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Logarithmic resolution via multi-weighted blow-ups

Dan Abramovich and Ming Hao Quek

Abstract. We first introduce and study the notion of multi-weighted blow-ups, which is later used
to systematically construct an explicit yet efficient algorithm for functorial logarithmic resolution in
characteristic zero, in the sense of Hironaka.

Specifically, for a singular, reduced closed subscheme X of a smooth scheme Y over a field of
characteristic zero, we resolve the singularities of X by taking proper transforms X; C Y; along
a sequence of multi-weighted blow-ups Yy — Yy_1 — -+ — Yy = Y which satisfies the following
properties:

(i) The Y; are smooth Artin stacks with simple normal crossing exceptional loci.
(ii) At each step we always blow up the worst singular locus of X;, and witness on X;,; an
immediate improvement in singularities.
(iii) Finally, the singular locus of X is transformed into a simple normal crossing divisor on Xy.
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1. Introduction
Throughout this paper, we work over a field k of characteristic zero.

1.1. Recent techniques for resolution of singularities in characteristic zero

We revisit the celebrated theorem of Hironaka, see [Hir64], that one can resolve the singularities of a
reduced, closed, singular subscheme X of a smooth scheme Y over k, in a way that is functorial with
respect to smooth morphisms of such pairs (X C Y). Over the years, the proof of this theorem has seen
simplifications, for example by Bierstone-Milman, see [BM97], by Encinas-Villamayor, see [EV03], and by
Wtodarczyk, see [Wlo05]. Most recently, it was shown independently by Abramovich-Temkin-Wlodarczyk,
see [ATW24], and by McQuillan, see [McQ20], that one can do this by repeatedly blowing up the “worst
singular locus”, although one has to instead work with stack-theoretic weighted blow-ups and admit smooth
Deligne-Mumford stacks as ambient spaces.

In addition, one typically requires, for the sake of applications, that the singular locus of X is transformed
under the resolution into a simple normal crossing (snc) divisor. This was a feature of Hironaka’s theorem in
[Hir64], although it was only recently in a different paper of Abramovich-Temkin-Wtodarczyk [ATW20a]
that logarithmic geometry was first accessed as a tool to account for this requirement, and one does so by
encoding exceptional divisors as logarithmic structures.

We remark, however, that the resolution algorithm in [ATW24] does not address the aforementioned
requirement. It is thus natural to ask for an amalgamation of the two aforementioned techniques, as depicted
below:

logarithmic geometry in
................................................... ?
the service of resolution ’
[ATWQOa]é\
resolution in the sense of stack-theoretic
Hironaka [Hir64], [ATW24, McQ20] weighted blow-ups
—’\/\/\/\/\/\/\/\/\/\/\/\/\/\/}
Bierstone-Milman [BM97], in the service
Encinas-Villamayor [EV03] of resolution
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This goal was recently realized by Quek in [Que20], where weighted blow-ups in [ATW24] are replaced
by their logarithmic counterpart - weighted toroidal blow-ups. However, even if one takes a pair (X C Y)
from before as input for the algorithm in [Que20], one is inevitably led to admit foroidal Deligne-Mumford
stacks as ambient spaces; i.e. these are logarithmically smooth over k but not necessarily smooth over k. As
a consequence, one cannot expect to resolve the singularities of X solely via weighted toroidal blow-ups,
and the best one can hope for at the end is toroidal singularities, where the singular locus of X is now
transformed into a divisor with foroidal support. Nonetheless, this is not a concern since one can then apply
resolution of toroidal singularities; see [KKM*73, Theorem 11*].

In this paper, we propose a different candidate for | ? | above: namely, we use a construction of Satriano
in [Satl3, Section 3| to refine the weighted toroidal blow-ups in [Que20] to multi-weighted blow-ups. This
is carried out in Section 3, where certain multi-weighted blow-ups are realized as canonical Artin stacks
over weighted toroidal blow-ups. The reader can also find, in Section 2, an account of local aspects of
multi-weighted blow-ups. The key advantage of using multi-weighted blow-ups over weighted toroidal
blow-ups is that we remain in the ideal realm of smooth ambient spaces, and hence we can do without
resolution of toroidal singularities at the end. However, the trade-off is that one has to work more broadly
with Artin stacks as ambient spaces.

111. Ambient spaces.— The ambient spaces in the resolution algorithm of this paper are smooth, toroidal
Artin stacks over k.

For the definition of a toroidal k-scheme (resp. more generally, a toroidal Artin stack over k), we refer the
reader to [Que20, Appendix B] (resp. [ATW20b, Section 3.3]) and the references therein. In brief, “toroidal”
is a synonym for “logarithmically regular” or, equivalently in characteristic zero, “logarithmically smooth
over k”.

With the exception of Section 4.1, this paper mostly deals with toroidal Artin stacks over k that are also
smooth - these are simply pairs of the form (Y, E), where Y is a smooth Artin stack over k and E C Y is
either () or a normal crossings (nc) divisor. Indeed, for such a pair (Y,E), set U:=Y \E, j: U< Y, and
the logarithmic structure on Y to be that dictated by E, i.e. ay: (Ay := j.(O];) N Oy) < Oy. Then the
logarithmic Artin stack (Y, .#y) is logarithmically smooth over k. If E is a snc divisor, we say (Y,.#Zy) or
(Y, E) is smooth, strict toroidal V)

Any smooth, toroidal Artin stack Y over kk admits a smooth cover by a smooth k-scheme which, when
endowed by the logarithmic structure given by the pull-back of .#y, is a smooth, strict toroidal k-scheme.
It is important for the reader to be aware that, since the discussions in this paper turn out to be local in
the strict smooth topology, it suffices to study the case where Y is a smooth, strict toroidal k-scheme; see
Remark 4.12.

1.2. Main objectives

Consider a reduced, closed substack X in a smooth, toroidal Artin stack Y over k. We always regard X
as a logarithmic Artin stack over k by pulling the logarithmic structure of Y back to X. Such pairs (X C Y)
form the objects of a category, where a morphism between pairs (X CY) — (X C Y) is a Cartesian square of
stacks

(Here “strict” refers to “strict normal crossings divisor”, a synonym for “snc divisor”.
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for a strict, smooth, and surjective morphism f: Y — Y.?) We refer to such a morphism as a strict, smooth,
surjective morphism of pairs. At times we might drop surjectivity as a condition, in which case we say f is a
strict, smooth morphism of pairs.

For such a pair X C Y, let X!og=sm denote the toroidal (i.e. logarithmically smooth) locus of X, and we
typically require X to be generically toroidal; i.e. X'°85™ is dense in X. Since Y is smooth and toroidal,
X108=sm s contained in the smooth locus X*™ of X. The primary goal of this paper is the following.

Theorem A (Logarithmic embedded resolution). Given a reduced, generically toroidal, closed substack X of
a smooth, toroidal Artin stack Y over k, there exists a canonical sequence of multi-weighted blow-ups I'1: Yy
KL Yn_1 KAE NN Yo =Y, together with proper transforms X; C Y; of X, such that:
(i) Xn is a smooth, toroidal Artin stack over &k, and so is each Y;;
(i) TT is an isomorphism over X1°85™ C X ;
(i) TT-1(X \ X198-5M) 45 g snc divisor on Xy ;
(iv) each 7t; is birational, surjective, universally closed, and factors as Y; - Y; — Y;_1, whereY; - Y; isa
good moduli space of Y; relative to Y;_1, Y; is normal, and Y; — Y;_y is a schematic blow-up (whence
birational and projective).

This procedure (X C Y) — (XN C Yy) is functorial with respect to strict, smooth morphisms of such pairs X C'Y
(whether or not surjective). Moreover, if Y is strict toroidal, then so is Xy.

If Y is smooth with the trivial logarithmic structure, then X!°875™ = X5™ 5o in particular we recover
logarithmic embedded resolution in the classical sense. We remark too that the logarithmic structure on
each Y; is defined by combining “the new exceptional divisors on Y;” with the logarithmic structure on Y;_;.

In Section 4.3 we will prove Theorem A, as well as the other theorems in this introduction. As anticipated
in Section 1.1, the theorems in this introduction are deduced from the analogous theorems in [Que20] because
the multi-weighted blow-ups in this paper are obtainable from the weighted toroidal blow-ups in [Que20] via
Satriano’s construction in [Satl3, Section 3]. For example, Theorems A and B are deduced® in this way from
[Que20, Theorem L.1].

Concretely, one obtains Theorem A by taking at the (i + 1) step the multi-weighted blow-up of Y; along
the “worst singular locus of X;”. We give a formal statement of this procedure in Theorem B below. To give
the reader a sense of what the “worst singular locus of X;” is, we recall the following notion from [Que20,
Section 6.1].

For a point p € |Y|, one can associate an invariant of X C Y at p (see Section 4.1.10), denoted by
inv,(X C Y), which is, simply put, a non-decreasing finite sequence of non-negative rational numbers,
whose last entry could be co. We can well-order the set of all such invariants of pairs at points in Y by the
lexicographic order <, but with a caveat: our lexicographic order considers the truncation (from the end) of
a sequence to be strictly larger than the sequence itself (see Section 4.1.9).

Let I be the underlying ideal of X C Y. To give the reader a sense of our invariant, let us mention some
of its properties:

(a) If X =Y, then inv,(X C Y) = () for every p €[Y].

(a’) Otherwise, for every p € |Y], inv,(X C Y) = (0) if and only if p € |X|. If p € [X], inv,(X CY) is
greater than or equal to the sequence (1,...,1) of length equal to codim,(X C Y (:= height of I),
and equality holds if and only if X is smooth and toroidal at p; see Remark 4.2(iv).

(b) The first entry of inv,(X C Y) is the logarithmic order of I at p. In particular, it is either a

non-negative integer or oo.

(ZWe note that this Cartesian square of stacks is also Cartesian in the category of logarithmic stacks since f is strict.

(®)More precisely, in this way, one can only deduce Theorems A and B under the additional hypothesis that X C Y is of pure
codimension. We supply an additional argument in Section 4.3 that does away with that hypothesis. The same argument also works
to prove [Que20, Theorem 1.1] without that hypothesis.
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(c) inv is upper semi-continuous on Y; see Remark 4.2(ii).
(d) inv is functorial for logarithmically smooth morphisms of pairs X C Y; see Remark 4.2(iii).

We set maxinv(X C Y) := maxyex|inv,(X C Y), which is functorial with respect to logarithmically
smooth, surjective morphisms of pairs X C Y; see Remark 4.2(iii). Then property (a’) above suggests that the
“worst singular locus of X” can be loosely interpreted as the closed substack of X consisting of points p € |X|
such that inv, (X C Y) = maxinv(X C Y). For a precise definition of this notion of “worst singular locus of
X”, see Section 4.1.15, as well as the proof of Theorem A.

We can now state our next theorem, which when suitably iterated, gives Theorem A.

Theorem B. Given a reduced, logarithmically singular, closed substack X of a smooth, toroidal Artin stack Y over
k, there exists a canonical multi-weighted blow-up 70: Y' — Y, with proper transform X' C Y’ of X, such that:

(i) Y’ is a smooth, toroidal Artin stack over k;

(ii) maxinv(X’ C Y’) < maxinv(X C Y);

(ili) 7 is an isomorphism away from the closed substack of X consisting of points p € |X| such that inv,(X C
Y) = maxinv(X C Y);

(iv) 7 is birational, surjective, universally closed, and factors as Y — Y — Y, where Y — Y’ is a good
moduli space relative to Y, Y’ is normal, and Y' — Y is a schematic blow-up (whence birational and
projective).

This procedure Fer: (X CY) > (X' CY’) is functorial with respect to strict, smooth, surjective morphisms of
such pairs X C Y.

One should interpret part (iii) as saying that 7t is a multi-weighted blow-up along the “worst singular locus
of X” and part (ii) as saying that there is an immediate improvement of singularities after the multi-weighted
blow-up. As mentioned before, we emphasize that the logarithmic structure on Y’ is defined by combining
“the new exceptional divisors on Y’” with the logarithmic structure on Y.

In addition, these multi-weighted blow-ups in our algorithm are independent of further embeddings, in
the following sense.

Theorem C (Re-embedding principle). Let X be reduced, logarithmically singular, closed substack of a smooth,
toroidal Artin stack Y over k. Let Y, = Y x A', where A' := Spec(l[x]) is given the trivial logarithmic
structure. We embed X CY = V(xg) C Y. Then:

(i) For every p € |X|, we haveinv,(X C Y1) = (1,inv,(X CY)).
(ii) Let Fier(X CY)=1(X' CY') and P (X C Yq) =1 (X[ CY]) as in Theorem B. Then Y’ is canonically
identified with the proper transform of Y C Yy in Y|, under which X’ = X.

We remark that part (ii) can be checked directly, albeit in a tedious fashion. We instead deduce part (ii)
from [Que20, Lemma 1.3(ii)] - the analogous statement for the weighted toroidal blow-ups in [Que20].

Lastly, Theorem C enables us to prove Theorem D below by embedding X, locally in the smooth topology,
in a smooth k-scheme Y (with the trivial logarithmic structure) in pure codimension, before applying
Theorem A and patching these local resolutions.

Theorem D (Logarithmic resolution). Given a reduced, pure-dimensional Artin stack X of finite type over k,
there exists a birational, surjective, and universally closed morphism 11: X' — X such that:

(i) X’ is a smooth Artin stack over k;
(ii) IT is an isomorphism over the smooth locus X°™ of X;
(iii) TT-H(X \ X°™) is a snc divisor on X';
iv) X’ admits a good moduli space X’ relative to X, and X’ — X is birational and projective.
g P proj

This procedure F1,.: X v X' is functorial with respect to smooth morphisms.
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As a final note, while the steps in Theorem A are more explicit and efficient than previous resolution
algorithms, we emphasize that if X in Theorem D is a scheme, then X’ is usually not a scheme, and its good
moduli space relative to X is not necessarily smooth over k.

Nevertheless, we expect Theorem A to suffice for many computations in algebraic geometry that necessitate
logarithmic resolution. For example, a motivic change of variables formula for Artin stacks, that is applicable
to the context of Theorem D, was very recently developed by Satriano-Usatine; see [SU21J.

If one still insists on returning to the world of schemes, one can apply “canonical reduction of stabilizers”
due to Edidin-Rydh, see [ER21], followed by “destackification” due to Bergh-Rydh, see [BR19], to the output
X’ in Theorem D and its snc divisor TT7}(X \ X5™). In this way one recovers [Hir64, Main Theorem I. For

concrete statements, we refer the reader to Section 5.2.
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2. Multi-weighted blow-ups: Local aspects

2.1. Multi-weighted blow-ups on affine spaces
We first review the notion of fantastacks in [GS15]. In the process, we will also fix some notation.
Definition 2.1 (Fantastacks). Given a lattice N with dual lattice NV = Homyz(N,Z), let ¥ be a fan in N

and f: Z* — N be a homomorphism with finite cokernel, satisfying the following conditions:

(a) Every ray (i.e. 1-dimensional cone) of X contains some S(e;).
(b) Every f(e;) lies in the support of ¥.

For a cone 0 € X, set 0 to be the cone in Z* spanned by those e; such that f(e;) € 0. Let ¥ denote the fan
in Z* generated by {0: 0 € X}. The fantastack associated to (X, f) is

T,
tgz):’/j = [X’z\/ Gﬁ]’ where G/3 = Ker(Gﬁl = TZK —ﬁ> TN)

In the above expression:

(i) X5 is the toric variety associated to the fan Y on ZF;
(i) Ty = Homgrp_sch(N",Gy,) (resp. Tzx) is the torus of N (resp. Z*);
(iif) Tp is the homomorphism of tori induced by f;

(iv) Gg acts on X5 as a subgroup of Gy, = Tzx.
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Remark 2.2. By [CLSI, Section 5.1], we have

X§:AK\V(]):):Spec(]k[xl,...,x,(])\V(]z): U Us,
o€EX
maximal cone
where [y = (x(, :=[p(e;)ec Xi: 0 € ¥ maximal cone) is the irrelevant ideal and U, := Spec(k[xy,...,x][x5'])
for each maximal cone o € . Thus, Fy g admits a covering by principal open substacks D, (o) := [U, / Gg],
as o varies over all maximal cones of 0. We call D, (o) the x, -chart of 5?2,/3 and sometimes denote it by
D, (x,).

Note that (f, [3) is a stacky fan, see [GS15, Definition 2.4], and Fy 4 is the toric stack associated to (f, ﬁ)
However, more is true for fantastacks.

Remark 2.3. By definition, 3 is a smooth fan, and the torus of Fy,p is Gj,/Gg, which is isomorphic to Ty
via Tﬁ. In other words, fantastacks are smooth toric Artin stacks with trivial generic stabilizer.

Remark 2.4. By definition, the morphism f is compatible with the fans Y and ¥, and therefore induces
a toric morphism X5 — Xy, which descends to the good moduli space morphism Fy 3 — Xy; see [GS15,
Example 6.24].

A multi-weighted blow-up on an affine space is usually carried out along the vanishing locus of a
monomial ideal. It is a fantastack ﬁz’ﬁ, where (X, ) is associated to the monomial ideal and f: Z* — N is
in particular surjective, with kernel having a general simple description. Before giving the definition, we fix
the following conventions for this paper.

