/"m].

https://stacks.math.columbia.edu/tag/0GUB
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3.1. Equivariant Chern classes of a weighted line bundle. Let us denote by L → X a line bundle over X
with the trivial action. Let us denote by L(a) the same underlying line bundle, endowed with the weight-a
"m action. This is a notation we will adopt only for Sections 3.1 and 3.2, but abandon later as the weight
of the "m action will be clear from context.

Some of the following lemmas are likely already known, but are stated and proven for completeness as
we couldn’t find specific references.

Lemma 3.5. Let L(a) be a "m-equivariant line bundle over X with weight a. Then the first equivariant
Chern class of L(a) is c"m

1 (L(a)) = c1(L) + at via the identification in Example 2.2.

Proof. We know that L(a) = L(a) ↖OX = L ↖OX
(a). In particular,

c"m
1 (L(a)) = c"m

1 (L ↖OX
(a)) = c"m

1 (L) + ac"m
1 (OX

(1)).

Now, since the action on L is trivial, (L≃U )/"m = L≃%l↗1, and since A1(X ≃%l↗1)= A1(X)↘ A0(X)t ,
we get

c"m
1 (L) = c1(L ≃ %l↗1) = c1(L) ⇑ A1(X).

We only need to prove c1(OX
(1)) = t .

Let us consider the projection to a point P, f : X → P. The map defines a graded ring homomorphism
f ↔ : A↔

"m
(P) → A↔

"m
(X), i.e., a map f ↔ : $[t] → A↔(X)[t] defined by 1 ↙→ 1 and t ↙→ t .

Now OX
(1) = f ↔(OP

(1)) and

c"m
1 (OX

(1)) = c"m
1 ( f ↔(OP

(1))) = f ↔c"m
1 (OP

(1)).

Therefore it is enough to prove c"m
1 (OP

(1)) = t .
By definition c"m

1 (OP
(1))=c1(OP≃U/"m) as a bundle over U/"m , with U/"m =!2⊋(0, 0)/"m =%1.

Now, a nonzero section s : U → U ≃OP/"m is given by (x0, x1) ↙→ (x0, x1, x0) and intersects the zero
section (x0, x1, 0) in x0 = 0, which gives us O%1(1), whose first Chern class is t in A1(U ≃OP/"m) =
A1(%1), as desired. ↭

3.2. Equivariant Chern classes of homogeneous bundles.

Proposition 3.6 (homogeneous bundles admit a splitting with line bundles). Let E (a) be a rank-n vector
bundle over X with "m acting homogeneously with weight a on it. Then there exists f : X ⇓ → X such that
f ↔E (a) has a filtration

f ↔E (a) ↑ F (a)
n ↑ · · · ↑ F (a)

0 = 0

with "m-equivariant line bundle quotients L(a)
j = F (a)

j+1/F (a)
j and f ↔ is injective.

Proof. Let us consider the underlying bundle E . Then by the splitting construction [Fulton 1998, page 51]
there is a map f : X ⇓ → X with a filtration f ↔E = Fn ↑ · · · ↑ F0 = 0 with line bundle quotients.

These bundles naturally have the structure of "m-equivariant vector bundles with weight 1. By replacing
the weight-1 action with a weight-a action we get the desired sequence. ↭
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Corollary 3.7. Let E (a) be a homogeneous "m-equivariant vector bundle of rank n with weight a, and E
the underlying vector bundle endowed with the trivial "m action. Then the top equivariant Chern class in
A↔

"m
(X) = A↔(X)[t] is

c"m
n (E (a)) = cn(E) + atcn↗1(E) + · · · + antn.

Proof. Let f : X ⇓ → X as in Proposition 3.6. Then c"m
n ( f ↔E (a)) = ∏n

i=1 c"m
1 (L(a)

i ). By Lemma 3.5
c"m

1 (L(a)
i ) = c1(Li ) + at .

Therefore c"m
n ( f ↔E (a))= cn( f ↔E)+atcn↗1( f ↔E)+· · ·+antn. By the injectivity of f ↔ we are done. ↭

3.3. Chern classes of weighted affine bundles.

Proposition 3.8. Let E be a weighted affine bundle over X. Let 0 < a1 < · · · < ar be the distinct weights
of the "m action. Then there exist unique subbundles Fi such that

E ↑ Fr ↑ · · · ↑ F1 ↑ 0,

with well-defined quotients Ei = Fi/Fi↗1 which are homogeneous vector bundles with weights ai .

Proof. Let E = SpecX (R) and {Ui } be a cover for X such that E |Ui is the trivial bundle. Then we have
graded isomorphisms

ωi : R|Ui → OUi [x (a1)
i,1 , . . . , x (a1)

i,n1
, x (a2)

i,1 , . . . , x (a2)
i,n2

, . . . , x (ar )
i,1 , . . . , x (ar )

i,nr
],

with x (ah)
i,1 , . . . , x (ah)

i,nh
having weight ah . A general transition map

ωi j = ω j |Ui j ∝ ωi |↗1
Ui j

: OUi j [x (a1)
i,1 , . . . , x (anr )

i,nr
] → OUi j [x (a1)

j,1 , . . . , x (anr )
j,r ]

will map x (ah)
i,l to a homogeneous polynomial of degree ah .

Now let Fk |Ui := ω↗1
i (OUi [x (a1)

i,1 , . . . , x (ak)
i,nk

]) be the locus where "m acts with weights smaller than or
equal to ak . This defines uniquely r subbundles of E . Moreover the quotients Fk/Fk↗1 are well-defined.
Indeed, while these are affine bundles, they are locally isomorphic to vector bundles so we can at least
take quotients locally. By construction, taking quotients locally gives us bundles consisting only of the
weight-ak pieces of E , and since the lower-degree pieces have been reduced to 0, we are left with linear
transition functions making the Fk/Fk↗1 homogeneous vector bundles of weight ak , as needed. ↭
Proposition 3.9. Let E be a weighted affine bundle over X as in Proposition 3.8. Let NX E be the
(nonweighted) normal bundle of X in E. Then, with X ϑ→ E the zero section, we have

NX E ⇐= E1 ↘ · · · ↘ Er .

Proof. Let I be the ideal sheaf of X in E and let ωi j be its transition functions as in Proposition 3.8, with
each x (ah)

i,l mapped to a homogeneous polynomial of degree ah .
When computing the transition functions ω̄i, j for NX E , we are taking the quotient by I 2; i.e., ω̄i, j

will preserve only the linear terms of said polynomials and delete the monomials coming from local
coordinates where "m acts with lower degree.
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In particular, local coordinates on which "m acts with a certain degree must be mapped to coordinates
in the same degree, and the normal bundle splits into E ⇓

1↘E ⇓
2↘· · ·↘E ⇓

r , where "m acts on the coordinates
of E ⇓

i with weight ai .
But the way we obtained the transition functions for E ⇓

i is equivalent to considering the locus Fi in
Proposition 3.8 and quotient by Fi↗1, so we obtained the desired decomposition. ↭

Definition 3.10. For an affine bundle E , with Ei as in Propositions 3.8 and 3.9, we define the "m-
equivariant total Chern class of E as c"m (E) = c"m (NX E) = ∏

c"m (Ei ).

