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Abstract

We show how the notion of fantastacks can be used to effectively desingularize binomial vari-
eties defined over algebraically closed fields. In contrast to a desingularization via blow-ups
in smooth centers, we drastically reduce the number of steps and the number of charts appear-
ing along the process. Furthermore, we discuss how our considerations extend to a partial
simultaneous normal crossings desingularization of finitely many binomial hypersurfaces.
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1 Introduction

Motivated by recent works with focus on stacks in the service of resolution of singularities
over fields of characteristic zero [1-4, 27, 28], we investigate the case of binomials defined
over algebraically closed fields of arbitrary characteristic from the perspective of stacks, and
with a view towards efficient computations of resolutions and of p-adic and motivic integrals.
Classical resolution approaches are discussed in the recent [13].

We work over an algebraically closed field K so as to keep technicalities at a minimum.

1.1 Key ingredient: fantastacks

Building on the results of [18, 19, 31], the key new ingredient for our approach is the notion of
fantastacks by Geraschenko and Satriano [15], which are examples of toric Artin stacks, and
a birational reinterpretation of the toric Cox construction. Up to isomorphism, a fantastack
Fs,p can be constructed from a fan X on the lattice N 2~ Z™ and a homomorphism of lattices
B: Z" — N with certain properties. For a more detailed discussion of fantastacks we refer
to Sect. 2.

1.2 Setup: binomials in toric varieties

A binomial in affine space Spec K [x1, ..., x;,,] always has the form

c A B .
fo= oG (= k), (1.1)
where {x1,...,x,} and {y1, ..., ys} are disjoint subsets of {x,...x,} and A € K*. The
monomial factor x]c‘ .. .x,(;:”‘ will be of secondary interest and the purely binomial factor
xf‘ cxfr )\yf' ... 2 is the main factor to be addressed.

Note that the purely binomial factor is nonreduced if and only if A;, B; are all divisible
by the characteristic of K, as K is assumed algebraically closed.

In Sect. 3.1 we extend the notion of binomials from affine space to the generality of smooth
toric varieties and stacks.
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Desingularization of binomial varieties... Page3of25 48

Tevelev [32, Definition 1.3] defined schon subvarieties of toric varieties, which we do
not reproduce here, as our special situation is simpler. In Sect. 3.2 we specialize to the case
of binomials, in the generality of toric stacks. Our usage is slightly relaxed since we allow
monomial factors: in affine charts, a binomial (1.1) is schon if either all A; = Oorall B; = 0.

1.3 Arrangements of binomials and binomial subschemes

Given a finite collection of binomials, locally represented by fi, ..., fs. they together define
an arrangement of subschemes as the zero-set X := V(f;--- f,) of their product. The
arrangement is said to be schon if each f; is schon.

If all f; are schon pure binomials, the binomial ideal Z = (fi, ..., f,) they generate

defines a schon subscheme in the sense of [32, Definition 1.3]. The situation is a bit more
involved when the monomial factors are not trivial, see Sect. 6.

1.4 Simple arrangements and problematic primes

In Sect. 3.3 we recall the notion of a simple arrangement of smooth subschemes, and upgrade
it to stacks.

In characteristic 0, a schon arrangement of binomials on a toric stack is automatically
a simple arrangement. This is not the case in positive characteristic, a phenomenon also
described in Sect. 3.3, Observation 3.3 — there is a finite set of prime characteristics £, com-
putable from the collection of exponents of the binomials f;, outside of which the binomials
form a simple arrangement.

1.5 Subdivisions and modifications associated to binomials

Consider again a binomial (1.1) in affine space. The Newton polyhedron of f defines a
singular subdivision X of the fan X of affine space, and a corresponding singular toric
modification of affine space. It is shown in [18], [19, Section 3], [31, Section 6] that any
smooth subdivision X of X results in a resolution of {f = 0}; however such a smooth
subdivision is typically computationally expensive. Our goal here is precisely to avoid such
subdivision.

Similarly, for a collection f1, ..., fs€ K[x1, ..., x;;] of binomials we obtain a subdivi-
sion of X into a fan X s of at most 2¢ cones with < (flf‘]’) edges, independently of the
exponents and coefficients of f; — it is the subdivision dual to the Newton polyhedron of
the product fi - - - f,. By the above references any smooth subdivision of X ¢ resolves all the
f;j. Here we provide a stack-theoretic resolution requiring no subdivision of ¥ at all.

1.6 Main result on arrangements of binomials

Our main point is that the fantastack associated to the fan X ¢, or any subdivision X thereof,
gives such a simultaneous resolution of f; immediately.

Theorem A (See Theorem 5.4) Let K be an algebraically closed field of arbitrary charac-

teristic p > 0. Let fi, ..., fa € K[x] = K[x1, ..., xm] be finitely many binomials, where
a,m € Zy withm > 2. Let £ C 7 be the set of problematic primes associated to the
exponents of the pure binomial factors of f1, ..., fa
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Let ¥ be any subdivision of the dual fan X of the Newton polyhedron of the product
S+ fa, inducing the morphism of smooth toric stacks p: Fs g — A", and let X =
V(fi fa) CA™.

Then the reduced preimage ,0_1 (X)red C Fx g is a schon arrangement of smooth bino-
mials.

If furthermore p ¢ &, then p~ ' (X)req induces a simple arrangement on Fsx.p-

1.7 Remarks

(1) The main reason for our restriction to algebraically closed fields is that, as far as we know,
there exists no detailed reference on the theory of fantastacks over an arbitrary base. Note
that the treatment of [15] applies in any characteristic, though the classification result,
not used here, is only stated in characteristic 0,!

(2) For a = 1, we obtain a desingularization of the binomial hypersurface defined by fi,
while for a = 2, assuming p ¢ &£, Theorem A provides us with a simultaneous normal
crossings desingularization of the binomial hypersurfaces given by f; and f>.

(3) Notice that the ambient space in Theorem A is an Artin stack and not a scheme. However,
any triangulation of its fan replaces it by a Deligne-Mumford stack; this is achieved,
without adding rays, using star subdivisions ' — ¥ at all the rays of X. The resulting
stack Fs- g is a Deligne-Mumford open substack of Fx g, and requires no additional
computation.

We also note that any smooth subdivision provides a scheme where the result holds; this
recovers earlier known results, such as those of [18], but also loses the efficiency of the
current method.

(4) In general, whena > 3 and p ¢ £, Theorem A does not give a simultaneous normal
crossings desingularization, as the resulting arrangement of hypersurfaces is not in nor-
mal crossings position in general, see Example 5.3. This scenario is present also in earlier
work which uses smooth blowup centers. To resolve a simple arrangement and make it
normal crossings one may use well-known procedures requiring at most m blowups, see
[21, 26]. We recall this in Theorem 5.6.

The situation where p € £ is quite interesting. One expects to have an elegant procedure
for a simultaneous normal crossings desingularization. We do not pursue this question
here.

(5) While we do not give a detailed complexity analysis, we note that the geometric com-
plexity encoded in the number of cones of the fan, in particular the number of charts
and divisors, is bounded solely in terms of the ambient dimension and the number a of
binomials, and not depending on the exponent or coefficients of the generators. For future
discussion we will say that such process is of combinatorially bounded complexity.