2.1.1. Conventions.— Let N = Z" with standard basis vectors e;. Let M = N be the dual lattice, with
standard dual basis vectors €. For any fan ¥ on N, let £(1) denote the rays in ¥, and for a ray p of X, let
u, = (up,;)i_; denote the first lattice point on p.

Let 0gq be the cone on N = Z" spanned by the standard basis vectors e;, which generates the standard
fan Y4 in N, and whose associated affine toric variety is the affine space A" := Spec(k[xy,...,x,]). In
addition, for a set S, we usually write AS for Spec(k[x,: s € S]) or Spec(k[x.: s € S]).

In this paper, a denotes a monomial ideal of k[xy,...,x,]. Associated to a are the following notions:

(i) the submonoid I = {ae€ M: x? :=x]"---x;" € a} of M,
(ii) the Newton polyhedron P, of a given by the convex hull of I; in RYj C M ®7 R =: M,
(iii) and the normal fan X  of P;, which is a subdivision of X4 in N, and hence induces a toric, proper,
birational morphism Xy — A”".

For every integer 0 < k < n, there is an inclusion-reversing correspondence between k-dimensional cones ¢
of ¥, and (n — k)-dimensional faces T of P,. Therefore, we introduce the following notation:

(a) H, is the facet of P; corresponding to a ray p € X;(1). We also let N,(a) be the natural number such
that the affine span of H,, has equation Y up,; - €= Ny(a).
(b) vy = (Vg,i)i_; is the vertex of P, corresponding to a maximal cone o of X,.

Finally, we identify the subset Y44(1) C X;(1) with [1,n]:={1,...,n} and denote its complement by
E(a) :=X3(1)\ Ega(1) = 24 (1) N [1, n].

We call the rays in [1,n] the standard rays and call the rays in E(a) the exceptional rays. We also set
E*(a):={p € Z4(1): Ny(a)> 0} D E(a).
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Definition 2.5 (Multi-weighted blow-ups on affine spaces). Let b = (b)cg(a) € INEEJ). Then b yields a

surjective homomorphism f: 7% 5 N = 7" as follows:

UL if p=ieXgq(l)=[1,n]
P b, u, if p € E(a).

Therefore, the data (X, f) yields the fantastack %1, A" := Fy_3, as described in Definition 2.1. Moreover,
the homomorphism f§ induces, as explained in Remark 2.3 and Section 2.1.1(iii), a toric morphism

1 ; &ood moduli space "
. s
Tab: PBlyp A Xy, — A"

We call this composition the multi-weighted blow-up of A" along a and b. When b is the unit vector

(1,1,...,1) in INESJ), we instead write the above expression as 7t;: #l; A" — A". This should not be
confused with the schematic blow-up of A" along a, which we denote by Bl; A" in this paper. (In fact, the

normalization of Bl,; A" is precisely Xy ; see Remark 3.11.)

One anticipates that 1, A" is the “most canonical” multi-weighted blow-up of A" associated to a. We
will make this canonicity precise in Section 3.1, where, more generally, we also define, with the same goal of
canonicity in mind, the multi-weighted blow-up %1, A" of A" along a monomial Rees algebra a,.

2.1.2. Alternative notation.— To uniformize forthcoming notation, we also set b; := 1 for every i € [1,n] C

Y4(1), and we interpret b as a vector (b,)pex, (1) in INfa(l)

for p e £,(1).

. Then B in Definition 2.5 is simply e, > b, -u,

Remark 2.6. The multi-weighted blow-up 77, is birational, as explained in Remark 2.3. By [Alpl3,
Theorem 4.16], the good moduli space morphism %1, A" — Xy_ is universally closed and surjective.
Therefore, so is 77 p.

Remark 2.7. It is important to highlight that we have fixed coordinates x,...,x, on A" in which a is

monomial; i.e. we fixed a toroidal Zariski logarithmic structure, with chart IN" RARGIN k[x1,...,x,], in which
a is a monomial ideal in the general sense of Section 4.1.6 below.

Then the Newton polyhedron P, is well defined under the lens of logarithmic geometry; i.e. P; is
independent, up to symmetry, of any change in local coordinates at 0 € A" which respects the aforementioned
toroidal logarithmic structure. Explicitly, any such coordinate change corresponds to a monoid automorphism
of N" @ 0. o, which must map each (e;, 1) to (e, u) for some j € [1,n] and p € O, .

Remark 2.8. Two monomial ideals can possess the same normal fan, and thus yield the same multi-weighted
blow-up. For example:

(i) Py = P, where a = {x*: a € P,} is the integral closure of a.
(i) If fi,..., f, are monomials generating a, then for any ¢ € N, the integral closures of a’ and
( fle,..., ££) coincide, so by (i), a’ and ( flg,..., £f) have the same Newton polyhedra.
(iii) For any a € N", ¥,a.; = X,;. However, while the multi-weighted blow-up along x? - a is the same as
that along a, there is a subtle difference in their “exceptional” divisors (see Remark 2.16).
(iv) Lastly, as € varies, although the Newton polyhedron of at varies, the normal fan of al remains the
same, and so does the multi-weighted blow-up of a’.

2.13. Explicating multi-weighted blow-ups.— With the notation in Definition 2.5, the homomorphism
B: 2% — N = Z" induced by b fits into the short exact sequence

R
LN AR IS UL SN

0 — ZE@ 7" —0,
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where k := #E(a) and B = (B; ;)1<i<n, peB(a) is the matrix whose columns are b, - u, for each p € E(a).
Unravelling the definitions, let us highlight three details:

(i) We have the following commutative diagram:

open

Xz = ADNV(y) —— A% s A",

stack-theoretic quotienti
Bl A" = [xf / GE{“)]

where we follow the convention in Section 2.1.1 that
(2.) AT = Spec(]k[xi,...,x;] [x;): pEe E(a)])

so that the above morphism A”(1) — A" of affine spaces corresponds to the homomorphism
Kk[xi,...,x,] = Kk[x],...,x;][x: p € E(a)] defined by

B; b,u
s T | T

peE(a) p€E(a)
for every 1 <i < n. For p € E(a), the corresponding coordinate x|, of AE@ will be written as Up
during examples (e.g. Sections 2.2 and 5.1).
ii e action of G;; " on X5 C A =8pec(k|x;,...,x, ||x,: p € E(a)|) can be interpreted from the
Th £Gn” on X5 c A% =Spec(k[x],...,x}][x): p € E be interpreted from th

_Ik
(a) For every 1 <i <mn, x] has 7 _grading (B i,0)peE(a) = (bp " Up i) peE(a)-
(b) For every p € E(a), x, has 7 _grading —e, = (=0p,5)5eE(a)-

matrix o = [ B ] as follows:

(iii) By Definition 2.1(a), %1, A" admits an open cover by x/ -charts D, (o) = D,(x,) := [U / G ]

where ¢ varies over all maximal cones ¢ of ¥ ;. In this setting, we have

Uy = Spec(k[x},...,x;][x): p € E@)][(x))7']),

= |1 % H L]
PEL (1) peTyl PEXa(1)
pZo ez u,v,>N,(a)

where

(see Section 2.1.1(a), (b)).

Remark 2.9. Slightly more generally, one can also consider generalized multi-weighted blow-ups %1, 5 A"
of A" along a and b= (bp)pex, (1) € INE(“)(”. Such a b yields a homomorphism ﬁ: 7%\ 5 N = 7" with
finite cokernel, which sends e, to b, -u,, for every p € £4(1). The fantastack 7y B associated to (Za,ﬁ) is

then denoted by %1, 5 A". L1kew1se, there is a toric morphism 7, : Al 5 A" > Xy — A", which is the
generalized multi- welghted blow-up morphism.

In the same way as in Section 2.1.3, one can partially explicate generalized multi-weighted blow-ups: we
have

Bl g A" =[(A%D\V()5,))/ D(Coker BY))] = A,
where 7§ is induced by k[xy,...,x,] = k[x],...,x [x peE ] which is defined by

|| 0,1
X —> F’(
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and where D(Coker(ﬁv)) acts via the morphism of diagonalizable groups obtained from (Z>(1))V —
Coker(ﬁv) by applying D(—) := Homgp sch(— Gy). This demonstrates that generalized multi-weighted
blow-ups can be seen as an amalgamation of the notion of multi-weighted blow-ups in Definition 2.5 and the
notion of root stacks (see [Cad07, Definition 2.2.1] or [AGV08, Appendix B| or [QR22, Example 2.2.4].)

Finally, %1, A" likewise admits an open cover by x,-charts D, (0) = [U(I /D (Coker(ﬁv))], where U,
has the same description in Section 2.1.3.

2.2. Two examples

We illustrate Section 2.1.3 via two examples. The first is classical and is a special case of multi-weighted
blow-ups.

Example 2.10 (Weighted blow-ups). For wy,...,w, € Ny, set € :=lecm(wy,...,w,). The (stack-theoretic)

weighted blow-up of A" = Spec(k[xy, ..., x,]) along the center (x}/wl,...,x,lq/w"), in the sense of [ATW24], is

C/w, l/w,
1

simply the multi-weighted blow-up 1,1, A", where a = (x;" ',...,x, ")and b =gcd(wy,...,w,) €IN,g =

IN>E,J) . We demonstrate this via an explicit example, which supplies no less information than the general

case.
Consider a = (xz,y3, 23) C k[x,y,z] and b = gcd(2,3,3) = 1. We draw the Newton polyhedron P;, which
has four facets:

€

where u = (3,2,2) is the normal vector to the shaded facet of P, above. The vertices (2,0,0), (0,3,0),
and (0,0,3) of P; correspond, respectively, to the maximal cones of ¥, represented above by brown-,
magenta-, and cyan-coloured triangles, which also correspond, respectively, to the x’-, y’-, and z’-charts
on Bl A3 = [X'i1 / G,,], where X5 = A*N Vs, = A*\V(x,v’,2’). As explained in Section 2.1.3, the
morphism 77, : %;la A3 — A3 can be read off the following matrix:

10 0]3 x=x"u?,
[15 u|=]0 1 0]2 > v =v'u’,
0 0 1|2 7,2

z=zu-,
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and the G,,-action on X5 can be read off from the matrix
a

3 x’ has Z-weight 3,
[ u ] 2 v’ has Z-weight 2,
= N>
2 z’ has Z-weight 2,
u has Z-weight —1.

This is precisely the description of the (stack-theoretic) weighted blow-up of A3 along (x'/3,p1/2,z1/2) in
[ATW24].

Example 2.11 (A new example). The Newton polyhedron P, of the monomial ideal a = (x?,v?%z,2%) C
k[x,y,z| has five facets:

We sketch a cross-section of the normal fan ¥ ;:

€

where u; =(3,2,2) and u, = (1,0, 2) are the normal vectors to the shaded facets of P, above. The vertices
(2,0,0), (0,2,1), and (0,0,3) of P, correspond to the maximal cones of ¥, represented above by the
brown-, magenta-, and cyan-coloured regions, and these also correspond to the x’-, y’z’-, and z’u; -charts
on Bl A3 = [X’)fa / G2,], respectively, where X5 = A>\V(Jy,) = A>\V(x',y'Z,z'u;). The morphism

7y Bl A3 — A3 can be determined from the following matrix:

7,3

10 0[3 1 x = x'uuy,
[ w w]=[0 1 02 0] y=y'ul,
00 112 2 12,2

Z=2ZUjUy,
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and the G2,-action on X5 can be determined from the matrix
a

3 1 x" has Z?-weight (3,1),
u up 2 0 v has Z?-weight (2,0),
-1 0f=f2 2 > z’ has Z?-weight (2,2),
0 -1 |-1 0 1 has Z2-weight (~1,0),
0 - u, has Z?*-weight (0,-1).

2.3. Exceptional divisors and transforms

The presentation %1, A" = [Xf / qu(a)] induces an isomorphism

a)

~ E(
Pic(#l,p A") = Pic® (X5 ),

where the right-hand side denotes the G]:;,(a)—equivariant Picard group of X5 . In particular, for each
d € ZFW | there are tautological line bundles O'(d) := O, nn(d) on Bl;, A" which correspond to the

trivial line bundle k. on X5 endowed with the Gl,i(a)-linearization given by the “d-shift”; i.e.

7y 0(d) = O, (d):= (k[x;,...,xm: pe E(a)])(d)

Xfal
where the ZE@ -grading of x; and x"o on the right-hand side can be obtained by subtracting d from the

respective ZE(3)-gradings in Section 2.1.3(ii).

2.3.1. Exceptional divisors on a multi-weighted blow-up.— For every p € E(a), recall that x, has
ZE3) weight —e, (see Section 2.1.3(iib)), and hence there is an injection

O(e,) — 0(0)=0

induced by multiplication by x;,, which embeds (e,) as an ideal sheaf of & cutting out the exceptional
divisor
Ep:=V(x)) C Blyp A",
This justifies calling the rays p € E(a) exceptional rays in X, (see Section 2.1.1).
Remark 2.12. For i =1,2, let b; = (b; ) pep(a) € INEE]J) be such that for each p € E(a),
by =¢cp by, for some ¢, € Nso.

By the description in Section 2.1.3, observe that %1, A" can be obtained from %1, A" by iteratively
taking cpth root stacks along each exceptional divisor E, = V(x;,) of Zl,p, A".

The remainder of this section is devoted to the definition of transforms of ideals under a multi-weighted
blow-up. We first make the following definition, which is part of the subsequent proposition.

Definition 2.13. The monomial saturation of an ideal I C k[xy,...,x,] is the monomial ideal a; generated by
monomials appearing (with non-zero coefficient) in the elements of I. We then define the Newton polyhedron
Pr of I to simply be the Newton polyhedron of aj.

For u = (u;)?., € N" and m € N, we say that P; is bounded below by the hyperplane } [, u;-e; = m if
for every g =) ,cnn Ca - X* €I, we have u-a > m whenever c, = 0.

Proposition 2.14. Set 0 := O pn. With the notation of Equation (2.1), we have the following statements:
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(i) Let I be an ideal of k[xy,...,x,]. For(n,)pex (1) € IN*s(1), the ideal sheaf underlying the total transform
V(I) Xpn,, Plap A" satisfies the inclusion

n;j)[.ﬁc ]_[ (x;,)bp'np

peXa(1)
if and only if for every p € X;(1), the Newton polyhedron P; of I is bounded below by the hyperplane
Z?:] up,i ‘€ = ﬂp.
(ii) Moreover, the ideal sheaf underlying the total transform V(a) Xpn z, Blap A" C Blyp A" satisfies the
equality

(2.2) 7_(;%:’& 0= ]—[ (xé)bp.Nr,(a);
peE*(a)

see Section 2.1.1 for the definitions of E*(a), N;(a), and N, (a).
Before giving the proof, let us illustrate it by revisiting Example 2.11.

Example 2.15. Let a = (x?,y%z,z%), and consider the multi-weighted blow-up 7t,: %1, A3 — A3. Using

the equations in Example 2.11, one computes the following:

(i) Let I = (x> +v%+2%) C k[x,7,2]. Its total transform 7c;'1 - Oz, is (x’zuléug +.y’2uil + z’zufug),

which is contained in (uil) but is contained neither in (ui) for i > 5, nor in (ué) for j > 1. This
agrees with Proposition 2.14(i): the Newton polyhedron of I has vertices v; = (2,0,0), v, = (0, 2,0),
and v3 = (0,0, 2), and we have min;<;<3u; - v; =4 and min <;<3u,-v; = 0.

(ii) The total transform 7;la- &, 21, A3 of a equals

6.2

( 2,62 276,273 6 6):(uluz)-(x'z,y’2z’,z’3).

X ujuy, vz uiuy, 2 ujuy

The ideal (x'?,"22’,2’) is the unit ideal on each chart of %1, A3, so in fact, 7 a- Op, s = (ubul).

This agrees with Proposition 2.14(ii): note that N (a) =0 for 1 <i <3, Ny (a) = 6, and Ny, (a) = 2.

Proof of Proposition 2.74. 1t suffices to compute on the smooth cover X5 of %1,y A". By replacing I in (i) by
its monomial saturation, we may assume I is monomial. Recall from Section 2.1.3(i) that for every monomial
x? € I, we have

2.3) =[] ] ()7 mnghl-e.
i=1 peE(a)
Then part (i) follows from (2.3) since it says that for every p € E(a) (resp. i € [1,n]) and a € P}, we have
u,-a >, (resp. a; = n;) if and only if (x(’))bf"”P divides x? (resp. (x/)" divides x?).
The forward inclusion in (ii) follows from (i). For the reverse inclusion, it suffices to compute locally on the
open charts U, C XE] as o varies over all maximal cones of ¥ ;. Therefore, fix a maximal cone o of ¥, and,

as in Section 2.L1(b), let v, = (v, ;)i_; be the corresponding vertex of P,. Setting a = v,, in (2.3), we have

Vo \Vo,i ’ bp'(up'vn) . —1
X _rl(xi) . H (xp) in T‘a,ba'ﬁ-

i=1 p€E(a)
Recalling that x(’) is invertible on U, for any p € £,(1) such that p ¢ o, we obtain

n;{,mﬁ’D (x7) = ]_[ (x;)vg'i~ ]—[ (xé)b"'(uplva) on Uy,.

i€[1,n] p€eE(a)
]RZO‘QZ'CU pco

To complete the proof of (ii), it remains to note the following. For each p € E(a) with p C 0, we have v, € H,
which implies u, - v, = Ny (a). Likewise, if p =i € [1,n] with Ry( - e; C 0, we have v, ; = N;(a). O
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Remark 2.16. In Proposition 2.14(ii), note that for every i € [1,n], N;(a) > 0 if and only if a C (x;),
i.e. V(a) D V(x;). Analogously to how the schematic blow-up of A" along a divisor D does nothing
except declare D to be “exceptional”, the multi-weighted blow-up 7,y similarly declares the divisor
V(x}) C Pl A" to be “exceptional” for every i € [1,n] with a C (x;). In this sense, Proposition 2.14(ii)
expresses the total transform as a union of “exceptional” divisors V(x;,) for p € E*(a) (see Section 2.L1), with
multiplicities.