Corollary 3.11. Lemma 2.5 also holds in the case where E is a weighted affine bundle.

Proof. Note that by Definition 3.10 and Proposition 3.9, we have cG
i (E) = cG

i (NX E). The rest of the
proof is the same as in Lemma 2.5, noting that ϖ↔ : A↔(X) → A↔(E) is still an isomorphism by [Stacks
2005–, Tag 0GUB], and s↔ : A↔(E) → A↔(X) is still its inverse. ↭

3.4. The Chow ring of a weighted projective stack bundle.

Theorem 3.12 (weighted projective bundle formula). Let E be a weighted, affine bundle over X of rank n.
Let c"m

top (E)(t) be its "m-equivariant top Chern class. Then

A↔(P(E)) ⇐= A↔(X)[t]
c"m

top (E)(t)
.

Proof. Note that, by definition, A↔(P(E)) = A↔([(E ⊋ X)/"m]) = A↔
"m

(E ⊋ X), with E ⊋ X being
E minus the zero section. By Lemma 2.5 we only need to prove that the image of c"m

n (E) via the
identification in Example 2.2 is

∏
i (cni (Ei ) + ai tcni ↗1(Ei ) + · · · + ani

i tni ).
By Corollary 3.7, it follows c"m

n (E) = ∏
c"m

ni (Ei ) = ∏
i (cni (Ei )+ai tcni ↗1(Ei )+· · ·+ani

i tni ) and we
are done. ↭

Below there are some (familiar) special cases.

Example 3.13 (the Chow ring of P(a1, . . . , an) [Inchiostro 2022, Lemma 4.7]). Let P(a1, . . . , an) be
the weighted projective stack with weights a1, . . . , an . We can consider P(a1, . . . , an) as a weighted
projective bundle over a point. In particular, we have that P(a1, . . . , an) splits into n trivial bundles with
weights a1, . . . , an . Each of these line bundles will have the first Chern class equal to zero. It follows that

A↔(P(a1, . . . , an)) = $[t]
a1 · · · antn .

Example 3.14 (the Chow ring of a classical projective bundle [Eisenbud and Harris 2016, Theorem 9.6]).
Let E be a vector bundle of rank n over X in the classical sense. In this case, we have "m acting
homogeneously on the whole space with weight 1. In particular

A↔(P(E)) = A↔(X)[t]
cn(E) + cn↗1(E)t + · · · + tn .

https://stacks.math.columbia.edu/tag/0GUB
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Example 3.15. As a toric example, this can be recovered as a consequence of [Iwanari 2009, Theorem 2.2].
The exceptional divisor X̃ of the weighted blow-up of X = V (x1, . . . , xn) in %m+n, with (possibly equal)
weights a1, . . . , an .

In this case, the Chow ring of the base will be A↔(X) = A↔(%m) = $[x]/(xm+1).
The normal cone of X in %n+m, NX %n+m, will split into the sum of n copies of O%m (1), on each one

of which "m will act with weight ai . We will denote the normal cone together with the "m action by
Na1,...,an %n+m.

Now c1(O%m (1)) = x ⇑ $[x]/xm+1. Therefore c"m
n (NX %n+m) = ∏

(x + ai t) and

A↔(X̃) = A↔(P(Na1,...,an %n+m)) = $[x, t](
xm+1,

∏n
i=1(x + ai t)

) .

4. The splitting principle

The goal of this section is to prove Theorem 4.9, an analog of the splitting principle. We start by proving
some facts about structure groups and classifying spaces. Using those results we construct, for any
weighted affine bundle E → X, a map X ⇓ → X that allows us to pull back our affine bundle to a vector
bundle E ⇓ → X ⇓ with A↔(X ⇓) ⇐= A↔(X).

4.1. Structure groups. From here on, let E → X be an affine bundle with fibers isomorphic to an
affine space V, n = (n1, . . . , nr ) be the dimensions of its homogeneous parts and a = (a1, . . . , ar ) be
their distinct weights. Let Ga,n be the group Aut"m (V ) of "m-equivariant automorphisms of V and
GLn = ∏

GL(ni ). Moreover, define V Ga,n = [V/Ga,n] and V GLn = [V/ GLn].
Lemma 4.1. There is a surjective group homomorphism Ga,n → GLn and a section GLn → Ga,n. The
kernel of the surjection is a unipotent group Ua,n.

Proof. In [Quek and Rydh 2021, Section 2.1.7], the authors offer an explicit description of Ga,n. In fact,
they decompose Ga,n in the recursive semidirect product

Ga,n = (GLnr ≃Ga⇓,n⇓)⫅̸"nr Nr
a ,

with a⇓ = (a1, . . . , ar↗1), n⇓ = (n1, . . . , nr↗1), and Nr the dimension of ar -th-degree piece of a graded
polynomial algebra with free variables {xi, j : 1 ′ i ′ r ↗ 1, 1 ′ j ′ ni }, where xi, j is given weight ai .

Unraveling the recursion gives
Ga,n =

(
GLnr ≃ · · · ≃ ((GLn1 ≃{1})⫅̸"n1 N1

a )⫅̸ · · ·
)
⫅̸"nr Nr

a

= (· · · (GLn ⫅̸"n1 N1
a )⫅̸ · · · )⫅̸"nr Nr

a .

This expression provides us with the desired surjection and section. The kernel is a successive extension
of additive groups and so is unipotent. ↭
Remark 4.2. Let us recall that a linear algebraic group G is special (in the sense of Serre) when every
principal G-bundle is Zariski-locally trivial. The description of Ga,n above implies that the group Ga,n is
special (as noted in [Quek and Rydh 2021, Remark 2.1.8]).

This was useful in Section 3, while working with weighted affine bundles.
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4.2. Lemmas on classifying spaces.

Lemma 4.3. Let G be a linear algebraic group which is a semidirect product of groups G = L ⫅̸U. Then
we get the following Cartesian diagram:

{↔} BL

BU BG

Proof. Consider the following diagram:
BU≃BG BL BL

BU BG

{↔} BL

The bottom square is a Cartesian square, coming from the short exact sequence 1 → U → G → L → 1.
Indeed an object over a scheme S of the fiber product ↔ ≃BL BG is a principal G-bundle PG → S with a
trivialization of the associated L-bundle (PG≃L)/G ⇐= PG/U ⇐= S≃L . But then the preimage of S≃{id} in
PG is a principal U -bundle, that is, an object of BU. Conversely, if we have a principal U -bundle PU → S
then we have an associated G-bundle PG = (PU ≃G)/U whose associated L-bundle PL ⇐= (PG ≃L)/G ⇐=
PG/U has a canonical trivialization: PG/U ⇐= ((PU ≃ G)/U )/U, where the second U acts on the right,
giving us PL ⇐= (PU ≃ L)/U ⇐= S ≃ L . One can check that these correspondences are inverse to each other.

