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Abstract
We show how the notion of fantastacks can be used to effectively desingularize binomial vari-
eties defined over algebraically closed fields. In contrast to a desingularization via blow-ups
in smooth centers, we drastically reduce the number of steps and the number of charts appear-
ing along the process. Furthermore, we discuss how our considerations extend to a partial
simultaneous normal crossings desingularization of finitely many binomial hypersurfaces.
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1 Introduction

Motivated by recent works with focus on stacks in the service of resolution of singularities
over fields of characteristic zero [1–4, 27, 28], we investigate the case of binomials defined
over algebraically closed fields of arbitrary characteristic from the perspective of stacks, and
with a view towards efficient computations of resolutions and of p-adic andmotivic integrals.
Classical resolution approaches are discussed in the recent [13].

We work over an algebraically closed field K so as to keep technicalities at a minimum.

1.1 Key ingredient: fantastacks

Building on the results of [18, 19, 31], the key new ingredient for our approach is the notion of
fantastacks by Geraschenko and Satriano [15], which are examples of toric Artin stacks, and
a birational reinterpretation of the toric Cox construction. Up to isomorphism, a fantastack
F!,β can be constructed from a fan! on the lattice N ! Zm and a homomorphism of lattices
β : Zn → N with certain properties. For a more detailed discussion of fantastacks we refer
to Sect. 2.

1.2 Setup: binomials in toric varieties

A binomial in affine space Spec K [x1, . . . , xm] always has the form

f = xC1
1 . . . xCm

m

(
x A1
1 . . . x Ar

r − λyB11 · · · yBss

)
, (1.1)

where {x1, . . . , xr } and {y1, . . . , ys} are disjoint subsets of {x1, . . . xm} and λ ∈ K×. The
monomial factor xC1

1 . . . xCm
m will be of secondary interest and the purely binomial factor

x A1
1 . . . x Ar

r − λyB11 . . . yBss is the main factor to be addressed.
Note that the purely binomial factor is nonreduced if and only if Ai , Bi are all divisible

by the characteristic of K , as K is assumed algebraically closed.
In Sect. 3.1 we extend the notion of binomials from affine space to the generality of smooth

toric varieties and stacks.
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Tevelev [32, Definition 1.3] defined schön subvarieties of toric varieties, which we do
not reproduce here, as our special situation is simpler. In Sect. 3.2 we specialize to the case
of binomials, in the generality of toric stacks. Our usage is slightly relaxed since we allow
monomial factors: in affine charts, a binomial (1.1) is schön if either all Ai = 0 or all Bj = 0.

1.3 Arrangements of binomials and binomial subschemes

Given a finite collection of binomials, locally represented by f1, . . . , fa , they together define
an arrangement of subschemes as the zero-set X := V ( f1 · · · fa) of their product. The
arrangement is said to be schön if each fi is schön.

If all fi are schön pure binomials, the binomial ideal I = 〈 f1, . . . , fa〉 they generate
defines a schön subscheme in the sense of [32, Definition 1.3]. The situation is a bit more
involved when the monomial factors are not trivial, see Sect. 6.

1.4 Simple arrangements and problematic primes

In Sect. 3.3 we recall the notion of a simple arrangement of smooth subschemes, and upgrade
it to stacks.

In characteristic 0, a schön arrangement of binomials on a toric stack is automatically
a simple arrangement. This is not the case in positive characteristic, a phenomenon also
described in Sect. 3.3, Observation 3.3— there is a finite set of prime characteristics E , com-
putable from the collection of exponents of the binomials fi , outside of which the binomials
form a simple arrangement.

1.5 Subdivisions andmodifications associated to binomials

Consider again a binomial (1.1) in affine space. The Newton polyhedron of f defines a
singular subdivision ! f of the fan !0 of affine space, and a corresponding singular toric
modification of affine space. It is shown in [18], [19, Section 3], [31, Section 6] that any
smooth subdivision ! of ! f results in a resolution of { f = 0}; however such a smooth
subdivision is typically computationally expensive. Our goal here is precisely to avoid such
subdivision.

Similarly, for a collection f1, . . . , fa∈ K [x1, . . . , xm] of binomials we obtain a subdivi-
sion of !0 into a fan ! f of at most 2a cones with <

(m+a
m−1

)
edges, independently of the

exponents and coefficients of fi — it is the subdivision dual to the Newton polyhedron of
the product f1 · · · fa . By the above references any smooth subdivision of ! f resolves all the
f j . Here we provide a stack-theoretic resolution requiring no subdivision of ! f at all.

1.6 Main result on arrangements of binomials

Our main point is that the fantastack associated to the fan ! f , or any subdivision ! thereof,
gives such a simultaneous resolution of fi immediately.

Theorem A (See Theorem 5.4) Let K be an algebraically closed field of arbitrary charac-
teristic p ≥ 0. Let f1, . . . , fa ∈ K [x] = K [x1, . . . , xm] be finitely many binomials, where
a,m ∈ Z+ with m ≥ 2. Let E ⊂ Z be the set of problematic primes associated to the
exponents of the pure binomial factors of f1, . . . , fa .
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Let ! be any subdivision of the dual fan ! f of the Newton polyhedron of the product
f1 · · · fa , inducing the morphism of smooth toric stacks ρ : F!,β → Am, and let X :=
V ( f1 · · · fa) ⊂ Am.

Then the reduced preimage ρ−1(X)red ⊂ F!,β is a schön arrangement of smooth bino-
mials.

If furthermore p /∈ E , then ρ−1(X)red induces a simple arrangement on F!,β .

1.7 Remarks

(1) Themain reason for our restriction to algebraically closed fields is that, as far as we know,
there exists no detailed reference on the theory of fantastacks over an arbitrary base. Note
that the treatment of [15] applies in any characteristic, though the classification result,
not used here, is only stated in characteristic 0,1

(2) For a = 1, we obtain a desingularization of the binomial hypersurface defined by f1,
while for a = 2, assuming p /∈ E , Theorem A provides us with a simultaneous normal
crossings desingularization of the binomial hypersurfaces given by f1 and f2.

(3) Notice that the ambient space in TheoremA is an Artin stack and not a scheme. However,
any triangulation of its fan replaces it by a Deligne–Mumford stack; this is achieved,
without adding rays, using star subdivisions !′ → ! at all the rays of !. The resulting
stack F!′,β is a Deligne–Mumford open substack of F!,β , and requires no additional
computation.
We also note that any smooth subdivision provides a scheme where the result holds; this
recovers earlier known results, such as those of [18], but also loses the efficiency of the
current method.

(4) In general, when a ≥ 3 and p /∈ E , Theorem A does not give a simultaneous normal
crossings desingularization, as the resulting arrangement of hypersurfaces is not in nor-
mal crossings position in general, see Example 5.3. This scenario is present also in earlier
work which uses smooth blowup centers. To resolve a simple arrangement and make it
normal crossings one may use well–known procedures requiring at mostm blowups, see
[21, 26]. We recall this in Theorem 5.6.
The situation where p ∈ E is quite interesting. One expects to have an elegant procedure
for a simultaneous normal crossings desingularization. We do not pursue this question
here.

(5) While we do not give a detailed complexity analysis, we note that the geometric com-
plexity encoded in the number of cones of the fan, in particular the number of charts
and divisors, is bounded solely in terms of the ambient dimension and the number a of
binomials, and not depending on the exponent or coefficients of the generators. For future
discussion we will say that such process is of combinatorially bounded complexity.

