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In this paper, we extend a uniformity result of Dimitrov et al. [Uniformity in Mordell-
Lang for curves, Ann. of Math. (2) 194(1) (2021) 237-298] to dimension two and use
it to get a uniform bound on the cardinality of the set of all quadratic points for non-
hyperelliptic non-bielliptic curves which only depend on the Mordell-Weil rank, the genus
of the curve and the degree of the number field.
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1. Introduction

Let C be a smooth, geometrically irreducible, projective curve defined over a number
field F, of genus at least 2. The Mordell conjecture proved by Faltings [7] states
that the set of rational points C(F) on C is finite. If C' is moreover non-hyperelliptic
and non-bielliptic (i.e. having no 2-to-1 map to an elliptic curve), Harris—Silverman
showed in [20, Corollary 3] that the set of quadratic points on C is indeed also
finite, by applying Faltings’s Theorem [8] to its symmetric product. Motivated by
this and the recent uniformity result of Dimitrov et al. [6], we will show that

Theorem 1.1. Let g > 3 and d > 1 be integers. Then there exists a constant ¢ =
c(g,d) > 0 such that for any non-hyperelliptic, non-bielliptic, smooth, geometrically
irreducible, projective curve C of genus g defined over a number field F with [F
Q] < d, we have

#C(F,2) < e,

where C(F,2) is the set of points on C that are defined over some F' with [F’
F] <2 and p is the rank of the Mordell-Weil group Jac(C)(F).
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Let us call a positive dimensional variety X defined over a field K geometrically
Mordellic or GeM, if the base change X z to an algebraic closure K of K does not
contain subvarieties which are not of general type (see [1, Definition 1.4]). For a
subvariety of an abelian variety, Ueno [34] showed that being GeM is equivalent to
containing no translates of positive dimensional abelian subvarieties.

Let A, be the fine moduli space of principally polarized abelian varieties over Q
with symplectic level-I-structure where we fix [ > 3 and a primitive [th root of unity;
see Sec. 2.2] for more details. Fix a height function h : A,(Q) — R associated to
some ample line bundle on a fixed projective compactification A, of A, (see Sec. 2
for more details). The above theorem relies on a uniform bound of the same quality
as in [6], for the number of rational points on the fibers of a family of 2-dimensional
GeM subvarieties of abelian varieties. Specifically, we show the following.

Theorem 1.2. Let S be a variety over Q and let A — S be a principally polarized
abelian scheme with symplectic level-l-structure. Let X C A be a closed subvariety
such that each fiber X5 is a 2-dimensional integral GeM subvariety in As, with X
generating As for any s € S(Q) (see the end of Sec. 2.2). Assume that the modular
map ts : S — Ay induced by the family A — S is quasi-finite. Then there is some
¢ > 0, depending on all the information above, with the following property: for any

s € S(Q) satisfying h(ts(s)) > ¢, and any subgroup T' C As(Q) of finite rank r, we
have

#(X(Q)NT) < M.

The idea of our proof is as follows. We first use the non-degeneracy result by
Gao [10, Theorem 10.1] and the height inequality developed by Dimitrov et al. [6l
Theorem 1.6] to study the distance between the algebraic points in X' (Q) using
Néron—Tate height. We find several families of curves in X — S, over possibly
different bases, together with one marked family over S, which satisfy the following:
for any point P of X(Q) not on the marked family, all of the points that are “close”
to P live on one single curve among these families of curves (see Lemmal[6.3]). Then
we prove and use the following Theorem[L.3]to bound the number of algebraic points
in I' on those families of curves. We derive that for any rational point away from
the marked family, there is a uniform bound on the number of rational points that
are close to it. Finally, we combine this with a classical result of Rémond for large

points to get the desired bound on #(X;(Q)NT) for any s € S(Q) of large moduli
height.

Theorem 1.3. Let S be a variety over Q and let A — S be an abelian scheme. Let
C C A be a closed subvariety whose fiber Cs over S is a GeM curve in Ag, for any

s € S(Q). Then there exists ¢ > 0 which only depends on the family C C A — S,

such that for any s € S(Q) and any subgroup T' C A,(Q) of finite rank r,

#(Cs(Q)NT) < M.
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Theorem [L.3] itself is of interest to us. Compared with [12, Theorem 1.1] or [23]
Theorem 4], it is also valid for the case when the ambient abelian varieties are not
the Jacobians of the curves. Also, the curves can be singular or reducible.

The main new ingredient in the proof of Theorem [L3] is the use of Hilbert
schemes to construct non-degenerate subvarieties of a family of abelian varieties
which could, for example, even be a constant family of abelian varieties (see Sec. [3).
This is motivated by the work of Hrushovski [22] Lemma 1.3.2] and Scanlon [32] on
automatic uniformity, and the Betti rank formula by Gao [10, Theorem 10.1].

In a joint project [13] with Gao and Kiihne, we prove the uniform Mordell-
Lang conjecture for any subvariety of an abelian variety. We generalize the uniform
Bogomolov conjecture there and compare the distance of algebraic points with the
moduli height of the abelian variety. The non-degeneracy construction using Hilbert
schemes in Sec. [3 is used. Compared to the current paper, some finer properties of
Hilbert schemes are also required. As a particular consequence, the constant ¢ in
Theorem [I.1] can be made independent of the degree [F : Q).

2. Notations

We fix conventions and notations in this section.

2.1. General varieties

The algebraic closure of Q in C is denoted by Q. We work exclusively over Q except
in the proof of Theorem [L.1] and in [Appendix A. Varieties are separated schemes
of finite type over Q; in particular, varieties are Noetherian. Integral varieties are
irreducible and reduced varieties. All subvarieties are required to be Zariski closed,
unless otherwise stated. An algebraic point = of a variety X is a morphism z :
SpecQ — X; the set of algebraic points of X is denoted by X(Q). Curves are
1-dimensional varieties. Surfaces are 2-dimensional varieties. In particular, curves
and surfaces can have lower dimensional irreducible components.