So we have that large square is Cartesian and {↔} ≃BL BL = BU ≃BG BL . Further, the composite
map on the right is the identity on BL , so that {↔} ≃BL BL = {↔}. ↭
Corollary 4.4. B GLn → BGa,n is a Ua,n bundle; specifically we have the following Cartesian diagram:

Ua,n B GLn

{↔} BGa,n

Consequently, given a morphism X → BGa,n the fiber product X ≃BGa,n B GLn → X is a Ua,n bundle.

Proof. Applying Lemma 4.3 to Ga,n, GLn, Ua,n as in Lemma 4.1 and appending on the left the Cartesian
diagram coming from the standard presentation of BUa,n

Ua,n {↔}

{↔} BUa,n

we get the Cartesian diagram
Ua,n {↔} B GLn

{↔} BUa,n BGa,n

as desired.
Then X ≃BGa,n B GLn → X is the pull-back of a Ua,n bundle and hence is a Ua,n bundle. ↭
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Lemma 4.5. Let L be a subgroup of a group scheme G acting on a scheme V. Then the following diagram
is Cartesian:

[V/L] BL

[V/G] BG

Proof. An object over a scheme S in [V/G]≃BG BL is a triple (P, Q, ω), where P → S is a G-torsor,
together with a G-equivariant map to V

P V

S

ϱ

Q → S is an L-torsor, and ω is an isomorphism of G-torsors P ω↗→ Q ≃ G/L .
Given such an object we can construct an object in [V/L] by considering the L-torsor Q → S together

with the map ς : Q → V defined as follows:

Q Q ≃ G/L P V

S

ω↗1 ϱ

To verify this is indeed an object of [V/L], we need to prove that ς is L-equivariant. Now, ϱ and ω↗1

are G-equivariant, and in particular L-equivariant. Moreover the quotient map Q → Q ≃ G/L maps an
element ql to [ql, e] = [qll↗1, le] = [q, l]. But L acts on Q ≃ G/L through its inclusion into G; hence
ql ↙→ [q, e] l as desired.

On the other hand given an L-torsor Q → S together with an L-equivariant map ς : Q → V in [V/L],
we can construct the triple (Q ≃ G/L , Q, id) as an object of [V/G] ≃BG BL . In order for Q ≃ G/L to
be an object in [V/G], we must equip it with a G-equivariant map Q ≃ G/L → V or, equivalently, with
a G-equivariant, L-invariant map Q ≃ G → V. The map ϕ : Q ≃ G → V defined by (q, g) ↙→ ς(q)g is
L-invariant with respect to the action l · (q, g) = (ql, l↗1g) we are quotienting by; indeed

(ql, l↗1g) ↙→ ς(ql)l↗1g = ς(q)ll↗1g = ς(q)g.

Moreover ϕ is G-equivariant: ϕ((q, g) · h) = ς(q)gh = (ς(q)g) · h. The verification that the functors
defined are indeed inverses is standard and will be omitted. ↭

4.3. The splitting principle.

Proposition 4.6. Given a weighted affine bundle E → X (respectively a weighted vector bundle), we
have a natural map X → BGa,n (respectively X → B GLn) such that E is the pull-back of V Ga,n

(respectively V GLn).

Proof. We prove the result for V Ga,n, as the result for V GLn is effectively the same, with the obvious
modifications. Let us denote by Isom the sheaf of isomorphisms of affine bundles IsomX (E, V ≃ X)
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(respectively, the sheaf of isomorphisms of weighted vector bundles). By a straightforward application of
the definitions, it can be seen that Isom is a principal Ga,n bundle over X and Isom ≃X E ⇐= V ≃{↔} Isom.

In particular we get the following Cartesian diagram:

Isom {↔}

X BGa,n

Then we can fit the spaces above in the commutative cube

Isom ≃X E V

E V Ga,n

Isom {↔}

X BGa,n

where the bottom, back and side squares are fiber squares.
Note that Isom ≃X E → E is a principal Ga,n bundle. Moreover, the action of Ga,n on Isom gives a

Ga,n-equivariant map Isom ≃X E → V via the identification of Isom ≃X E with V ≃ Isom. This gives us
a map of quotient stacks E → V Ga,n which makes the top of the cube Cartesian.

It follows that
E V Ga,n

X BGa,n

is a fiber square, as needed. ↭
Corollary 4.7. Let E → X be a weighted affine bundle, with corresponding map X → BGa,n. Then E ⇓,
the pull-back of E via the map X ⇓ = X ≃BGa,n GLn → X, is a weighted vector bundle.

Proof. Consider the following diagram:

E ⇓ X ⇓

V GLn B GLn

E X

V Ga,n BGa,n

The back and right squares are Cartesian by construction. By Lemma 4.5 and Proposition 4.6 we have
that the front and bottom squares are Cartesian. Any such cube with these sides Cartesian is Cartesian, in
particular the top square. Since E ⇓ → X ⇓ is the pull-back of the vector bundle V GLn → B GLn, it is a
vector bundle as desired. ↭
Lemma 4.8. Let X ⇓ → X be as in Corollary 4.7. Then the pull-back map of Chow rings A↔(X) → A↔(X ⇓)
is an isomorphism.
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Proof. By Corollary 4.4, X ⇓ ϱ↗→ X is a Ua,n-bundle and Ua,n is a unipotent group. In particular, Ua,n is
a successive extension of the additive group "a by itself and being a Ua,n-bundle is equivalent to being a
succession of affine bundles; hence by [Stacks 2005–, Tag 0GUB] we obtain an isomorphism of Chow
rings ϱ↔ : A↔(X) → A↔(X ⇓). ↭

Theorem 4.9 (the splitting principle). Let E → X be a weighted affine bundle defined by a map X →
BGa,n. Let T be the standard maximal torus in GLn and BT := [↔/T ] its classifying stack. Then the map
X ⇓⇓ → X in the fiber diagram

X ⇓⇓ BT

X ⇓ B GLn

X BGa,n

induces an injection of Chow rings A↔(X) ϑ→ A↔(X ⇓⇓) via pull-back.

Proof. By the argument in the proof of [Totaro 2014, Theorem 2.13] we have an injection A↔(X ⇓) ϑ→
A↔(X ⇓⇓). By composing with the isomorphism in Lemma 4.8, we have the desired map. ↭

5. The Gysin homomorphism induced by a weighted blow-up

The goal for this section is to prove Theorem 5.5, which replaces the excess bundle formula in the case of
weighted blow-ups.

The strategy for the proof is to reduce to the special case of the weighted blow-up of BT = [{0}/T ] in
[!d/T ] induced by zero section, which will be computed in Section 5.3.