1.8 Main result on binomial varieties

In the context of desingularization of binomial schemes using fantastacks, we prove the
following result. Following earlier sources, an ideal I ⊂ k[x1, . . . , xm] is binomial if it is
generated by binomials and a subscheme X ⊂ Am is binomial if its ideal is binomial. The
subscheme is purely binomial if it has no component or embedded component supported

1 According to [15, Remark 1.2] their restriction to algebraically closed fields is made in order to avoid
technicalities.
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on the boundary divisor V (x1 · · · xm). We denote by Xpure the purely binomial part of a
binomial subscheme X , namely the closure of its intersection with the torus.

Throughout the paper we denote the reduced scheme underlying a scheme X by Xred, and
call it the reduction of X for brevity.

For describing our result we introduce the following somewhat ad-hoc terminology: a
subscheme X of a smooth scheme V is said to be in simple normal position if the components
of its reduction Xred are smooth, and at any geometric point p of V there are local parameters
xi ∈ ÔV ,p such that Xred is defined by a monomial ideal in xi . This is the same as saying that,
in these coordinates, Xred is the union of coordinate subspaces, of arbitrary dimensions, not
necessarily meeting transversely. As an example, two or more coordinate lines L1, L2, . . .

in An, n ≥ 3, are in simple normal position even though they do not meet transversely. To
see the latter, observe that L1 + L2 is the origin, which is of codimension n < 2(n − 1). The
same phenomenon holds for coordinate subspaces of dimension < n/2.

Theorem B (See Theorem 6.1) Let K be an algebraically closed field and m ∈ Z≥2. Let
X ⊂ Am be a binomial subscheme. Denote by !0 the fan in Rm with unique maximal cone
Rm

≥0. Let f = { f1, . . . , fa} be binomial generators of IX . Let ! f denote again the dual fan
of the Newton polyhedron of f1 · · · fa , with resulting toric stack F! f ,β .

(1) (See [18, 19, 31]) The proper transform of Xpure in F! f ,β is a schön purely binomial
subscheme, in particular its reduction is smooth.

(2) There exists a further subdivision ! of !0, of combinatorially bounded complexity, with
the following property: If β : Zn → Zm is the homomorphism determined by the matrix
M ∈ Zm×n, whose columns are the primitive generators for the rays of the fan !, then

ρ−1(X)red ⊂ F!,β

is in simple normal position onF!,β , where we denote by ρ : F!,β → Am the morphism
of toric stacks induced by β.

Once again we note that in (2) the work of Li Li [26] allows for a further sequence, of at
most m blowups, such that the total transform of Xred is a simple normal crossings divisor.
We recall this in Proposition 6.2.

1.9 Prior work

Let us mention that there exist several results on the desingularization of toric and binomial
varieties, e.g., [5–7, 18, 23], where the assumptions slightly vary compared to those stated
here. In contrast to blow-ups in smooth centers, we need to apply the fantastack construction
only once in TheoremAand it is covered by atmost 2a affine chartswith<

(m+a
m−1

)
coordinates

in total. This number is significantly smaller than that obtained using blow-ups in smooth
centers once the exponents appearing in f1, . . . , fa are large (see Remark 5.5). The primary
reason is that we do not require a smooth subdivison of the dual fan.

1.10 Computational motivation

Besides our interest in the problem on its own, another motivation for this project is coming
from the explicit computation of p-adic integrals, whose data are given by binomials. For
example, the following task appears in the context of computing local subring zeta functions:
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determine the integral
∫

B
|x1|s−3

p |x2|s−2
p |x3|s−1

p dµ,

where

• |.|p is the p-adic absolute value on Zp; we denote the corresponding valuation vp(.);
• dµ is an additive Haar measure; and
• B ⊂ Z6

p is the subset determined by the inequalities

vp(x1) ≤ vp(x24 − x2x4), vp(x1) ≤ vp(x4x5 − x4x6),
vp(x2) ≤ vp(x26 ), vp(x1x2) ≤ vp(x2x25 − x4x26 ).

A possible approach to determine such an integral is to first perform blow-ups so that all
data appearing becomes monomial, and then to compute the monomial integrals in every
chart. Evidently, it is desirable to keep the number of final charts as small as possible in
this context. Notice that even though we are in the p-adic setting and not working over an
algebraically closed field, the techniques discussed in this article can be applied at least for
all but finitely many primes p, where the problematic set of primes depends on the precise
data given. For more details, we refer to Sect. 5.1.

If one follows the method of Theorem A, one has to be careful since the outcome is a toric
Artin stack and some extra work is required.

For algebraically closed fields of characteristic zero, Satriano and Usatine initiated an
investigation for a method to study stringy Hodge numbers of a singular variety usingmotivic
integration for Artin stacks in [29, 30]. To address p-adic integration, an analogous frame-
work for p-adic integration on Artin stacks needs to be developed. Alternatively, one could
efficiently replace the Artin stack by a Deligne–Mumford stack, as described in Remark
1.7(3) above, so that one could apply existing results on motivic [35, 36] as well as p-adic
integration [20, Section 2] for them.

Since our focus is on Theorems A and B, we do not go into further details here.

1.11 Summary

Let us briefly summarize the content of the paper. After recalling basics on fantastacks
(Sect. 2), we treat the case of a single binomial (Sect. 4). Then, we turn to the case of finitely
many binomials and how the techniques extend to give Theorem A (Sect. 5). Finally, we
prove Theorem B in full generality (Sect. 6).

2 Basics on fantastacks

Fantastacks are the key tool for our main theorem. Therefore, we begin by recalling their
definition following the work of Geraschenko and Satriano on toric stacks [15], where fan-
tastacks are discussed as first examples. For more details on the theory of toric stacks, we
also refer to [16]. Let us point out that there exist earlier works on the notion of toric stacks
by Lafforgue [25], Borisov, Chen, Smith [8], Fantechi, Mann, Nironi [12], and Tyomkin
[33], each of them focusing on different aspects. The introduction of [15] provides a brief
overview on them as well as a discussion how [15] unifies them. There is a related treatment
by Gillam and Molcho [17] which allows for Deligne–Mumford stacks which are not global
quotients but glued from such. We do not need this generality in this paper.
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Definition 2.1 ([15, Definition 1.1]) Let X be a normal toric variety with torus T0 and let
G be a subgroup of T0. The Artin stack [X/G] equipped with the action by the dense torus
T := T0/G is called a toric stack.

For a lattice L , we denote by L∗ = Homgp(L,Z) the dual of L as a finitely generated
abelian group. If β : L → N is a homomorphism of lattices, we denote by β∗ : N∗ → L∗

the corresponding dual.

Definition 2.2 ([15, Definitions 2.4 and 2.5])

(1) A stacky fan is a pair (!,β) consisting of a fan! on a lattice L as well as a homorphism
of lattices β : L → N such that β has a finite cokernel.

(2) Let (!,β) be a stacky fan. Let X! be the toric variety associated to! and let Tβ : TL →
TN be the homomorphism of tori induced by β∗ : N∗ → L∗. Set Gβ := ker(Tβ).
The toric stack X!,β associated to this data is defined as [X!/Gβ ], where its torus is
TN ∼= TL/Gβ .

As explained in [15, after Definition 2.5], one can construct to every toric stack [X/G] a
stacky fan (!,β) such thatX!,β = [X/G]. Moreover, after these explanations, Geraschenko
and Satriano give explicit examples of toric stacks. In particular, if ! is a fan on a lattice
N and if we choose L = N and β = idN , then X!,β = X! , where X! is the toric variety
associated to !, see [15, Example 2.6].

We denote by (e1, . . . , en) the standard basis of Zn .

Definition 2.3 ([15, Definition 4.1]) Let ! be a fan on a lattice N . Let β : Zn → N be a
homomorphism so that

• the cokernel of β is finite,
• every ray of ! contains some β(ei ), and
• every β(ei ) is contained in the support of !.