Next, we explicate two classical transforms for multi-weighted blow-ups.

Definition 2.17 (Proper transform). Set & := Oy an. The proper (or strict) transform of an ideal I C
k[xq,...,x,] under the multi-weighted blow-up 77,y : %l p A" — A" is

NN SV ET

peE*(a) (np)eNE“f(a) peE*(a)

a7 5.
"a,bl -0 =

Equivalently, by Proposition 2.14(ii), the proper transform of the closed subscheme V(I) C A" under 7.y, is
the schematic closure of V(n;il -O)\ V(n;ia -0)in Bl p A"

Definition 2.18 (Weak transform). Set & := Oy, an. The weak (or birational, or controlled) transform of an
ideal I C k[xy,...,x,] under the multi-weighted blow-up 7,y : %l A" — A" is

(o)1= (st -0) [ ()™
pEE*(a)

where for each p € E¥(a), Ny(I) is the largest natural number 7, such that:
i) the fractional ideal (7711 - &)-(x/) %" is an ideal on %I A",
ab P a,b
(ii) or, equivalently by Proposition 2.14(i), the Newton polyhedron P; of I is bounded below by the
hyperplane )\ u,;-e; = n,.

Remark 2.19. By definition, we always have the inclusion

-1 o
(ap), IC na’})l -0

with equality if I is a principal ideal. Moreover, if I is radical, so is the proper transform 7'(;{’[ - 0. In other
words, if V(I) C A" is reduced, so is its proper transform in %1, A".

It is usually a more intricate issue to identify generators of proper transforms, as opposed to generators
for weak transforms.

Example 2.20. Consider the non-principal ideal I = (x2 + yz,z — yz) C k[x, v, z] under the multi-weighted
blow-up 7, in Example 2.11.

(i) Its total transform 7c;'1 - Op, a3 is

2.6 2 2.4 7 2 2 2.4\ _{(,,2 2.4 2 2.2 7.2 2.2

; 72..4,2 72,2 1,2 2,2
Hence, the weak transform of I under 77, is (x"“ujuy + v uy,z'u; —y™“uy).

(ii) On the other hand, while we have

+y?=uf ( "utul +y’2) and z-p*=u?- (z’u% —y’zulz),
the proper transform 7c7'1 - O g1, a3 is not generated by the elements X'ufus +v? and z'u3 —y"?u?.
Indeed, note that x> +z = (x> +9?) + (z—y?) €I and

x2t+z= x'2u16u§ + z'ulzug = uf‘u% . (x'zuiL + z').

72,4

Thus, x?uf +z' € ' 1- O_ps, but x2uj +2’ & (x'ufu’ 2,,2),

2 . .,2
M1M2+3} yZ Uy —YTUY
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2.4. Multi-graded Rees algebras and idealistic exponents

In this section we reinterpret some of the earlier observations and definitions in terms of Rees algebras
and idealistic exponents.

2.4.1. Multi-graded Rees algebras.— The discussion in Section 2.1.3 can be summarized by the compact,
but notation-heavy, statement that %1, A" equals

(2.4) [(specm(%)\v(}zﬂ))/[B

where
ﬁN[xi,...,x;][xF’): pe E(a)]
b,u

(xz{'l—[peE(a)(xP) T xin 1 SiSn)

2.5) K = K(a,b) :=

B
and the matrix [

I ] records the ZF@_grading of each x, and each xé, as in Section 2.1.3(ii) and hence
'k

describes the G],i(a)—action displayed above.
We provide a reinterpretation of the Z¥(?)-graded ¢ p.-algebra % = %(a,b) as a multi-graded Rees algebra
on A". Consider the homomorphism of ZF®)-graded ¢/p.-algebras #Z — ﬁAn[ : p € E(a)] defined by

X; | x; I_[tp I for1<i<n,
(2.6) peE(a)
xp — (1 . t;l) for p € E(a).

This is an isomorphism of & onto its image

. . 0 p,i: .
o Ry = Op [t :pekE(a ]xl pglt 1<i<mn

C Opn [ti: pE E(a)].

The image %, is a Z¥) -graded Rees algebra on A"; i.c. it is a finitely generated, quasi-coherent ZF()-graded
O pn-subalgebra

satisfying the following three conditions:
(i) Zo = Opn.

(ii) 1 'tF_’l € %, for all p € E(a).

(iii) For every m € ZE(@), we have Zp, = (pek(a) Zm, e,
Note that under (i), condition (ii) is equlvalent to

(i) %me C Ry for every m € ZF) and p € E(a).
In partlcular, (ii) already implies the forward inclusion in (iii). Moreover, note that (iii) is redundant if
#E(a) = 1.

We usually make the identification % = #, and hence will not make any distinction between both sides of
(2.6). Occasionally, we neglect the negative degrees and only work with the NE()-graded part of %,, which
is an INE@_graded Rees algebra® on A"

(M)In other words, it is a finitely generated, quasi-coherent INE(J)—graded O pn-subalgebra @meNE(J) Hm C Opnlty: p €E(a)]

satisfying (i), (ii’), and (iii), where the phrase “m € ZE(@)” in the last two conditions is replaced by “m € INE@)»,
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Remark 2.21 (Alternative description of the proper transform). It is also under the interpretation in Sec-
tion 2.4.1 that the proper transform of a closed subscheme V(I) C A" under 7,p: #l,p A" — A" has a
natural description. Namely, it is given by the similar-looking expression

(Specya(#1vn) v () /165

—k
If one interprets this as the “multi-weighted blow-up of V(I) along %|y(;)”, this description parallels that in
[Har77, Corollary IL.7.15].

For Section 2.4.2 below only, let Y denote a k-variety; e.g. Y = A”". In [Que20, Section 2.2] one defines
a one-to-one correspondence between non-zero, integrally closed, IN-graded Rees algebras on Y and
idealistic exponents, see [Que20, Definition 2.7], over Y. This can be immediately promoted to a one-to-one
correspondence between non-zero, integrally closed, IN*-graded Rees algebras %, on Y and k-tuples
y = (plPl: p € [1,k]) of idealistic exponents over Y.

2.4.2. Tuples of idealistic exponents.— Let ZR(Y) denote the Zariski-Riemann space of Y, and let
mty: ZR(Y) — Y denote the morphism of locally ringed spaces which maps v € ZR(Y) to the center v, of v
on Y; see [Que20, Appendix A]. Then:

(a) Given a k-tuple y := (¥IP]: p € [1,k]) of idealistic exponents over Y, let %£p] be the integrally closed,
IN-graded Rees algebra on Y associated to each 7/[9]. Then the integrally closed INF-graded Rees
algebra %, := (D, ¢ Zm - t™ on Y associated to y is defined by Zp, := mpe[l,k]%r[npj for every
m € INF. In other words, for any open U C Y,

v(g) = m,-(ylPl) for every v e
Fm(U) = {geﬁy(U): o (U) apnc(lpe)[vl,k] Y }

(b) Conversely, to a non-zero, integrally closed, N*-graded Rees algebra %, on Y, we associate a k-tuple
y := (ylPl: p €[1,k]) of idealistic exponents over Y, where each y!¢] is the idealistic exponent over
Y associated to the non-zero, integrally closed, IN-graded Rees algebra %lp] = @meIN %m.ep -t". In
other words, the stalk of y[p] at each v € ZR(Y) is
. 1 .
(v, = mm{m—p v(g):02g-tTMe (Z.),, with m, > 1}.

Together, (a) and (b) give the desired one-to-one correspondence.

2.4.3. — Under the above one-to-one correspondence, the NE(@)-graded part of %(a,b), in (2.7) then
corresponds to the tuple y(a,b) := (y(a,b)[p]: pE E(J)) of #E(a) idealistic exponents over A", where each
y(a,b)lP] is defined stalk-wise at each v € ZR(A") by

2.8 b)) = mi
(2.8) (y(@b)lel) ilg[lll,l;ll](
upy,'io

-v(x,')).

bp . up,,-

Following [Que20, Notation 2.12], we use the suggestive notation

1
(x.b”'u"’i rielln] uy;# 0)

1

to denote, for each p € [1,k], the corresponding integrally closed, N-graded Rees algebra Z(a, b)!Pl.

Our next objective is to give a coordinate-free interpretation of the weak transform (see Definition 2.18) in
terms of the idealistic exponents in y(a,b).
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. . . . Ly, E
2.4.4. Conventions.— For the remainder of this section, fix a monomial ideal a on A" and b € IN>E)J). Let
T := T, , denote the composition

stack-theoretic Tab
Xg O Bl AT D A
a quotient

For an ideal I on A" (or X5 ), let y; denote the idealistic exponent over A" (or X5 ) associated to I; see
[Que20, Sections 2.1-2.2]. Let 7'y - & denote the pull-back of  to X5 via 7. Unless otherwise mentioned,
set 0 := O, , and set ylPl:= y(a,b)lP] for p € E(a). For i €[1,n], also set ] := Vi)

To reinterpret the weak transform, we begin with the following elementary lemma.

Lemma 2.22. For (k;)pes, (1) € IN*s(1), the following statements are equivalent:
() 70 CTlpex, (@%
(i) T 7/1 ﬁ>2p€2 p 7/(
(i) 7 _11 O C(x ) foreverypeE (1).
(i) 7T ly;p- ﬁ>kp Vix forezzerypeZ (1).
Proof. The equivalence (1) & (i) is evident. The equivalences (i) & (ii) and (i’) < (ii’) follow from the
fact that if X is a normal variety, I is an ideal on X, and D is a divisor on X with underlying ideal Ip,

then yp < y; if and only if Ip D I. Indeed, by [Que20, Lemma A.l|, both statements are equivalent to
I-1Ip! c ox. O

Our next goal is to provide a recharacterization of statement (ii’) in Lemma 2.22 in terms of idealistic
exponents over A". Before doing that, we need the following lemma.

Lemma 2.23. For each p € ¥,(1), we have
ﬁ—ly[P] . ﬁ > y(x;;)
Proof. Let v € ZR(X5 ) be arbitrary. If p =i € [1, 1], then the lemma follows from
Yx)y = V(x;) =v(x;) - Z (bp 'up,i) ) V( p) <v(x;) = (T( 7/[ I ﬁ)v

peE(a)

If instead p € E(a), we have, for every 1 <i < n such that up,; # 0,

, 1 , 4
Yov = v(xp) = W | v(xi) = v(x;) —§EE(Z)<{p}(ba.u@i) . v(xﬁ)
1
<
- bp -upyi

Taking the minimum over all such 1 <7 < n, we obtain the lemma. O

-v(x;).

2.4.5. More conventions.— Let ZR(7): ZR(X5 ) — ZR(A") denote the morphism of Zariski-Riemann
spaces induced by 77; see [Que20, Appendix A 3] For each p € £4(1), let v, be the V(x)-divisorial
valuation on XA E and let v, = ZR(70)(v p)' By Section 2.1.3(i), v,(x;) = b, - u,,; for every p € ¥4(1) and
1<i<n.

Proposition 2.24. Forp € ¥,(1) and k € Q., the following statements are equivalent:
() yr > k- y1el.
() 7 ly-O02k- Vi)

(i) yr,, >k (: k- (7[p])vp =k- y(xé),v")).
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Proof. The equivalence (i) = (ii) follows from Lemma 2.23. For (ii) = (iii), we localize the inequality in
(i) at v := v, to obtain Vi, = (T lyr-0), > k- VE,v = k. For (iii) = (i), note that (iii) says that for
f =) a.ca-x*€l, we have

(2.9) 13:;18{2“1 : (bp : up,i)} = Vp(f) = yI,vp > k.

i=1
Then for arbitrary v € ZR(A") and f =) , ¢, -x* € I, we have

v(f) > I;I:il(‘)l{iai . v(xi)} > rcilirol i a; (bp 'up’i)(bp ‘1up’i .v(xi))

i=1 =1
up,,»:tO

2 (V[p])v : mig{zai (bp 'up,i)} >k- (7[p])v:

Ca¢ o
i=1

where the last inequality follows from (2.9). Therefore, y;, = min{v(f): f € I} > k- (p!P]),. This proves
(i) m

Remark 2.25. The proof of Proposition 2.24 suggests that we should interpret y; as the “Newton polyhedron
P of I” and ylPl as the “hyperplane Yi_1(by-up;)-e; = k”. Then Proposition 2.24(i) translates to
the statement that “P; is bounded below by the hyperplane } i, (b, -u,;)-e; = k” (see Definition 2.13).
Combining Lemma 2.22 and Proposition 2.24, we get a reinterpretation of Proposition 2.14(i) in terms of
idealistic exponents. This reinterpretation is justified by (2.9), which says that for every a € P;, we have
(bp-up)-axk.

Remark 2.26. Let us apply Proposition 2.24 to I = a. For every p € £,(1), one can compute that Yay, =
b, - N, (), so the proposition says y; > (b, - Ny(a))- y[p]. In fact, sup{k € Qs¢: 3 > k- )/[p]} =b, - Ny(a)
because whenever ¥, > k- yPl, we have k < Yay, = b, - Ny(a). By Lemma 2.22, we therefore have

Ty, 0> Y e+ () (bp - Np(a))- Y(x;)- In fact, Proposition 2.14(ii) says more: this inequality is an equality!

By the equivalences in Lemma 2.22 and Proposition 2.24, the following definition of the weak transform is
equivalent to Definition 2.18.

Definition 2.27 (Weak transform, revisited). Set & := Oy , an. The weak transform of an ideal I C
k[xq,...,x,] under the multi-weighted blow-up 7 p: Hl,p A" — A" is

(ﬂa,b)QII::(n;}J].ﬁ), r[ (xé)—Kp(I)l
peE*(a)

where for each p € E™(a), K,(I) is the largest natural number k, such that y; >k, - ylP] (or equivalently,
Vi, > kp).

3. Multi-weighted blow-ups: Canonical aspects

3.1. Canonicity of multi-weighted blow-ups, I

In this section we continue to follow the conventions in Section 2.1.1, and we endow A" with the
logarithmic structure IN" BEinGiN k[xq,...,x,]. Let a, be an (IN-graded) monomial Rees algebra on A", i.e. a
finitely generated, IN-graded &pn-subalgebra a, = @meIN a,, - t"™ C Opn(t] such that ag = Opn, 3 D Ajs
for every m € N and each a,, is a monomial ideal of k[x1,...,x,].
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We give a definition of %1, A", which generalizes the notion of %1, A" (see Definition 2.5) for a
monomial ideal a on A", before demonstrating that this notion is canonically associated to a,.

Definition 3.1 (Multi-weighted blow-ups along monomial Rees algebras). Fix a sufficiently large £ € N5
such that the ' Veronese subalgebra a, of a, is generated in degree 1. The multi-weighted blow-up of A"
along a, is then defined as

771 b
Mot Bl A= Bl A" A,
where
peo|— L
ged (€,Np(ag))

(see Remark 2.9). We endow %1, A" with the toroidal logarithmic structure “dictated by that of A" =

Xq, (1)
tp€X,, (1) €Ny,

Spec(IN" RGN k[x1,...,x,]) and its exceptional divisors”. Namely, it is obtained by descent from the
following toroidal logarithmic structure on A1)\ V(] x,):

N K[x],...,x)] [x;,: peE E(a)],
which sends e, to x,, for every p € X4(1).

Note that if a, is generated in degree 1, then #1, A" equals %1, A" in Definition 2.5. It is also simple
but essential to verify the following.

Lemma 3.2. The definition of 1, A" does not depend on the choice of € € N such that a,, is generated in
degree 1.

Proof- Let ¢,L € N5 be such that both a,, and a;, are generated in degree 1. By comparing a,, and a;,
with a,r,, we reduce to the case where L = r¢ for some r € N.(. Then a; = (a¢)", and thus the normal fans
of as and of a; are identical. In particular, £, (1) = X, (1). Lastly, note that Ny(ap) =r-N,(a) for every

_ 14 _ L
P €2a (1) =2a,(1), 50 Faz NGy} = AN, =

Remark 3.3. Let a, denote the integral closure of a, in Op.[t]. By Remark 2.8, we then have %1, A" =
Pz, A"
In particular, for any £ € IN5( such that a,, is generated in degree 1, let aé/ ¢ be the integral closure in

O pnjy) of the Opn-subalgebra generated by a, - t¢:= (x*: x* € a,); see [Que20, Notation 2.12]. Then
aé/ t=3,

since they are both integrally closed and their £ Veronese subalgebras coincide. Hence, Bl A" =
e%,la}/f A"

In [Que20, Section 4] one also associates to a, the following blow-up.