The reduction to the special case is performed in two steps: first we reduce to the case of the blow-up
of an affine space (Section 5.2), and then we apply the splitting principle Theorem 4.9.

Some caution is needed when defining f !, as we don’t always have the needed Cartesian diagram. In
Section 5.1 we address the issue as well as setting some notation for the rest of the paper.

5.1. Notation. Let Ỹ →Y be the weighted blow-up of Y centered at X, and let X̃ be the exceptional divisor.
As observed in [Quek and Rydh 2021, Remark 3.2.10] the commutative square is not always Cartesian

X̃ Ỹ

X Y

and when defining f ! we have to make sure to define it with respect to the fiber square

X ≃Y Ỹ Ỹ

X Y

https://stacks.math.columbia.edu/tag/0GUB
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Moreover we have X̃ = (X ≃Y Ỹ )red and the diagram below commutes:

X̃ X ≃Y Ỹ Ỹ

X Y

g

j

h f

i

When looking at Chow rings though, we have a natural isomorphism

(red)↔ : A↔(X̃) → A↔(X ≃Y Ỹ )

induced by the reduction map red : X̃ → X ≃Y Ỹ.
In particular, it makes sense to talk about f ! as the composition of (red)↗1

↔ ∝ f !. Throughout the rest of
the paper, we will refer to it simply as f !.

Lemma 5.1. The map f ! : A↔(X) → A↔(X̃) is of the form f !(ω) = g↔(ω) ·↼ for some element ↼ ⇑ A↔(X̃).

Proof. In a similar fashion to what we did in Proposition 2.4, we will prove the statement by passing
through algebraic spaces.

Precisely, let X̃U = (NX Y ⊋ 0) ≃ U/"m with U open as in Definition 2.1 inducing isomorphisms
of Chow groups for X̃ of the appropriate degree. In fact, if U is chosen large enough we also get the
algebraic space ỸU with analogous induced isomorphisms of Chow groups for Ỹ.

For the appropriate degrees, the induced maps fU : ỸU → Y with (ỹ, u) ↙→ f (ỹ) and gU : X̃U → X with
(x̃, u) ↙→ g(x̃) will themselves induce group homomorphisms f !

U : A↔(X) → A↔(X̃U ) and g↔
U : A↔(X) →

A↔(X̃U ).
Now gU : X̃U → X is a smooth map and by [Fulton 1998, Theorem 17.4.2] we have isomorphisms

Ap(X̃U ) ⇐= Ap(X̃U
id↗→ X̃U )

·[gU ]↗↗↗→ Ap↗d(X̃U → X).

In particular, for the degrees on which Ap(X̃U )= Ap
"m

(NX Y ⊋0)⇐= Ap(X̃), we have that f !
U = ↼U ·[gU ]=

↼U · g↔
U for some ↼U ⇑ Ap(X̃U ) is equivalent to saying f !(ω) = ↼U · g↔(ω) for some element ↼U ⇑ Ap(X̃).

Since the elements ↼U must agree whenever U has high enough dimension, they must coincide. Hence
there exists a unique element ↼ ⇑ A↔(X̃) such that f !(ω) = ↼ · g↔(ω). ↭

5.2. Specialization to the weighted normal cone. Analogously to [Fulton 1998, Section 5.2], Quek and
Rydh [2021, Section 4.3] constructed a deformation to the weighted normal cone of X in Y, which is a
weighted affine bundle in our case. We will be using their construction to reduce our argument to the case
where Y a weighted affine bundle over X. A similar construction can be found in [Mustaţă and Mustaţă
2012, Section 2.3].

Note that when given a weighted embedding that defines a weighted blow-up of smooth varieties, the
weighted normal cone is a weighted affine bundle, which we will denote by NX Y.
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Theorem 5.2. Let X, Y, X̃, Ỹ be as usual. Let N = NX Y be the weighted normal affine bundle of X in Y
and fN : Ñ → N be the weighted blow-up of the zero section of said bundle, with the same weights as
f : Ỹ → Y. Then the induced maps f ! : A↔(X) → A↔(X̃) and f !

N : A↔(X) → A↔(X̃) coincide.

Proof. Let Mo be the deformation to the weighted normal cone as defined in [Quek and Rydh 2021,
Definition 4.3.3] and let M̃o be the weighted blow-up of X ≃ !1 in Mo with the same weights as f , i.e.,
the weighted blow-up induced by the weighted embedding in [loc. cit., Definition 4.3.4,(iv)]. Let Mt and
M̃t respectively, be the fibers over t . Let Z = (X ≃ !1) ≃Mo M̃0. Then we have the following diagram:

X̃ ≃ !1 Z M̃o

X̃ Zt M̃t

X ≃ !1 Mo

X Mt

Zt fM

By looking at the composition X → Mt → Mo in the subdiagram

Zt M̃t M̃o

X Mt Mo

fM

we see that for t ∞= 0 we have that f !
M : A↔(X) → A↔(Zt) = A↔(X̃) is precisely f !, and for t = 0 it is

precisely f !
N . Now looking at the composition X → X ≃ !1 → Mo in the subdiagram

Zt Z M̃o

X X ≃ !1 Mo

fM

we want to show that f !
M : A↔(X) → A↔(Zt) = A↔(X̃) is the same for all t .

By [Fulton 1998, Theorem 6.4] the following diagram commutes:

A↔(Zt) = A↔(X̃) A↔(Z) = A↔(X̃ ≃ !1)

A↔(X) A↔(X ≃ !1)

i !
t

f !
M

i↔
t

f !
M

But the horizontal maps are isomorphisms, inverse to the pull-back along the products with !1. Since
the horizontal maps are independent of t and the map on the right is independent of t , so is the map on
the left. ↭
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5.3. The special case of [!d/T ]. Let us now study the particular case of a point in the affine space over
the diagonal action of the torus:

P(a1, . . . , ad) 0 ≃!d Bla1,...,ad !d Bla1,...,ad !d

0 !d

g

j

h f

i

In order to explicitly give a formula for f ! we need presentations for the equivariant Chow rings
A↔

T (↗).
Now A↔

T (0) ⇐= A↔
T (!d) ⇐= $[x1, . . . , xd ]. Details about A↔

T (0) can be found in [Edidin and Graham
1998] and in [Iwanari 2009] for equivariant Chow rings of toric stacks.

Let us first observe that, since P(a1, . . . , ad) is the reduction of 0 ≃!d Bla1,...,ad !d , there is an
isomorphism of Chow rings A↔

T (0 ≃!d Bla1,...,ad !d) ⇐= A↔
T (P(a1, . . . , ad)).

Moreover Bla1,...,ad !d is a line bundle over P(a1, . . . , ad); in fact it is the total space of OP(a1,...,ad )(↗1),
and we have the isomorphism A↔

T (Bla1,...,ad !d) ⇐= A↔
T (P(a1, . . . , ad)).

We are left with computing A↔
T (P(a1, . . . , ad)).