1.8 Main result on binomial varieties

In the context of desingularization of binomial schemes using fantastacks, we prove the
following result. Following earlier sources, an ideal Z C k[x1, ..., x;,] is binomial if it is
generated by binomials and a subscheme X C A™ is binomial if its ideal is binomial. The
subscheme is purely binomial if it has no component or embedded component supported

1 According to [15, Remark 1.2] their restriction to algebraically closed fields is made in order to avoid
technicalities.
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on the boundary divisor V (x1 - - - x;;). We denote by XPU® the purely binomial part of a
binomial subscheme X, namely the closure of its intersection with the torus.

Throughout the paper we denote the reduced scheme underlying a scheme X by X;eq, and
call it the reduction of X for brevity.

For describing our result we introduce the following somewhat ad-hoc terminology: a
subscheme X of a smooth scheme V is said to be in simple normal position if the components
of its reduction X4 are smooth, and at any geometric point p of V there are local parameters
X; € @V, p such that Xyeq is defined by a monomial ideal in x;. This is the same as saying that,
in these coordinates, X q is the union of coordinate subspaces, of arbitrary dimensions, not
necessarily meeting transversely. As an example, two or more coordinate lines L1, Lo, . ..
in A" n > 3, are in simple normal position even though they do not meet transversely. To
see the latter, observe that L N L, is the origin, which is of codimension n < 2(n — 1). The
same phenomenon holds for coordinate subspaces of dimension < n/2.

Theorem B (See Theorem 6.1) Let K be an algebraically closed field and m € Zx. Let
X C A™ be a binomial subscheme. Denote by ¥ the fan in R™ with unique maximal cone
RZ. Let f = {f1, ..., fa} be binomial generators of Ix. Let ¥y denote again the dual fan
of the Newton polyhedron of fi - - - fa, with resulting toric stack Fx; p.

(1) (See [18, 19, 31]) The proper transform of XP"® in Fx, g is a schon purely binomial
subscheme, in particular its reduction is smooth.

(2) There exists a further subdivision ¥ of X, of combinatorially bounded complexity, with
the following property: If B: 7" — Z™ is the homomorphism determined by the matrix
M € Z™*", whose columns are the primitive generators for the rays of the fan X, then

P (X)red C F

is in simple normal position on Fy, g, where we denote by p: Fx, g — A" the morphism
of toric stacks induced by B.

Once again we note that in (2) the work of Li Li [26] allows for a further sequence, of at
most m blowups, such that the total transform of Xeq is a simple normal crossings divisor.
We recall this in Proposition 6.2.

1.9 Prior work

Let us mention that there exist several results on the desingularization of toric and binomial
varieties, e.g., [5-7, 18, 23], where the assumptions slightly vary compared to those stated
here. In contrast to blow-ups in smooth centers, we need to apply the fantastack construction
only once in Theorem A and it is covered by at most 2¢ affine charts with < (zf‘l’) coordinates
in total. This number is significantly smaller than that obtained using blow-ups in smooth
centers once the exponents appearing in fi, ..., f, are large (see Remark 5.5). The primary

reason is that we do not require a smooth subdivison of the dual fan.

1.10 Computational motivation
Besides our interest in the problem on its own, another motivation for this project is coming

from the explicit computation of p-adic integrals, whose data are given by binomials. For
example, the following task appears in the context of computing local subring zeta functions:
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determine the integral

-3 -2 —1
fB 1ol 2 s 5 e,

where

e |.|p is the p-adic absolute value on Z,; we denote the corresponding valuation v, (.);
e dyu is an additive Haar measure; and
e BC Zg is the subset determined by the inequalities

Vp(x1) < vp(xF — x2x4), Vp(x1) < Up(Xaxs — XaXe),
vp(x2) < vp(x), Up(x132) < vp (22 — x4x2).

A possible approach to determine such an integral is to first perform blow-ups so that all
data appearing becomes monomial, and then to compute the monomial integrals in every
chart. Evidently, it is desirable to keep the number of final charts as small as possible in
this context. Notice that even though we are in the p-adic setting and not working over an
algebraically closed field, the techniques discussed in this article can be applied at least for
all but finitely many primes p, where the problematic set of primes depends on the precise
data given. For more details, we refer to Sect.5.1.

If one follows the method of Theorem A, one has to be careful since the outcome is a toric
Artin stack and some extra work is required.

For algebraically closed fields of characteristic zero, Satriano and Usatine initiated an
investigation for a method to study stringy Hodge numbers of a singular variety using motivic
integration for Artin stacks in [29, 30]. To address p-adic integration, an analogous frame-
work for p-adic integration on Artin stacks needs to be developed. Alternatively, one could
efficiently replace the Artin stack by a Deligne-Mumford stack, as described in Remark
1.7(3) above, so that one could apply existing results on motivic [35, 36] as well as p-adic
integration [20, Section 2] for them.

Since our focus is on Theorems A and B, we do not go into further details here.

1.11 Summary

Let us briefly summarize the content of the paper. After recalling basics on fantastacks
(Sect.2), we treat the case of a single binomial (Sect.4). Then, we turn to the case of finitely
many binomials and how the techniques extend to give Theorem A (Sect.5). Finally, we
prove Theorem B in full generality (Sect. 6).

2 Basics on fantastacks

Fantastacks are the key tool for our main theorem. Therefore, we begin by recalling their
definition following the work of Geraschenko and Satriano on toric stacks [15], where fan-
tastacks are discussed as first examples. For more details on the theory of toric stacks, we
also refer to [16]. Let us point out that there exist earlier works on the notion of toric stacks
by Lafforgue [25], Borisov, Chen, Smith [8], Fantechi, Mann, Nironi [12], and Tyomkin
[33], each of them focusing on different aspects. The introduction of [15] provides a brief
overview on them as well as a discussion how [15] unifies them. There is a related treatment
by Gillam and Molcho [17] which allows for Deligne—Mumford stacks which are not global
quotients but glued from such. We do not need this generality in this paper.
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Definition 2.1 ([15, Definition 1.1]) Let X be a normal toric variety with torus Ty and let
G be a subgroup of Ty. The Artin stack [ X /G] equipped with the action by the dense torus
T := Ty/G is called a toric stack.

For a lattice L, we denote by L* = Homgp(L, Z) the dual of L as a finitely generated
abelian group. If 8: L — N is a homomorphism of lattices, we denote by g*: N* — L*
the corresponding dual.

Definition 2.2 ([15, Definitions 2.4 and 2.5])

(1) A stacky fan is a pair (¥, ) consisting of a fan X on a lattice L as well as a homorphism
of lattices B: L — N such that 8 has a finite cokernel.

(2) Let (X, B) be astacky fan. Let X5, be the toric variety associated to X and let Tg: Ty, —
Ty be the homomorphism of tori induced by g*: N* — L*. Set Gg := ker(Tp).
The toric stack Xz g associated to this data is defined as [X5/Ggl, where its torus is
Ty =T1/Gg.