Definition 3.4. The weighted toroidal blow-up of A" along a, is the following stack-theoretic Proj (see [Olsl16,
Section 10.2] or [QR22, Section 2]) over A™:

Bl A" := Zr0j, (a,) = [Specpn (@) N V(a,) / Gyl D A,

where a, is the ideal generated by the positive degrees of a, and the G,,-action is induced by the Z-grading
on a,. This is a Deligne-Mumford stack.
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3.11. Charts.— Write 3, = a'/¢ for a monomial ideal a on A" and £ € Ny (see Remark 3.3). As v varies
over the vertices of P,, the open substacks

D, (x" . t‘e) = [SpecN (E. [(x" . tg)_l]) / Gm]

cover Bl,; A"; see (3.1) below. Here, D, (x" - t¢) is known as the (x" - t¥)-chart of Bl A"

Note too that t=¢ = xV- (xV-t0)"! € T,[(x" - t{)~]. Since T, [(xV - t)"!] is integrally closed in O p.[t],
we therefore have t1 € 3,[(x" - tY)!]. The exceptional divisor of Bl A" on D, (x" -t") is then given by
V(t .

Remark 3.5. For various subtle reasons, we prefer to work instead with a “global” version of a,, namely the
extended Rees algebra 32" associated to ,. (In fact, such extended Rees algebras were simply referred to as
Rees rings or algebras; see [Ree58] or [Mat89, Section 15, Section 4].) The extended Rees algebra a&*" is
defined as the Z-graded O p+-subalgebra (P

negative degrees:

ez d It of Opn[t*] obtained by extending 3, trivially in

?ext_ 3I’Vl ifmZO’
T Ope ifm<O.

Since T, [(xV-t6)1] = 3 [(x¥-t¢)!] for every vertex v of P;, Definition 3.12 continues to hold after replacing
a, with ant

Bl AY = Zroj,,(a ( eXt [SpecN( )\V(aiXt /Gm].

In the above expression, the exceptional divisor of B[, A™" can now be seen directly as the vanishing
locus of (t7!) c a$*, without having to pass to charts; see Section 3.1.1. This is one way in which 32

“globalizes” a,.

3.1.2. Logarithmic structure.— The object B[, A" carries the toroidal logarithmic structure dictated

by that of A" = Spec(IN" BEinGiN k[x1,...,x,]) and the exceptional divisor, as demonstrated in [Que20,
Section 4].

To expound on this, write 3, = a'/¢ for a monomial ideal a on A" and £ € N, (see Remark 3.3). Let
I denote the saturation of the submonoid of IN" @ Z generated by IN"*! and (v, ) for vertices v of P,.
Recall from Remark 2.8(i) that

(3.0) a=(x": v vertex of P;) = (xVo: ¢ maximal cone of ¥,).

Therefore, the assignment
X; for 1 <i<mn,
e; — 1 .
t fori=n+1

defines the following isomorphisms:

k[N"®Z] —— Opn[t*]

(3.2) T T

K —=— &

The bottom row defines an isomorphism Spec(k[I']) = Specp.(a (T&).

rithmic structure I < Kk[I'] and hence defines a toroidal logarithmic structure on Spec,(32) \ V(3$) c
Specp(a (@),
We can now state the main goal of this section.

The former has the toroidal loga-

The toroidal logarithmic structure on B[, A" is then obtained by descent.

Proposition 3.6. The object $1, A" is the canonical smooth, toroidal Artin stack over Bl A”".
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The canonicity asserted in Proposition 3.6 is in the sense of Satriano in [Satl3], which we will now recall
in detail.

3.1.3. — Given a toroidal k-scheme Y, Satriano demonstrates in [Satl3, Section 3] that there is a smooth,
toroidal Artin stack % over Y, which satisfies the following universal property. Any sliced resolution, see
[Satl13, Definition 2.6], from a fine and saturated (fs) logarithmic scheme (T,.#7) to (Y, .#y) factors uniquely
as a strict morphism (T, .#7) — (¥, # ) followed by (¥, Ms ) — (Y, #y). We call  — Y the canonical
smooth, toroidal Artin stack over Y.

In [Satl3, Proposition 3.1] Satriano gives the following local description of # — Y. Let Y = Spec(I" —
k[T']) for a sharp, toric monoid I'. Let C(I') denote the rational cone generated by I" in My := %P ® R,
and C(I")Y be the dual cone in Ny := My,. For an extremal ray p of C(I')", we denote by u,, the first lattice
point on p.

Let F denote the free monoid on the set S of extremal rays p of C(T')", and consider 1: I < F defined by

(3.3) Vi (U, v)pes forvel cC(T).

Then 1 is a minimal free resolution, in the sense of [Satl3, Definition 2.3]. Setting D(~) := Homg,p_sch(— Gm),
1 induces the morphism

|Spec(F < K[F]) / D(F8P/I®P)| — Spec(I" < K[T')),
which is % — Y.

Remark 3.7. By descent, Satriano’s demonstration immediately generalizes for a toroidal Artin stack Y over k.
We may appeal to descent because Satriano’s construction commutes with strict, smooth morphisms. More
precisely, given a strict morphism f: Y — Y between toroidal Artin stacks, the canonical smooth, toroidal
Artin stack over Y is the Cartesian product Y xy % in the category of fs logarithmic Artin stacks, where
% — Y is the canonical smooth, toroidal Artin stack over Y. This can be seen using the universal property
in Section 3.1.3. Indeed, it suffices to note that given any sliced resolution g: T — Y, the composition
gof: T — Y is still a sliced resolution because the induced morphism %yf - %17;7 is an isomorphism

strict

for all geometric points p of Y. Thus, go f factors uniquely as T —— % — Y, and hence g factors uniquely

as T steet, Y xy Y > Y.

In particular, Satriano’s construction can be explicated for a toric Artin stack Y arising from a stacky cone
(0, B); see [GS15, Definition 2.4]. Here,  is a homomorphism of lattices N — L with finite cokernel, and
we assume o is a strongly convex, rational cone in NR := N ®7 R. The dual morphism g¥: LY — NV is
injective, and the dual cone 0¥ in N yields the sharp, toric monoid I' := 0¥ N N" and hence gives rise
to the affine toric variety Spec(I" < k[T']). We then get the toric stack Y := [Spec(I" < k[T']) / G], where
G := D(Coker(B")) acts as a subgroup of the torus Ty := D(N) (with D(-) := Homgp_sch(— Gm))-

3.1.4. — With the above notation, the canonical smooth, toroidal Artin stack %" over Y can be constructed
as follows. Let F denote the monoid on the set S of extremal rays p of o = C(T")", and set Ny := F8P. The
same rule as in (3.3) defines an embedding of lattices 77¥: NV < N/, which restricts to a minimal free
resolution ¢: I' <= F and fits in the commutative diagram

\ [d ﬁv \
0 > LY —— Ny
(3.4) ‘

~

Coker(/}}/) — 0

o1

> NV > Coker(BY) —— 0.

ﬁv

0 }LV(

The stacky cone (044, fr), where 0gq is the standard cone on Ng and fr: Np — L is the dual of ﬁ[\:/, then
induces the corresponding smooth toric stack [Spec(F < k[F]) / G|, where Gf := D(Coker(fBr)) acts as
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a subgroup of the torus Ty, := D(Np) (with D(-) := Homg,p_sch(— G;))- Finally, the above commutative
diagram induces the toric morphism

[Spec(F < K[F])/ Gf| — [Spec(T < K[T')) / G],
which is % — Y.

Proof of Proposition 3.6. Without loss of generality (see Remark 3.3), we may replace a, by J,. Write a, = a'/¢
for a monomial ideal a on A" and ¢ € IN.(. Our approach is to first carry out the construction in Section 3.1.4
for the toric Artin stack

m:= [SpecN (F «— Kk[T] (3—:2)> af"t) / Gm]
before doing the same for B[, A", which is a strict, open substack of M.

3.1.5. Step 1.— By definition, the toric Artin stack N1 arises from the stacky cone (o, ), whose dual is
given by

BY =(12:,0): Z"—2Z"" and ¢'NZ"!=T;
ie. o:=C(T)Y CR"™! and f: Z"! — Z" is the projection onto the first 7 factors. Next, the extremal rays
of o are the normal rays to the facets of C(I'), and so the set S of their first lattice points is the disjoint
union of

(i) {e;: 1 <i<mn}and

Ny(a)

o [~ ¢
(i) {“P =\ ged@N, @) Y ged@N, (@)
Indeed, (i) is evident since the coordinate hyperplanes e; = 0 (1 <i < n) intersect C(I') in facets. For (ii),

) : p € Z4(1) with Ny (a) > O}.

note that the intersection of C(I") with the hyperplane e,,; = —¢ is canonically identified with P;, and the
(non-empty) intersection of every other facet of C(I') with this hyperplane e, ; = —€ corresponds to a unique
facet H,, of P, satisfying N,(a) > 0.

3.1.6. Step 2.— Let us rewrite S as the disjoint union of the following sets:
(i) Sy :=1{e;: 1 <i < n with N;(a)> 0} and
(i) Sp:= {ﬁ ::( g u,, — el ): pe Za(l)}-

P gcd(CN, (@) P’ ged(GN,(a)
We take the indexing set of S, to be ¥,(1) and denote the indexing set of S; by I := {1 <i <n: N;(a)> 0}.
By Section 3.1.4, the canonical smooth, toroidal Artin stack .# over N1 arises from the stacky cone
(0std, BF), where 0gq is the standard cone on Z! ®2%(1) and the dual of Br fits in the following commutative
diagram:

0 — 2" <Ly 7175 — Coker(BY) — 0

(3.5) H T ,,v T

0 s 71 < P sy 7N+l 4 )

Here the matrix of 77V has rows given by e; for i € I and u, for p € £4(1), and the matrix of [)’1\:/ is obtained
by deleting the last column of the matrix of 17V. Recall that 17V restricts to a minimal free resolution
1: T N @ IN*(1), Explicitly,

M = [Spec(INI N> s klx;:iel] [xé: pE Za(l)]) /D(Coker(ﬂ}/))]
and .#Z — N is induced by

Np(ﬂ)

T _ N
(3.6) X; — X - rl (x‘/))gcd(f,Np(ﬂ)) el ond e rl (xé)gcd(f,Np(a))’
pEX,(1) peXy(1)
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where x;:= 1 whenever i € [1,n]\I.
3.1.7. Step 3.— We show, in this step, the following strengthening of Proposition 3.6.

Proposition 3.8. Let a, = a'/ for some monomial ideal a on A" and € € Ns. For every maximal cone o of
Y, the chart D, (o) C B, A" is the canonical smooth, toroidal Artin stack over D, (x"7 - tf) c Bl A"

Proof of Proposition 3.8. Since D (x¥< - t¢) is a strict, open substack of M, Remark 3.7 says that the canonical
strict, open

smooth, toroidal Artin stack over D, (x%e - t{) is ./, := D, (xY - t) X M ——— . To explicate .7,
note that by (3.6), we have

¢
N e N T i
iel peX,(1)

- N,

where v, ; > N;j(a) >0 foralliel and )/ ,v;-u 0

Section 2.1.1). Therefore, .Z, is equal to
[Spec(lNI oN>) ]k[)(ii: i€ I”xé: pEe Za(l)”(x(’j)_l]) /D(Coker(ﬁ}/))].

p)i (a) > 0 if and only if v, € H, i.e. p Z 0 (see

For every i € I, note that the image of e; in Coker(f}) (= the weight of x; under the Coker(B))-grading)
has infinite order. Therefore, by Lemma A.l, we have

[Spec INZ —>Ik[ Xp: p € Xyl ” ] /D Coker(ﬁv))],

—~ /3 rojecti —~
where BV is the composition Z" <> Z! @ Z*(1) e, %) and D(Coker(B")) acts as a subgroup of
the torus D(Zzﬂ(l)) =Ty

. . oV . ' . ope
Since the matrix of " has rows given by sdT N @) Y for p € £,(1), it follows by definition that

My =D,(0)C HBl,, A" (this also means that their logarithmic structures coincide). O

Finally, as o varies over all maximal cones of X, the charts D, (o) cover B[, A" and the charts D, (x¥° )
cover Bl, A". Since Satriano’s construction is canonical, this completes the proof of Proposition 3.6.  [J

Remark 3.9. Let a, = a'/! be as before. Then the morphism

Bl A" = [Spec (]k[xi,...,x;l] [xé: pe E(a)]) N V(]):a) / D(Coker(ﬁv))]

l

Bl A" = [Spec(at)\ V (a5) / G, ]
is induced by

l l
e A .
x; b (<) N ] (o) FTOTI for 1< <,

. peE(a)
(3.7) N0

1 (X, )gcd(f,N(,(a))
— | | 0 .

pEX,(1)

Remark 3.10. The morphism %1, A" — 1l, A" is evidently toric (in particular, logarithmically smooth)
and birational. Since 77, : %1, A" — A" is universally closed (see Remark 2.6) and @, : Bl, A" — A" is
proper (since its coarse moduli space is proper over A"), we deduce that %1, A" — B[, A" is universally
closed. Therefore, it is also surjective since it is dominant and closed. Finally, as a birational morphism, it is
small; i.e. it has no exceptional divisors. This can be seen from Remark 3.9 or directly from the fact that
Bl,, A" is normal, whence smooth in codimension 1.
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Remark 3.11. If a, is generated in degree ¢, the coarse moduli space of 13, A" is the schematic blow-up
Blz, A" of A" along a,. We claim that this coincides with the good moduli space X): of #1,, A". The
reader can check this computationally, but we propose a more direct approach. By [Alp13 Theorem 6.6],
there exists a unique morphism : Xz — Blz, A" making the following diagram commute:

good moduli space

B, A" > Xy

1

coarse moduli space
Bl,, A" 7 Bl A

It remains to note that : is a birational and integral morphism between normal schemes and hence an
isomorphism; see [Sta24, 0ABI|. Indeed, ! is birational because %1, A" — B[, A" is an isomorphism
above A"\ V(a;) C A". To see that ! is integral, it suffices, by [Sta24, 0IWM], to observe that:

(i) ¢ is affine; indeed, for every vertex v of P, , the preimage of the coarse space of D (xV - t) c Bl A"
is the good moduli space of D, (v) C #l, A" (see Proposition 3.8), and they are both affine;

(i) ¢ is universally closed since %1, A" — Blz, A" is universally closed by Remark 3.10 and [Ols16,
Theorem 11.1.2(ii)], and good moduli spaces remain surjective after any schematic base change; see
[Alpl3, Propositions 4.7(i) and 4.16(i)].

3.2. Canonicity of multi-weighted blow-ups, II

We consider in this section a slightly more general setting than in Section 3.1. Given 0 < r < 1, we instead
endow A" with the following logarithmic structure:

A" = Spec(N" — K[xy, ..., X1 X, ypiqre- 0 X)),

€2 Xy ryi

where we underline x; for i > n —r to emphasize that they are monomial coordinates on A™" (see Remark 4.1)
and differentiate them from the ordinary coordinates x1,...,x,_,. Note that the case r = n was considered in
Section 3.1.

3.2.1. Conventions.— On A™" we consider an ideal of the form

. a a
Jz(xll,...,xk",a),

where 0 <k <n-r, a; € Ny, and a is a monomial ideal on A™" in the sense of Section 4.1.6; i.e. a is
generated by monomials in x,,_,,,...,X,,.
We set ¢ := lcm(ay,...,ar) (thls is 1 if k = 0), set w; := uﬁ for 1 <i <k, and set j. = j .=

yeeer Xp

; i.e. the integral closure in Opn[t] of the Opn-subalgebra generated by {x; - t%i: 1 <
i<k}anda- te; see [QueQO, Notation 2.12]. Then j j, is an integrally closed (IN-graded) Rees algebra on A”.
Analogously to Definition 3.4, we have the following.

Definition 3.12. The weighied toroidal blow-up of A™" along j_is the stack-theoretic Proj over A™":

B[ AT e@ro}An ], ) [SpeCAn (_ ) (L_) / Gm] i) AT,

where j j, s the ideal generated by the positive degrees of j ], and the G,,-action is induced by the Z-grading
onj. Analogously to Section 3.1.2, this is a toroidal Dehgne Mumford stack under the logarithmic structure
dictated by that of A’"" and the exceptional divisor; see Section 3.2.3 or [Que20, Section 4].


http://stacks.math.columbia.edu/tag/0AB1
http://stacks.math.columbia.edu/tag/01WM
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3.2.2. Charts of Bl; A™".— By the same explanation as in Section 3.L1, Bl; A™" is covered by the
following charts: 7 7

(i) Ds (x; - #¥) = [Specpu (i, [(xi - #4)7]) / Gy for 1 < i <k and
(ii) D+( v tg) [SpecAn( [ v t€ ])/Gm] for vertices v of P.

Similarly to before, V(t7!) is the exceptional divisor on each chart.