A family of varieties is a dominant algebraic family & — S, where S is the base
variety and U is the total space which is also a variety; the word “family” is used
here to stress that we are interested in studying the fibers. We do not require a
family to be flat, although we will reduce to the flat case in the proofs. A family of
curves (respectively, surfaces) is usually written as C — S (respectively, X — S).
Denote by Ug the nth fibered power of U over S; since our fiber products for a
family are always taken over the base of the family, we often leave out the subscript
and write Y" for simplicity. If Y — S and T — S are two varieties over S, denote
the base change U x s T by Ur. Denote the fiber of i — S over a point s € S by Us.

A morphism of varieties is called quasi-finite, if every geometric fiber is finite.
A morphism of varieties f : X — Y is called generically finite (to its image)
if there is a dense open subset U of X such that f|y : U — Y is quasi-finite;
see |33, Remark 073A]. In other words, we define the generically finiteness as a
property local on the source. Clearly, a morphism of varieties f : X — Y with X
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irreducible is generically finite if and only if dim f(X) = dim X. Remark also that
the composition of two generically finite morphisms is not necessarily generically
finite under this definition.

A morphism of varieties X — S is called (respectively, quasi-)projective if it fac-
tors through a (respectively, locally) closed immersion X — P(£) for some coher-
ent sheaf £ on S. We usually assume S is quasi-projective over Q; then we can
indeed have a stronger projectivity with a closed immersion X — ]P’g for some N;
see [15, Summary 13.71] for a discussion of various notions of projectivity.

Let S be a variety and let X — S be a projective morphism of varieties.
There exists a fine moduli space, namely the (relative) Hilbert scheme, denoted
by Hilb(X'/S), which represents the functor that associates to any locally noethe-
rian scheme T over S the set of all closed subschemes of X1 that are flat over T'. The
Hilbert scheme Hilb(X'/S) has a stratification by Hilbert polynomials with respect
to a given relatively very ample line bundle on X as

Hilb(X'/S) = | | Hilb®(x/S)
DeQ[A]

such that each piece Hilb®(X'/S) is a projective scheme over S; cf. [18, [28].

2.2. Abelian schemes

Let S be a variety and let A — S be an abelian scheme of (relative) dimension g.
By [9, 1.10(a)], the abelian scheme A — S is projective if S is a Noetherian normal
scheme. For example, if S is a smooth variety over Q, then A — S is projective.
Fix some [ > 3 throughout. By level-I-structure on A — S, we mean symplectic
level-I-structure; in characteristic zero, it is an isomorphism of S-group schemes
(Z)1Z)*9 = A[l] which takes the standard symplectic pairing to the Weil pairing.
We fix a choice of primitive [th root of unity throughout.

The moduli space of principally polarized abelian varieties over Q of dimension g
with level-I-structure is representable by a quasi-projective smooth variety denoted
by Ag; see [14, Theorem 2.3.1; 27, Theorem 7.9 and its proof] for its existence and
properties. Let 2, — A, be the universal abelian scheme, which is projective by
the last paragraph due to the smoothness of A,. So there exist relatively ample line
bundles for 2, — A,.

If A — S is principally polarized with level-I-structure, then there exist natural
modular maps tg : S = Ay and ¢ : A — 2, such that A — S is the pullback of
Ay = A, by ts. In this case, the abelian scheme 4 — S is projective.

Fix a relatively ample, symmetric (i.e. [-1]*Ly = L) line bundle Ly for the
universal family 2, — A, which defines fiber-wise Néron-Tate heights & : 2, (Q) —
R>¢ (e.g., given a relatively ample line bundle £, we can take Ly := L ® [-1]*L
which is relatively ample and symmetric). Fix an ample line bundle M, on a fixed
projective compactification Ag of Ay, which defines a height function h : A, (Q) —
R up to a bounded function.
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By the nth Faltings—Zhang morphism D,, for A — S, we mean the following
morphism:

D, : A"t & A",
(Pov.r Pa) s (Pr = Poy... Po — ).

We say that an irreducible subvariety X of an abelian variety A generates A,
if X — X is not contained in any proper abelian subvariety of A. In general, we
say that a (possibly reducible) subvariety X C A generates A if some irreducible
component of X generates A.

3. Non-Degeneracy

Let us start by defining the Betti maps. Let S be an integral quasi-projective variety
(over Q as always). Consider an abelian scheme 7 : A — S and a smooth complex
point s € S(C). One can take a local trivialization which is called a Betti map
ba : Ax — T?9 over any simply-connected analytic open neighborhood A C §sm-an
of s using the period mappings, where S*™?" denotes the analytification of the
smooth locus of S, Ax := 7 1(A) denotes the corresponding complex abelian
scheme over A and T?9 is the real torus of dimension 2¢. The Betti map ba is a
real analytic map of analytic manifolds with complex analytic fibers.

For an integral subvariety X of A dominant over S, restrict a Betti map to
Asman AN, The generic Betti rank is defined to be the maximal R-rank of
(dba|xsmanna, )z for x € X520 N A, where df is the differential for any smooth
morphism f between manifolds. This definition is independent of the choice of the
Betti map. See |10 §4;[6, §B.1] for more details of the construction and the prop-
erties.

The notion of non-degeneracy first appeared in the work of Habegger [19]. Here
we take the definition from [6, Definition B.4]. We say an irreducible dominant-
over-S closed subvariety X is non-degenerate if the generic Betti rank of x4 is
equal to 2dim X', where dim X is the dimension of X as a scheme.

In this section, we will use Gao’s Betti rank formula [10, Theorem 10.1] to
construct a new type of non-degenerate subvarieties.

Let us start with the following lemma.

Lemma 3.1. Let ) — B be a projective morphism of varieties over Q. Let H C
Hilb®(Y/B) be a locally closed integral subvariety (for some Hilbert polynomial ® €
Q[A] with respect to some relatively very ample line bundle). Let

U— VYu=YxpH
H/

be the flat family induced by H C Hilb®(Y/B). Assume that its geometric generic
fiber Uy is integral.
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Then the fibered power Uf; is irreducible, and for n > 1, the composition map
o UY = (Vu)l — Vi is generically finite.

Proof. Since the geometric generic fiber Uy is integral, there is a dense open subset
V C H such that Uy — V has geometrically integral fibers; see [33] Lemma 37.27.5
and [Lemma 37.26.4].

For the first part, since the morphism U}; — H is open due to flatness, with
irreducible fibers over the dense subset V, the irreducibility of U}, follows from a
topological argument as in [33] Lemma 0047)].