As explained in [15, after Definition 2.5], one can construct to every toric stack [X/G] a
stacky fan (X, ) such that X5 g = [X /G]. Moreover, after these explanations, Geraschenko
and Satriano give explicit examples of toric stacks. In particular, if X is a fan on a lattice
N and if we choose L = N and B = idy, then Xy g = X5, where X is the toric variety
associated to X, see [15, Example 2.6].

We denote by (ey, ..., e,) the standard basis of Z".

Definition 2.3 ([15, Definition 4.1]) Let ¥ be a fan on a lattice N. Let 8: Z" — N be a
homomorphism so that

e the cokernel of g is finite,
e every ray of X contains some S(e;), and
e every B(e;) is contained in the support of X.

For acone o € X, define 6 := cone({e; | B(e;) € o}). Let S be the fan on Z" generated by
all these . Finally, one defines Fx g := X5 g A toric stack which is isomorphic to some
Fs,p,1s called a fantastack.

By [15, Remark 4.2], one has
Xs =A"\V(Jxz), whereJs :=( l_[ X; | 0 € ¥ maximal cone ). 2.1
Blei)¢o

In particular, X5 (and thus also Fx, g = [Xs5/Ggl) is covered by the charts D+(]_[ﬁ(ei)¢a Xxi),
where o runs through all maximal cones of X. Here, D (h) := A"\ V (h) is the notation for
the standard open set.

Remark 2.4 In our setting, we will always have that N = Z™, the support of X is equal to

RZ,, n > m, and B: Z" — Z" is determined by a matrix M € Zrﬁg" of full rank m —

in fact it will be surjective on lattices. In particular, 8 induces a morphism of toric stacks
pp: Fx,p — A" determined by the morphism of stacky fans represented by the diagram

X ——=23)

Zl’l ﬁ S Zl‘n
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where X is the fan on Z™ providing the toric variety A™. For more details on morphisms of
toric stacks and the connection to morphisms of stacky fans, we refer to [15, Section 3]. Let
us only mention that the rows of M determine pg on the level of rings.

123
015
A3\V (Jx) (as in (2.1)) of the map A® = Spec(K|[z1, 22, 23]) — A% = Spec(K[x1, x2]),
which is given by x| = zlz%zg, having exponents (1, 2, 3) and x, = zgzg having exponents
©,1,5).

For example, if M = ( ), then pg arises from the restriction to the open subset

3 Binomial hypersurfaces: generalities
3.1 Setup: binomials in the torus and in affine space
We follow the notation and terminology of Sect. 1.2, in particular (1.1).

By restriction, the description (1.1) discussed above applies to any open subset U C
Spec K[x1, ..., xm].

Inside the maximal torus Spec K [xlil, R xfﬂ‘] ], a binomial is of the form
Ay Ay, —Bi —By __
Xy X Ty Yy = A
: . Ay Ay  —Bj — By P
a coset of the codimension-1 subgroup x;™' ---x; "y, "' -- -y °* = 1. Its reduction is there-

fore always smooth, as K is assumed algebraically closed and hence there has to exist an
exponent in its equation which is not divisible by the characteristic of the ground field K.

3.2 Schon binomials and arrangements

A binomial in affine space is said to be schon if either all A; = 0 or all B; = 0. For a
pure binomial this is in agreement with [32, Definition 1.3] — note however that we impose
no condition on the monomial factor, as it is an arrangement of smooth toric divisors. This
means that the reduction of the purely binomial factor is smooth, and meets the toric divisor
transversally. We use this condition to define a schon binomial in a smooth toric variety or
stack:

Definition 3.1 A hypersurface on a smooth toric stack X is binomial if on each affine chart
it is given by an equation of the form (1.1).

Moreover, a binomial hypersurface is schon if such equations can further be chosen so
that either all A; =0 orall B; = 0.

Note that being schon still means that the reduction of the purely binomial factor is smooth,
and meets the toric divisor transversally.

Again in the torus, a collection of binomials f, ..., f, thus defines an arrangement of
codimension-1 cosets as the zero-set X := V(f1--- f,) of their product. Denote by 7 :=
(f1,..., fa) the ideal they generate and by V (Z) the scheme it defines. The scheme V (Z),

when nonempty, is itself a coset of a subgroup of the torus, of possibly higher codimension
— the intersection of the stabilizers of f;.

As we assume that the base field is algebraically closed, it follows that the reduction
W := V(Z)req of such coset V(Z) is again smooth:

First note that W, as any variety over an algebraically closed field K, is generically smooth
over K. Let U C W be the maximal smooth open dense subset. We claim that U = W and
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argue by contradiction. Let x € W\U and y € U be closed points. Translation by y — x is an
automorphism of W, hence it must preserve U, but sends the singular point x to the smooth
point y, a contradiction.

In affine space, assume first that f; are pure binomials. Then the scheme X = V (f1 --- f,)
is an arrangement of schon subschemes in the sense of [32, Definition 1.3] if and only
if each binomial f; is schon. As above, we generalize this and say that an arrangement
X = V(f1--- f,) of arbitrary binomials, not necessarily pure, on a smooth toric stack is
schon if each f; is schon.

If the binomials f; are schon and have trivial monomial factor, the binomial ideal Z =
(f1, ..., fa) they generate defines a schon subscheme in the sense of [32, Definition 1.3].
The situation is a bit more involved when the monomial factors are not trivial, see Sect. 6.

3.3 Simple arrangements and problematic primes

Definition 3.2 Given a smooth Artin stack .4 and a substack Y C A, we say that Y is a simple
arrangement on A, if the following conditions hold for the intersection lattice S = {S;}ier
of Y:

(1) S; is smooth and non-empty,

(2) S; and S; meet cleanly. This is defined to mean that their scheme-theoretic intersection
is smooth and their tangent spaces fulfill 7(S;) N T(S;) = T(S; N S;), and

(3) §;NS; = orS; NS isanon-empty, disjoint union of elements S; € S,

foreveryi, j el.

In characteristic 0, a schon arrangement of binomials on a toric stack is automatically a
simple arrangement. This is not the case in positive characteristic. The precise condition is
easily computed by taking derivatives:

Observation 3.3 Asin[31, Section 6] it suffices to check that each S; is (absolutely) reduced.
Thus, consider a set of distinct binomials fi, ..., fg, of the form f; = ]_[;-":1 xiD VA j with
D;; € Z, vanishing in codimension k. For the common vanishing locus to be smooth, the
matrix Dij € M, 4(IF),) obtained by reducing the integers D;; modulo p must be of rank
k. To see this, first note that the schon condition forces the variables x; that appear to be
nonzero, hence we may work in the torus. We need to compute the rank of the derivative
matrix with respect to all x;, and since the variables are invertible we may instead use the
logarithmic derivatives x;0/0x;. Note that x;0 f;/0x; = Dj; I, xiDij . Factoring out the
invertible monomials, it remains to compute the rank of the matrix D; j as claimed. Putting
these conditions together, we require that for each subset { f;, j € I} of the given binomials,
vanishing in codimension kj, the corresponding matrix (Dij)ie{l,.__,m},jel € My, 11(Fp)
must be of rank kj.