For a cone σ ∈ !, define σ̂ := cone({ei | β(ei ) ∈ σ }). Let !̂ be the fan on Zn generated by
all these σ̂ . Finally, one defines F!,β := X!̂,β . A toric stack which is isomorphic to some
F!,β , is called a fantastack.

By [15, Remark 4.2], one has

X!̂ = An\V (J!), where J! := 〈
∏

β(ei )/∈σ

xi | σ ∈ ! maximal cone 〉. (2.1)

In particular, X!̂ (and thus alsoF!,β = [X!̂/Gβ ]) is covered by the charts D+(
∏

β(ei )/∈σ xi ),
where σ runs through all maximal cones of !. Here, D+(h) := An\V (h) is the notation for
the standard open set.

Remark 2.4 In our setting, we will always have that N = Zm , the support of ! is equal to
Rm

≥0, n ≥ m, and β : Zn → Zm is determined by a matrix M ∈ Zm×n
≥0 of full rank m —

in fact it will be surjective on lattices. In particular, β induces a morphism of toric stacks
ρβ : F!,β → Am determined by the morphism of stacky fans represented by the diagram

! !0

Zn

β

β
Zm

id

Zm id Zm
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where !0 is the fan on Zm providing the toric variety Am . For more details on morphisms of
toric stacks and the connection to morphisms of stacky fans, we refer to [15, Section 3]. Let
us only mention that the rows of M determine ρβ on the level of rings.

For example, if M =
(
1 2 3
0 1 5

)
, then ρβ arises from the restriction to the open subset

A3\V (J!) (as in (2.1)) of the map A3 = Spec(K [z1, z2, z3]) → A2 = Spec(K [x1, x2]),
which is given by x1 = z1z22z

3
3, having exponents (1, 2, 3) and x2 = z2z53 having exponents

(0, 1, 5).

3 Binomial hypersurfaces: generalities

3.1 Setup: binomials in the torus and in affine space

We follow the notation and terminology of Sect. 1.2, in particular (1.1).
By restriction, the description (1.1) discussed above applies to any open subset U ⊂

Spec K [x1, . . . , xm].
Inside the maximal torus Spec K [x±1

1 , . . . , x±1
m ], a binomial is of the form

x A1
1 · · · x Ar

r y−B1
1 · · · y−Bs

s = λ,

a coset of the codimension-1 subgroup x A1
1 · · · x Ar

r y−B1
1 · · · y−Bs

s = 1. Its reduction is there-
fore always smooth, as K is assumed algebraically closed and hence there has to exist an
exponent in its equation which is not divisible by the characteristic of the ground field K .

3.2 Schön binomials and arrangements

A binomial in affine space is said to be schön if either all Ai = 0 or all Bj = 0. For a
pure binomial this is in agreement with [32, Definition 1.3] — note however that we impose
no condition on the monomial factor, as it is an arrangement of smooth toric divisors. This
means that the reduction of the purely binomial factor is smooth, and meets the toric divisor
transversally. We use this condition to define a schön binomial in a smooth toric variety or
stack:

Definition 3.1 A hypersurface on a smooth toric stack X is binomial if on each affine chart
it is given by an equation of the form (1.1).

Moreover, a binomial hypersurface is schön if such equations can further be chosen so
that either all Ai = 0 or all Bj = 0.

Note that being schön still means that the reduction of the purely binomial factor is smooth,
and meets the toric divisor transversally.

Again in the torus, a collection of binomials f1, . . . , fa thus defines an arrangement of
codimension-1 cosets as the zero-set X := V ( f1 · · · fa) of their product. Denote by I :=
〈 f1, . . . , fa〉 the ideal they generate and by V (I) the scheme it defines. The scheme V (I),
when nonempty, is itself a coset of a subgroup of the torus, of possibly higher codimension
— the intersection of the stabilizers of fi .

As we assume that the base field is algebraically closed, it follows that the reduction
W := V (I)red of such coset V (I) is again smooth:

First note thatW , as any variety over an algebraically closed field K , is generically smooth
over K . Let U ⊂ W be the maximal smooth open dense subset. We claim that U = W and
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argue by contradiction. Let x ∈ W\U and y ∈ U be closed points. Translation by y− x is an
automorphism of W , hence it must preserve U , but sends the singular point x to the smooth
point y, a contradiction.

In affine space, assume first that fi are pure binomials. Then the scheme X = V ( f1 · · · fa)
is an arrangement of schön subschemes in the sense of [32, Definition 1.3] if and only
if each binomial fi is schön. As above, we generalize this and say that an arrangement
X = V ( f1 · · · fa) of arbitrary binomials, not necessarily pure, on a smooth toric stack is
schön if each fi is schön.

If the binomials fi are schön and have trivial monomial factor, the binomial ideal I =
〈 f1, . . . , fa〉 they generate defines a schön subscheme in the sense of [32, Definition 1.3].
The situation is a bit more involved when the monomial factors are not trivial, see Sect. 6.

3.3 Simple arrangements and problematic primes

Definition 3.2 Given a smooth Artin stackA and a substack Y ⊆ A, we say that Y is a simple
arrangement on A, if the following conditions hold for the intersection lattice S = {Si }i∈I
of Y :

(1) Si is smooth and non-empty,
(2) Si and S j meet cleanly. This is defined to mean that their scheme-theoretic intersection

is smooth and their tangent spaces fulfill T (Si ) + T (S j ) = T (Si + S j ), and
(3) Si + S j = ∅ or Si + S j is a non-empty, disjoint union of elements S& ∈ S,

for every i, j ∈ I .

In characteristic 0, a schön arrangement of binomials on a toric stack is automatically a
simple arrangement. This is not the case in positive characteristic. The precise condition is
easily computed by taking derivatives:

Observation 3.3 As in [31, Section 6] it suffices to check that each Si is (absolutely) reduced.
Thus, consider a set of distinct binomials f1, . . . , fa , of the form f j =

∏m
i=1 x

Di j
i − λ j with

Di j ∈ Z, vanishing in codimension k. For the common vanishing locus to be smooth, the
matrix D̄i j ∈ Mm,a(Fp) obtained by reducing the integers Di j modulo p must be of rank
k. To see this, first note that the schön condition forces the variables xi that appear to be
nonzero, hence we may work in the torus. We need to compute the rank of the derivative
matrix with respect to all xi , and since the variables are invertible we may instead use the
logarithmic derivatives xi∂/∂xi . Note that xi∂ f j/∂xi = Di j

∏m
i=1 x

Di j
i . Factoring out the

invertible monomials, it remains to compute the rank of the matrix D̄i j as claimed. Putting
these conditions together, we require that for each subset { f j , j ∈ I } of the given binomials,
vanishing in codimension kI , the corresponding matrix (D̄i j )i∈{1,...,m}, j∈I ∈ Mm,|I |(Fp)

must be of rank kI .

Note that given an integer matrix D describing a collection of pure binomials in the torus,
there are only finitely many primes where the requisite minors det(D̄i j )i∈{1,...,m}, j∈I above
vanish. We denote this collection of problematic primes E . Thus the schön arrangement
defined by fi fails to be simple if and only if p ∈ E is problematic.
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3.4 Subdivisions andmodifications associated to binomials

Consider again a binomial f = xC1
1 · · · xCm

m

(
x A1
1 · · · x Ar

r − λyB11 · · · yBss

)
in affine space.

The fan !0 of affine space has a single maximal cone σ = Rm
≥0. We denote by (i the

coordinates in Rm corresponding to xi and ) j those corresponding to y j . The binomial thus
defines a hyperplane h f ((i , ) j ) = ∑

Ai(i − ∑
Bj) j = 0 which splits σ into a fan ! f

of two cones; note that the monomial factor xC1
1 · · · xCm

m does not affect this subdivision.
In modern terms, the hyperplane h f ((i , ) j ) is the tropicalization of the binomial f .2 As in
Sect. 1.5, any smooth subdivision of! f results in a resolution of { f = 0}, and here we avoid
these subdivisions using stacks.