For the second part, by definition of generically finiteness, it suffices to replace H
by V and thus we assume without loss of generality that ¢/ — H has geometrically
integral fibers.

Claim: If n is large, there is a closed point in the image of f, whose fiber is a
singleton.

To prove the claim, without loss of generality, assume that B = SpecQ is a
point. Let hy € H(Q) and denote the integral fiber over hg by Up. Since the fibers
of U — H are integral and have the same Hilbert polynomial and distinct moduli,
we have

N {heHQ):Pel(@) = {ho}. (3.1)

Peuy(Q)

Observe that the left-hand side is an intersection of Zariski closed subsets of
H. 1t is indeed a finite intersection by Noetherian property. For n > 1, there exist

Py, Ps,..., P, € Uy(Q) such that

ﬂ{h € H(Q) : P, € Un(Q)} = {ho}.
i=1
Then the fiber of f, over (Pi,...,P,) € V&(Q) is a singleton. Thus, the claim
follows.
The generically finiteness is an immediate result of the following Chevalley’s

upper semicontinuity theorem on the dimension of fibers.

Theorem 3.2 ([16, Théoréeme 13.1.3]). Suppose f : X — Y is a morphism
of schemes that is locally of finite type. Then the function X — N which sends
r € X to dim, Xy(,), that is, the local dimension of the fiber over f(x) at x, is
upper semicontinuous.

In fact, Chevalley’s theorem together with the claim implies that there is a
dense open subset W C U7, such that for the restriction f,|w : W — Vi, any
point x € W is isolated in the fiber Wy, (,). In other words, all the (geometric)
fibers of f,|w are finite. O

Remark 3.3. In the proof, Eq. (8.1) holds true if we only assume that the fiber U is
reduced and the fibers have distinct moduli. However, as pointed out by the referee,
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we need the irreducibility of the geometric generic fiber as a sufficient condition to
ensure the irreducibility of the fibered powers.

The next corollary allows us to have a little more flexibility.

Corollary 3.4. Let Y — B be a projective morphism of varieties over Q. Let H be
an irreducible variety together with a generically finite morphism H — Hilb()/B).
Let

Z/[‘—>yH=y><BH
H/

be the flat family induced by H — Hilb(Y/B). Assume that its geometric generic
fiber Uy is integral.

Then the fibered power Uy, is irreducible, and for n > 1, the composition map
fo iU — (Vu)h — V5 is generically finite.

Proof. The first part is the same as in the proof of Lemma [3.1l Note that the
irreducibility of H ensures that H actually maps into Hilb®()/B) for some Hilbert
polynomial ®. We may assume without loss of generality that H is reduced.

For the second part, let H' be the scheme-theoretic image of H in Hilb(Y/B),
which is the Zariski closure of the image of H equipped with the reduced structure.
Let U’ — H’ be the corresponding flat family. Then &/ — H is a base change of
U" — H'. Since H — H' is generically finite and dominant, the geometric generic
fiber of U’ — H' is just Uy, which is integral. By Lemma [3.1] the natural map
(U} — Vg is generically finite. Then f, as the composition of Uf; — (U')%,
which is a base change of H — H’, whence generically finite, with (U")},, — Vg, is
generically finite. |

Proposition 3.5. Let A, — A, be the universal abelian scheme defined in
Sec. 2.2l Let S be an integral quasi-projective variety over Q with a generically
finite morphism S — Hilb(2(,/A,), and let U — S be the induced family inside
A=y xa, S— 8. For the geometric generic fiber Uy, assume the following:

(1) Uy is integral,
(2) Uy generates Aj; and
(3) Uy has finite stabilizer in Aj.

Then for n > 1, the fibered power U™ C A™ is irreducible and non-degenerate.

Proof. Note that & — S satisfies the assumptions (e.g., dim¥ > dim S follows
from (2) and g > 0) of Gao’s Betti rank formula; see [10, Theorem 10.1(i)] and
the Erratum [11]. So for each ¢t > 0, the generic Betti rank of U™ is at least
2(dim¢(U™) — t) for all n > dim S — ¢, where ¢ : U™ — g, is the modular map.
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But by Corollary B.4} if n > N for some N > 1, the map U" — 2 is gener-
ically finite. Since the natural map A7 — A, is clearly quasi-finite, it implies
LU — AP — Ay, is generically finite. In particular, dim ((U™) = dimU™. There-
fore, taking ¢ = 0 and n > max{N,dim S}, we deduce that the generic Betti rank
of U™ is equal to 2dimU™. In other words, U™ C A™ is non-degenerate. O

Remark 3.6. If the modular map S — A, for a principally polarized abelian
scheme A — S with level-I-structure is generically finite, then for any flat algebraic
family 4 — S in A — S, the induced map S — Hilb(,/A,) is generically finite.

Sometimes we would also like to consider the non-degeneracy of the image of
the Faltings-Zhang morphism. Let S be a variety over Q with a morphism S —
Hilb(2(,/A,), and let f : U — S be the induced family inside the abelian scheme
A =2, xa, S. Consider the following embedding of U xs U in U x5 A:

UXSU%UXSA,

(PaQ)H(P’Q_P)

Denote its isomorphic image by U; (the inverse map is given by (P, z) — (P, P+z)).
It is equipped with a natural flat morphism to I/ through the first projection U; C

U x5 A — U, whose fiber over any point P € U(Q) is Uspy — P. We have the
following non-degeneracy result in terms of the Faltings—Zhang morphism.

Proposition 3.7. Let A, — A, be the universal abelian scheme defined in
Sec. 2. Let S be an integral quasi-projective variety over Q with a morphism
S — Hilb(,/Ay), and let U — S be the induced family inside the abelian scheme
A:=2y xa, S — S. For the geometric generic fiber Uy, assume the following:

(1) Uy is integral,
(2) U5 generates Ay and
(3) Uy has finite stabilizer in Aj.

Let Uy — U be the flat family described in the previous paragraph. Assume that the
induced map U — Hilb(A,/A,) for Uy — U is generically finite.

Then the image D, (U™ ') of the restricted nth Faltings-Zhang morphism D,, :
UL — A™ s drreducible, and for n > 1, the image D,(U™') C A" is non-
degenerate.