Note that given an integer matrix D describing a collection of pure binomials in the torus,
there are only finitely many primes where the requisite minors det(l_)ij)ie{h,,,m},je[ above
vanish. We denote this collection of problematic primes £. Thus the schon arrangement
defined by f; fails to be simple if and only if p € £ is problematic.
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3.4 Subdivisions and modifications associated to binomials

. . . . B. .
Consider again a binomial f = xlc' .- ~x,,C1’” ()cf‘1 . -xrA’ — )»le' S Y 5) in affine space.

The fan Xy of affine space has a single maximal cone 0 = RZ,. We denote by &; the
coordinates in R corresponding to x; and n; those corresponding to y;. The binomial thus
defines a hyperplane 4 s (§;,n;) = > Ai& — Y Bjn; = 0 which splits o into a fan X
of two cones; note that the monomial factor xlc1 .- -x,i’” does not affect this subdivision.
In modern terms, the hyperplane % ¢ (&;, n;) is the tropicalization of the binomial f 2 Asin
Sect. 1.5, any smooth subdivision of X  results in a resolution of { f = 0}, and here we avoid
these subdivisions using stacks.

A collection fi, ..., fo of binomials provides a collection of hyperplanes hy, = 0.
Inductively, each hyperplane subdivides any cone into at most two subcones, hence together
they divide o into a fan X7 of at most 2% cones. The subdivision has < (zf‘f) edges, as
an edge is determined by the intersection of (m — 1) hyperplanes chosen from the union of
the m coordinate hyperplanes and /1 ;. Note that these bounds depend only on the ambient
dimension and the number of hypersurfaces, and not on the exponents appearing.

For a subdivision ¥ — ¥y we write M for the matrix whose columns are the primitive
generators of the rays of X. It defines a homomorphism 8 : Z" — Z™, resulting in a
fantastack Fx g and a morphism of toric stacks p = pg: Fx g — A™. We show that this
stack theoretic modification desingularizes the f; simultaneously.

4 Resolving a single binomial hypersurface

In this section, we prove Theorems A and B for a single binomial hypersurface, where they
coincide. Let K be an algebraically closed field and let f be a binomial with coefficients in
K. In the hypersurface case, the stacky fan (X, 8) for the fantastack construction will arise
from the dual fan of the Newton polyhedron of f. In particular, we have N = Z™, for some
m € Zx;. Furthermore, a monomial factor dividing f will not have an effect. Therefore, we
assume without loss of generality that f is a pure binomial,

f=at—ay? =xt o = ayft ey e Kix ),

where A € K\{0}. Setm :=s +r.
Recall [24], [9, Section 18.2] that the Newton polyhedron A(g; z) of a polynomial g €

K[zl = K|z1, ..., zm] is defined as follows: If we have
o= X et
CeZ’go

with coefficients Ac € K, then A(g; z) is the smallest closed convex subset containing all
points of the set

{C+v|veRYjand C € ZL; is such that Ac # 0}.

In particular, A(f; x, y) is the smallest closed convex subset A C R containing the points
(A,0),(0,B) € Zgo and which is stable under translations by the non-negative orthant ]R’;O,
ie., A+ R’l’o = A. When there is no confusion possible, we sometimes write A( f) instead

of A(f; x, y). We will use the symbol X ¢ for the dual fan of the Newton polyhedron A(f),

2 We thank the referee for pointing this out. Note that the works [31] and [11] predate this notion!
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see [28, 34], which is the fan in R™, whose cones are determined by the normal vectors of
the facets of A(f). (For some explicit examples and pictures, we refer to the examples later
on.) Observe that ey, ..., e, appear among the normal vectors of A(f) and the support of
the dual fan X ¢ is equal to RZ,.

Let us introduce the homorphism g: Z" — Z™, which we use for the construction of the
fantastack Fyx g, where X is a subdivision of X f.

Definition4.1 Let f = x* — Ay® € K[x, y] be a binomial as above, and let = be any
subdivision of the dual fan X y of the Newton polyhedron of f; note that ¥ = X is allowed.
Letei, ..., em, Unt1s ..., vy € ZZ be primitive generators for the rays of . Notice that
the normal vectors of the facets of the Newton polyhedron A(f; x, y) are among them. Let
My be the m x n matrix whose columns are the primitive generators

Mz = (e1 -+ em Vi1 -+ Vn) = (Em vmp1 -+~ va) € 225",

where E,, € Z™*™ is the unit matrix. We define By : Z" — Z™ to be the homorphism
determined by the matrix M. If the reference to X is clear from the context, we sometimes
just write B instead of Bx.

Since My has full rank, By is surjective. In particular, its cokernel is finite. Furthermore,
by construction, every ray of ¥ contains some By (e;) and every By (e;) is contained in the
support of X. Therefore, (2, g) fulfills all hypotheses of Definition 2.3. Recall that 8 induces
a morphism of toric stacks pg: Fx g — A" (Remark 2.4).

In the given situation, Theorems A and B boil down to the following statement.

Proposition 4.2 Let K be an algebraically closed field and let f be a binomial with coeffi-
cientsin K. Let ¥ be any subdivision of the dual fan of the Newton polyhedron of f. Let Fx. g
be the fantastack associated to the stacky fan (X, ) = (X, Bs) and let pg: Fx g — A" be
the morphism induced by B.

Ifweset X := V(f) C A™, then ,013_1 (X)red is a schon binomial hypersurface (Definition
3.1) and a simple normal crossing divisor on Fs g.

Let us first discuss this in an example to explain our intuition. The proof is given in
Sect.4.1.

Example 4.3 Consider the binomial f = xlzx% —y3. The Newton polyhedron looks as follows:

X1
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Here we highlighted the 1-skeleton and the facets of the polyhedron, and the polyhedron
itself forms the solid bounded by the resulting 5 facets and closer to the observer.

The normal vectors of its facets are ej, ez, €3, v, w, where u = (3,0,2)7 and v =
(0,3,2)T. Therefore, the dual fan of the Newton polyhedron looks as follows

€3

€l

Here we highlighted a transverse slice of the fan. The plane spanned by the vectors # and
v is precisely the plane 2&| + 2&; = 37 described in the introduction and appearing in the
paper [18].

Take ¥ = X to be the dual fan of the Newton polyhedron itself, without further modifi-
cation. The columns of the matrix M := My, are the normal vectors above,

1 00 3 0
M=|0 1 0 0 3

00 1 2 2

Note that the kernel of M has the basis ((=3, 0, =2, 1, 0)T, (0, =3, =2, 0, 1)T). The rows
of M determine the morphism p: A5 — A3 given by

’.3 /.3 1,22
X1 = X127, X2 = X535, Y = Y 2123,

where x{, x5, y', z1, z» are the variables of A>. We observe that the binomial f becomes
6_6,.2 12 3
f =2z —y7).