A collection f1, . . . , fa of binomials provides a collection of hyperplanes h f j = 0.
Inductively, each hyperplane subdivides any cone into at most two subcones, hence together
they divide σ into a fan ! f of at most 2a cones. The subdivision has <

(m+a
m−1

)
edges, as

an edge is determined by the intersection of (m − 1) hyperplanes chosen from the union of
the m coordinate hyperplanes and h f j . Note that these bounds depend only on the ambient
dimension and the number of hypersurfaces, and not on the exponents appearing.

For a subdivision ! → !0 we write M for the matrix whose columns are the primitive
generators of the rays of !. It defines a homomorphism β : Zn → Zm , resulting in a
fantastack F!,β and a morphism of toric stacks ρ = ρβ : F!,β → Am . We show that this
stack theoretic modification desingularizes the fi simultaneously.

4 Resolving a single binomial hypersurface

In this section, we prove Theorems A and B for a single binomial hypersurface, where they
coincide. Let K be an algebraically closed field and let f be a binomial with coefficients in
K . In the hypersurface case, the stacky fan (!,β) for the fantastack construction will arise
from the dual fan of the Newton polyhedron of f . In particular, we have N = Zm , for some
m ∈ Z≥2. Furthermore, a monomial factor dividing f will not have an effect. Therefore, we
assume without loss of generality that f is a pure binomial,

f = x A − λyB = x A1
1 · · · x As

s − λyB11 · · · yBrr ∈ K [x, y],
where λ ∈ K\{0}. Set m := s + r .

Recall [24], [9, Section 18.2] that the Newton polyhedron *(g; z) of a polynomial g ∈
K [z] = K [z1, . . . , zm] is defined as follows: If we have

g =
∑

C∈Zm
≥0

λC z
C1
1 · · · zCm

m

with coefficients λC ∈ K , then *(g; z) is the smallest closed convex subset containing all
points of the set

{C + v | v ∈ Rm
≥0 and C ∈ Zm

≥0 is such that λC 0= 0}.
In particular,*( f ; x, y) is the smallest closed convex subset* ⊆ Rm

≥0 containing the points
(A, 0), (0, B) ∈ Zm

≥0 and which is stable under translations by the non-negative orthantRm
≥0,

i.e., *+Rm
≥0 = *. When there is no confusion possible, we sometimes write *( f ) instead

of *( f ; x, y). We will use the symbol ! f for the dual fan of the Newton polyhedron *( f ),

2 We thank the referee for pointing this out. Note that the works [31] and [11] predate this notion!
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see [28, 34], which is the fan in Rm , whose cones are determined by the normal vectors of
the facets of *( f ). (For some explicit examples and pictures, we refer to the examples later
on.) Observe that e1, . . . , em appear among the normal vectors of *( f ) and the support of
the dual fan ! f is equal to Rm

≥0.
Let us introduce the homorphism β : Zn → Zm , which we use for the construction of the

fantastack F!,β , where ! is a subdivision of ! f .

Definition 4.1 Let f = x A − λyB ∈ K [x, y] be a binomial as above, and let ! be any
subdivision of the dual fan! f of the Newton polyhedron of f ; note that! = ! f is allowed.
Let e1, . . . , em, vm+1, . . . , vn ∈ Zm

≥0 be primitive generators for the rays of !. Notice that
the normal vectors of the facets of the Newton polyhedron *( f ; x, y) are among them. Let
M! be the m × n matrix whose columns are the primitive generators

M! =
(
e1 · · · em vm+1 · · · vn

)
=

(
Em vm+1 · · · vn

)
∈ Zm×n

≥0 ,

where Em ∈ Zm×m is the unit matrix. We define β! : Zn → Zm to be the homorphism
determined by the matrix M! . If the reference to ! is clear from the context, we sometimes
just write β instead of β! .

Since M! has full rank, β! is surjective. In particular, its cokernel is finite. Furthermore,
by construction, every ray of ! contains some β!(ei ) and every β!(ei ) is contained in the
support of!. Therefore, (!,β) fulfills all hypotheses of Definition 2.3. Recall that β induces
a morphism of toric stacks ρβ : F!,β → Am (Remark 2.4).

In the given situation, Theorems A and B boil down to the following statement.

Proposition 4.2 Let K be an algebraically closed field and let f be a binomial with coeffi-
cients in K . Let! be any subdivision of the dual fan of the Newton polyhedron of f . LetF!,β

be the fantastack associated to the stacky fan (!,β) = (!,β!) and let ρβ : F!,β → Am be
the morphism induced by β.

If we set X := V ( f ) ⊂ Am, then ρ−1
β (X)red is a schön binomial hypersurface (Definition

3.1) and a simple normal crossing divisor on F!,β .

Let us first discuss this in an example to explain our intuition. The proof is given in
Sect. 4.1.

Example 4.3 Consider the binomial f = x21 x
2
2−y3. TheNewtonpolyhedron looks as follows:

x1

x2

y

1 2 3

1

2

3

1
2

3
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   48 Page 12 of 25 D. Abramovich, B. Schober

Here we highlighted the 1-skeleton and the facets of the polyhedron, and the polyhedron
itself forms the solid bounded by the resulting 5 facets and closer to the observer.

The normal vectors of its facets are e1, e2, e3, v, w, where u = (3, 0, 2)T and v =
(0, 3, 2)T . Therefore, the dual fan of the Newton polyhedron looks as follows

e2

e3

e1

v

u

Here we highlighted a transverse slice of the fan. The plane spanned by the vectors u and
v is precisely the plane 2(1 + 2(2 = 3) described in the introduction and appearing in the
paper [18].

Take ! = ! f to be the dual fan of the Newton polyhedron itself, without further modifi-
cation. The columns of the matrix M := M! are the normal vectors above,

M =




1 0 0 3 0
0 1 0 0 3
0 0 1 2 2



 .

Note that the kernel of M has the basis ((−3, 0,−2, 1, 0)T , (0,−3,−2, 0, 1)T ). The rows
of M determine the morphism ρ : A5 → A3 given by

x1 = x ′
1z

3
1, x2 = x ′

2z
3
2, y = y′z21z

2
2,

where x ′
1, x

′
2, y

′, z1, z2 are the variables of A5. We observe that the binomial f becomes

f = z61z
6
2(x

′2
1 x ′2

2 − y′3).

In the construction ofF!,β , we have to take the quotient byGβ = ker(Tβ), where Tβ : TZn →
TZm is the homomorphism induced by β. In this example, Gβ ! G2

m acts via

(t1, t2) · (x ′
1, x

′
2, y

′, z1, z2) := (t−3
1 x ′

1, t
−3
2 x ′

2, t
−2
1 t−2

2 y′, t1z1, t2z2).

Indeed, writing

(ax1 , ax2 , ay, az1 , az2) := (−3, 0,−2, 1, 0) and (bx1 , bx2 , by, bz1 , bz2) := (0,−3,−2, 1, 0)

for the basis of ker(M), we have that t−3
1 x ′

1 = t
ax1
1 t

bx1
2 x ′

1 etc. Observe that the original
variables (x1, x2, y) are stable under the action, by construction.

By (2.1), F!,β is covered by the two charts D+(x ′
1x

′
2) and D+(y′). In both charts — i.e.,

if x ′
1x

′
2 0= 0 or if y′ 0= 0 — the polynomial x ′2

1 x ′2
2 − y′3 = 0 defines a smooth hypersurface.