3.2.3. Logarithmic structure on B[; A™".— Let I' denote the saturation of the submonoid of N" & Z
generated by IN"*!, (e;,—w;) for 1 <i <k, and (v,~{) for vertices v of P,. Then the assignment

X; for1<i<mn,
e.
' =1 fori=r+1

defines the following isomorphisms:

]k[INn @Z] ; ﬁAn[ti]

(3.8) T T

k(1) —=—
where i‘iXt denotes the extended Rees algebra associated to ],; see Remark 3.5. Next, consider the following
submonoids of T

(i) I} denotes the submonoid generated by (e;,—w;) for 1 <i <k and (e;,0) for k<i<n-r.
(ii) T, denotes the saturation of the submonoid generated by IN"*! and (v,-{) for every vertex v of P,.

Then I'; < Kk[T'] defines, via (3.8), a logarithmic structure on Spec p.(j ext) \ V(]eXt) C Specpn(j” t), which
descends to the logarithmic structure on Bl; A™" = [SpecA,,( ety V( exty Gm] To see that Bl A" is

toroidal, it suffices to observe that ' =T} & r2 and moreover that I7 is a free monoid of rank 7 — r whose
free generators form part of a basis of 'SP = Z"*1,

it instead of) in Section 3.2.3. One can still

Remark 3.13. Let us remark on our choice to work with i,
define, in a similar fashion, a logarithmic structure on SpeC ANV ) C Specpu(j,) which descends to

the same logarithmic structure on Bl; A™". However, it is not ev1dent “without passing to charts, that the

logarithmic structure on SpecAn(L) < V(Z ) is toroidal. This is a second way in which ]eXt «

see Remark 3.5.

globalizes” j ;

3.2.4. Logarithmic structure on %l; A".— On the other hand, we may also consider #1; A" as defined
in Section L1. For the next proposition, we endow %1; A" with the toroidal logarithmic structure obtained

by descent from the following toroidal logarithmic structure on A% V(J % ):
N @ NED — I[x],...,x,_, x/ opreerX)] [g’p: pE E(j)],

which sends e; to x, ., for 1 <i <7, and e, to 5; for p € E(j). We denote by %1; A™" the resulting

logarithmic Artin stack. Using the language introduced in Section 3.1.3, we can now state the main objective
of this section.

Proposition 3.14. The object $1; A" is the canonical smooth, toroidal Artin stack over Bl; A™'.

We prove this via Proposition 3.6 and the following digression.
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3.2.5. — We return to the discussion in Section 3.1.4. Adopting the notation there, we suppose further that
NV = va EBNZV for sublattices Nl-v C NV, and hence I' =T} @T, for the submonoids I'; :=T'N Niv C I" such
that I} is a free monoid of finite rank satisfying rlgp = N'; i.e. its free generators form a basis of N;’. We
redefine Y as

Y= [Spec(F2 — Kk[I'])/ G],
which is a toroidal Artin stack by hypothesis. As before, our goal here is to explicate the canonical smooth,
toroidal Artin stack % over Y.

Recall that in Section 3.1.4, F denotes the free monoid on the set S of extremal rays p of o, Ny denotes
F&P, and we defined an embedding of lattices r7¥: NV <> N} which restricts to a minimal free resolution
1: T F. We claim that there exist free submonoids F; C F such that the following hold:

(i) F=F @F,.
(ii) Set Ny := F¥®. Then nV: NV = N}/ decomposes as 11y @15, where 1)’ = nVIny: Ny = Ng/, which
restricts to 11: I} — F;, and 115/ = 17V|N2v : NZV < lefz, which restricts to a minimal free resolution
Iy: Ty <> F,. Moreover, t = 1 © 5.
Combining this claim with (3.4) yields the logarithmically smooth morphism
[Spec(F, < K[F])/ G¢| — [Spec(T, < K[I) / G|
and moreover shows that it is % — Y.
Proof of the claim. For i = 1,2, let 0; denote the dual cone in N of C(T;) C N, C NV, and let 6/ denote the
dual cone in N; of C(I;) C Niv. Since '=T; @&, C Ny ®N, = NV, we have 0 = 01 N 0, with
oy=0,®N) and o0,=N)®o0,.
Thus, we may decompose S = S; LI Sy, where §; is the set of extremal rays of ;. For i = 1,2, let F; denote

the free monoid on S;. Then part (i) is immediate, while part (i) follows from the definition of 7" (in

Section 3.1.4), together with the following pair of observations:

(i) {up: p€Si} ={(up0): p extremal ray of o7},

(i) {u,: p €S2} ={(0,up): p extremal ray of o3},
where ug denotes the first lattice point on p. O
Proof of Proposition 3.74. It suffices to assume k > 1, or else we are in the situation of Proposition 3.6. We

may also assume a = 0, or else Bl; A" is already smooth over k and is equal to #1; A"; see Example 2.10.

Our approach is to first revisit Section 3.1.6 for the toric Artin stack
m:= [SpecN (F s K[I] ﬁ f‘t) / Gm]
before using Section 3.2.5 to deduce the canonical smooth, toroidal Artin stack over
m:= [SpecN (F2 — K[T] ana))f(t) /Gm],

which contains BBl; A™" as a strict, open substack.

3.2.6. Step 1.— Before revisiting Section 3.1.6 for N, let us first establish the following lemma.

Lemma 3.15. Assumek >1 and a # 0. For any p € E(j),
(i) € divides N,(j);
(i) the corresponding facet H,, of B contains the vertices {a; - el\./: 1 <i <k} in other words, a; -u, ; = Ny(j)
forevery 1 <i <k;
(iii) up; =0 foreveryk <i<n-r.
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Proof. Let p € E(j). Let H,, denote the corresponding facet of P, whose affine span is given by } [/ u, ;- e; =
N, ().

On one hand, note that P, N {e,_,,; =--- = e, = 0} is the Newton polyhedron P, of x := (x;ll,...,xzk) C
Kk[x1,...,x,_,] and that there is only one ray p € E(x), whose corresponding facet Hy of P, has the affine
span Zle a% -e; =4¢.

On the other hand, H, N{e,_r1; =--- = e, = 0} is a facet of P, whose affine span is } " u,;-e; = N, (j).
Since p € E(j), we must have N,(j) > 0, so the facet of P, in the preceding sentence must be Hj in the
preceding paragraph. By comparing equations and noting that gcd({%: 1<i< k): 1, part (i) follows.
Parts (ii) and (iii) are now also immediate. O

Let us note in addition that since k > 1 and a # 0, then E*(j) = E(j); i.e. N;(j) = 0 for all i € [1,n].
Therefore, combining Section 3.1.6 with the above observations, we see that the canonical smooth, toroidal
Artin stack .# over N arises from the stacky cone (0g4, Br), where 0gq is the standard cone on 75 and
the dual of S fits in the following commutative diagram:

0 — z" <~ 7% —— Coker () — 0

(3.9) H T Y T

0 y 72" —— 7! > Z > 0.

N

Here, the matrix of 77 has rows given by (up, p(j)) for p € ¥;(1), and the matrix of ﬁ}/ has rows given by

u,, for p € ¥;(1). Explicitly,
= [Spec(INzi(l) — ]k[gf'): pE )Zj(l)]) /D(Coker(/ﬂ}_’))],

and .#Z — N is induced by

(3.10) Xj > X ]_[ (x;,)up’i and 1 +— ]_[

p€EE()) P€E(j)

3.2.7. Step 2.— By Lemma 3.15(ii), we have, for every 1 <i <k,

’7(81, ~w;) :e+Z(pz P )'ep:ei;
i

p€E(j)

i.e. (3.10) maps x; - t¥i to x;. By part (111) of the same lemma, we have, for every k <i <n—r, nV(e;,0) = e;;
i.e. (3.10) maps x; to x;. Therefore nv maps I isomorphically onto IN[V="T ¢ Z%i(1),
On the other hand, it is plain that " maps T, into N[*"+1 ¢ INE() c Z*(1), By Section 3.2.5, we know
V|r2 is a minimal free resolution of I',, and the canonical smooth, toroidal Artin stack .#” over N is the
stack quotient of

Spec (IN["_HI'”] e INF) — K[x|,...,x_,, X/ X [g'p: pE E(])])

n—r+1’

by the action of D(Coker(f)Y) C D(ZZi(l)) = T%0).

3.2.8. Step 3.— By Remark 3.7, the canonical smooth, toroidal Artin stack over Bl; A™" is

strict, open

B[i AN X .//’ %’,
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which is schematically identical® to Bl A" Xy A, i.e. the canonical smooth, toroidal Artin stack over
BL; A™". By Proposition 3.6 and Lemma 3.15(i), the latter is Al; A" Therefore, the former is %1; A" with
the logarithmic structure induced from that of .#’, i.e. 21; A"™". O

Remark 3.16. The morphism %1; A" — Bl; A" is logarithmically smooth. Of course, it also satisfies all
the schematic properties listed in Remarks 3.10 and 3.11.

Remark 3.17. 1t is possible to say more in Lemma 3.15. First we note that P, N {e; =--- =e,_, = 0} is the
Newton polyhedron P; of a C k[x,_,1,...,x,]. Correspondingly, for p € E(j), H,N{e; =--- =e,_, = 0} must
be a facet Hy of P; (for some p € 3,(1)). Moreovef, since N(j) > 0, we must have N5(a) > 0. Then p —p
sets up a one-to-one correspondence E(j) = E*(j) — E*(a). Through this correspondence, Lemma 3.15 can
be supplemented as follows:
¢

Hei = eed (6, Ny(a))

ged(4, N5(a))

{N5(j
N, ) = 5() .
ged((, N5(a))

u forn-r<i<n,

(2

In particular, the number N‘;(]) in (3.10) is equal to gC(flI(\;f—I(\‘;;)(a))

Corollary 3.18. Suppose that a, divideslcm(ay,...,ay) (thisis 1 if k =1). Let A" = V(x;) C A", and set
i1 =ilvy) = (xgz,...,x,i",a) Ck[xp, .., Xy X1, X, ). Then the proper transform V (x1) of V(xq) C A™"
under 7i;: Bl A" — A" is canonically identified with i; : Bl; A"V — AT

Proof: We saw at the start of Section 3.2.7 that V/(xy - t*1) xy3, pmr Bl A" = V(x}). Thus, by Remark 3.7,

V(x]) is the canonical smooth, toroidal Artin stack over V(x; - t*1).
On the other hand, V(x; - t“1), being the proper transform of A"~1" = V(x;) C A™" under B A" —

A", is equal to Bl; A", where =i v = j%/g; see [Que20, Lemma 4.6]. By hypothesis, £ =
e Zle Le

lem(ay,...,ax), whence Proposition 3.14 implies that the canonical smooth, toroidal Artin stack over

V(xp - #*1) is also 2l; A"1". Combining this with the preceding paragraph, we deduce the corollary. [J

To lift the hypothesis in Corollary 3.18, one needs to consider a natural extension of the discussion in this
section, which we do not need for the purposes of this paper. Nevertheless we treat this briefly below.

:1/cl = (x}/cuu

3.2.9. — Slightly more generally, for any ¢ € IN,(, we may consider ﬁ/c =] xi/cwk, al’et),

yoeeey

i.e. the integral closure in @px[t] of the @pn-subalgebra generated by {x; - t“i: 1 <i <k} and a- .

Schematically, the multi-weighted blow-up of A" along ﬁ/ ¢ is defined as

.
mc Bl A" = Bl A" — A,

where
cl

bi=| — : peE()|.
ged (cl,Np(j)) PRy

:peE(i)]=

c
gcd (C’ Npe(j))
The same toroidal logarithmic structure on A | V(]):i) as in Section 3.2.4 descends to a toroidal
logarithmic structure on %’ljm A". We denote by %’liw A™" the resulting logarithmic Artin stack. If c =1,

note that ‘@li A = ,%’li Ah.;r. Then:

(5)Schematically (i.e. forgetting any logarithmic structures), the morphisms .# — M and .#” — N are identical, and so are
Bl A™" and Bl AT
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(i) By the same method of proof as for Proposition 3.14, it is the canonical smooth, toroidal Artin stack
over Blye A" := Proj (jl/c).

.. . . . . n—-1;r _
. , . = 1
(ii) Corollary 3.18 has the following natural generalization, with the same proof. Let A Vi(xy) C
A" and j; = jly(y,), so that il. = ji/gl, where {1 :=lcm(ay,...,a;) (:=1 if k = 1). Then the proper

transform V(x]) of V(x;) C A™" under Tei/c @ljm AT — AT s TC1/ee’ %’Ijucc/ AL 5 gL
. “le Zle

where ¢’ := eﬁ'
1

4. Logarithmic resolution via multi-weighted blow-ups

4.1. Recollections

We begin by briefly reviewing the relevant aspects from [Que20]. Unless otherwise stated, Y denotes a
strict toroidal k-scheme, see [Que20, Definition B.6], with logarithmic structure .#y — Oy. Let I C Oy be
a (coherent) ideal on Y.

In Sections 4.1.1-4.1.3 below we recall some important notions associated to a strict toroidal k-scheme; see
[Que20, Appendix B| for details and references.

4.11. Logarithmic stratification.— For every p € Y, set %y,p 1= My p/ Oy o Then %‘;;/pp is a free

abelian group of finite rank. We define the rank of .#y at p to be r(p) := rank(%%}jp). Then r(p) is upper
semi-continuous on Y; i.e. more precisely, there exists a logarithmic stratification Y := | |,on Y (r), where for
each r €N,

(i) Y(r) is a locally closed, pure-dimensional, smooth subscheme of Y, consisting precisely of points
p € Y(r) such that r(p) =r;

(ii) the schematic closure Y(r)is Llys, Y(77).
Consider the open immersion j: U := Y(0) <> Y. Then the logarithmic structure .#y — Oy can be
recovered as the inclusion .#y := j,(07;) N Oy < Oy. In particular, the logarithmic structure .#y — Oy is
always injective.

We define the foroidal divisor of Y to be the complement D := Y \ Y (0) with the reduced closed subscheme
structure. Finally, for every p € Y, the logarithmic stratum at p is defined as s, := Y (r(p)).

4.12. Logarithmic derivations.— The Oy-module @?g of logarithmic derivations on Y is the Oy-
submodule of Oy (:= Oy-module of usual derivations on Y') whose sections are derivations that preserve the
ideal of D.

4.1.3. Logarithmic coordinates.— At every point p € Y, there exists a local system of logarithmic
coordinates at p, which comprises of:

(i) a local system of ordinary coordinates (x1,%,,...,x,_,) at p; i.e. these descend to a local system of
coordinates of 5, at p;

(ii) and a local chart c: M — .#y(U) which is neat at p; i.e. the composition M 5 My(U) — My, —

My p is an isomorphism.

Moreover, setting s := Codimsp {p}, it is customary to arrange for the first s elements in the ordered tuple
(x1,%,...,X,_,) to descend to a regular system of parameters of ﬁsp,p, in which case (x1,x,,...,x,) is called
a local system of ordinary parameters at p. Formally, (i) and (ii) induces an isomorphism

x(p) [x1,%2,..., %, M| — Ey’p,

which sends x; to x; and m € M to the image of ¢(m) under .#y — Oy.
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Remark 4.1. Let us now explicate the above notions in the event that Y is in addition a smooth k-scheme.
(We refer the reader to [Que20, Appendix B] for the general case.) In this case, the toroidal divisor D is a
simple normal crossings (snc) divisor.

At every p € Y, let D be given locally on a neighbourhood U of p by [[;5,_, x;i = 0 for a local system
of coordinates (x1,x,,...,x;,) at p. Then (x1,x,,...,X,_,) is a local system of ordinary coordinates at p,
and (X,_y41,...,%,) induces a local chart c: IN" — .#y(U) that is neat at p. As in Section 3.2, we usually

underhne the parameters (x X, ) to emphasize that they are monomial parameters at p. Finally, the

n—-r+17°
d ; d ;
stalk @Y,p is generated as a free ﬁy,p-module by T for 1 <i<n-rand Xi gn forn—-r<i<n.

4.1.4. Logarithmic differential operators.— For each m € IN, let @?ﬁg be the sheaf of logarithmic
differential operators on Y of order at most m; i.e. in characteristic zero, this is simply the &y -submodule of
the total sheaf Zy = 2}° of differential operators generated by &’y and the images of (@1 )® for 1 <i < m.
The total sheaf of logarithmic differential operators on Y is

log <m
@Y Y log U @Y Jlog’
meN

We write .@}7 10g( ) (resp. .@;),Olog( )) to denote the ideal on Y generated by the image of I C Oy under the
logarithmic differential operators in .@}7 log (resp. .@l‘flog).

4.1.5. Logarithmic order.— The logarithmic order of I C Oy at a point p € Y is

log-ord,(I) := mm{ne]N 73"

YiogDp = ﬁY,p} € N U {eo},

where we take min(0) := co. We set maxlog-ord(I) := max,cy log—ordp(I).

4.1.6. Monomiality.— We say an ideal Q C Oy is monomial if it is generated by the image of an ideal of
My under Ay — Oy. Equivalently, Q is monomial if and only if ‘@Y 10g(Q) =Q.