Lemma 5.3. A↔
T (P(a1, . . . , ad)) ⇐= $[x1, . . . , xd , t]

P(t)
, where P(t) :=

d∏

i=1

(xi + tai ).

Proof. By construction P(a1, . . . , ad) = [(!d ⊋0)/"m] and the actions of "m and T on !d ⊋0 commute.
In particular

A↔
T (P(a1, . . . , ad)) ⇐= A↔

T ([(Ad ⊋ 0)/"m]) ⇐= A↔
T ≃"m

(!d ⊋ 0).

Similarly to the computation above,

A↔
T ≃"m

(0) ⇐= A↔
T ≃"m

(!d) ⇐= $[x1, . . . , xd , t],

where x1, . . . , xd are given by the action of T and t is given by the action of "m . Finally, the image of
the first map in the localization sequence,

A↔
T ≃"m

(0) → A↔
T ≃"m

(!d) → A↔
T ≃"m

(!d ⊋ 0) → 0,

is generated by P(t) := ∏d
i=1(xi + tai ). Indeed the top Chern class of the T ≃ "m-equivariant bundle

splits along each component of !d. On the i-th component of !d the i-th component of T acts with
weight 1 and the other components of T act with weight 0, while "m acts with weight ai .

Therefore A↔
T (P(a1, . . . , ad)) and A↔

T (Bla1,...,ad !d) are both isomorphic to $[x1, . . . , xd , t]/P(t). ↭

Theorem 5.4. Let f : [Bla1,...,ad !d/T ] → [!d/T ] be the blow-up of [0/T ] in [!d/T ] with weights
a1, . . . , ad. Then

f !(1) =
(c"m

top ([!n/T ])(t) ↗ c"m
top ([!n/T ])(0)

t

)
.
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Proof. By [Edidin and Graham 1998, Proposition 3] and Lemma 5.1 f ! satisfies f ↔i↔ = j↔ f !, making the
following diagram commute:

A↔
T (P(a1, . . . , ad)) A↔

T (Bla1,...,ad !d)

A↔(0)T A↔(!d)T

j↔

i↔

f !(1)·g↔ f ↔

Since !d is a rank-d bundle over 0 and Bla1,...,ad !d is the tautological line bundle over P(a1, . . . , ad),
the homomorphisms i↔ and j↔ are isomorphisms of T -equivariant Chow rings, which gives us the
following:

A↔
T (P(a1, . . . , ad)) A↔

T (Bla1,...,ad !d) A↔
T (P(a1, . . . , ad))

A↔(0)T A↔(!d)T A↔(0)T

j↔ j↔

i↔

f !(1)·g↔ f ↔

i↔

g↔

Now i↔i↔ : A↔
T (0)→ A↔

T (0) is just the multiplication by the top equivariant Chern class of the bundle !d

over 0. Specifically i↔i↔(ω) = ω · x1 · · · xd .
Similarly, j↔ j↔ is the image of the top equivariant Chern class of the bundle Bla1,...,ad !d over

P(a1, . . . , ad). But Bla1,...,ad !d is the total space of OP(a1,...,ad )(↗1), so we have that j↔ j↔ is multiplication
by ↗t , where P(a1, . . . , ad) has the presentation of Example 3.13. Therefore we must have

f ↔i↔(ω) = ω · x1 · · · xd = ω · c"m
top ([!d/T ])(0) = f !(1)ω(↗t) = j↔ f !(ω)

and since t is not a zero divisor in A↔
T (P(a1, . . . , ad)), we must have

f !(1) =
↗c"m

top ([!d/T ])(0)

t
=

c"m
top ([!d/T ])(t) ↗ c"m

top ([!d/T ])(0)

t
,

as needed. ↭

5.4. A formula for the Gysin homomorphism.

Theorem 5.5. Let X, Y, X̃, Ỹ, f be as usual. Let us identify A↔(X̃) ⇐= A↔(X)[t]/P(t) with P(t) =
c"m

top (NX Y )(t). Then we have the following formula for the Gysin homomorphism f ! : A↔(X) → A↔(X̃):

f !(ω) = P(t) ↗ P(0)

t
ω.

Proof. With the presentation of A↔(X̃) above, the map g↔ is the natural inclusion of A↔(X) in A↔(X)[t]/P(t)
and, by Lemma 5.1 we only need to show

f !(1) = P(t) ↗ P(0)

t
.

By Theorem 5.2 we can assume that Y is a weighted affine bundle over X. By the splitting principle in
Theorem 4.9 it is enough to prove the equality for the pull-back X ⇓⇓. Since weighted blow-ups commute
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with base change, the blow-up f ⇓⇓ : Ỹ ⇓⇓ → Y ⇓⇓ sits in the commutative diagram

X̃ ⇓⇓ [P(a1, . . . , an)/T ]

Ỹ ⇓⇓ [Bla1,...,an !n/T ]

X ⇓⇓ BT

Y ⇓⇓ [!n/T ]

ϱ̃

ϱ

which induces the following commutative diagram of Chow groups:

A↔(X̃ ⇓⇓) A↔([P(a1, . . . , an)/T ])

A↔(Ỹ ⇓⇓) A↔([Bla1,...,an !n/T ])

A↔(X ⇓⇓) A↔(BT )

A↔(Y ⇓⇓) A↔([!n/T ])

( f ⇓⇓)!

ϱ̃↔

ϱ↔

Since equivariant Chern classes commute with pull-backs and Y ⇓⇓ is a vector bundle over X ⇓⇓, by
Theorem 5.4 the following holds:

( f ⇓⇓)!(1) = ( f ⇓⇓)!(ϱ↔(1)) = ϱ̃↔
(c"m

top ([!n/T ])(t) ↗ c"m
top (!n/T )(0)

t

)

=
(c"m

top (ϱ̃↔[!n/T ])(t) ↗ c"m
top (ϱ̃↔[!n/T ])(0)

t

)
=

(c"m
top (Y ⇓⇓)(t) ↗ c"m

top (Y ⇓⇓)(0)

t

)
,

which is the desired difference quotient. ↭

6. The Chow ring of a weighted blow-up

In this section we generalize the key sequence in [Fulton 1998, Proposition 6.7(e)] and then use it to
compute a formula for the Chow ring of a weighted blow-up.

Let us recall the notation. Let f : Ỹ → Y be the weighted blow-up of Y at X. Let X̃ be the exceptional
divisor. Then we have the commutative diagram

X̃ Ỹ

X Y

j

g f

i

and the map f ! (computed in 5.5) is

f !(ω) = P(t) ↗ P(0)

t
ω,

P(t) = c"m
top (NX Y )(t) and f ↔ is the Gysin homomorphism defined as in [Vistoli 1989, Definition 3.10].
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6.1. The Grothendieck sequence.