Let us consider a further subdivision, in which we have the additional rayw = (2, 1, 0)T ,
e.g.,
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e2

e3

e1

v

u

w

or

e2

e3

e1

v

u

w

In the matrix M , we have to add the extra column w. Analogous to above, one may
determine the corresponding morphism of toric stacks and verify that the preimage of the
binomial defines a simple normal crossings divisor. Notice that there are moremaximal cones
compared to above and hence, we have to consider more charts. On the other hand the fan
on the left, which is a triangulation of the fan on the right, is not much more complex: the
chart on the right corresponding to 〈e1, u, v, w〉 is defined by x ′

2y
′ being invertible. On the

left we have its two open substacks where either x ′
1x

′
2y

′ or z′2x
′
2y

′ is invertible.

Remark 4.4 Recall that by (2.1), we are working in an open subset of A5 in the example. If
one is only interested in the transform of X = V (x21 x

2
2 − y3), then it is sufficient to consider

one of the charts D+(x ′
1x

′
2) and D+(y′) since the transform is contained in the intersection

of both.
On the other hand, if one needs to keep track how the ambient space behaves, e.g. for

integration, one needs all of its charts.

4.1 Proof of Proposition 4.2

Let f be a binomial. If the preimage of f provides a simple normal crossing divisor, neces-
sarily of the form xC (x A − λ), when applying the fantastack construction for ! f , then any
further subdivison ! of ! f cannot change this. Therefore, it suffices to consider the case
! = ! f .

As before, we assume without loss of generality that f = x A − λyB , where A =
(A1, . . . , As) and B = (B1, . . . , Br ). If A = 0 or B = 0, then V ( f ) is smooth and there
is nothing to prove. Hence, we assume A ∈ Zs

+ and B ∈ Zr
+ in the following. We prove the

result by giving an explicit description of the matrix M = M! : Without loss of generality,
we assume that all entries of A and B are non-zero. For every i ∈ {1, . . . , s}, we define

D(Ai ) ∈ Zr×r

to be the diagonal matrix with all entries to be Ai . For every & ∈ {1, . . . , s}, we introduce
R&(B) ∈ Zs×r

to be the matrix, whose &-th row is equal to B and all other entries are zero. For example, if
s = 3, r = 4, & = 2, we have

R2(B) =




0 0 0 0
B1 B2 B3 B4
0 0 0 0



 .
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We denote by Eα ∈ Zα×α the unit matrix and by 0α×β ∈ Zα×β we mean the α × β matrix
with all entries zero, where α,β ∈ Z+. Using this notation, we claim that the facets of the
Newton polyhedron *( f ) = *( f ; x, y) provide the matrix

M ′ =
(

Es 0s×r R1(B) R2(B) · · · Rs(B)
0r×s Er D(A1) D(A2) · · · D(As)

)
∈ Zm×n,

where we recall that m = r + s and we set n := r + s + rs. In general the columns of M ′

might not be primitive. Dividing each column by the greatest common divisors of its entries
we obtain the desired matrix M .3

Let us explain this: For m = 2, the statement can be easily verified since *( f ) has
only three facets. Thus, assume m ≥ 3. Since we have *( f ) + Rm

≥0 = *( f ), the Newton
polyhedron*( f ) has unbounded facets parallel to the coordinate hyperplanes ofRm . In other
words, all unit vectors e1, . . . , em appear as normal vectors. Further, notice that the vertices
of *( f ) are (A, 0) and (0, B). The columns of M , not coming from Es+r , are of the form

vi, j := Bj−sei + Aie j , for i ∈ {1, . . . , s}, j ∈ {s + 1, . . . , s + r}.
Fix such i, j and let k ∈ {1, . . . ,m}\{i, j} be any other element in {1, . . . ,m} different from
i and j . Then, the following equalities hold

(A, 0) · vi, j = (0, B) · vi, j = ((A, 0)+ ek) · vi, j = ((0, B)+ ek) · vi, j = Ai B j−s . (4.1)

Note that the face of *( f ) defined by vi, j is

Fi, j := {w ∈ *( f ) | w · vi, j = Ai B j−s}.
Let S be the segment determined by (A, 0) and (0, B). The latter can be described as

S = {,(A, 0)+ (1 − ,)(0, B) | , ∈ [0; 1] ⊂ R}.
By (4.1), we have

w · vi, j = Ai B j−s, for every w ∈ S.

In other words, S ⊆ Fi, j . Since further (4.1) holds for all k ∈ {1, . . . ,m}\{i, j}, we obtain
that Fi, j has dimension m − 1 and thus is a facet.

It remains to prove that we determined all facets of *( f ). Suppose there exists some
v = (v1, . . . , vm) ∈ Rm

≥0, which is a normal vector of *( f ) different from those discussed
before. Let α := #{k ∈ {1, . . . ,m} | vk 0= 0} ≥ 2 and let vk1 , . . . , vkα be the non-zero entries
of v, where k1 < k2 < . . . < kα . If α = m, then v determines a compact face of *( f ).
The only compact faces are the two vertices and the segment connecting them. Since m ≥ 3,
none of them is a facet. Hence, suppose that α < m. For α ≥ 3, consider the projection
πv : Rm → Rα, (w1, . . . , wm) 1→ (wk1 , . . . , wkα ). Then, πv(v) determines a compact face
of πv(*( f )) and the latter has to be the segment connecting the two vertices. Since α ≥ 3
and since all entries of A and B are non-zero, the preimage of the compact face along πv

does not correspond to a facet of *( f ). Finally, if α = 2, the equality (A, 0) · v = (0, B) · v
implies

vk1
vk2

= Bk2−s
Ak1

and thus v is a multiple of vk1,k2 .
Next, let us describe the columns of M . For i ∈ {1, . . . ,m}, the i-th column is the i-th unit

vector of Zm . Fix k ∈ {1, . . . , s}, & ∈ {1, . . . , r} and set i := ik,& := m + (k − 1)r + &. The
non-zero entries of the i-th column of M ′ are B& and Ak . Let dk,& be the greatest common

3 We note however that M ′ will also give a fantastack resolution, obtained by a suitable root stack of ρ, see
[28].
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divisor of B& and Ak . Define Bk,& := B&/dk,& and Ak,& := Ak/dk,& ∈ Z≥0. Then, the
non-zero entries of the i-th column of M are Bk,& and Ak,&.

The matrix M induces β = β f : Zn → Zm and thus the homomorphism ρβ : An → Am ,
which is given by

xi = x ′
i z

Bi,1
i,1 zBi,2i,2 · · · zBi,ri,r = x ′

i

r∏

j=1

z
Bi, j
i, j , for i ∈ {1, . . . , s},

y j = y′
j z

A1, j
1, j z

A2, j
2, j · · · zAs, j

s, j = y′
j

s∏

i=1

z
Ai, j
i, j , for j ∈ {1, . . . , r},

where x ′
1, . . . , x

′
s, y

′
1, . . . , y

′
r , z1,1, . . . , z1,r , z2,1, . . . , z2,r , . . . zs,r are the variables of An .

Note that the variable zk,& corresponds to the ik,&-th column ofM with ik,& = m+(k−1)r+&.
We obtain

x A − λyB =
s∏

i=1

x Ai
i − λ

r∏

j=1

y
Bj
j =

=
s∏

i=1

(
x ′Ai
i

r∏

j=1

z
Ai Bi, j
i, j

)
− λ

r∏

j=1

(
y
′Bj
j

s∏

i=1

z
Ai, j B j
i, j

)
=

=
( s∏

i=1

r∏

j=1

z
di, j Ai, j Bi, j
i, j

)
· (x ′A − λy′B).

The fantastack F! f ,β is covered by the two charts D+(
∏s

i=1 x
′
i ) and D+(

∏r
j=1 y

′
j ). Since

x ′A − λy′B is a schön smooth binomial in both charts, this ends the proof. !