As in Section 3.1, a monomial Rees algebra Q, is a finitely generated, quasi-coherent graded Oy -subalgebra
@melN Q,, - t™ C Oy|[t] such that each Q,, C Oy is a monomial ideal.

The monomial saturation .#y(I) of an ideal I C Oy is defined as the intersection of all monomial ideals
containing I. Equivalently, .#y(I) = 2y og (I). Note that .#y(I) is itself a monomial ideal on Y. Lastly, for
p€Y,log-ord,(I) = coif and only if p € V(///y([)); i.e. log-ord, (I) < co if and only if .#y(I), = Oy .

4.1.7. Maximal contact element.— If 1 < a2 := maxlog-ord(I) < oo, the (logarithmic) maximal contact
ideal of I is MC(I) = @;‘iogl(l). For a point p € Y such that log-ord ,(I) = 4, a (logarithmic) maximal contact
element of I at p is a section in MC(I), that is part of a system of ordinary parameters at p or, equivalently,
that has logarithmic order 1 at p. Note that since char(k) = 0, we have Oy , = ?,alog(I)P = @Y log(MC( ))ps

so maximal contact elements always exist locally.

4.1.8. Coefficient ideal.— If 1 < a:= maxlog-ord(I) < oo, the (logarithmic) coefficient ideal of an ideal
I C Oy is the ideal

a—1
Hngog rcjelN, Z(a ]) >al|C Oy.
j=0

Note that MC(I)* C €(I,a), so for any point p € Y with log-ord,(I) = a and any maximal contact element

x of I at p, we have x* € €(I ,a)p. See [Que20, Section 5] and the references therein for the motivation and
properties of this construction.
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41.9. A well-ordered set.— For k > 1, we define

k! k k b
NS, = (bi)fy € NEg: by < < ST &
>0 {zzl >0 (b =1~ T2, (b - 1)t nlel(bj—l)!}
INK! .= (IN];(_)L! X {oo}) LINE;

>0’

and for s > 1, we set

N5 = () U (I_IIN’;'(S],

k=0
IN<S"_ (|_|1Nk']

!
We well-order the set NS by the lexicographic order <, with a caveat: our lexicographic order considers
|
truncations of sequences to be strictly larger. For example, in 1N§o3”, we have

(0)<(1,2,8)<(1,3,6) < (1,3) < (1,4,24) < (1,00) < (1) < (00) < ().

We can now recall the key construction in [Que20, Section 6.1].

4.110. Invariant of an ideal at a point.— Let p € Y, and set s := codimsp@ (see Section 4.1.3). In
Section 4.1.11 below, we will associate to the pair (I, p) the following:

(a) a sequence of ordinary parameters (x1,X5,...,Xx) at p,
(b) a monomial ideal Q C Oy,
(c) a sequence (by,b,,...,by) € INigl

Then the invariant of I at p is a non-decreasing sequence of length at most min{s + 1,dim(Y')}:

b 4 ’ b3 ooy — bk ) lf = 0;
inv,,(I) := ( 1 (bl—l)' Z, (b1)! b1 Q
by, s T+ e if Q % 0.
( 1 bl 1 1 ]—[/ b; Y j':ll(bj_l)! OO) if Q=

We denote the finite entries of inv,(I) by ay,4,,43,...,a;. Note that the set of all possible invariants of

ideals at points in Y can be well ordered by the same lexicographic order as in Section 4.1.9 since it is

<dim(Y),!

order-isomorphic to INg . We set maxinv(I) := max,cy inv,(I).

4.1.11. — The data in Section 4.1.10(a)-(c) associated to (I, p) is defined inductively as follows:

(i) Base case: If log—ordp(I) =0, then p ¢ V(I); we set k = 1, with (by,...,bx) :=(0), (x1,... ) (x
for any ordinary parameter x; at p, and Q = 0. If log—ordp( ) = oo, set k = 0, with (bl, by =
(X1, xk) == (), and Q := Ay (I),.

If log—ordp(I) is neither, set by := log—ordp(l) € N, let x; be a maximal contact element of I at

p, set I[1]:=I, and proceed to the 1% inductive step.

(ii) ¢ inductive step: Suppose by the induction hypothesis that the sequences (by,...,b;) and (xy,...,xp),
as well as the ideal I[€] C Oyy,, . x, ,)» have been defined. Set

I[€+1]:=C(I[€], be)lv(x,
If log- ord ( ¢+ 1]) = oo, set k = € and define Q to be the monomial ideal of Oy , that lifts the

1)
0

.....

..... Xe)p
If not, set by, := log ordp(I[€+ 1] € 1N>0, let xp,1 be a lift of X¢,; to Oy ,, where X, | is a

,,,,,

maximal contact element of I[{ + 1] at p, and proceed to the (£ + 1) inductive step.
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Remark 4.2. The invariant inv satisfies the following properties:
(i) Both inv,(I) and the monomial ideal Q are well defined, i.e. independent of the choice of
(x1,%7,...,x¢); see [Que20, Lemma 6.1].

(i) invp(I ) is upper semi-continuous on Y; see [Que20, Lemma 6.3(ii)].

(iii) If f: Y — Y is a logarithmically smooth morphism between strict toroidal k-schemes and f maps
peY tope, then invy 5f~ 1. 03) = inv,(I); see [Que20, Lemma 6.3(iii)]. If f is moreover
surjective, then maxinv(f~ 1[ O%) = maxinv(I).

(iv) Finally, if V(I) inherits its logarithmic structure from Y, then V(I) is smooth and toroidal at p if and
only if inv,(I) = (1,1,...,1) of length equal to the height of I,,; see [ATW20b, Lemma 5.1.2].

4.112. Local description of associated center.— Let p € Y be such that inv,(I) = maxinv(I), and let
(x1,%2,...,xk), (b1, by,..., by), (a1,a,...,a;) and Q be associated to (I, p) as in Section 4.1.10(a)-(c).
Then the center associated to I at p is the following integrally closed (IN-graded) Rees algebra:

F(Lp)e:= (x‘lll,x;Q,...,ka,Ql/d) C Oy plt],

where
k

di=| [@i-1r (=1itk=0)

i=1
and by convention, x;l' :=1if k=1 and a; = 0. Writing each a; = ﬁ for u;,v; €N, (x‘lﬁ,xgz,...,xzk,Ql/d)
refers to the integral closure in Oy ,[t] of the Oy ,-subalgebra generated by {x { ~tVi: 1 <i <k} and
Q-t?:={a-t?: a € Q). This definition is independent of the choices of u; and v; since we are passing to
the integral closure in Oy ,[t].

4.113. Convention.— The notation above follows [Que20, Notation 2.12]. For the remainder of this paper,
we will adopt the notation therein without further mention. Namely, if /], C Oy [t] is an integrally closed
(IN-graded) Rees algebra on a scheme Y and g = 2 € Q, (for u,v € N,), then Jd is the integral closure in
Oy|t] of the Rees algebra Jr,e/y7 = @me]N Jrumpwy - t"; i.e. the v Veronese subalgebra of Jdis ]u, Explicitly,

if J, = (gfl,ggz,...,g]fk) C Oy|t] for global sections g; of @y and a; € Qs, then J{ is (gflq,g . ,glfkq).

4114, — The d™ Veronese subalgebra #(I,p)y, is generated in degree 1. For later purposes, we set

J(I,p):= #(I,p)s = the integral closure of (xl d,xgzd, X de,Q)

Remark 4.3. The object #(I,p), does not depend on the choice of sequence of ordinary parameters
(x1,X,...,Xx) associated to I at p and is I,-admissible - that is, it contains the Rees algebra of I,,. In fact, a
“unique admissibility property” holds for #(1,p),. For details, see [Que20, Theorem 6.5].

4.115. Associated center.— By [Que20, Theorem 6.9], there is an (IN-graded) Rees algebra _#(I), C Oy |t]
on Y such that for every p € Y, we have

FZ(Lp)e if inv,(I) = maxinv(I),
Oy plt] if inv,(I) <maxinv(I).

(7 (1)), ={

We call ¢ (I), the center associated to I. Then:

(i) Z I)e is I-admissible; i.e. it contains the Rees algebra of I.
(ii) Setting d := ]_[5.(:1 (b; —1)! as in Section 4.1.12, the d'" Veronese subalgebra F(I)4, is generated in
degree 1. For later purposes, we set



Logarithmic resolution via multi-weighted blow-ups 33

(iii) Finally, if f: Y 5> Yisa logarithmically smooth, surjective morphism between strict toroidal
Ik-schemes, then /(f_ll < O%)e = F (I)e; see [Que20, Lemma 6.12].

4.1.16. Associated reduced center.— Let (a1,a,,...,a;) and d be as in Section 4.1.12. Setting
{:=lem(a;d: 1 <i<k) ((=1ifk=0),
the reduced center associated to I is
J(Da =11 = 7Y
For p € Y such that inv,(I) = maxinv(I), the stalk of J(I), at p is

I =T (Lp) Y = 7 (Lp)d = (12, Q1Y)

where (x1,x,...,x;) and Q are associated to (I, p) as in Section 4.1.10(a)-(c), w; := ﬁ for 1 <i <k, and
ged(w;: 1 <i<k)=1; see [Que20, Definition 3.4].

4.2. Multi-weighted blow-up along the associated center

In this section let Y be as in Section 4.1, and in addition assume Y is smooth over k. Motivated by
Section 3.2, we make the following definition.

Definition 4.4. The multi-weighted blow-up Bl;1)Y of Y along](I), is the composition

@f(1)q
T(]([)Z %1](1) Y — E[I(I)- Y — Y,

where
. DJ(s
By, Y= Zroj (1)) = [Specy (1(1)e) NV (J().) / Gp] —> ¥
is the weighted toroidal blow-up of Y along J(I),, see [Que20, Section 4] and
CZ %1]([) Y — E[l(l)- Y

is the canonical smooth, toroidal Artin stack, in the sense of Section 3.1.3 (i.e. [Satl3, Section 3]), over the
toroidal Deligne-Mumford stack By, Y.

Remark 4.5. Since @j(p), is an isomorphism away from the closed locus of points p € Y such that inv,(I) =
maxinv([), the same holds for 7t y).

While Bl ), Y is a global quotient stack, we warn that %)Y is typically not. Nevertheless, Z1;;)Y is
locally a quotient stack; see Sections 4.2.1 and 4.2.2 below.

4.2.1. Local description of the multi-weighted blow-up in Definition 4.4.— Fix p € Y such that
inv,(I) = maxinv(I). Extend a sequence of ordinary parameters (x1,Xx,...,Xx) associated to I at p (see
Section 4.1.10) to a system of ordinary coordinates (xq,X5,...,X,_,) at p (with n—r > k) and a system of
mononial parameters (x,_,.,...,X,) at p (see Section 4.1.3). This local system of logarithmic coordinates at
p then induces an étale, strict morphism

_ . n;r
X=(X1,X0 s Xpyepy Xpy_p1re-rXy) s U— A

for some Zariski open U containing p such that the stalk J(I, p), extends over U to J(I),|yy. Write

J(I, p) = integral closure of (xilld,...,x;z"d,Q);

1/ 1/ 1/
J(Lp)a = (", ™, QM)
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as in Sections 4.1.14 and 4.1.16, and set

j:=J(I,p) N Opnr = integral closure of (x;lld, ,x;zkd,a)

. Vw, 1/ Vwe _1/¢
i,==1(Lpe N Opnmr[t] = ( Y x, wz,...,xk vk gl ),

where a:= QnNklx,_,.;,...,x,] is a monomial ideal on A’" that generates Q. Moreover, ] =j/¢ with
¢ =1lcm(a;d: 1 <i <k) (— 1 if k = 0); see Section 3.2. Then we have the commutative dlagram with
Cartesian squares

étale, strict

Bl U —0 Bl A

l |

(41) B[] U étale, strict B[ AT

(1)
l@ﬂn. imi.

U = > AT

Let us explicate the diagram. Firstly, since xj, =] (I)e, we have
B[l(l)O U=U X pmr B[] A",

Next, by Proposition 3.14, %1; A™" is the canonical smooth, toroidal Artin stack over B[; A™'. Therefore,
by Remark 3.7, 7

@1] U= E[} U Xblj AT %11 A",

Finally, we make a few remarks:

(i) Since #1; A™" — Bl; A’ is logarithmically smooth, birational, universally closed, surjective, and
small (see Remark 3. 16) so is Bl U — Bly(p),

(ii) Since T, is birational, surjective, and umversally closed (see Remark 2.6), so is 7(z).

(iii) If k =0, ‘then @j(1), is logarithmically smooth, see [Que20, Section 4], and thus by (i), so is 77(;). This
is not true if k > 1.

(iv) On the other hand, if Q = 0, then Blj;), U is already smooth and %11y U = Blj(j), U (see beginning
of the proof of Proposition 3.14).

(v) $ly1)U admits a good moduli space, and it coincides with the coarse moduli space of Bl;), U,
which is equal to the schematic blow-up Bl U. Indeed,

BII(I), U= Bl]([) U XBIjA” B[L A"
because the bottom square of (4.1) is Cartesian. Thus,
%1]([) U= Bl]([) U XBliA” %11 A"

Since BL; A" is the good moduli space of %1; A" (see Remark 3.16), it follows from [Alpl3, Proposition
4.7(1)] that Bly) U is the good moduli space of #l;;) U

Remark 4.6. Because of Remark 4.5, the remarks in Section 4.2.1(i)-(v) globalize immediately. For example,
(v) implies that %1y Y admits a good moduli space, and it coincides with the coarse moduli space Blj) Y
of Bly(p), Y; see [Alpl3, Proposition 4.7(ii)].
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4.2.2. Local description via multi-graded Rees algebras.— Let p € U C Y be as in (41). As in
Section 2.4.1, one may express %1y U as

[Spch (,@.U) N V(]):j) / qu(i)],

where 22U is the ZE()-graded Rees algebra

x; - ]_[ tp‘” 1<i<n

P€E(j)

ﬁU[t‘l p € E(j ] C ﬁu[ti PEE()]

and the G, F1) action is induced by the ZE()-grading on 2. As in (2.6), we set x/ := x; - [Tpek() t;p'i for
1<i<nand xp = tp1 for p € E(j). Moreover, if Q # 0, the morphism

Bl U = [spch (@) V(J5,) / GE}”]

l

Bl, U = [Specy (J(D) NV (1)) / G

is then induced by

’ 7 \Yo,i

P€E(j)
p€E~(j) ]_[peE (x) ifk>1;

see (3.7) and (3.10).

We next turn our attention to the various transforms of I under the multi-weighted blow-up of Y along
J(I)e. We first recall the following.

4.2.3. — Let d and ¢ be as in Section 4.2.1. By [Que20, Proposition 4.4],

(4.3) @Z&)_I - Owyy v = 1 (t~1)/d

for some ideal I on Blyp), Y since J(I N = J(I)(¢/dye is precisely #Z(I),, which is [-admissible (see
Section 4.1.15). Moreover, by [QueQO Theorem 6.5(i)], I is the weak transform of I under @j(y),: Bly(p),

Y, see [Que20, Definition 4.5]; i.e. this is tantamount to saying I  (¢71).
Definition 4.7. Set 0 := O A, Y- We define the weak transform of I under 7ty(1): Bly)Y — Y as

(T(](I)): I:= C_II -0,

where I is the weak transform of I under @j(;), and C denotes the morphism %l;;)Y — Bly;), Y in
Definition 4.4. B )

The next proposition shows that Definition 4.7 agrees with Definition 2.18.

Proposition 4.8 (Local description of weak transform of I). Letp € U C Y beasin (41), and set 0 := Oy
Then the restriction of (151)); "I to Bl U equals

(o) [ ()™

peE*(j)



36 D. Abramovich and M. H. Quek

where for each p € E*(j), N, is the largest natural number n, such that the fractional ideal (7(}_(1)1 -0)- (xé)_”ﬂ
is an ideal on By U.

Proof of Proposition 4.8. If Q = 0, then By U = By, U, and there is nothing to show. Henceforth,
assume Q = 0. Let ZU be defined as in Section 4.2.2. Under the correspondence in Section 2.4.2, 744
corresponds to a tuple YV := ()/[P]: p € E(j)) of #E(j) idealistic exponents over U, where each y[p] is the
idealistic exponent over U associated to the following integrally closed, IN-graded Rees algebra on U:

1

el _ [, i, :
Re =|x;" rie[l,n], uy;=0);

see Section 2.4.3. For each i € [1, 1], we also set y[i] to be the idealistic exponent over U associated to the
ideal (x;) on U. Finally, y; denotes the idealistic exponent over U associated to I|;. Then we have the
following.

Proposition 4.9 (Local description of weak transform of I, explicated). With the above hypotheses and notation,
we have, for every p € E*(j),
Ny (j)
_ N
N, =K, = —7
where K, is the largest natural number k,, such that y; >k, - ylel Ifk > 1, this number is also equal to a; “Up
Jor every 1 <i <k.

Proof. The equality N, = K, can be shown by the same methods as in the proofs of Lemma 2.22 and

Proposition 2.24.