Since there are many morphisms involved in the proof below while there is only
one morphism interesting to us between any two varieties, we decide to refer to
most morphisms by the arrow.

Proof. The irreducibility follows from the irreducibility of 4"*! by the integrality
assumption on S and Uy, as in the proof of Lemma [3.1]

As in Proposition 3.5 we aim to show that the moduli map D, (U™ ') — 27 is
generically finite when n is large.
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Write (P, s) for a point of P € Uy(Q) with s € S(Q). Note that
DU ™) (Q) = {(s,PL — Py,...,P, — Py) : s € S(Q), Py,...,P, €U (Q)}.
Note also that

(Z/{l)lrxl{((@) = {(57P07P1 —By,..., Py 7P0) 18 € S(Q)7P07~-~7Pn EZ/{S(Q)}
={(s,P; P\ — Py,...,P, — P) : (5, ) €UQ), Pr,...,P, €U;(Q)}.
There is a modular map Dy, (U™ ') — A7 induced by A" — A and a modular map
(U1); — A7 induced by A, — A7 They are related by the map (U1)7; — Dp (U™ 1)
forgetting the Py-component.

Note that U is irreducible as a special case by the first paragraph. The integrality
of the geometric generic fiber of Uy — U follows from the fact that Uy 2 U xsU as
U-schemes, where U x s U is a scheme over U via the first projection. If the induced
map U — Hilb(2,/A,) for Uy — U is generically finite, then by Corollary [3.4]
for n > 1 we know the modular map (U1);; — 2y is generically finite. Because
(U1); — A7 factors surjectively through the other map D, (U" ') — A, we have
the generically finiteness of Dy, (U™ ') — A by irreducibility. Note that 23 — 2,
is quasi-finite. So the composition map ¢ : D,, (U™ 1) — Ay, is generically finite.

Applying Gao’s Betti rank formula [10, Theorem 10.1(ii)] (see also [11]) with
t = 0, the generic Betti rank of D, (") is at least 2dim (D, (U"T1)) for n >
dimU. By the previous paragraph, dim «(D,, (4" ")) = dim D, (U™ 1) if n > 1. So
for n > 1, the subvariety D, (U" ") C A" is non-degenerate. O

Remark 3.8. The assumption on the generically finiteness of & — Hilb(2(,/A,)
is a fairly restrictive condition. It does not allow the family to have a positive
dimensional family of translates of the same subvariety. For example, it excludes
the extreme case when U — S is the family of translates of some fixed variety X in
the single abelian variety A. On the other hand, if we take &/ — S as the universal
curve €, — M, where My is the fine moduli space of curves of genus g with level-
l-structure, then since the fibers are essentially distinct, we get the non-degenerate
subvariety D, (€"") which is used in [6].

4. Previous Results
4.1. Classical results

In this subsection, we recall some classical results developed by Rémond.

Let us start by introducing two fundamental constants eyt and hy. Suppose
A is an abelian variety over Q with a symmetric very ample line bundle L. To
use Rémond’s result, we assume moreover that a basis of H(A, L) gives rise to a
projectively normal embedding A < P2 for some n € N. This is the case if L is an
at least fourth power of a symmetric ample line bundle; see |25, Theorem 9].

Let X C A be an integral subvariety. Let deg X denote the degree of X and let
h(X) denote the height of X, both considered as a subvariety of Pg-
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The first constant eyt is an upper bound for the difference between the Néron—
Tate height & : A(Q) — R and the naive logarithmic Weil height h : P*(Q) — R
on A(Q). Namely, eyt satisfies [h(P) — h(P)| < et for all P € A(Q).

The second constant by is a measure for the heights of the bihomogeneous poly-
nomials that define the addition and subtraction on A. See [31], §5] for more details.

Both constants eyt and hy are related to (A4, L) and the choice of the basis
of HY(A, L) for defining the embedding A < P". In fact, it is known that there
exists some choice of a basis of H%(A4, L) for the embedding A < P" and ¢ =
d(dim A, deg A):

ent,  h1 < max{1, hga(A)}, (4.1)

where hpa1(A) denotes the Faltings height of A. More concretely, consider the uni-
versal family of abelian varieties 2, — A, of dimension g with polarization of degree
(1/g9!)? and some sufficiently high-level structure of level coprime to the degree of
the polarization and apply the arguments in [6, (8.4) and (8.7)]. A standard com-
parison result between the Faltings height and the moduli height gives a bound for

any s € A,(Q),
comax{l, h(s)} < max{l, hpa(Ays)} < comax{l,h(s)}, (4.2)

where ¢, ¢{, are constants only depending on our choice of height on Ag; see for
example [24, Théoréme 1.1] together with [7] to deal with logarithmic singularities.

Write |P| := h(P)Y/2 for P € A(Q). Let C, X C A be integral GeM subvarieties
of dimension one and two, respectively. We record the following explicit Vojta’s and
Mumford’s inequalities by Rémond for dimension one and two, which are special
cases of [31, Théoreme 1.2;[30, Proposition 3.4], respectively. Note that increasing
the constants in them will only weaken the results.

Lemma 4.1 (Vojta’s inequality [31]).

(1) There ezists a constant ¢ = c¢(n,deg C) > 1 such that if P1, P, € C(Q) satisfy
(P, Po) > (1= 1/c)| || Py,
|Pa| > c| Pyl

then |Pi|?> < cmax{1, h(C), h1,cnT}-
(2) There exists a constant ¢ = c(n,deg X) > 1 such that if P, Py, P; € X(Q)
satisfy

(Pi; Pis1) = (1= 1/0)|P||Piga],
|Pis1] = | Py

fori=1,2, then |P1|?> < cmax{1,h(X), h1,enT}-
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Lemma 4.2 (Mumford’s inequality [30]).

(1) Assume that Py — Py ¢ Stab(C). There exists a constant ¢ = ¢(n,degC) > 1
such that if Py, Py satisfy

(Pr, Pa) > (1 —=1/c)|P1|[ P,

1
P2l = 121l < Il

then |P1|* < cmax{1,h(C), h1,cnT}-

(2) Assume that (P, P1,P) € X3(Q) is an isolated point in the fiber of the
restricted Faltings—Zhang morphism Dy : X3 — A2. There exists a constant
¢ =c(n,deg X) > 1 such that if P, P, Py satisfy

(P, Pi) > (1 =1/¢)|P||P],

1
1Pl = |Fill < ~|P]
fori=1,2, then |P|* < cmax{1,h(X), h1,cNT}.