Remark 4.5 Let f be a product of binomials, f = ∏d
i=1(x

A−λi yB), for some λi ∈ K "{0},
where the exponents A, B appearing are the same for each factor. Then, the same procedure
as for V (x A −λyB) transforms V ( f ) into a simple normal crossings divisor. Notice that, for
λ 0= λ′, V (x A − λyB) and V (x A − λ′yB) are disjoint if xi 0= 0 for all i (or y j 0= 0 for all j).

5 Partial simultaneous resolution of finitely many binomials

In Remark 4.5, we have seen that we can simultaneously resolve the singularities of finitely
many binomial varieties V (x A −λi yB) via a single step using fantastacks, where λi ∈ K are
pairwise different and the pairs of exponents (A, B) are the same for all i . Our next goal is to
extend this result without restrictions on the exponents. In particular, we prove Theorem A
in full generality, for finitely many binomials.

Observation 5.1 Let f1, . . . , fa ∈ K [x] = K [x1, . . . , xm] be finitely many binomials.

(1) For every i ∈ {1, . . . , a}, we determined a matrix M( fi ) ∈ Zm×ni via the normal
vectors of the facets of *( fi ) in the previous section, which induced a transformation
ρi : Ani → Am resolving the singularities of V ( fi ). In general, it is not sufficient to
consider the transformation induced by the matrix whose set of columns coincides with
the union of the normal vectors of *( fi ; x), for i ∈ {1, . . . , a}, see Example 5.2(2).

(2) The task to simultaneously monomialize V ( f1), . . . , V ( fa) is equivalent to the mono-
mialization of the hypersurface determined by their product V ( f1 · · · fa).
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(3) From the definition of theMinkowski sum, it follows directly that theNewton polyhedron
of the product f1 · · · fa is the Minkowski sum of the Newton poyhedra for fi ,

*( f1 · · · fa; x) = *( f1; x)+ · · · + *( fa; x),

where “+" is the Minkowski sum. In particular, any vertex v of *( f1 · · · fa) can be
decomposed as v = v1 + · · · + va , where vi ∈ *( fi ), for i ∈ {1, . . . , a}. Note that the
converse of the last statement is not true, i.e., not every sum of vertices v1 + · · · + va is
also a vertex of *( f1 · · · fa), see Example 5.2(1).

Let us discuss some examples with two binomials, where we write f = f1 and g = f2.

Example 5.2

(1) Consider the binomials f = x2 − y3 and g = x2 − y5. We have f g = x4 − x2(y3 +
y5)−y8. Its Newton polyhedron has three vertices (4, 0), (2, 3), (0, 8). Note that (2, 5) =
(2, 0)+ (0, 5) is a sum of two vertices of*( f ) and*(g), but it is not a vertex of *( f g).
The normal vectors of the facets of*( f g) are e1, e2, v3 := (3, 2)T , v4 := (5, 2)T , which
is precisely the union of the sets of normal vectors of the facets of *( f ) and *(g).

Newton polyhedron (left) and its dual fan (right).
On the right hand side, the rays are marked with their corresponding generating vectors e1, e2, v3, v4 .

The resulting matrix is M =
(
1 0 3 5
0 1 2 2

)
, which provides the transformation

ρ : A4 → A2 determined by x = x ′z31z
5
2 and y = y′z21z

2
2. Thus f and g become

f = x ′2z61z
10
2 − y′3z61z

6
2 = z61z

6
2(x

′2z42 − y′3),

g = x ′2z61z
10
2 − y′4z101 z102 = z61z

10
2 (x ′2 − y′4z41)

By (2.1), F!,β , which is determined by the dual fan of *( f g) and the matrix M , can be
covered by three charts: D+(y′z1), D+(x ′y′), and D+(x ′z2). We observe that in each of
the charts, V ( f ) and V (g) are simultaneously resolved.

(2) Let f = x2 − y3 and g = x4 − z5. The picture of the Newton polyhedron*( f g; x, y, z)
is as follows:
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Using polymake, we may determine all relevant data of *( f g). The vertices are:
w1 := (6, 0, 0), w2 := (0, 3, 5), w3 := (2, 0, 5), w4 := (4, 3, 0). The rays of the dual
fan are e1, e2, e3, v1 := (3, 2, 0)T , v2 := (5, 0, 4)T , v3 := (15, 10, 12)T . Observe that
the vector v3, which corresponds to the compact facet of *( f g), is neither a normal
vector of *( f ) nor of *(g). The resulting matrix is

M =




1 0 0 3 5 15
0 1 0 2 0 10
0 0 1 0 4 12





and this determines the transformation A6 → A3 given by

x = x ′z31z
5
2z

15
3 , y = y′z21z

10
3 , z = z′z42z

12
3 .

We obtain

f = x ′2z61z
10
2 z303 − y′3z61z

30
3 = z61z

30
3 (x ′2z102 − y′3),

g = x ′4z121 z202 z603 − z′5z202 z603 = z202 z603 (x ′4z121 − z′5).

Furthermore, we have (again using polymake)

normal vector of facet vertices of the facet

e1 w2

e2 w1, w3

e3 w1, w4

v1 w2, w3

v2 w2, w4

v3 w1, w2, w3, w4
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and from this we determine the rays of the maximal cones of the dual fan: (Recall that
the maximal cones correspond to the vertices of the Newton polyhedron.)

vertex rays of corresponding maximal cone corresponding chart

w1 e2, e3, v3 x ′z1z2 0= 0

w2 e1, v1, v2, v3 y′z′ 0= 0

w3 e2, v1, v3 x ′z′z2 0= 0

w4 e3, v2, v3 x ′y′z1 0= 0

Therefore, the corresponding fantastack F!,β can be covered by four charts and as one
can verify V ( f ) = V (z61z

30
3 (x ′2z102 − y′3)) and V (g) = V (z202 z603 (x ′4z121 − z′5)) are

simultaneously resolved in each of them.
(3) Let f = x2 − y3z5 and g = x4 − zw3. Using polymake, we obtain the matrix

M( f g) :=





1 0 0 0 3 5 1 3 3 5
0 1 0 0 2 0 0 0 2 0
0 0 1 0 0 2 4 0 0 2
0 0 0 1 0 0 0 4 4 6





(The reason for the separating lines between the columns will become clear soon.) Let
us study how to it can be constructed by hand from the data of a single binomial. If we
consider only one of them, we get the matrices

M( f ) :=





1 0 0 0 3 5
0 1 0 0 2 0
0 0 1 0 0 2
0 0 0 1 0 0



 M(g) :=





1 0 0 0 1 3
0 1 0 0 0 0
0 0 1 0 4 0
0 0 0 1 0 4



 .

The rays which have to be added for the Newton polyhedron of the product f g arise from
the intersection of the 3-dimensional cones of the dual fans, which intersect the relative
interior of R4

≥0. Since we are working with binomials, there is only one such cone for
each binomial. More precisely, the rays of the respective cones are

(u1, u2, u3) :=









3
2
0
0



 ,





5
0
2
0



 ,





0
0
0
1







 (t1, t2, t3) :=









1
0
4
0



 ,





3
0
0
4



 ,





0
1
0
0









(Take the vectors different from the unit vectors and if the corresponding matrix has a
zero row, add unit vectors to the set so that there are no zero rows afterwards.)
A generator of a new ray, which we are looking for, is a vector r , for which there are
non-negative integers a, b, c, d, e, f such that

r = au1 + bu2 + cu3 = dt1 + et2 + f t3.

It is tempting to determine a basis of ker
(
u1 u2 u3 −t1 −t2 −t3

)
, but this does

not provide the correct vectors since the kernel has dimension two and there are non-
trivial choices for the basis.
Thus, we have to consider the kernels ker

(
ui u j −tk −t&

)
, for varying i, j, k, &.