Theorem 6.1 (key sequence). Let X, Y, X̃, Ỹ, f , i , j be as above. Then we have the exact sequence of
Chow groups

A↔(X)
( f !,↗i↔)↗↗↗↗↗→ A↔(X̃) ↘ A↔(Y )

j↔+ f ↔
↗↗↗→ A↔(Ỹ ) → 0.

Further, if we use rational coefficients, then this becomes a split short exact sequence with g↔ left inverse
to ( f !, ↗i↔):

0 → A↔(X, #)
( f !,↗i↔)↗↗↗↗↗→ A↔(X̃ , #) ↘ A↔(Y, #)

j↔+ f ↔
↗↗↗→ A↔(Ỹ , #) → 0.

Proof. To prove exactness let us look at the double complex of higher Chow groups given by localization
sequence as in [Bloch 1986, Theorem 3.1]

· · · A↔(U, 1) A↔(X̃) A↔(Ỹ ) A↔(U ) 0

· · · A↔(U, 1) A↔(X) A↔(Y ) A↔(U ) 0

↽̃1 j↔

↽1 i↔

f ! f ↔

where U ⇐= Ỹ ⊋ X̃ ⇐= Y ⊋ X.
Since both of the complexes are exact, the total complex

· · · A↔(U, 1) ↘ A↔(X) → A↔(X̃) ↘ A↔(Y ) → A↔(Ỹ ) ↘ A↔(U ) → A↔(U ) → 0

is also exact.
Let us prove that the map A↔(X̃)↘ A↔(Y )

j↔+ f ↔
↗↗↗→A↔(Ỹ ) is surjective. Let ω be any cycle in A↔(Ỹ ), ω̄ be

the restriction of ω to A↔(U ), and ε ⇑ A↔(Y ) be any cycle that restricts to ω̄ in A↔(U ). By commutativity,
ω ↗ f ↔(ε) restricts to 0 in A↔(U ) and must be in the image of j↔. So ω is in the image of j↔ + f ↔.
Therefore the complex

· · · A↔(U, 1) ↘ A↔(X) → A↔(X̃) ↘ A↔(Y ) → A↔(Ỹ ) → 0

is still exact.
Moreover, the image of the map A↔(U, 1) ↘ A↔(X)

(↗↽̃1+ f !,↗i↔)↗↗↗↗↗↗↗↗→A↔(X̃) ↘ A↔(Y ) coincides with the
one of A↔(X)

( f !,↗i↔)↗↗↗↗→A↔(X̃)↘A↔(Y ). Indeed, let (x̃, y)= (↗↽̃1(u)+ f !(x), ↗i↔(x)) and let x ⇓ = x+↽1(u).
Then f !(x ⇓) = f !(x) ↗ f !(↽1(u)) = f !(x) ↗ ↽̃1(u) = x̃ and i↔(x ⇓) = i↔(x) ↗ i↔(↽1(u)) = i↔(x) = y.

It follows that ker( j↔ + f ↔) = Im( f !, ↗i↔) and that

A↔(X)
( f !,↗i↔)↗↗↗↗→ A↔(X̃) ↘ A↔(Y )

j↔+ f ↔
↗↗↗→ A↔(Ỹ ) → 0

is exact.
Lastly, if we use rational coefficients then there is a left inverse of ( f !, ↗i↔) given by (ω, ε) ↙→ g↔(ω).

Indeed, let x ⇑ A↔(X). Then g↔( f !(x)) = g↔(↼ · g↔(x)) = g↔(↼ ) · x , with ↼ the difference quotient
(P(t)↗ P(0))/t as in Theorem 5.5. Now ↼ is a degree-(n↗1) polynomial in t , of which only the leading
term a1 · · · antn↗1 will survive the pushforward. We only need to show that g↔(tn↗1) = 1/(a1 · · · an).
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It is enough to verify this when X is a point and X̃ is the weighted projective stack P(a1, . . . , an).
Notice that ai t = xi , where the xi are the fundamental classes of the usual coordinate divisors, so
a1 · · · an↗1tn↗1 = x1 · · · xn↗1, which is the fundamental class of a stacky point isomorphic to Bµan and
so pushes forward to 1/an; thus g↔(tn↗1) = 1/(a1 · · · an). ↭

Example 6.2. To see why the sequence with integer coefficients is not short exact, let us consider X an
elliptic curve in Y = %2. Let Ỹ be the blow-up of Y at X with weight 2. Let P, Q ⇑ X be distinct points
of order 2 and consider the difference [P] ↗ [Q] ⇑ A↔(X). When pushed forward to A↔(Y ) via i↔, all
points are rationally equivalent; hence i↔([P]↗ [Q]) = 0. On the other hand, f ! is multiplication by 2, so
f !([P]) = f !([Q]) = 0. But [P] ↗ [Q] is nonzero, so ( f !, ↗i↔) is not injective.

Remark 6.3. Note that, when looking at the double complex in the proof of Theorem 6.1 and taking the
total complex, one defines a long exact sequence of higher Chow groups. The isomorphisms of higher
Chow groups

ωi : A↔(Ỹ ⊋ X̃ , i) → A↔(Y ⊋ X, i)

allow us to delete A↔(Ỹ ⊋ X̃) and A↔(Y ⊋ X) from the complex via a diagram chase analogous to the
ones in the proof. Then we can obtain the long exact sequence

· · · → A↔(X, i) → A↔(X̃ , i) ↘ A↔(Y, i) → A↔(Ỹ , i) → A↔(X, i ↗ 1) → · · · .

6.2. The Chow ring of a weighted blow-up.

Theorem 6.4 (Chow ring of a weighted blow-up). If Ỹ → Y is a weighted blow-up of Y at a closed
subvariety X, then the Chow ring A↔(Ỹ ) is isomorphic as a group to the quotient

A↔(Ỹ ) ⇐= (A↔(X)[t]) · t ↘ A↔(Y )

(((P(t) ↗ P(0))ω, ↗i↔(ω)), ⇒ω ⇑ A↔(X))
,

with P(t) = c"m
top (NX Y )(t) and [X̃ ] = ↗t .

The multiplicative structure on A↔(Ỹ ) is induced by the multiplicative structures on A↔(X) and A↔(Y )

and by the pull-back map in the following way:

(0, ε) · (t, 0) = (i↔(ε)t, 0).

Equivalently A↔(Ỹ ) can be expressed as a quotient of the fiber product

A↔(Y ) ≃A↔(X) A↔(X)[t]
((i↔ω, P(t)ω), ⇒ω ⇑ A↔(X))

,

with i↔ : A↔(Y ) → A↔(X) on the left and A↔(X)[t] → A↔(X) on the right given by evaluating t at 0.