In the construction of F5 g, we have to take the quotientby Gg = ker(Tg), where Tg: Tyn —
Tzm is the homomorphism induced by 8. In this example, Gg ~ G,Zn acts via

/ / / . -3/ -3/ 2.2
(t1, 1) - (X1, %0, ¥, 21, 22) == (] "X}, b, "Xy, 1] "8, 7Y, 1121, 0222).
Indeed, writing

(axl » Ay, Ay, gy, azz) = (_3» 0,—-2,1,0) and (bxl , bxz’ bya bzl , bzz) =(0,-3,-2,1,0)

. — v bx ..
for the basis of ker(M), we have that f, 3xi = tla "t,"' x| etc. Observe that the original
variables (xp, x2, y) are stable under the action, by construction.

By (2.1), Fx,p is covered by the two charts D (x]x}) and D4 (y"). In both charts —i.e.,
if x]x5 # 0 orif y’ # 0 — the polynomial x{>x}? — y"> = 0 defines a smooth hypersurface.

Let us consider a further subdivision, in which we have the additional ray w = (2, 1, 0)7,
e.g.,
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€3 €3

v
or
u u
el w

€1

In the matrix M, we have to add the extra column w. Analogous to above, one may

determine the corresponding morphism of toric stacks and verify that the preimage of the
binomial defines a simple normal crossings divisor. Notice that there are more maximal cones
compared to above and hence, we have to consider more charts. On the other hand the fan
on the left, which is a triangulation of the fan on the right, is not much more complex: the
chart on the right corresponding to (e, u, v, w) is defined by x5y’ being invertible. On the
left we have its two open substacks where either x{ x5y’ or z,x}y’ is invertible.
Remark 4.4 Recall that by (2.1), we are working in an open subset of A’ in the example. If
one is only interested in the transform of X = V(xlzx% — y%), then it is sufficient to consider
one of the charts D (x}x}) and D (y’) since the transform is contained in the intersection
of both.

On the other hand, if one needs to keep track how the ambient space behaves, e.g. for
integration, one needs all of its charts.

4.1 Proof of Proposition 4.2

Let f be a binomial. If the preimage of f provides a simple normal crossing divisor, neces-
sarily of the form x€ (x4 — 1), when applying the fantastack construction for X £ then any
further subdivison X of X/ cannot change this. Therefore, it suffices to consider the case
X=Xy

As before, we assume without loss of generality that f = x4 — Ay5, where A =
(A1,...,Ay) and B = (By,...,B;). If A=0o0r B = 0, then V(f) is smooth and there
is nothing to prove. Hence, we assume A € Z% and B € Z/, in the following. We prove the
result by giving an explicit description of the matrix M = Myx: Without loss of generality,

we assume that all entries of A and B are non-zero. For every i € {1, ..., s}, we define
D(A) e 77"
to be the diagonal matrix with all entries to be A;. For every £ € {1, ..., s}, we introduce

R¢(B) € Z°%"

to be the matrix, whose ¢-th row is equal to B and all other entries are zero. For example, if
s =3,r =4, ¢ =2, we have

0O 0 O 0
Ry(B)= | By B, Bz By
0O 0 O 0
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We denote by E, € Z** the unit matrix and by 0°*# e Z**# we mean the & x 8 matrix
with all entries zero, where o, 8 € Z. Using this notation, we claim that the facets of the
Newton polyhedron A(f) = A(f; x, y) provide the matrix

’_ E; 0" Ri(B) Ra(B) --- Ry(B) mxn
M‘(O’“ E, D(A) D4y --- D(A»)EZ ’

where we recall that m = r + s and we set n := r + s + rs. In general the columns of M’
might not be primitive. Dividing each column by the greatest common divisors of its entries
we obtain the desired matrix M.

Let us explain this: For m = 2, the statement can be easily verified since A(f) has
only three facets. Thus, assume m > 3. Since we have A(f) + R'ﬁo = A(f), the Newton
polyhedron A( f) has unbounded facets parallel to the coordinate hyperplanes of R™. In other
words, all unit vectors e, . .., e, appear as normal vectors. Further, notice that the vertices
of A(f) are (A, 0) and (0, B). The columns of M, not coming from E,, are of the form

viji=Bj_se; +Ajej, foriefl,....s},jel{s+1,...,5s+r}

Fix suchi, jandletk € {1, ..., m}\{i, j} be any other element in {1, ..., m} different from
i and j. Then, the following equalities hold

(A,0)-v;,; =(0,B) -v;,; =((A,0) +ex) - v; j =(0,B) +er)-vi,; =A;iBj—5. (4.1
Note that the face of A(f) defined by v; ; is
Fij={weA(f)|w v j=A;Bj_}
Let G be the segment determined by (A, 0) and (0, B). The latter can be described as
={e(A,0)+ (1 —¢€)(0,B) | e €[0;1] C R}.
By (4.1), we have
w-v j=A;Bj_s, foreveryw e 6.

In other words, & C F; ;. Since further (4.1) holds for all k € {1, ..., m}\{i, j}, we obtain
that 7; ; has dimension m — 1 and thus is a facet.
It remains to prove that we determined all facets of A(f). Suppose there exists some

v=(V1,...,Uy) € ]RZ’O, which is a normal vector of A(f) different from those discussed
before. Leta := #{k € {1, ..., m} | v # 0} > 2andlet vy, ..., vk, be the non-zero entries
of v, where k| < k» < ... < ky. If @ = m, then v determines a compact face of A(f).

The only compact faces are the two vertices and the segment connecting them. Since m > 3,
none of them is a facet. Hence, suppose that « < m. For o > 3, consider the projection
my: R — R, (wq, ..., wy) = (W, ..., wg,). Then, 7, (v) determines a compact face
of T, (A(f)) and the latter has to be the segment connecting the two vertices. Since o > 3
and since all entries of A and B are non-zero, the preimage of the compact face along m,
does not correspond to a facet of A(f). Finally, if « = 2, the equality (A,0)-v = (0, B) -v

B
1mphes = 22 > and thus v is a multiple of vy, g,.

Next, let us descrlbe the columns of M. Fori € {1, ..., m}, the i-th column is the i-th unit
vectorof Z".Fixk e {1,...,s},£e{l,...,r} and seti :=ix¢:=m+4 (k—1)r + €. The
non-zero entries of the i-th column of M’ are By and Ay. Let dy ¢ be the greatest common

3 We note however that M’ will also give a fantastack resolution, obtained by a suitable root stack of p, see
[28].
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divisor of By and Ax. Define By ¢ := By/dk¢ and Ak = Ax/dr¢ € Zs>o. Then, the
non-zero entries of the i-th column of M are By ¢ and Ay ¢.

The matrix M induces § = By : Z" — Z™ and thus the homomorphism pg: A" — A™,
which is given by

Brl BIZ _ Jj .
x,_lelzlz ..lr xl_[z , foriefl,...,s},

;A Ay, .
y,—yjzlj’zzzj’~- ”-’—y]l_[z ,forjefl,...,r},

where X, ..., X0, Y]s ey Vs 2115 oo s Zrs 22,15 - - - » 22,75 - - - Zs,r Ar€ the variables of A”.
Note that the variable z; ¢ corresponds to the i ¢-th column of M with iy ¢ = m4(k—1)r+£.
We obtain

N r B
_ Aj i
=[]« =+]1y" =
i=1 j=1
N r AB r B ) A B
_ 1A; iBij B LiBi\
= [T T1=0™) =+ TT O TT05") =

i=1 j=1 j=1 i=1

- (T

i=1j=1

The fantastack Fx, g is covered by the two charts D ([T;=; x/) and D+(1—[;:1 y}). Since
A — 1y'B is a schon smooth binomial in both charts, this ends the proof. O

Remark 4.5 Let f be a product of binomials, f = ]_[17‘{:1 (x4 —x;yB), for some A; € K ~ {0},
where the exponents A, B appearing are the same for each factor. Then, the same procedure
as for V (x4 — AyB) transforms V (f) into a simple normal crossings divisor. Notice that, for
A #£ N, V(A —2ryB)and V(x? — 1'y8) are disjoint if x; # O forall i (or y; # O forall j).