Since the dimension of this kernel is one, the basis is unique up to multiplication by a
non-zero constant. (Note that this becomesmore delicate if weworkwith three binomials
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or more, as we have to repeat this process taking the newly added rays into account.)
Some of the choices for i, j, k, & cannot provide new rays. For example, in

ker
(
u2 u3 −t2 −t3

)
= ker





5 0 3 0
0 0 0 1
2 0 0 0
0 1 4 0



 ,

the third row is telling us that a = 0 and thus, the generator for a potential new ray can
be written as r = au1 + bu2 + cu3 = cu3, which provides the ray generated by u3. A
computation shows that for the remaining cases, we have:

ker
(
u1 u3 −t2 −t3

)
= Span((1, 4, 1, 2)T ),

ker
(
u2 u3 −t1 −t2

)
= Span((2, 12, 1, 3)T ),

ker
(
u1 u2 −t1 −t3

)
= Span((−3, 2, 1,−6)T ).

The first two kernels provide the additional rays generated by r1 := u1+4u3 = t2+2t3 =
(3, 2, 0, 4)T and r2 := 2u2 + 12u3 = t1 + 3t2 = (10, 0, 4, 12)T = 2(5, 0, 2, 6)T

respectively. On the other hand, the third vector (−3, 2, 1,−6)T does not provide a new
ray since the signs of the entries varies. In conclusion, we obtain the matrix M( f g). This
situation can also be seen in earlier work: the transverse slice of the dual fan is the linear
subspace & introduced before [19, Lemma 5, p. 1830] and before [18, Theorem 3.1], or
H& introduced in [31, Section 6.1, p. 77].

e1

e2

e3

e4

u1

u2

t1

t2

r1

r2

In general, if we consider more than two binomials, then each binomial is resolved after
applying the fantastack construction, but they do not necessarily form a normal crossings
divisor. The reason for this is that we may have singularities in the torus. Let us illustrate this
for simple examples.

Example 5.3

(1) If we have f1 := x − 1, f2 := y − 1, f3 := xy − 1, then the fantastack construction
does not provide new information since the Newton polyhedron of f1 f2 f3 is the whole
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orthant R2
≥0. On the other hand, V ( f1 f2 f3) does not define a simple normal crossing

divisor. This can be seen by introducing new coordinates x̃ := x − 1, ỹ := y − 1,
which provides f1 = x̃, f2 = ỹ, f3 = x̃ + ỹ + x̃ ỹ. By blowing up the origin, we will
simultaneously resolve V ( f1), V ( f2), V ( f3).

(2) Let K be an algebraically closed field of characteristic p > 0. Consider the binomials
f1 := x − 1, f2 := y − 1, f3 := xy p − 1. Analogous to (1), we introduce the new
variables x̃ := x −1, ỹ := y−1 and obtain f1 = x̃ , f2 = ỹ, f3 = x̃+ ỹ p+ x̃ ỹ p . Notice
that the scheme theoretic intersection of V ( f1) and V ( f3) is not reduced. In particular,
the intersection lattice of V ( f1 f2 f3) does not provide a simple arrangement.

Let us restate and prove Theorem A. It generalizes Proposition 4.2 and is the best result
that could be obtained towards simultaneous normal crossings resolution of finitely many
binomial varieties using fantastacks.

Theorem 5.4 Let K be an algebraically closed field of arbitrary characteristic p ≥ 0. Let
f1, . . . , fa ∈ K [x] = K [x1, . . . , xm] be finitely many binomials, where a,m ∈ Z+ with
m ≥ 2. Let E ⊂ Z be the set of problematic primes associated to the exponents of the pure
binomial factors of f1, . . . , fa .

Let ! be a subdivision of the dual fan of the Newton polyhedron of the product f1 · · · fa
and let β : Zn → Zm be the homomorphism determined by the matrix M ∈ Zm×n, whose
columns are the primitive generators for the rays of the fan !. Let ρ : F!,β → Am be the
morphism of toric stacks induced by β. Set X := V ( f1 · · · fa) ⊂ Am.

Then the reduced preimage ρ−1(X)red ⊂ F!,β is a schön arrangement of smooth bino-
mials. If furthermore p /∈ E , then ρ−1(X)red induces a simple arrangement on F!,β .

Proof Set Xi := V ( fi ), for i ∈ {1, . . . , a}. Since ! is a refinement of the normal fan ! fi .
Proposition 4.2 implies that ρ−1(Xi )red is a schön binomial hypersurface on F!,β .

Let (y) = (y1, . . . , yn), n ≥ m, be coordinates in a chart ofF!,β . By the schön condition,
each fi is of the form

yA(i)(1+ λi yB(i)),

for some units λi 0= 0 and A(i), B(i) ∈ Zn
≥0. Thus, the only part not being simple normal

crossing is the product
∏a

i=1(1 + λi yB(i)), which provides a schön arrangement of smooth
binomials. 23

Remark 5.5 In the situation of the theorem, we have thatF!,β is covered by at most 2a affine
charts since the number of vertices of *( f1 · · · fa) (and thus the number of maximal cones
in !) is ≤ 2a by Observation 5.1(3).

In general, 2a is strictly smaller than the number of affine charts obtained by blow-ups in
smooth centers. For example, a possible desingularization of x1x2 − x3x4 via blow-ups in
smooth centers could be to choose the closed point as the center and hence creates 4 charts.
This difference becomes even bigger if we consider binomials with large exponents. For
further explicit examples, we refer to [13, Examples 8.4 – 8.11], where different methods for
the local monomialization of a single binomial are studied, implemented, and compared. A
local monomialization is a local variant of desingularization, where one does not necessarily
demand the centers to be chosen globally.

If char(K ) /∈ E , then the remaining simultaneous desingularization is obtained by applying
the following theorem. Amore general variant of this result was proven in [26, Theorem 1.3].
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Theorem 5.6 ([21, Theorem 1.1]) Let X0 be an open subset of a non-singular algebraic
variety X such that X\X0 can be decomposed as a union

⋃
i∈I Si of closed irreducible

subvarieties with the properties

(i) Si is smooth,
(ii) Si and S j meet cleanly, and
(iii) Si + S j = ∅ or a disjoint union of S&.

The setS = {Si }i is a poset. Let k be the rank ofS. Then there exists a sequence ofwell-defined
blow-ups

B&S(X) → B&S≤k−1(X) → . . . → B&S≤0(X) → X ,

where B&S≤0(X) → X is the blow-up of X with center all Si of rank 0 and B&S≤r (X) →
B&S≤r−1(X) is the blow-up of B&S≤r−1(X) with center the proper transform of all S j of rank
r, for r ≥ 1. We have

(1) B&S(X) is smooth,
(2) B&S(X)\X0 =

⋃
i∈I S̃i is a normal crossings divisor, and

(3) S̃i1 + . . .+ S̃in is non-empty if and only if Si1 , . . . , Sin form a chain in the poset S. Hence,
S̃i and S̃ j meet if and only if Si and S j are comparable.

As explained in [26, Introduction/after Theorem1.2], this is a generalization ofDeConcini
and Procesi’s wonderful models of subspace arrangements [10].

We need a variant of the theorem for algebraic stacks. We note the following direct
consequence of smoothness:

Proposition 5.7 Let X0 ⊂ X be as in the theorem, and π : Y → X a smooth morphism. Set
Y0 := π−1(X0), SYi := π−1(Si ) and SY = {SYi }. Then SYi satisfy properties (i)-(iii), and,
setting B&SY≤r

(Y ) as in the theorem, we have that

B&SY≤r
(Y ) = Y ×X B&S≤r (X),

and the sequence

B&SY (Y ) → B&SY
≤k−1

(Y ) → . . . → B&SY
≤0
(Y ) → Y

satisfies the conclusions (1)-(3) of the theorem.