The following proposition deals with the large points for curves. Note that the

first alternative trivially implies the second alternative if C(Q) N T # (.

Proposition 4.3 (Rémond, curve case). Let C C A be as in the above. Write
g=dimA,d =degC,l = deg A. There exist positive constants cs = c3(g,d,l) and

¢y = cy4(g,d, 1) such that for any finite rank subgroup T' C A(Q) of rank r, either
#(C(QNT) < 5™
or there exists Qo € C(Q) NT such that
#{P € C(Q) NI : (P — Qo) > camax{L, hpu(A)}} < )™

Proof. Take ¢ = ¢(n,d) = ¢(g,d,1) > 0 from Vojta’s inequality 4.1l and Mumford’s
inequality 4.2] in the curve case. Let ¢/ = ¢/(g,1) be as in (41). Enlarging ¢ to
¢-max{1, '}, we can change the conclusions in both inequalities to

|P1|? < cmax{1,h(C), hra(A)}. (4.3)

By a standard packing argument (see [30, Corollaire 6.1]), we can cover the r-
dimensional vector space I' ® R by at most (1 4+ +/8¢)" cones such that for any z,y
in each cone, one has

(z,y) = (1 = 1/c)l=[[yl.

Take one cone and call it D. Let us count the number of large points in C(Q) N D
not satisfying (4.3). Mumford’s inequality says that for any Py, P, € C(Q)N D with
P, — P, ¢ Stab(C),|P1| < |Pz|, we have |Py] > (14 1/¢)|P1]. So the points are

discrete and we can find a point P; € C(Q) N D with the smallest height. Vojta’s
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inequality says that all points in C(Q) N D satisfy |P| < ¢|Py|. In particular, the

set C(Q) N D is finite. Order the set by the heights |Py| < |P;| < -+ < |Py|. Then
clearly N <log;;,.(c). In particular, we get

#{P e C(Q)NT : h(P) > cmax{1, h(C), hpa(A)}}
< #Stab(C) - logy41.(c) - (14 V8e)"

< d*logyi1/c(c) - (1+ VBo)". (4.4)

We need the following lemma of Rémond, which allows us to eventually remove
the dependency on the height of C'. Note that it is a special case of [30, Lemme 3.1]
in dimension one with n =1/g! — 1.

Lemma 4.4. If = C C(Q) is a finite set of points of cardinality at least 1d?/g! + 1,
then

R(C) <d(l/g'+1)*- (rlglazc h(P) + ext + 310g(l/g!)).
€=
For any Q € T', by (4.4)), there is a smallest constant d¢g such that
#{P € C(QNT: h(P—Q) > g} <logiyyy.(c) - (1+V8e)".

This can be easily seen from the fact that h(P — Q) will be dominated by h(P) if
h(P) is large enough. Another way to see it is by noticing the bijection

{(PeC@QNT:h(P-Q)>dg} < {Pe(CQ) —Q)NT:h(P)>dg}.
In particular, we see that
0o < cmax{1,h(C — Q), hra(A)}.

Pick Qo from the finite set C'(Q) NI such that dg, is the smallest among all
{90} gec(@nr- We are going to show that if {P € C@QNT : h(P—Qo) < dg,}
has too many points, then Lemma 4.4 will imply that h(C — Qo) is comparable to
max{1, hpa(A)}.

Take A :=c-d(l/g! + 1)2. By the packing lemma [30, Lemme 6.1], we can cover
the r-dimensional ball centered at Qq of radius \/d¢, using (1+4+v/2))" small balls
of radius 1/d¢q,/2\/2. If there is a small ball B which contains at least ld*/g! + 1
points, then by Lemma [4.4] for any @ in it, we have

0o < cmax{1l,h(C — Q), hra(4)} < cmax{l, hpa(A)} +c-h(C - Q)

< [c+3d(1/g! + 1)*log(l/g")|max{1, hpa(A)} + )\Ilgleag h(P - Q)

1
< [c+3d(1/g! + 1)*log(l/g")|max{1, hpa(A)} + 55620-
Combining it with ég, < dg, we get
800 < 2[c+3d(1/g!+ 1)*log(l/g")Jmax{1, hai(A)}.
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Then we are done in the second alternative with
¢ = max{2[c + 3d(l/g! + 1)*log(l/g!)],logy ;1 (), 1 + v/8c}.
If all the balls contain at most Id?/g! points, then
#(C(Q)NT) < logyyye(c) - (1+VBe)" + (1+4V2N)" - (1d*/g!) < e5™"

for some c3 = ¢3(yg,d, 1) large enough. O

4.2. Recent results

The first theorem we recall is the height inequality for a non-degenerate subvariety,
as proved by Dimitrov et al. in [6, Theorem 1.6 and Appendix B].

Theorem 4.5 (Height inequality [6]). Let S be an irreducible quasi-projective
variety over Q and let A — S be a projective abelian scheme. Fiz a relatively
ample symmetric line bundle L on A — S, which induces fiber-wise Néron—Tate
heights h : A(Q) — Rso. Fiz any height function h : S(Q) — R restricted from
a compactification S of S associated to a not necessarily ample line bundle on S.
Let X be an irreducible closed subvariety of A that dominates S. Suppose X is
non-degenerate. Then there exist constants ¢c1 > 0,co > 0 and a Zariski dense open
subset U of X, depending on all the information above, such that

h(P) > c1h(s) — ¢y for all P € Us(Q).

Note that we allow some extra flexibility of the height function on S in the
statement. This easily follows from the original statement since any height function
is bounded above by a constant multiple of an ample height function.

The next result is the uniform Bogomolov conjecture for curves. The case of
curves embedded in their Jacobians is proved by Kiihne [23] Proposition 22]. To
deal with more general curves inside abelian varieties, we prove the following ver-
sion using the non-degeneracy result in Sec. Bl A more detailed proof is given

Theorem 4.6 (Uniform Bogomolov conjecture [23]). Let S be an irreducible
variety over Q and let A — S be a principally polarized abelian scheme with level-
l-structure. Let C C A be an integral closed subvariety whose fibers over the closed
points of S are GeM integral curves. Assume moreover that for any s € S(Q), the
curve Cs generates As. Then, there exist constants c1,co > 0, depending on all the

information above, such that for any s € S(Q), we have

#{x € Cs(Q) : h(z) < 1} < ¢,

where the fiber-wise Néron—Tate heights h are induced from those on the universal
family Ay — Ay, as fived in Sec. 2.