For the equality N, = M, we prove the cases k = 0 and k > 1 separately. If k = 0, we make the canonical
quality Ny d P P Y

identification E*(j) = E*(a); for every p in that set, note that N, (j) = N,(a). In this case, ] (I), is the integral
closure in Oy[t] of the Rees algebra of Q = .#y(I). By Proposition 2.14(ii),

i o= [ ()"

peE*(a)

Since Q D I, the left-hand side contains 7‘(1_(1).1 -0, so that N, > N, (a) for every p € E*(a). Conversely, by
7\N,
)e

the definition of Np, we have n;(ll).l -0 C npeE*(i) (xp

. Taking monomial saturation .y (—), we get

-1 _ -1 7 \Ne
nl(l).Q'ﬁ’_.///U(nl(I).I'ﬁ)c ]—[ (xp) .
pEE*(j)

where the equality follows from [ATW20a, Corollary 3.3.12] since 7ty 7) is logarithmically smooth if k = 0 (see
Section 4.2.1(iii)). That inclusion shows that N,(a) > N,, for every p € E*(a), as desired.

If k > 1, we show instead that K, = Nz(j). By [Que20, Lemma 3.7],

k,
K, = max {kp € Nyp: (%lp]) " s I—admissible}.

By Lemma 3.15, N,(j) = (a;d) - u,; for every 1 <i <k and u,; = 0 for all k <i <n—r. Therefore, we have

i 1
Np(j) d

Np(j) a
[pl) 4 a; _a a | 9 .
(%, = xll,xzzf--'ka’ X, in-r<is<mn, up,i:tO .
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Letting p — p be the one-to-one correspondence E*(j) = E*(a) in Remark 3.17, the same remark says that
Np(i)

(9?@) ’ is equal to

/=

Np(ﬂ)

a, _a, ag ug,i
XXy e X, X

X; tn—r<i<mn, upli:tO ,

and hence it contains ¢ (I,p), = (x?l,xgz,...,xzk, Ql/d), by Remark 2.26. Since the latter is I-admissible,

so is the former, whence K, > N%(J) On the other hand, a; =log-ord,,(I), whence [Que20, Corollary 4.10]

implies that for any k, > N;(I), (%’Lp])kp cannot be I-admissible, as desired. O

We return to the proof of Proposition 4.8. Applying {~'(=)- € to (4.3) and then applying (4.2), we obtain

Nel) ¢
-1 _ -1 y\"C 'ad
o= To) [ ] ()77
PEE*(j)
It remains to note that {711 & =: (n](l))jll and % . g = NPT(I) = N, for every p € E*(j). O

The next proposition shows that the equality in Definition 4.7 holds as well for proper transforms.
Proposition 4.10. Let I’ (resp. 1) denote the proper transform of I under 1y1): Blyp)Y — Y (resp.
@y(1),: Blyp), Y = Y). Then we have

r=¢'r.o,
where O := @%11“) y and C denotes the morphism Ply1)Y — Blyy), Y in Definition 4.4.
Proof. To see this, recall that V(I’) (resp. V(I')) is the smallest closed substack of Zl;)Y (resp. Bly (), Y)
containing V(TZ]_(I)I'ﬁ)\V(RI_(II)](I)-ﬁ) (resp. V(‘Dz(ll),l'ﬁbllu). Y)\V(‘DZ(II)'](I)'ﬁBlM. v))- The proposition

then follows from the following equalities:
-1 -1 _ -1
¢ (V(CDI(I).I $ Oy, Y)) - V(”](I)I ' ﬁ)’
-1 -1 -1
¢ (V(‘DN).](I) “Owyyg, Y)) =V (mm) (1) 0)
and the fact that C is closed (see Section 4.2.1(i)). O

We can finally deduce the following.

Theorem 4.11 (Invariant drops in a well-ordered set). Let I C Oy be a proper, nowhere zero ideal, and let I’ be
its proper transform under 7ty(y). Then

maxinv(l’) < maxinv((n](l))*_ll) < maxinv(I),

(Y)

<di ,! X
and all three maximum invariants are contained in the well-ordered set N, m ; see Section 4.1.9.

Proof. We adopt the notation in Definition 4.7 and Proposition 4.10. Since C is logarithmically smooth and
surjective (see Section 4.2.1(i)), we have

*

maxinv((n](l)) I) = maxinv(C‘ll . 6’) = maxinv(I) < maxinv(I),

where the middle equality is given by Remark 4.2(iii) and the strict inequality is given by [Que20, Theorem 7.2].
Recall from Section 4.1.10 that the lengths of maxinv(I) and maxinv(I) are bounded above by dim(Y) =
dim(Blj(;), Y), and hence so is the length of maxinv((n](l))jll). Moreover, since I’ D (7‘(](1)):11 (see
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Remark 2.19), we also have maxinv(I’) < maxinv((n](”):ll). Finally, the proposition together with
Remark 4.2(iii) imply that

maxinv (I’) = maxinV(C_ll' . ﬁ’) = maxinv(1’).

Since the length of maxinv(I’) is also bounded above by dim(Bl;), Y) = dim(Y) (see Section 4.1.10), so is
the length of maxinv(I’). - O

4.2.4. Functoriality.— Given a strict, smooth, and surjective morphism f from another smooth, strict
toroidal k-scheme Y to Y, we have Y xy Bl Y = Blys11.05) Y. Here, the fibre product is taken in the
category of fs logarithmic Artin stacks.

Indeed, since 7 (f~'1- O%)e=f~ L 7() o U7 (see Section 4.1.15), we have YXYB[] Y =Bl (r-11.0,), Y.

As a consequence,
?Xy @1]([) Y = (?XY B[ﬂ[). Y) XB[ZU). Y ,@1](1) Y
= E[ﬂf—l[.ﬁ?). XB[Z(U- Y %1](1) Y

Since #ly(1)Y is by definition the canonical smooth, toroidal Artin stack over Bl;(), Y, Remark 3.7 implies
that Y xy ABly1)Y is then the canonical smooth, toroidal Artin stack over Blj(-11.4,), Y and is therefore by

definition Blj(f-11.4,) Y.

4.3. Proofs of the main results

Before we prove the results in the introduction, the next remark is necessary; it will be implicit in the
proofs in this section.

Remark 4.12. Recall that inv,(I) and the formation of _#(I,p), (resp. maxinv(I), the formation of # (I
and the formation of %1y ), Y) are functorial with respect to strict, smooth (resp. strict, smooth, surjective)
morphisms of smooth, strict toroidal k-schemes (see Remarks 4.2 and 4.3, and Sections 4.1.15 and 4.2.4).
Thus, by descent, the discussions and constructions in Section 4.1 (resp. in Section 4.2) extend immediately
to the case where Y is a toroidal (resp. smooth, toroidal) Artin stack over k (see Section 1.1.1). Indeed, one
can work on an atlas Y| 3 Y; of Y by strict toroidal (resp. smooth, strict toroidal) k-schemes, where the
arrows are strict, smooth, and surjective.

Proof of Theorem B. We may assume X # 0 or Y. Let I be the underlying ideal of X CY. We set t: Y/ — Y
to be 7tj(1): Aly;)Y — Y. Then part (i) is immediate, part (ii) follows from Theorem 4.11, part (iii) follows
from Remark 4.5, and part (iv) follows from parts (ii) and (iv) of Section 4.2.1 (see Remark 4.6). Finally,
functoriality with respect to strict, smooth, and surjective morphisms of pairs follows from Section 4.2.4. [
Proof of Theorem A. We may assume that Y is a smooth, strict toroidal k- scheme and that X = (Z) or Y. We

define IT inductively. After the k™ step of the algorithm (i.e. we have defined Y T, Y4 SRR Yo=Y

with proper transforms X; C Y; of X), we undertake the following steps for the (k + 1) step:

(i) If maxinv(Xy C Yx) =(1,1,...,1) of some length c, we ¢laim that the locus Cj consisting of points
p € [Yx| such that inv,(Xy C Y;) = maxinv(Xy C Yi) = (1,1,...,1) (of length c) is both open and
closed in X} and hence is a smooth connected component of Xj. We admit this c/aim for now, and
postpone its proof.

If C; = X, we then stop at the k' step. If C; # X; and maxinv(X; \ C; € Vi) = (1,1,...,1) of
some length ¢’ > ¢, we repeat step (i) with X; C Yy replaced by Xy \ Ci C Y. Otherwise, we proceed
to step (ii) with X C Y} replaced by X; \ Cy C Y.

(i) If maxinv(Xy C Yi) = (1,1,...,1) of any length ¢, we apply Theorem B to Xj C Y}, which gives us
Tr1: Yee1 — Yk and a proper transform Xp 1 C Y1 of Xj which satisfies maxinv(Xy 1 C Yiyq) <
maxinv(X; C Yy).
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Under this procedure, observe that at every point p of X, the invariant of proper transforms X; C Y; at points
p’ above p must eventually drop to (1,1,...,1) of some length and, moreover, cannot drop to (0) without
first dropping to (1,1,...,1) of some length. This is because X is reduced and generically toroidal, and
therefore so are the proper transforms X; of X (see Remark 2.19). Since the lengths of these invariants are
bounded above by dim(Y)© (see the last statement in Theorem 4.11), this procedure eventually terminates to
the desired IT.

Finally, if f: Y — Y is a strict, smooth morphism of smooth, toroidal Artin stacks over k and the
logarithmic embedded resolution of X C Y is IT: Yy v, Yn_1 I, o Yy =Y, then it follows from
the functoriality in Theorem B that the logarithmic embedded resolution of X xy YcY agrees step-by-step
with the pull-back of IT along f: Y > Y:

Yy xyffﬂ) Yn_1 XY?&)...fl)y

after removing any f*7; which are empty blow-ups, which may occur whenever f is not surjective. i

Proof of the claim. We may assume that Y is a smooth, strict toroidal k-scheme. Let p € Cy, and let xq,...,x,
be ordinary parameters associated to I at p, which are defined on some open U C Y. Then ¢ (I,p), is
simply the Rees algebra associated to the ideal J(I,p) = (xy,...,x.), and we have
(@) I, C(xq,...,x.) (see Remark 4.3).
(b) By the description in Section 4.1.9, note that for p’ € |[U| N |X|, we have inv,/(I) = (ay,...,a,) <
maxinv(l) =(1,1,...,1) (of length c) if and only if

length ¢
—_—

inv,(I)=(1,1,...,1,ac41,...,a¢)  with £>c.

.....

Set U :=(UNXg)\V((x1,...,%.) : I). Then U’ is open in X}, contains the point p (by (a)), and is moreover
contained in Cy (by (b)). Since p € |Ci| was arbitrary, we conclude that Cy is open in Xj. But Cy is also
closed in X, by the upper semi-continuity of inv (Remark 4.2). O

Remark 4.13. Note that the proof of Theorem A simplifies if one assumes X C Y is of pure codimension c.
In that case, one iterates Theorem B till maxinv(X; C Y;) =(1,1,...,1) of length ¢, and the procedure
terminates. Indeed, Cy = Xj in (i) of the proof of Theorem A since they both contain the dense open X085
and are both of pure codimension c in Y.

Proof of Theorem C. We may assume that Y is a smooth, strict toroidal k-scheme. Note that I} = (xq) + I
and .@?1(11) = (1) with maximal contact element x, everywhere, so that I[2] = I;|y/(x,)=y = I. Thus, part (i)
follows by the definition of inv. For part (i), part(i) implies that there is a bijection

{peY: inv,(I) = maxinv(I)} = {p;eY;: inv,, (I1) = maxinv(l )}
which sends p to (p,0). Moreover, for any such p € Y, if
F(Lp = (225, x5k, QM)
J(I, p) = integral closure of (x;lld,xgzd,...,xzkd, Q)
as in Sections 4.1.12 and 4.1.14, then
S (I, (p,0), = (x0, 271, x5, QY4),
J (I, (p,0)) = integral closure of (xg,x;“d,xgzd,...,xzkd, Q).

©)1f Y is more generally an Artin stack, note that the lengths of these invariants are only bounded above by dim(Y) for any
atlas Y7 =3 Yy of Y by smooth, strict toroidal Ik-schemes.
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Thus, Corollary 3.18 implies that Y is canonically identified with the proper transform V(x;) of Y =
V(xg) C Yy in Y{. Moreover, if I’ (resp. I{) denotes the underlying ideal of X’ C Y’ (resp. X; C Y/), then
I} = (x))+ 1, s0 X" =X]. O

Proof of Theorem D. We embed X smooth locally in a smooth k-scheme Y in pure codimension and apply
Theorem A to the pair (X C Y), where X C Y are given the trivial logarithmic structures, to obtain a local
logarithmic resolution of X. It remains to show these local logarithmic resolutions of X are compatible, in
the sense that they do not depend on the choice of local embeddings, and that they glue.

For this, it suffices to show that given two closed embeddings of X into two smooth, pure-dimensional
Artin stacks Y; (i = 1,2) over k, the logarithmic resolutions of X obtained from .# (X C Y;) (i = 1,2)
coincide. Firstly, if dim(Y;) = dim(Y3), then the two closed embeddings X < Y; are smooth locally
isomorphic, so by the functoriality in Theorem A, the resulting logarithmic resolutions of X obtained from
Fler(X C Y;) coincide. In general, one reduces to the earlier case, by repeatedly applying Theorem C. [

5. Examples and further remarks

5.1. Examples
Throughout this section, we freely adopt the notation introduced in Section 3.2 and throughout Section 4.
Example 5.1. Let Y = A3%3 = Spec(IN® — k|x, 1z z]), and consider the following hypersurface:
X=V(I)=V(f)=V(+p’z+2’)CY.

Then maxinv(I) = (c0), and J(I) is the integral closure of .Zy (I) = (x?,y%z,2%). Let t: Y’ := BlnY =Y,
which was explicated in Example 2.11. By the equations therein, the total transform of I is

6.1) 'Oy = ubu? - (x +y%2 +2 g4)

proper transform I’

Finally, 2=1(I’) = (x"

, g %), which is the unit ideal on the x’-chart, v’z 'z’-chart, and z'u,-chart of Y.
Therefore, maxinv(I’)

4
= (1) < (c0) = maxinv(I), and we get logarithmic resolution of singularities in one

step.

The above is an example of a Newton non-degenerate polynomial; see [Kou76, Section 2]. We recall this
notion here. Let f =) ,pnCa-x* € k[xq,...,x,] be a non-constant polynomial such that f(0) = 0. For
every face 7 of the Newton polyhedron Py of the ideal (f) (see Definition 2.13), we set f; :=} jenung Ca - X%
We say f is Newton non-degenerate if for every facel’) 7 of Ps, V(f;) C A" is non-singular in the torus
G, ¢ A". This condition guarantees that the singularity theory of V(f) C A" is, to a certain extent,
governed by its Newton polyhedron. Indeed, Example 5.1 is manifested by a general phenomenon that was
earlier observed in [BN20, Proposition 8.31].¢%)

Theorem 5.2. Let f € k[xy,...,x,]| be a Newton non-degenerate polynomial, and assume x; does not divide
f for every 1 <i < n. Then the multi-weighted blow-up of A" along the monomial saturation as) of (f)
(see Definition 2.13) is a logarithmic embedded resolution of singularities for V(f) c A" = Spec(N" —
Klx, ., ])

In other words, our logarithmic embedded resolution algorithm in Theorem A, applied to the pair V(f) C A™" =
Spec(N" — Kk(x,,...,x,]), terminates after one step.

(")This includes Pf, the n-dimensional face of itself.
(B)we thank Johannes Nicaise for bringing this to our attention.



Logarithmic resolution via multi-weighted blow-ups 41

We remark that we impose the condition that x; does not divide f for every 1 <i < n, so that V(f) c A"
is generically toroidal and hence satisfies the hypotheses of Theorem A. The same proof below, with some
minor modifications, continues to work if one drops that condition.

Proof. Let a:= a(y), and 705: Bl A" = [Xf /G},i(a)] — A". Let ¢ be an arbitrary cone in fa, and let

o denote its image under the morphism f: Z*:(!)) — Z" which sends e, to u, for every p € X,(1) (see

Definition 2.5). By the definition of Y., there is a smallest cone o’ in X, such that o is a sub-cone of

o’. Let T be the face of P, = Py corresponding to o’ (see Section 2.L1). If O(c) denotes the Gi“(l)—orbit

of X5 corresponding to o, we claim the proper transform of V(f) € A" under 7 is non-singular on the

(Gi“(l) /Gi(a))—orbit [O(G)/G],i(a)] C [Xf /GI,;(J)] = Pl A". This claim proves the proposition since
Xfa = |_|EE§Cl O(0). We prove the claim in three steps.