5 Partial simultaneous resolution of finitely many binomials

In Remark 4.5, we have seen that we can simultaneously resolve the singularities of finitely
many binomial varieties V (x4 — ; y®) via a single step using fantastacks, where A; € K are
pairwise different and the pairs of exponents (A, B) are the same for all i. Our next goal is to
extend this result without restrictions on the exponents. In particular, we prove Theorem A
in full generality, for finitely many binomials.

Observation 5.1 Let fi, ..., f, € K[x] = K[x1, ..., x;y] be finitely many binomials.

(1) For every i € {1,...,a}, we determined a matrix M(f;) € Z™*" via the normal
vectors of the facets of A(f;) in the previous section, which induced a transformation
pi: A" — A™ resolving the singularities of V (f;). In general, it is not sufficient to
consider the transformation induced by the matrix whose set of columns coincides with
the union of the normal vectors of A(f;; x), fori € {1, ..., a}, see Example 5.2(2).

(2) The task to simultaneously monomialize V (f1), ..., V(f,) is equivalent to the mono-
mialization of the hypersurface determined by their product V (fi - - - f,).
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(3) From the definition of the Minkowski sum, it follows directly that the Newton polyhedron
of the product f] - - - f, is the Minkowski sum of the Newton poyhedra for f;,

A(ft-- fas X) = A(f15 %) + -+ A(fa; X),

where “+" is the Minkowski sum. In particular, any vertex v of A(fj--- f;) can be
decomposed as v = vy + - - - + vy, Where v; € A(f;), fori € {1, ..., a}. Note that the
converse of the last statement is not true, i.e., not every sum of vertices vy + - - - + v, is
also a vertex of A(f] --- f,), see Example 5.2(1).

Let us discuss some examples with two binomials, where we write f = f; and g = f>.

Example 5.2

(1) Consider the binomials f = x — y3 and ¢ = x% — y°>. We have fg = x* — x2(y® +
y)— yg. Its Newton polyhedron has three vertices (4, 0), (2, 3), (0, 8). Note that (2, 5) =
(2,0) 4 (0, 5) is a sum of two vertices of A(f) and A(g), butitis not a vertex of A(fg).
The normal vectors of the facets of A(fg) are ey, €3, v3 := (3, DT vy = (5,2)T, which
is precisely the union of the sets of normal vectors of the facets of A(f) and A(g).

T €9 Vs

V4

=N WO

12345678 €1

Newton polyhedron (left) and its dual fan (right).
On the right hand side, the rays are marked with their corresponding generating vectors eg, €2, v3, U4 .

1 0 3 5
o1 2 2
1,22

p: A* — A? determined by x = x’ zlzz and y = yz7z5. Thus f and g become

The resulting matrix is M = < ) , which provides the transformation

2_6_10 /3_6_6 ” 4 3
f=x"28230 — 3832828 = 2828?25 — y'),
g = x/2Z6ZIO y/4zi0 10 __ lelo(x/Z /4 4)

By (2.1), Fx, g, which is determined by the dual fan of A(fg) and the matrix M, can be
covered by three charts: D4 (y'z1), D+ (x"y’), and D4 (x'z2). We observe that in each of
the charts, V(f) and V (g) are simultaneously resolved.

(2) Let f =x2—y3and g = x* —2°. The picture of the Newton polyhedron A(fg; x, y, 2)
is as follows:
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z

Using polymake, we may determine all relevant data of A(fg). The vertices are:
wi = (6,0,0), wy := (0,3,5), w3 := (2,0,5), wg := (4, 3,0). The rays of the dual
fan are ey, es, €3, v1 := (3, 2, O)T, v = (5,0, 4)T, vy := (15, 10, 12)T. Observe that
the vector v3, which corresponds to the compact facet of A(fg), is neither a normal
vector of A(f) nor of A(g). The resulting matrix is

1 0 0 3 5 15
M=|0 1 0 2 0 10
0 01 0 4 12

and this determines the transformation A® — A3 given by

x =x'78320, vy =320, 2 = 225202

We obtain
P28,00,30 _ /3,6.30 _ 630,210 _ 73
f=x"2{223 —y72123 —2123 (x7zy = y7),
g = 42122080 _ 520,60 _ 2 Zgo(xm 12 _ 5y

Furthermore, we have (again using polymake)

normal vector of facet|vertices of the facet

el w7

() wi, W3

€3 wi, W4

U1 w2, w3

v2 w2, W4

v3 wi, W2, W3, W4
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and from this we determine the rays of the maximal cones of the dual fan: (Recall that
the maximal cones correspond to the vertices of the Newton polyhedron.)

’vertex‘rays of corresponding maximal cone|corresponding chart

wj e, e3,v3 x'z122 #0
w) er, vy, V2, V3 vz #0

w3 e, V1, 3 x'7'z0 #0
wa e3, V2, U3 x'y'z1 £0

Therefore, the corresponding fantastack Fx g can be covered by four charts and as one
can verify V(f) = V(z§23°(x"?z)0 — ")) and V(g) = V(23°25°(x"*z]? — 2)) are
simultaneously resolved in each of them.

(3) Let f = x2 — y3z% and g = x* — zw’. Using polymake, we obtain the matrix

1000|35/13]35
0100[20[00[20
M= {0010l02[40[02
0001]00[04[46

(The reason for the separating lines between the columns will become clear soon.) Let
us study how to it can be constructed by hand from the data of a single binomial. If we
consider only one of them, we get the matrices

1000[35 1000[13
010020 0100[00
MU =10010[02 M@ :=1001040
0001[00 0001[04

The rays which have to be added for the Newton polyhedron of the product fg arise from
the intersection of the 3-dimensional cones of the dual fans, which intersect the relative
interior of Rio. Since we are working with binomials, there is only one such cone for
each binomial. More precisely, the rays of the respective cones are

3 5 0 1 3 0
2 0 0 0 0 1
(uy,uz, u3) = ol 12110 (t1, 2, 13) := sl 1ol 1o
0 0 1 0 4 0

(Take the vectors different from the unit vectors and if the corresponding matrix has a
zero row, add unit vectors to the set so that there are no zero rows afterwards.)

A generator of a new ray, which we are looking for, is a vector r, for which there are
non-negative integers a, b, c, d, e, f such that

r =auy + buy + cuz =dt; + et + f13.