Proof. We explain here the new input to modify the proof in [12, Proposition 8.3].
We may assume that S is reduced, since pulling back the families to Syeq does not
change the statement.
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Induct on dim .S. The case dim .S = 0 is the classical Bogomolov conjecture.

We may assume S is quasi-projective and smooth and C — S is flat. So we have
an induced morphism ¢ : S — Hilb(2,/A,). We may replace S by its image without
loss of generality, since our Néron—Tate heights are taken from the universal family.
So we assume ¢ is generically finite.

To prove the results on C — S, we remark that the rest of the proof in [12) Theo-
rem 8.3] is valid except that the nondegeneracy of C" is provided by Proposition[3.5]
Indeed, the geometric generic fiber Cy is integral since the geometrically integral
locus is constructible by [16, Théoréme 9.7.7] and contains all the closed points of
S. Also, the fact that Cj; has a finite stabilizer in Aj; and generates Aj; follows from
a standard spreading-out argument. O

5. Proof of Theorem [1.3]

Induct on dim S. The case dim .S = 0 is a classical result of Rémond [30, Théoréeme
1.2]. Consider dim S > 0.

We arrange the proof in a few steps. Remark that although in the theorem we
allow the fibers Cs to be not of pure dimension, the argument below first reduces to
the case where fibers are integral and then ignores the case where fibers are points,
since they are trivial.

Step 0 | We make several reductions in this step.

Without loss of generality, assume C and S are integral. Note first the following
simple fact by using the induction hypothesis and Chevalley’s theorem on con-
structibility of the image:

If 8" — S is a dominant map, then the result on Cs: C Ag implies the result
on C C A.

Immediate consequences of the fact are that we may assume S is quasi-projective
or even affine, and assume that the map C — S is flat.

We will first add polarization and level structure to the abelian scheme. After
possibly replacing S by a finite cover, let (A’, L’) be a principally polarized abelian
variety isogenous to the generic abelian variety A,. By spreading out (A’,L’) and
the morphism, there is a principally polarized abelian scheme (A’, £’) over a dense
open subset S’ of S with an S’-isogeny A" — A xg S’. Let C’' be the pullback of
C to A’. Then the result on ¢’ C A’ would imply the result on C C A over S’. In
particular, we may assume A — S is a principally polarized abelian scheme.

For the level structure, note that there is a quasi-finite dominant map S’ — S
such that the I-torsion points of the generic abelian variety .A,, are all defined over
k(S’) and the torsion points spread out to distinct torsion sections over S’. Then we
may impose the level-l-structure on A xg S’. By this fact, we thus assume A4 — S
s a principally polarized abelian scheme with level-l-structure.

The generic fiber C, is irreducible, but may not be geometrically irreducible.
There is a finite extension of the function field k(S), which gives rise to a quasi-
finite dominant map 7" — S for some integral variety T', such that the generic fiber
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of the pullback Cr — T decomposes into geometrically irreducible components. By
this fact, we may work on Cr — T instead. Then we can work on each irreducible
component of Cr. Let C; C Cr be an irreducible component. It is dominant over T'.
Then the generic fiber of C; is an irreducible component of the generic fiber of Cr.
So the generic fiber of C; — T is geometrically irreducible. By [33, [Lemma 0559],
there exists a dense open subset 7" of T" such that C; x7 T — T’ has geometrically
irreducible fibers. Together with induction hypothesis, we reduce to study such a
family as C; x7 1" — T’ and may assume every fiber is geometrically irreducible.

Remark that the quasi-projectivity of S, integrality of C,S and flatness can
always be re-obtained by further trimming the family (without affecting the geomet-
rically irreducibility of fibers). In fact, in all the remaining modifications, individual
fibers will remain untouched up to translation.

The generic fiber C, is clearly reduced (and hence geometrically reduced since
we are in characteristic zero), since we assumed C is reduced and C,, is a localization.
Then [33] Lemma 0578] tells us that over a dense open V of S, all the fibers are
reduced. So we may assume every fiber is geometrically reduced.

We can assume the curves pass through 0. Indeed, by possibly taking a finite
cover, which is justified by the fact above, we can assume there is a point
Speck(S) — C,, on the generic fiber. By spreading out the morphism, there is a
dense open subset S’ of S such that S — C' := C xg 5 is a section. By this
fact, it suffices to work on ¢’ — S’. Translating C’ by the inverse of the section,
we get C” — S’. The result on C” — S’ implies the result on C’ — S’ since
C(Q)NT = (CL(Q) — P)N (T, P), where P € C.(Q), I' C As(Q) and (T, P) is the
group generated by I' and P, which has rank at most 1 4 rankI".

We may assume the curves generate the ambient abelian varieties. Indeed, if the
geometric generic curve C; generates Ay, then the addition map +: (C —C)9 — A
is surjective over the geometric generic point of S. By properness, + is surjective.
Namely, the curves over s € S generate the ambient abelian varieties. Otherwise,
by our assumption that the fibers of C — S are geometrically irreducible, the
fibers of (C — C)9 — S are also geometrically irreducible. Then the image of the
addition + : (C — C)? — A is a closed subscheme B of A, which is closed under
group operations. So the geometric generic fiber of B — S is a proper connected
algebraic subgroup of Ay, hence an abelian subvariety. By spreading out again and
discarding a lower dimensional closed subset of S, we may assume B — S is an
abelian subscheme. Assume we have the result for C C B — S, namely there is
¢ > 0 such that for any s € S(Q) and any subgroup I' of B(Q) of finite rank r, we
have #(Cs(Q) NT) < c'*7. Then the result for C C A — S will be an immediate
corollary because for any finite rank subgroup I' C A,(Q), the intersection I' N B4 (Q)
is a subgroup of possibly lower rank, which means the same ¢ > 0 would work for
CC A

Overall, we make the following assumptions:

(1) S is an integral quasi-projective variety over Q;


https://stacks.math.columbia.edu/tag/0559
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(2) A— S is a principally polarized abelian scheme with level-I-structure;
(3) C — S is a flat family of GeM integral curves passing through 0 in A — S, such
that every curve Cs generates A;.