Given an algebraic stack X , an open X0 ⊂ X with complement
⋃

i S
X
i satisfying (i)–

(i i i) of the theorem, and any smooth presentation by schemes Y1 −→−→Y0, we obtain pullback

subschemes SY1i and SY0i such that SY1i are the preimage of SY0i under either projection
Y1 → Y0. It follows that we obtain smooth groupoids

B&SY1≤r
(Y1)−→−→B&SY0≤r

(Y0)

with quotient stacks B&SX≤r
(X ) satisfying the conclusion of the theorem.We therefore obtain:

Corollary 5.8 The theorem applies as stated to algebraic stacks.
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5.1 What happens in mixed characteristics

While the theory of toric Artin stacks is only established over algebraically closed fields, we
are interested in applications such as those discussed in Sect. 1.10, and the methods provided
here can be applied and sometimes work. We discuss here what works without change and
what requires further work.

We consider a collection of binomials f1, . . . , fa over the ring of integers OK of a finite
extension K of Qp .

First, the formation of ρ : F!,β → Am depends only on the combinatorial data of the
exponents appearing in fi , and works without change over an arbitrary base, but with weaker
outcomes.

Second, the treatment of singularities here requires working with binomials of the form
x A −λx B where λ is a unit. Without this assumption the procedure still leads to equations of
the form xC (x A − λ) (or xC (1− λx B)), but if v(λ) > 0 the first of these is no longer schön.
We expect that Kato’s theory of toric singularities in mixed characteristics [22] will provide
a way to treat these cases; another approach, suggested by the referee, is to systematically
work with toric schemes over valuation rings — this is consistent with the work [20]. This
will have to be addressed elsewhere.

Third, when f = x A −λyB is a pure binomial and the residue characteristic p divides all
the exponents, the hypersurface f = 0 in the torus is not smooth over OK . Over a perfect
field its reduction is smooth, and in general its reduction is regular, being the orbit of a smooth
group scheme.

Fourth, even when p does not divide the exponents of individual binomials, if p ∈ E the
binomials do not meet cleanly. As stated earlier, this situation is interesting already over an
algebraically closed field of characteristic p.

Finally, if all λi are units and p /∈ E then the procedure does provide an arrangement of
schön binomials meeting cleanly, in which case the procedure for resolving the arrangement
in Theorem 5.6 works without change.

6 Binomial ideals

The purpose of this section is to generalize Proposition 4.2 to resolution of singularities for
binomial subschemes X ⊂ Am (Theorem B). As we neglect the question of functoriality, we
can work with a fixed system of generators for the binomial ideal defining X .

Note that the situation is a bit simpler than in the simultaneous setup in the previous
section. For example, in both cases of Example 5.3, the ideal generated by f1, f2, f3 is equal
to 〈x − 1, y − 1〉 and hence, the corresponding variety is smooth.

Theorem 6.1 (TheoremB) Let K be an algebraically closed field and m ∈ Z≥2. Let X ⊂ Am

be a binomial subscheme. Denote by !0 the fan in Rm with unique maximal cone Rm
≥0. Let

f = { f1, . . . , fa} be binomial generators of IX .
(1) (See [18, 19, 31]) The proper transform of Xpure in F! f ,β is a schön purely binomial

subscheme, in particular its reduction is smooth.
(2) There exists a further subdivision ! of !0, of combinatorially bounded complexity, with

the following property: If β : Zn → Zm is the homomorphism determined by the matrix
M ∈ Zm×n, whose columns are the primitive generators for the rays of the fan !, then

ρ−1(X)red ⊂ F!,β
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is in simple normal position onF!,β (see Sect.1.8), where we denote by ρ : F!,β → Am

the morphism of toric stacks induced by β.

Proof Without loss of generality, we assume that, for every i ∈ {1, . . . , a}, fi is not contained
in the ideal generated by { f1, . . . , fa}\{ fi }. Note that some fi might already be monomials.

As before,! f = ! f1··· fa is the dual fan of the Newton polyhedron of the product f1 · · · fa
and let ρ! f : F! f ,β → Am be the morphism of toric stacks as in Theorem A. In particular,
in every chart, ρ−1

! f
( fi ) is of the form yC(i)(1 − .i y A(i)) and f ′

i := 1 − .i y A(i) is schön by
TheoremA, where (y) is a system of local coordinates and .i is either a unit or zero. (For this,
recall Remark 4.5 and use that every binomial is a product of reduced binomials – possibly
with multiplicities – since K is algebraically closed).

We claim that in each chart X ′ = V ( f ′
1, . . . f

′
a) is a schön purely binomial subscheme.

Indeed the variables y j appearing in the f ′
i are all invertible on X ′, and so X ′ = X ′

y ×Am′
is

the product of a coset of a subgroup of the torus in these parameters with the affine space with
the remaining coordinates xl . Its reduction is thus smooth and it meets V (

∏
xl) transversely.

This gives part (1).
To address Part (2), we need to modify the monomial factors which on each chart are

of the form yC(1), . . . , yC(a). We note that the locally principal ideals given on charts as
〈yC(1)〉, . . . , 〈yC(a)〉 are well-defined globally, since 〈 fi 〉 = 〈 f ′

i 〉〈yC(i)〉.
We define monomial ideals

Gi, j :=
〈
yC(i), yC( j)

〉
,

for i, j ∈ {1, . . . , a} with i < j . Let !G be the dual fan of the Newton polyhedron
of

∏
i< j Gi, j , or, equivalently, of the product of binomials

∏
i< j

(
yC(i) − λi j yC( j)) with

λi j 0= 0, 1. Let ! the induced subdivision of ! f . Equivalently, this is the fan of the
Newton polyhedron of

∏
i< j Gi, j × ∏

i 〈 fi 〉, or equivalently, of the product of binomials
∏

i< j
(
yC(i) − λi j yC( j)) × ∏

i fi .
Applying the fantastack construction for !, we achieve that for every subset J ⊆

{1, . . . , a} the ideal 〈yC( j) | j ∈ J 〉 is principalized in every chart. The latter has the conse-
quence that the monomial factors are totally ordered: in each chart, after a possible relabeling
of the generators (and abusing notation), we have yC(i) | yC(i+1) for every i ∈ {1, . . . , a−1}.

Let Mi be the reduced monomial obtain from yC(i). Set N1 := M1 and Ni := Mi/Mi−1
for i ∈ {2, . . . , a}. Then the reduced preimage of X in the given chart decomposes as

V (N1) ∪ V (N2, f ′
1) ∪ V (N3, f ′

1, f
′
2) ∪ · · · ∪ V (Na, f ′

1, . . . , f
′
a−1) ∪ V ( f ′

1, . . . , f
′
a),

where we write V (I ) for the scheme determined by the vanishing locus of the ideal generated
by the elements of I . One checkes that this is in normal crossing position, as required.

Notice once again that the number of cones of the fan and therefore the number of charts
and divisors, does only depend on the ambient dimension and the number a of binomial
generators, but not on the explicit exponents of the binomials. 23

By applying a combinatorial sequence of blowups, as for example in [26], we may obtain
a divisor with simple normal crossings:

Proposition 6.2 There exists a sequence of at most m blowups L : Y → F!,β such that
L−1ρ−1(X) is a simple normal crossings divisor.

Proof The closures SI of strata of a scheme in simple normal position form a building set
in the sense of [26, Section 2.1]. Let Gc be the union of the SI of codimension c. By the
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theorem this applies to ρ−1(X). By [26, Proposition 5.3] blowing up, in decreasing order of
codimension, the successive proper transforms of Gc one obtains the result. 23
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