Itis tempting to determine abasisof ker (u; u» w3 —f; —f —13),butthis does
not provide the correct vectors since the kernel has dimension two and there are non-
trivial choices for the basis.

Thus, we have to consider the kernels ker (u; u; —tx —t¢), for varying i, j, k, €.
Since the dimension of this kernel is one, the basis is unique up to multiplication by a
non-zero constant. (Note that this becomes more delicate if we work with three binomials
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or more, as we have to repeat this process taking the newly added rays into account.)
Some of the choices for i, j, k, £ cannot provide new rays. For example, in

5 0 3 0

0 0 0 1
ker (uz usz —t —l‘3) = ker >0 0 ol

01 4 0

the third row is telling us that @ = 0 and thus, the generator for a potential new ray can
be written as r = auj + buy + cuz = cus, which provides the ray generated by u3. A
computation shows that for the remaining cases, we have:

ker (u1 u3 —ty —13) = Span((1, 4, 1, )T,
ker (uz u3 —ty —t) = Span((2, 12, 1,3)7),
ker (uj up —t; —13) = Span((-3,2, 1, —6)7).

The first two kernels provide the additional rays generated by r; := u1+4u3 = tr+2t3 =
(3,2,0, 47 and ry := 2uy + 12u3 = t; + 3 = (10,0, 4,12)7 = 2(5,0,2,6)T
respectively. On the other hand, the third vector (-3, 2, 1, —6)T does not provide a new
ray since the signs of the entries varies. In conclusion, we obtain the matrix M ( fg). This
situation can also be seen in earlier work: the transverse slice of the dual fan is the linear
subspace ¢ introduced before [19, Lemma 5, p. 1830] and before [18, Theorem 3.1], or
H; introduced in [31, Section 6.1, p. 77].

In general, if we consider more than two binomials, then each binomial is resolved after
applying the fantastack construction, but they do not necessarily form a normal crossings
divisor. The reason for this is that we may have singularities in the torus. Let us illustrate this
for simple examples.

Example 5.3

(1) If we have f] :=x — 1, fo ;== y — 1, f3 := xy — 1, then the fantastack construction
does not provide new information since the Newton polyhedron of f; f> f3 is the whole
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orthant Rio. On the other hand, V (fi f> f3) does not define a simple normal crossing
divisor. This can be seen by introducing new coordinates X := x — 1, ¥ := y — 1,
which provides f1 =X, f» = ¥, f3 = X + Y + Xy. By blowing up the origin, we will
simultaneously resolve V (f1), V(f2), V(f3).

(2) Let K be an algebraically closed field of characteristic p > 0. Consider the binomials
fii=x—1,f :=y—1, f3 := xy” — 1. Analogous to (1), we introduce the new
variables X := x — 1,y := y—1landobtain f| =X, f» =, f3 = X+ y” +Xy”. Notice
that the scheme theoretic intersection of V(1) and V (f3) is not reduced. In particular,
the intersection lattice of V (f] f> f3) does not provide a simple arrangement.

Let us restate and prove Theorem A. It generalizes Proposition 4.2 and is the best result
that could be obtained towards simultaneous normal crossings resolution of finitely many
binomial varieties using fantastacks.

Theorem 5.4 Let K be an algebraically closed field of arbitrary characteristic p > 0. Let
fi,..., fa € K[x] = Kl[x1, ..., xn] be finitely many binomials, where a,m € Z. with
m > 2. Let £ C Z be the set of problematic primes associated to the exponents of the pure
binomial factors of f1, ..., fa-

Let ¥ be a subdivision of the dual fan of the Newton polyhedron of the product f1 --- f,
and let B: 7" — Z™ be the homomorphism determined by the matrix M € 7"*", whose
columns are the primitive generators for the rays of the fan X. Let p: Fx g — A™ be the
morphism of toric stacks induced by B. Set X ==V (f1--- f,) C A™.

Then the reduced preimage ,0_1 (X)red C Fx p is a schon arrangement of smooth bino-
mials. If furthermore p ¢ &, then p~'(X)red induces a simple arrangement on Fs, 8-

Proof Set X; := V(fi),fori € {1,...,a}. Since X is a refinement of the normal fan X .
Proposition 4.2 implies that ,0_1 (Xi)red is a schon binomial hypersurface on Fx g.
Let (y) = (b1, ..., yn), = m, be coordinates in a chart of 75 g. By the schon condition,

each f; is of the form
YA 4 2yP0),

for some units A; # 0 and A(i), B(i) € Z’éo Thus, the only part not being simple normal

crossing is the product []7_; (1 + 2 yB®), which provides a schon arrangement of smooth
binomials. O

Remark 5.5 1In the situation of the theorem, we have that Fx, g is covered by at most 2¢ affine
charts since the number of vertices of A(fi --- f,) (and thus the number of maximal cones
in ¥) is < 2¢ by Observation 5.1(3).

In general, 2¢ is strictly smaller than the number of affine charts obtained by blow-ups in
smooth centers. For example, a possible desingularization of xjx3 — x3x4 via blow-ups in
smooth centers could be to choose the closed point as the center and hence creates 4 charts.
This difference becomes even bigger if we consider binomials with large exponents. For
further explicit examples, we refer to [13, Examples 8.4 — 8.11], where different methods for
the local monomialization of a single binomial are studied, implemented, and compared. A
local monomialization is a local variant of desingularization, where one does not necessarily
demand the centers to be chosen globally.

Ifchar(K) ¢ £, then the remaining simultaneous desingularization is obtained by applying
the following theorem. A more general variant of this result was proven in [26, Theorem 1.3].
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Theorem 5.6 ([21, Theorem 1.1]) Let Xo be an open subset of a non-singular algebraic
variety X such that X\Xo can be decomposed as a union | J;; Si of closed irreducible
subvarieties with the properties

(1) S; is smooth,
(ii) S; and S meet cleanly, and
(iii) S; N'S; = @ or a disjoint union of Sg.

The setS = {S;}; is aposet. Let k be the rank of S. Then there exists a sequence of well-defined
blow-ups

Bls(X) - Bls_(X) = ... = Bls_((X) = X,

where Bls_,(X) — X is the blow-up of X with center all S; of rank 0 and Bls_, (X) —
Bls_, | (X) is the blow-up of Bls_,_, (X) with center the proper transform of all S; of rank
r, forr > 1. We have

(1) Bls(X) is smooth, ~
2) EKS (X)\XQ = Uj¢s Si is a normal crossings divisor, and
(3) S8, N...NS;, isnon-emptyifand only if S;, .. ., S;, form a chain in the poset S. Hence,

n

S; and S meet if and only if S; and S; are comparable.

As explained in [26, Introduction/after Theorem 1.2], this is a generalization of De Concini
and Procesi’s wonderful models of subspace arrangements [10].

We need a variant of the theorem for algebraic stacks. We note the following direct
consequence of smoothness:

Proposition 5.7 Let Xo C X be as in the theorem, and w : Y — X a smooth morphism. Set
Yo := 7~ 1(Xo), Sl-Y = 1(S) and S¥ = {SiY}. Then SiY satisfy properties (i)-(iii), and,
setting BL SY (Y) as in the theorem, we have that
Blgr (Y) =Y xx Bls_, (X),
and the sequence
Blgr(Y) — Bﬁsék_l(Y) > ... Bﬁséo(Y) —Y

satisfies the conclusions (1)-(3) of the theorem.