In particular, there is a natural modular map ¢g from S to the moduli space A, of
principally polarized abelian varieties with level-I-structure by (2), and a natural
modular map % from S to the Hilbert scheme Hilb(2(,/A,) by (3). The map tg
induces fiber-wise Néron—Tate heights on A — S by pulling back those on the
universal family. Recall that we defined the height function h : A,(Q) — R in (2.2).

By abuse of notation, we still use i to denote the height function on S (Q) given by

h(s) := h(ts(s)).

Step 1|In this step, we will demonstrate how to apply the height inequality [4.5]
to the non-degeneracy result from Sec. [3] to study the distance of algebraic points
on the curves.

If v : S — Hilb(,/A,) is not generically finite, then the image has lower
dimension. In this case, we can simply use induction on the image family and pull
it back. So we can and do assume 1 : S — Hilb(2(,/A,) is generically finite.

Consider the following embedding of C x g C:

CxgC—As=Cxg A,

(PaQ)H(PaQ_P)
Denote its image by C;. Then the projection onto the first factor is a flat family of
curves C; — C inside A¢. Note that each fiber of C — S is a fiber of C; — C, due to
our assumption that 0 € C4(Q). By the universal property of Hilbert schemes, there
is a natural modular map ¢ : C — Hilb(2,/A,). Then ¢(S) C ¢(C). Depending on
whether ¢ is generically finite or not, we apply Theorem [4.5 in two ways.

If ¢ is generically finite, we use the Faltings—Zhang morphism to study the
distance. By Proposition[3.7] for n > 1, the image of the Faltings—Zhang morphism
D, (C") C A™ is non-degenerate. Fix such an n. By Theorem [£.5] there exist
c1, ca > 0 (with an extra dependence on n) and a dense open subset V of D,, (C" 1) C
A™ such that

h(P, — Py) 4+ h(P, — Py) > n- (c1h(s) — ¢2) (5.1)

for any s € S(Q) and (P, — Py, ..., P, — Py) € V5(Q).

If ¢ is not generically finite, then the closure of the scheme-theoretic images of
S — Hilb(,/A,) and ¢ : C — Hilb(,/A,) must coincide, since 1(S) C ¢(C)
and they are both integral of the same dimension. By Proposition 3.5 for n > 1,
the fibered power C™ C A™ is non-degenerate. Fix such an n. By Theorem [4.5] there
exist ¢1,co > 0 (with an extra dependence on n) and a dense open subset V' C C"
such that

h(Py) 4+ h(Py) >n- (cih(s) — ¢3) (5.2)
for any s € S(Q) and (Py,...,P,) € V/(Q).
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For the rest, let us say two points P, Py € As(Q) with s € S(Q) are
close if h(Py — Py) < ¢1h(s) — ca.

Define E,, := {(P,Q1,...,Q.) € C""(Q) : Q; is close to P for any i} and let
F,, be the Zariski closure of E, in C"*1. Claim: F,, is a proper subset of C**!.

Indeed, for the first case where ¢ is generically finite, simply notice that the
image of a tuple (P, Q1,...,Qn) € E, under D, is not in V by (&.1).

For the other case, since up to a finite base change and away from a proper
Zariski closed subset, C; — C is a pullback of C — S (the morphism C — S inducing
the pullback does not have to be the same as the structural morphism C — 5), the
open subset V/ C C™ pulls back to an open dense subset V" of (C1)§ with the same
height inequality as in (5.2]) because of our choice of the height function on S at
the end of Step 0. Namely, we have

h(Py) 4+ h(Py) > n- (c1h(s) — ¢2) (5.3)

for any s € S(Q), P € C:(Q) and (P1,...,F) € V!'p(Q). Notice that a point
(Pr,...,P,) € (C1)g(Q) over P € Cs(Q) is of the form (Q1 — P,...,Q, — P) for
some (Q1,...,Qn) € C*(Q). Then it is clear that E, is not Zariski dense in C**?

through the following identification:
ctt = (),
(S;Plev"'in)'_} (37P;Q17P7"'7Qn7p)7

since a point of F,, corresponds to a point outside V.

Let V;, := C" ™\ F,,. The image of V,, in S, say Sy, is Zariski open by flatness.
We can use induction hypothesis on S\Sy. So without loss of generality, assume the
projection V,, — S is surjective. Then we have the following lemma.

Lemma 5.1. There exist N1, Ny > 0 such that for any s € S(Q), we have

#{P € Cs(Q) : there are > Ny points close to P} < Ns.

Proof. This is essentially the same as [6, Proposition 7.1]. Here we give an alter-
native proof using an idea from the proof of [4, Lemma 1.1].

Define F; C C**! inductively in a decreasing order for 0 < i < n as follows. The
first case F,, C C"T! is defined above the lemma. Assume now that Fipq1 C Cit2 is
defined, for 0 < i < n — 1. Let F; be the largest closed subset of C**! such that
7ri_+11 (F;) C Fyyq, where ;41 : C*72 — C**L is the projection leaving out the last
component. In other words, F; is the set of points over which fibers of m;1|F,, ,
positive dimensional. It is closed due to upper semi-continuity of fiber dimension
[16l Corollaire 13.1.5] and properness of the map F; 1 — C*FL.

For 0 <i<n-—1,let V; :=C\F,. Then m;41|p,,, is finite over V; and let d;
be an upper bound on the cardinality of the finite fibers. Let N; be the maximum
of all d;’s.

are
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Since V,, surjects to S by assumption above this lemma, F; is proper in C*t!,
even fiber-wise over any s € S, for any 0 < i < n — 1. In particular, Fy C C maps
finitely to S. Let Ny be the largest number of points in any fiber of Fy — S.