Proof. The exact sequence in Theorem 6.1 gives us an isomorphism of groups

A↔(Ỹ ) ⇐= A↔(X̃) ↘ A↔(Y )

(( f !(ω), ↗i↔(ω)), ⇒ω ⇑ A↔(X))
.
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If we use Theorem 3.12 to rewrite A↔(X̃) and also add an explicit factor of [X̃ ] to represent how A↔(X̃)

is mapped into A↔(Ỹ ), then as a group we can rewrite A↔(Ỹ ) as

((A↔(X)[t]) · [X̃ ]) ↘ A↔(Y )

((c"m
top (NX Y )(t)[X̃ ], 0), ( f !(ω)[X̃ ], ↗i↔(ω))⇒ω ⇑ A↔(X))

.

Notice that t[X̃ ] = ↗[X̃ ]2 (since t is the class of OX̃ (1)) so that there is an isomorphism between the
ring presented above and the ring presented without the symbol [X̃ ] given by replacing [X̃ ] with ↗t .

Now we need to determine the ring structure. Since much of the ring structure is inherited from that of
A↔(Y ) and A↔(X̃), what remains is just to determine how to multiply elements coming from A↔(Y ) with
those coming from A↔(X̃). Consider the usual commutative square:

X̃ Ỹ

X Y

Intersecting some class ε ⇑ A↔(Y ) with X̃ amounts to pulling it back to A↔(X̃). By commutativity we
have g↔(i↔(ε)) = j↔( f ↔(ε)) and by pushforward we obtain (0, ε)≃ (t, 0) = (i↔(ε)t, 0).

Finally, notice also that c"m
top (NX Y )(t)[X̃ ] is now redundant, as for ω = 1 we have

(t)( f !(ω)(↗t) ↗ i↔(ω)) = (t)
(c"m

top (NX Y )(t) ↗ ctop(NX Y )

t
(↗t) ↗ i↔(1)

)

= t (↗c"m
top (NX Y )(t) + ctop(NX Y ) ↗ i↔(1)) = (↗t) · c"m

top (NX Y )(t).

The last equality comes from t · i↔(1) = g↔(i↔(i↔(1))) = ctop(NX Y ).
Putting everything together, we have that A↔(Ỹ ) is the group

A↔(Ỹ ) ⇐= (A↔(X)[t]) · t ↘ A↔(Y )

(((P(t) ↗ P(0))ω, ↗i↔(ω)), ⇒ω ⇑ A↔(X))
,

with the desired multiplication. ↭

Corollary 6.5. If i↔ : A↔(Y ) → A↔(X) is surjective, then this formula simplifies to resemble a formula of
Keel [1992, Theorem 1, page 571]

A↔(Ỹ ) ⇐= A↔(Y )[t]
(t · ker(i↔), Q(t))

,

where Q(t) = c"m
top (NX Y )(t) ↗ c"m

top (NX Y )(0) + [X ].
Proof. We first prove that we can suppress A↔(X) from the presentation in Theorem 6.4, i.e., that the
elements of the form (ω · t, 0) with ω ⇑ A↔(X) can be described as pairs of the form (0, ε) ·(t, 0) for some
ε ⇑ A↔(Y ). Let ε such that i↔(ε) = ω. By the multiplicative-structure condition of Theorem 6.4 gives

(ω · t, 0) = (i↔(ε) · t, 0) = (t, 0)

as desired.
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In particular, the condition t · (ε ↗ i↔(ε))⇒ε ⇑ A↔(Y ) reduces to t · ker(i↔).
Finally, t · f !(ω)+ i↔(ω) = (c"m

top (NX Y )(t)↗ ctop(NX Y ))ω + i↔(ω) and i↔(ω) = i↔(i↔(ε)) = [X ] ·ε for
some ε ⇑ A↔(Y ). So t · f ! + i↔ is multiplication by (c"m

top (NX Y )(t)↗ctop(NX Y )+[X ]), which is precisely
the Q(t) desired. ↭

6.3. An example: the Chow ring of M1,2. The Chow ring A↔(M1,2) has been computed in [Di Lorenzo
et al. 2024; Inchiostro 2022]. The latter uses the construction of M1,2 as the weighted blow-up of
P(2, 3, 4). We give yet another computation of the ring, using the same blow-up construction.

We start by recalling the following:

Theorem 6.6 [Inchiostro 2022, Theorem 2.6]. There exists an isomorphism M1,2 ⇐= Bl(4,6)
Z P(2, 3, 4),

where Bl(4,6)
Z P(2, 3, 4) is the weighted blow-up of the point Z =[s2 : s3 :0] in P(2, 3, 4) with weights (4, 6).

Given this, A↔(M1,2) becomes a straightforward computation,

Proposition 6.7 [Inchiostro 2022, Theorem 4.12].

A↔(M1,2) ⇐= $[y, t]
(t y, 24(t2 + y2))

.

Proof. First, since i : Z → P(2, 3, 4) is just the inclusion of a point, we have that i is surjective, and since
A↔(P(2, 3, 4)) ⇐= $[y]/(24y3) we know the kernel is (y). By Corollary 6.5 we then have

A↔(M1,2) ⇐= A↔(P(2, 3, 4))[t]
(t y, Q(t))

⇐= $[y, t]
(24y3, t y, Q(t))

,

where Q(t) restricts to c"m
top (NZ Y ) and has constant term [Z ]. As NZ Y splits into trivial line bundles, we

see c"m
top (NZ Y )= (4t)(6t). Writing Z = V (x3)⇔V (x3

1 ↗x2
2), we see [Z ]= (4y)(6y), so Q(t)=24t2+24y2.

Lastly, the term 24y3 is now redundant and we have

A↔(M1,2) ⇐= $[y, t]
(t y, 24(t2 + y2))

. ↭

7. Generalization to quotient stacks

Let us now consider the case of Y = [Y/G], where Y is an algebraic space and G is a linear algebraic
group; hence it is possible to define the G-equivariant Chow ring A↔

G(Y ) as in [Edidin and Graham 1998].
A weighted embedding of X in Y defines a weighted embedding of X in Y via pull-back and, since

the quotient maps are smooth, we have Ỹ ⇐= [Ỹ/G] and X̃ ⇐= [X̃/G].
Theorem 7.1. The theorems in Sections 3, 5, and 6 hold for f : Ỹ → Y weighted blow-up of Y at X .

Proof. Let us prove that A↔(X̃ ) ⇐= A↔(X )[t]/P(t) as in Theorem 3.12; the proof for the other results
will be almost identical.

For any p let U be as in Definition 2.1 of dimension high enough such that Aq(XU )⇐= Aq
G(X)⇐= Aq(X )

with XU := X ≃ U/G, up to degree p.
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Since XU is an algebraic space, by Theorem 3.12

A↔(X̃U ) ⇐= A↔(XU )[t]/PU (t).

Note that PU (t)=c"m
top (NXU YU ) is the pull-back of P(t)=c"m

top (NX Y ), which is a finite-degree polynomial.
In particular for large enough p, PU (t) does not depend on U and it is exactly P(t).