5.1.1. Step 1.— Let U, denote the affine toric variety associated to the cone ¢ in /E\a- By (2.4) and (2.5),
D, (0):= [UG /GE}‘"’] C B, A" is

Opnlx),...,x)]|x): p € E(@)||(x})!
specy | il p Bl |
(xi -]_[peE(a)(xp) Texit1<i< n)
where
(5.2) X, = x, with o(1):={peX,(1): pCo}

peX,(1)No(1)

Next, by Lemma A.l, the assignment x), — 1 for every p € E(a) \ o(1) identifies D, (o) with

p

Opslx,.oxy][xp: p € E@ N o (1)][(x)) ]

(Xf Tlock@no(1) (Xé)up’i -

6.3) Specpn

E(a)na(1
/Gm(i)ﬂcr( )]’

xi:1<i<n)

where we redefine x/, as

x! = | | x;.

i€[1,n]\o(1)

51.2. Step 2.— Write f =) N Ca - X*. By Proposition 2.14(i), the total transform of f on (5.3) is

f= ]_[ (xé)Np(J)_ Z ca(x)2 ]_[ (x;))(a.up)—Np(a) .

peE(a)no(1) acN# peE(a)no(1)

proper transform f’

Let us record two essential observations about f”:

(i) If a € N" N 7, then for every p € 0(1), we have a € T C H, i.e. a-u, = Ny(a). In particular, if
p=1¢€[l,n]No(1l), we note separately that this means a; = 0.
(i) If a € IN" \ 7, there exists a p € 0(1) such that a € N" \ H, i.e. a-u, > Ny(a). This is because

T = Npeo'(1) Hp = Mpeo(1) Hp-
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5.1.3. Step 3.— Finally,

closed

[O(a) / GS}‘"’] —V(x): pea(1)) =25 D (o).

Combining the above with (5.3), we get the identification

(5.4) [O(o—)/ci‘“)] - [Spec(]k[(x;)i: ie[1,n]\o(l )]) / GE@no( ”].

Moreover, by Section 5.1.2(i)-(ii), the restriction of f” to (5.4) is
Z ca - (x))2
acN"Nt

Since the above expression matches that of f;, the claim follows. g

The next three examples (Examples 5.3, 5.4, 5.6) will revisit the same hypersurface X = V(I) = V(f) :=
V(x?+y?z+23) C A® from before, but we explore what happens if we vary the toroidal logarithmic structure
on A3,

Example 5.3. Consider Y = A%2 = Spec(N? — k[x,9,z]). Then we have maxinv(I) = (2,00) and
J(I) = (xz,y2g,g3). The multi-weighted blow-up 7t: Y’ := #l;;)Y — Y is schematically the same as the

one in Example 5.1, and we still have (5.1) (but x” is no longer underlined) and logarithmic resolution of
singularities in one step.

Example 5.4. Next, consider Y = A¥? (trivial logarithmic structure). Then maxinv(I) = (2,3,3), and
J(I)e = (x 173 9172 71/2) The multi-weighted blow-up 7t: Y’ := Bl Y — Y is the weighted blow-up of
Example 2.10. By the equations therein, the total transform of I is

ﬂill'ﬁyr 226-(x'2+y'zz'+z'3).

proper transform I’

We have 2=<(I’) = (x’,v’z’,v’> + 32’%,2’3), which is the unit ideal on the x’-chart, y’-chart, and z’-chart
of Y’. Thus, we have maxinv(I’) = (1) < (c0) = maxinv(I), i.e. logarithmic resolution of singularities in one
step.

Remark 5.5. Example 5.4 is also part of a more general phenomenon: namely, X = V(I) has a (3,2,2)-
weighted homogeneous isolated singularity at 0 € A3, and hence its singularities are resolved after the
(3,2,2)-weighted blow-up of A3 in 0. From the viewpoint of the monodromy conjecture of Denef-Loeser, see
[DL92], this resolution is “more minimal” than the one in Example 5.1 since it has one less exceptional
divisor, namely the one corresponding to the By -facet, see [LVP1l, Definition 3], of the Newton polyhedron
of (f). This begs the question of whether in general and to what extent Theorem 5.2 can be refined in this
direction. This is pursued in [Que24|.

Example 5.6. Finally, consider Y = A%! = Spec(IN — k[x,7,z]). Then maxinv(I) = (2,00) and J(I) =
(x%,z). Then 7t: Y’ := BlinY — Y is

ﬁA3[ ’Z E] ) .
[SpecAs ( -1, Zz 2 \V(,2) /G, | — A,
so the total transform of I under 7 is
w0y = (x +9°z +z'3g4)

proper transform I’
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Note that V(I’) C Y’ is non-singular in every chart except the z’-chart of Y’. Nevertheless, we have
maxinv(l’) = (2,2,00) < (2,00) = maxinv(I), and J(I) is the integral closure of (x’2,p2, u*). The composi-
tion 7' Y := Bl Y — Y’ SYis
Opsx”, v, 2,0, v]
S Z,u,v
[ pecps ( (uv —x, 902 -9, 2uv? —2)

and the total transform of I under 77’ is

7Oy = 2’226 . (x”2 +y’2g' + '31/4).

proper transform "

We have 251(1”) = (x”,y’g’,g’3g%), which is the unit ideal on every chart of Y”. Thus, maxinv(I”) = (1) <
(2,2,00) = maxinv(I’), and we get logarithmic resolution of singularities in two steps.

Remark 5.7. Note that the Newton polyhedron of the first center J(I) = (x2,z) C k[x,7,z] in Example 5.6
contains the B;-facet of the Newton polyhedron of (f). As mentioned in the preceding remark, By -facets
are known to be “problematic” from the viewpoint of the monodromy conjecture; see [LVP11]. Indeed, we

saw above that the first multi-weighted blow-up in Example 5.6 did not completely resolve the singularities
of X=V(I)CY.

5.2. Reduction of stabilizers and destackification

In this section we sketch how one can refine Theorem D further to obtain a smooth k-scheme at the
end, instead of a smooth Artin stack over k. The first ingredient is a special case of Edidin-Rydh’s [ER21,
Theorem 2.11]. For the definitions of saturated blow-ups and strong morphisms, see [ER21, Definition 3.2]
and [ER21, Definition 6.8].

Theorem 5.8 (Reduction of stabilizers: Smooth, toroidal case). Let X be a smooth Artin stack over k that

admits a good moduli space X, has affine diagonal, and has no generic stackiness. Let E C X be a snc divisor. Then
¢N ¢N71 4)1

there exists a canonical sequence of saturated blow-ups of Artin stacks D: Xy — Xy_1 — - — Xg =X
along smooth, closed substacks C; C X;, together with snc divisors E; C X; with Eq = E, such that the following
hold:

(i) Each X; is a smooth Artin stack over k admitting a good moduli space X; i, X;.
(ii) Each |C;| is the locus in X; of points of maximum dimensional stabilizer.
(iii) Each ¢; restricts to an isomorphism X; \ (j)lfl(Ci_l) S XN (p;_ll((pi_l(Ci_l)).
(iv) Each E; is the inverse image of C;_1 UE;_1 under ¢;.
(v) The maximum dimension of the stabilizers of points of X; is strictly smaller than that of the stabilizers of
points of X;_;.
(vi) The final stack Xy has finite inertia, with coarse moduli space Xy o, Xy-
vii) Each Q; induces a schematic blow-up of good moduli spaces X; — X;_1, which is an isomorphism over
ii) Each d h blow-up of good moduli spaces X; — X hich ph
Xi-1 N @i1(Cizq).
The sequence © does not depend on E. This procedure, denoted by F..s: X — Xy, is functorial with respect to
strong morphisms.

The second ingredient is due to Bergh-Rydh; see [BR19, Theorem BJ. For the definition of stacky blow-ups,
see [BR19, Section 3.5; in particular, Remark 3.7].

Theorem 5.9 (Destackification). Let X be a smooth Artin stack over k with finite inertia, and let E C X be a

snc divisor. Then there exists a sequence of stacky blow-ups WV : Xy BAR XN-1 SASRNLIR Xo =X along smooth

weighted centers (Z;,1;), together with snc divisors E; C X;, such that the following hold:
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(i) Each X; is a smooth Artin stack over k, admitting a coarse moduli space X; *, X;.

(ii) Each E; is the inverse image of Z; 1 U E; under ;.

(iii) If Eny C Xy denotes the coarse moduli space of Exy C Xy, then Ey is a snc divisor on Xy .

(iv) Each v; induces a schematic blow-up of coarse moduli spaces X; — X;_1, which is an isomorphism over
Xi-1 N @i1(Zio).

(v) The final stack Xy admits a rigidification Xy — (XN )rig Such that the canonical morphism (Xy):ig —
Xy is an iterated root stack in Ey.

This procedure, denoted by 7 gestack: (X, E) — (XN, EN), is functorial with respect to smooth morphisms of pairs
that are either stabilizer-preserving or tame gerbes.

Applying the above procedures after Theorem D, we recover Hironaka’s celebrated theorem in [Hir64].

Theorem 5.10 (“Coarse” logarithmic resolution). Given a reduced, pure-dimensional scheme X of finite type over
Lk, there exists a birational and projective morphism I1: X" — X such that:

(i) X’ is a smooth Kk-scheme;
(ii) IT is an isomorphism over the smooth locus X°™ of X;
(iii) TT-H(X \ X°™) is a snc divisor on X'

This procedure, denoted by F.: X v X', is functorial with respect to smooth morphisms.

5.3. Remarks on hypotheses

We first revisit the hypothesis in Theorem A that “X is reduced and generically toroidal”. We remark that:

(i) the first condition can be discarded by applying the procedure for X,.4 to X, and replacing Xy in
part (i) of Theorem A with (Xy )red;

(ii) one however cannot do without the second condition, or else the final smooth stack Xy is not
toroidal.

In spite of (ii), a mindless iteration of Theorem 4.11 yields the following in general.

Theorem 5.11 (Logarithmic principalization). Given a closed substack X of a smooth, (strict) toroidal Artin stack
Y overk, there exists a canonical sequence of multi-weighted blow-ups I1: Yy I, Yn_1 KiLE NN Yo=Y,

together with proper transforms X; C'Y; of X, such that the following hold:

(i) Each Y; is a smooth, (strict) toroidal Artin stack over k.
(ii) For each 1 <i < N, maxinv(X; C Y;) < maxinv(X;_; C Y;_1). Moreover, maxinv(Xy C Yy) = (0);
ie. XN = (D
(iii) TI-Y(X) is @ snc divisor on Yy.
(iv) Each 7t; is birational, surjective, universally closed, and factors asY; > Y; — Y;_1, where Y; > Y; isa
good moduli space relative to Y;_1, Y; is normal, and Y; — Y;_q is a schematic blow-up (whence birational
and projective).

Moreover, I1 is functorial with respect to logarithmically smooth morphisms of such pairs X C'Y (whether or not
surjective).

Finally, as pointed out in [ATW24, Section 8.1], the hypothesis in Theorem D that “X is pure-dimensional”
can of course be dropped; i.e. one can definitely reduce the general case to that special case, although
functoriality is not a priori granted. We refrain from discussing this here because the methods are standard.
We however emphasize that we do not assume in Theorem A that X or Y is pure-dimensional or that X C Y
is of pure codimension.
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5.4. Remarks on functoriality

One can ask if functoriality in the procedure of Theorem B holds more generally for a logarithmically
smooth, surjective morphism f: Y — Y of smooth, toroidal Artin stacks over k. Let I C &y denote the
ideal of X C Y. If f happens to be strict (and hence smooth), we saw in Section 4.2.4 that functoriality would
then follow from

(i) functoriality of the associated center ¢ (I), with respect to a logarithmically smooth, surjective
morphisms f: Y — Y (see Section 4.1.15),

(ii) and functoriality of Satriano’s construction (i.e. the formation of the canonical smooth, toroidal Artin
stack over a toroidal Artin stack) with respect to strict morphisms of toroidal Artin stacks f: E -
(see Remark 3.7), e.g. the morphism Bly(-11.4y), Y=Y xy Blyp), Y — Bly), Y obtained from f by
pull-back.

However, the next example demonstrates that Satriano’s construction is not necessarily functorial with
respect to logarithmically smooth but non-strict morphisms, and hence the answer to the earlier question is
no.

Example 5.12. Let I" denote the sub-monoid in IN® generated by (1,0,0), (0,1,0), (1,0,1), and (0,1, 1).
Let 1) denote the toric k-variety Spec(I" <> k[T']). The dual cone C(I')" of C(T') has extremal rays e, e,,
e3, and e; + e, —e3. Thus, the monoid homomorphism /: ' — IN#, which maps every a = (aj,ap,az) €l to
(aj,ap,az,a; +a, —ajz), then induces the canonical smooth, toroidal Artin stack over Y:

Y = [Spec (IN4 > ]k[INﬂ) / D(Coker(zgp))] — 1.

Next, consider the diagrams

ALL Py N < IN%
9 H | "
D=att Ly N 2,

where:
(i) Ab!:=Spec(IN < k[IN]);
(i) £: A — 1 is induced by the monoid homomorphism ¢: I' — IN which maps a = (aj,a,,a3) €T to
aj +ap; i.e. maps each generator of I' to 1;
(iii) and the vertical arrows are formations of smooth, toroidal Artin stacks over the respective toric
Ik-schemes.

Here, there are two toric morphisms AV — % that could fill the dotted arrow in (5.5)! They are induced by
(a) N i IN“, which maps v = (Vi)?:1 eIN* to v; + vy,
v
(b) N <~ IN*, which maps v = (Vi)?:1 e IN* to v3 +vy.
Nevertheless, we can still show the following.

Lemma 5.13. The procedure of Theorem B (and hence of Theorem A) is functorial with respect to logarithmically
smooth, equidimensional morphisms of smooth, toroidal Artin stacks over k.

Proof. As noted earlier, it remains to show that Satriano’s construction is functorial with respect to log-
arithmically smooth, equidimensional morphisms f: 1) — 1) of toroidal Artin stacks over k. Let us first

consider the local setting where 1) = Spec(Q < k[Q]), U = Spec(P < k[P]), and f is induced by a monoid
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homomorphism @: P — Q. Consider the diagrams

@ Ay oy NSe ¢.3%.. INSp
(5.6) l l ‘Q/J\ ]\lP
DL, Q<+ —p,

where:

(i) the vertical arrows are formations of smooth, toroidal Artin stacks % and ¥ over the respective strict
toroidal k-schemes 5 and 1);
(ii) Sp (resp. S) is the set of extremal rays of C(P)" (resp. C(Q)");
(iii) and p (resp. p) is the morphism that maps every a € P (resp. a € Q) to Zpesp (a-u,)-e, (resp.
Yoes, (a-ug)-eg).
We now claim that there is one and only one toric morphism Y - filling the dotted arrow in (5.6).
Indeed, a monoid homomorphism v = (cg,p)pes,, oes o INS» — INSe fills up the dotted arrow in (5.6) if and
only if
@Y (ug) = Z cg,pup forevery 0 € Sp,
PESP
where ¢V: C(Q)Y — C(P)Y is the dual morphism to ¢: C(P) — C(Q). In light of this observation, it
suffices to show that if f is equidimensional, then for every 0 € S, there is one and only one way of
expressing ¢ (ug) as an IN-linear combination of the vectors u, for p € Sp. This is a mere consequence
of [AK94, Lemma 4.1]: if f is equidimensional, the image of every extremal ray in C(Q)" under ¢" is an
extremal ray in C(P)".
Finally, using Kato’s criterion for logarithmic smoothness, see [Kat94, Section 8], the above argument can
be patched up to settle the case where D and 1) are any strict toroidal k-schemes. From this and Remark 3.7,
the lemma can be deduced in the general case where B and 1) are toroidal Artin stacks. O

Remark 5.14. Note that unless D) — 1 is strict (see Remark 3.7), the induced morphism % — EXU % is
typically not an isomorphism. This already happens when U is a simplicial toric variety and E is not.
Instead, the above morphism exhibits % as Satriano’s construction applied to the fibre product Exu % in
the category of fs logarithmic Artin stacks.

Appendix. A lemma on quotient stacks

Lemma A.l (= [QR22, Lemma 1.3.1]). Let A be a finitely generated abelian group, with corresponding diagonal-
izable algebraic group D(A). Let R = @aeA R, be an A-graded algebra, and let r € R be a homogeneous element
of degreea € A. Then R/(r — 1) is an A/{a)-graded algebra, and the A/{a)-graded homomorphism R — R/(r — 1)

induces a morphism of algebraic stacks
[(Spec(R/(r—1)) / D (A/{a))] = [Spec(R) / D(A)].
This is an isomorphism if r is invertible and a has infinite order.

Note that as A-graded modules R ~ R/(r — 1)[r,7~!], but the algebra structures do not coincide. Similarly,
R/(r—1) = @[Q]EA/@ R, but only as A/{a)-graded modules.

Proof. We need to prove that the natural D(A)-equivariant map
Spec (R/(r—1)) xPAW®) D(A) — Spec(R)

is an isomorphism. Let us elaborate on the left-hand side. We have two commuting actions on

Spec(R/(r — 1)) x D(A) = Spec(R/(r — 1)[v2]) := Spec(R/(r — 1)[v*: a € A)):
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(i) the diagonal D(A/{a))-action, given by (v,t)-s = (ys,s~'t), where in the first factor the action
corresponds to the induced A/{a)-grading on R/(r — 1), and
(ii) the D(A)-action on the second factor given by (v,t)-s = (y,ts).

The D(A/{a))-action is free with quotient Spec(R/(r — 1)) xPA/(@) D(A) = Spec(R°), where R° is the
degree 0 part of R/(r — 1)[v?] with the A/{a)-grading. The D(A)-action endows R° with the following
A-grading:

R® = @(R/(r—l))[a]v“.

acA

The natural A-graded algebra homomorphism R — R° is thus an isomorphism. O
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