Given an algebraic stack X, an open Xy C X with complement |, SiX satisfying (i)—
(iii) of the theorem, and any smooth presentation by schemes Y; — Yj, we obtain pullback

subschemes Sl.Y' and SI.YO such that SiY1 are the preimage of SiYO under either projection
Y1 — Y. It follows that we obtain smooth groupoids

Besg Y= BES;‘} Yo)
with quotient stacks B¢ gx (X') satisfying the conclusion of the theorem. We therefore obtain:

Corollary 5.8 The theorem applies as stated to algebraic stacks.
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5.1 What happens in mixed characteristics

While the theory of toric Artin stacks is only established over algebraically closed fields, we
are interested in applications such as those discussed in Sect. 1.10, and the methods provided
here can be applied and sometimes work. We discuss here what works without change and
what requires further work.

We consider a collection of binomials fi, ..., f, over the ring of integers Ok of a finite
extension K of Q,.

First, the formation of p : Fy g — A" depends only on the combinatorial data of the
exponents appearing in f;, and works without change over an arbitrary base, but with weaker
outcomes.

Second, the treatment of singularities here requires working with binomials of the form
x4 — Ax®B where A is a unit. Without this assumption the procedure still leads to equations of
the form x€ (x4 — 1) (or x€ (1 — Ax5)), but if v(1) > 0 the first of these is no longer schon.
We expect that Kato’s theory of toric singularities in mixed characteristics [22] will provide
a way to treat these cases; another approach, suggested by the referee, is to systematically
work with toric schemes over valuation rings — this is consistent with the work [20]. This
will have to be addressed elsewhere.

Third, when f = x4 — Ay® is a pure binomial and the residue characteristic p divides all
the exponents, the hypersurface f = 0 in the torus is not smooth over Ok . Over a perfect
field its reduction is smooth, and in general its reduction is regular, being the orbit of a smooth
group scheme.

Fourth, even when p does not divide the exponents of individual binomials, if p € £ the
binomials do not meet cleanly. As stated earlier, this situation is interesting already over an
algebraically closed field of characteristic p.

Finally, if all A; are units and p ¢ £ then the procedure does provide an arrangement of
schon binomials meeting cleanly, in which case the procedure for resolving the arrangement
in Theorem 5.6 works without change.

6 Binomial ideals

The purpose of this section is to generalize Proposition 4.2 to resolution of singularities for
binomial subschemes X C A™ (Theorem B). As we neglect the question of functoriality, we
can work with a fixed system of generators for the binomial ideal defining X.

Note that the situation is a bit simpler than in the simultaneous setup in the previous
section. For example, in both cases of Example 5.3, the ideal generated by f1, f2, f3 is equal
to (x — 1, y — 1) and hence, the corresponding variety is smooth.

Theorem 6.1 (Theorem B) Let K be an algebraically closed field and m € Zsy. Let X C A"
be a binomial subscheme. Denote by X the fan in R™ with unique maximal cone R’;O. Let
f=1{f1,-... fa} be binomial generators of Tx.

(1) (See [18, 19, 31]) The proper transform of XP"® in Fx , g is a schon purely binomial
subscheme, in particular its reduction is smooth.

(2) There exists a further subdivision ¥ of X, of combinatorially bounded complexity, with
the following property: If B: 7" — Z™ is the homomorphism determined by the matrix
M € Z™*", whose columns are the primitive generators for the rays of the fan X, then

p N (X)ed C Fs p
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is in simple normal position on Fy, g (see Sect. 1.8), where we denote by p: Fs g — A™
the morphism of toric stacks induced by B.

Proof Without loss of generality, we assume that, foreveryi € {1, ..., a}, f; is not contained
in the ideal generated by { f1, ..., fa}\{fi}. Note that some f; might already be monomials.

Asbefore, Xy = X,..., is the dual fan of the Newton polyhedron of the product f; - - - f
and let py i Fspp A™ be the morphism of toric stacks as in Theorem A. In particular,
in every chart, pg; (f;) is of the form y€@ (1 — ¢;yA®) and fi’ =1 — € y4® is schon by
Theorem A, where () is a system of local coordinates and ¢; is either a unit or zero. (For this,
recall Remark 4.5 and use that every binomial is a product of reduced binomials — possibly
with multiplicities — since K is algebraically closed).

We claim that in each chart X" = V(f],... f,) is a schon purely binomial subscheme.
Indeed the variables y; appearing in the f; are all invertible on X', and so X" = X/ x A™ s
the product of a coset of a subgroup of the torus in these parameters with the affine space with
the remaining coordinates x;. Its reduction is thus smooth and it meets V ([ ] x;) transversely.
This gives part (1).

To address Part (2), we need to modify the monomial factors which on each chart are
of the form y¢® ... y€@_ We note that the locally principal ideals given on charts as
(yCMy, ..., (y¢@) are well-defined globally, since (f;) = (f/)(y¢@).

We define monomial ideals

Gij = <yco'), ycm>7

fori,j € {l,...,a} withi < j. Let ¥g be the dual fan of the Newton polyhedron
of [T, Gi j, or, equivalently, of the product of binomials [T, _; (y¢© — 4;;y¢\) with
Aij # 0,1. Let ¥ the induced subdivision of X . Equivalently, this is the fan of the
Newton polyhedron of [, _ j Gi j x [1;{fi), or equivalently, of the product of binomials
[Tic; D = 2i;y°D) < T, fi-

Applying the fantastack construction for ¥, we achieve that for every subset J C
{1,...,a) the ideal (y¢) | j € J) is principalized in every chart. The latter has the conse-
quence that the monomial factors are totally ordered: in each chart, after a possible relabeling
of the generators (and abusing notation), we have yC€@ | yCE+D for everyi € {1,...,a—1}.

Let M; be the reduced monomial obtain from yc(i). Set Ny := My and N; := M;/M;_
fori € {2, ..., a}. Then the reduced preimage of X in the given chart decomposes as

VIND UV (N2, [DUV(N3, 1, U= UVNa, f ooy fam) UV f2)s

where we write V (1) for the scheme determined by the vanishing locus of the ideal generated
by the elements of /. One checkes that this is in normal crossing position, as required.
Notice once again that the number of cones of the fan and therefore the number of charts
and divisors, does only depend on the ambient dimension and the number a of binomial
generators, but not on the explicit exponents of the binomials. O

By applying a combinatorial sequence of blowups, as for example in [26], we may obtain
a divisor with simple normal crossings:

Proposition 6.2 There exists a sequence of at most m blowups L : Y — Fx g such that
L~ 'p=1(X) is a simple normal crossings divisor.

Proof The closures S; of strata of a scheme in simple normal position form a building set
in the sense of [26, Section 2.1]. Let G, be the union of the S; of codimension c. By the
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theorem this applies to p~!(X). By [26, Proposition 5.3] blowing up, in decreasing order of
codimension, the successive proper transforms of G, one obtains the result. O
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