Since X̃U is open inside a vector bundle, we have isomorphisms Aq(X̃U ) ⇐= Aq(X̃ ) up to degree p.
Since Theorem 3.12 holds up to degree p, for any p we have the desired isomorphism of Chow rings. ↭

Appendix: Chern class of weighted blow-up

A1. The goal. Consider a smooth subvariety X of a smooth variety Y, with blow-up Ỹ and exceptional
divisor, as in the following standard diagram:

X̃ Ỹ

X Y

j

g f

i

Fulton [1998, Theorem 15.4] provided a formula for the total Chern class c(Ỹ ) := c(TỸ ) in terms of
the blow-up data. The purpose of this note is to revisit that formula and generalize it to the case of a
weighted blow-up. Since smoothness is important in these considerations, our weighted blow-ups are
always stack-theoretic.

A2. Setup and formula. In our setup, X and Y are still smooth varieties, and X is the support of a
weighted center with weighted normal bundle N of rank d = codim(X ↓ Y ). The weighted normal bundle
is a weighted affine bundle with total Chern class we denote by c(N ) ⇑ A↔(X) and total "m-equivariant
Chern class c"m (N ) = Q(t) ⇑ A↔

"m
(X) = A↔(X)[t], where t is the equivariant parameter corresponding

to the standard character of "m . In particular Q(0) = c(N ).
We recall from Theorem 6.4 in the main text that

A↔(Ỹ ) = (A↔(Y ) ↘ t A↔(X̃))/I,

where
I =

(
i↔(ω) ↘ ↗(Q(t) ↗ Q(0))ω | ω ⇑ A↔(X)

)
.

We denote by
q : A↔(Y ) ↘ t A↔(X)[t] → (A↔(Y ) ↘ t A↔(X̃))/I = A↔(Ỹ )

the natural quotient map.

Theorem A.1. We have
c(Ỹ )

f ↔c(Y )
= q

(
(1 ↗ t)Q(t)

Q(0)

)
.

We note that the right-hand side is of the form q(1 ↘ t · R(t)), with some R(t) ⇑ A↔(X)[[t]].
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The formula was proved for Chow groups with rational coefficients by Anca and Andrei Mustaţa [2012,
Proposition 2.12]. Our proof in essence verifies that their arguments carry over integrally.

A3. Approach. Our approach combines the equivariant methods used in the main text to study and
compute Chow rings of weighted projective stack bundles and weighted blow-ups, combined with ideas in
Aluffi’s paper [2010] and lecture [2011], especially the user-friendly presentation of the formula in Aluffi’s
lecture. While Aluffi provides a proof only for complete intersections, the methods of Theorem 6.4 allow
us to reduce the general case to a situation where Aluffi’s proof applies.

A3.1. The quotient class. One first notes that the class c(Ỹ )/( f ↔c(Y )) appearing on the left-hand side
has properties enabling flexible treatment:

Lemma A.2. The class c(Ỹ )/( f ↔c(Y )) is of the form q(1 ↘ t · R(t)), with some R(t) ⇑ A↔(X)[[t]], and is
functorial for smooth morphisms Y ⇓ → Y and closed embeddings Y ⇓ → Y that meet X transversely.

Proof. To see that it has this form, consider the localization sequence

A↔(X̃) → A↔(Ỹ ) → A↔(Ỹ ⊋ X̃) → 0.

Since c(Ỹ ) and f ↔c(Y ) must pull back to the same class on A↔(Ỹ ⊋ X̃), and their ratio pulls back to 1. In
particular we see that c(Ỹ )/( f ↔c(Y )) ↗ 1 must be in the image of A↔(X̃), which means c(Ỹ )/( f ↔c(Y ))

is of the desired form.
To see functoriality, consider the following diagram:

Ỹ ⇓ Ỹ

Y ⇓ Y

h̃

f ⇓ f

h

We must show
c(Ỹ ⇓)

f ⇓↔c(Y ⇓)
= h̃↔ c(Ỹ )

f ↔c(Y )
,

but this is equivalent to
c(Ỹ ⇓)

h̃↔c(Ỹ )
= f ⇓↔ c(Y ⇓)

h↔c(Y )
.

This is true when h is smooth because the relative tangent bundle of h is compatible with pull-back
under f , and true when h is a closed embedding since the normal bundle of h is compatible with pull-back
under f . ↭

A3.2. Degeneration to the weighted normal bundle. Applying the lemma to the degeneration to the
weighted normal bundle we obtain:

Lemma A.3. It suffices to prove the theorem, namely to compute R(t) and c(Ỹ )/( f ↔c(Y )), when
Y = NX Y.
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Proof. Recall the diagram from Theorem 5.2

X̃ ≃ !1 Z M̃o

X̃ Zt M̃t

X ≃ !1 Mo

X Mt

Zt fM

where Mt ⇐= Y for t ∞= 0 and M0 = NX Y.
By the previous lemma, the expression c(M̃t)/( f ↔c(Mt)) can be pulled back from M̃o along the

embedding corresponding to t and is determined by a class on X̃. However, neither X̃ nor M̃o depend
on t so it is enough to compute things when t = 0, that is, for NX Y. ↭

A3.3. The universal case. By Theorem 4.9, the homomorphism A↔(BGa,n) → A↔(BT ) is injective.
Therefore:

Lemma A.4. It suffices to prove the theorem when X = BT and Y = [V/T ]. Equivalently, it suffices to
prove the theorem T -equivariantly when X is a point, the origin on Y = !d.

Proof. This follows from functoriality and Theorem 4.9 since the maps X → BGa,n and BT → BGa,n

are smooth. ↭

A3.4. The toric case of affine space. Finally, let X be the origin of Y = !d. Let

A↔
T (0) ⇐= A↔

T (!d) ⇐= $[x1, . . . , xd ]
and

A↔
T (P(a1, . . . , ad)) ⇐= A↔

T (Bl(a1,...,ad ) !d) ⇐= $[x1, . . . , xd , t](∏
(xi + ai t)

)

as in Section 5.3.

Proposition A.5. We have cT (Y ) = Q(0) and cT (Ỹ ) = q((1 ↗ t)Q(t)).

Proof. This is essentially the same argument as [Aluffi 2006, Theorem 4.2].
Let D = ⇀ X̃i + X̃ be the sum of all the irreducible toric divisors on Ỹ. By repeating the argument in

[Fulton 1993, Proposition p. 87], we have the exact sequence

0 → ⇁1
Ỹ → ⇁1

Ỹ (log D) →
( d⊕

i=1

OXi

)
↘OX̃ → 0,

and ⇁1
Ỹ (log D) is trivial. By Whitney’s formula,

cT (⇁1
Ỹ ) = 1

cT (OX̃ )cT
(⊕

OX̃i

) = (1 + t)
∏

i

(1 ↗ ai t ↗ xi ).
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By taking the dual we obtain

cT (T Ỹ ) = (1 ↗ t)
∏

i

(1 + ai t + xi ) = Q(t).

The same argument works to prove cT (Y ) = Q(0). ↭
The theorem follows.
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