Then Ny, Ny satisfy the requirement. Indeed, we will show that if P € (V})s(Q),
then there are at most N7 points close to P. Let j(P) > 1 be the smallest integer j
such that all points (P, Q1,...,Q,) € CI*1(Q) with all Q;’s close to P are contained
in Fj. Note that j(P) < n. By definition of j(P), and since P € V(Q), there is a
point (P, Q1,...,Qjp)—1) with all Q;’s close to P in Vj(p)_;. But any prolongation
(P,Q1,...,Qj(p)—1,Q) with Q close to P is in Fj(py. Since the fiber of Fj; py over
a point of Vj(py_; is finite of cardinality bounded by Ni, the number of such Q’s
that are close to P is bounded by Nj. O

W Let T' C A4(Q) be a subgroup of finite rank » with s € S(Q). We divide
the final step into two cases, depending on whether h(s) is large or small.

We assume that the line bundle Ly is relatively wvery ample and defines a
fiber-wise projectively normal embedding A — P% for some n. The general case
with £ merely relatively ample (and symmetric) follows easily by comparing the
heights, since L& satisfies the required condition by [25, Theorem 9] and notice
that HY(A, L) ®o4s) k(s) = H(As, L) (see for example [26, §5, Corollary 2; 27,
Proposition 6.13]), together with the criterion of projective normality in [21] Exer-
cise 11.5.14(d)]. By Proposition [4.3] (noticing that g, d,! are bounded in the family),
there exist c3,cq > 0, such that either already we have #(Cs(Q) NT) < ¢3*" and
we are done; or there is a Qo € Cs(Q) such that the number of points in Cs(Q) N T
whose distances to Qo are greater than \/ cymax{l, hpa(As)} is at most c}l'”. By
the comparison (4.2)), it suffices to bound the cardinality of

{PeCi(Q)NT:h(P—Qo) < cocy max{1,h(s)}}.

For s € S(Q) such that h(s) > max{1, 26%}, we use the above to get
the desired bound on #(Cs(Q) NT). Note first that if two points P, Q in Cj satisfies

h(P-Q)< S-h(s), then
h(P — Q) < c1h(s) — %h(s) < c1h(s) = co.

In other words, P,@ are close. Then it suffices to bound the number of points
P € (Cs(Q) — Qo) NT with h(P) < ¢ - camax{1,h(s)} = cocsh(s).

Regard I' ® R as a normed vector space with norm given by |- | := h'/2. Let
Ry := \/cocah(s) and Ry := \/Fh(s)/2. Assume without loss of generality that

Ry > Rs. The closed ball of radius Ry centered at Qg is covered by at most (1 +
2R1/R2)" = (1+4+/2¢coca/c1)" closed balls of radius Ry by [30, Lemme 6.1]. In any
closed ball of radius Rs, any two points are close. So by Lemma [5.1] there are at
most N7 points in one closed ball of radius Rs, with at most N» exceptional points
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in total which we may exclude first. Thus, overall we have

#(Cs(Q) NT) < max{cs™, ei™ + Ny - (1 +4v/2coca/cr)” + No} < 7
for some large ¢ > 0.

For s € S(Q) such that h(s) < max{l, 26%}, we use Kithne’s result to
get the desired bound on #(Cs(Q) NT). Write

2
C5 1= CoCy max{l, ﬂ} > cocy max{1,h(s)}.
C1
It suffices to bound
{PeCi(Q NI :h(P-Qo) <ecs}.

We use Theorem [4.6] for the family C; — C. Note that C; is reduced since C is
reduced and all fibers are reduced by our reduction step; see [33, Lemma 0C21].

Then there exist cg,c7 > 0 such that for any s € S(Q) and P € Cs(Q),

#{Q € C.(Q) : M(Q — P) < cs} < c1.

This immediately tells us that a closed ball of radius ,/cg/2 contains less than c7
points. Now we cover the large ball of radius ,/c5 centered at (o in I' ® R by at
most (1+4+/c5/ce)" small balls of radius ,/cg/2 (assuming without loss of generality
2¢/c5/ce > 1). A similar argument as above then yields

#(Cs(Q)NT) < max{cs™, eyt +cr- (1 +44/cs/ce)"} < M7

for some large ¢ > 0.

6. Proof of Theorem [1.2]

We will first prove the following family version of Rémond’s result on large points
in dimension 2, for which we need to invoke Theorem [1.3l This is expected to some
extent, as Rémond in his original proof of [30, Proposition 3.3], uses the most general
results for lower dimensions too.

Proposition 6.1 (Rémond, surface case). Let S be a quasi-projective variety
over Q. Let A — S be a projective abelian scheme and let X C A be an irreducible
closed subvariety whose fibers over the closed points of S are GeM integral surfaces.
Fix a relatively ample symmetric line bundle L on A — S, which induces fiber-wise
Néron-Tate heights h : A(Q) — Rsq. Fiz a height function h : S(Q) — R on S
corresponding to an immersion of S into a projective space. Then there exists a

constant ¢ > 0 such that for any s € S(Q) and any subgroup T' C As(Q) of finite
rank r, we have

#{P e X,(Q)NT : h(P) > cmax{1,h(s)}} < .
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Proof. Induct on dim S. The case dim S = 0 follows from classical Vojta’s and
Mumford’s inequalities. Consider dim .S > 0. Assume S is integral, smooth and affine
by induction. Assume X — S is flat. Assume that the line bundle L is relatively very
ample and defines a fiber-wise projectively normal embedding A — PY% for some
n. The general case follows easily by comparing the heights, since £®4 satisfies the
condition. See also the second paragraph of Step 3 of the proof of Theorem [L.3

Let Y C A xg A be the intersection of the subvariety X xg A with the image
of the following embedding:

XXSA‘%AXSA,

(z,a) = (z —a,a).

Let ps : Y — A be the second projection. Then the fiber of py over a € A,(Q) for
s € S(Q) is Xs N (Xs — a). Since X is GeM, the stabilizer of X is finite. Note that
Xs N (Xs — a) is a proper subset of X, if a is not in the stabilizer. Define Stab(X)
as the reduced closed subvariety of A, over which the fibers of py are of dimension
two. Let N be the largest number of points in any fiber of Stab(X) — S. For any
s € S(Q), for all but at most N points a € A;(Q), the fiber of ps : Y — A over a is of
dimension at most 1. By the upper-semicontinuity of fiber dimension [16, Corollaire
13.1.5], there exists a dense open subset V' C 4 whose projection to S is surjective,
such that the restricted family )’ := Y x4 V — V is of relative dimension at most
1 and all fibers are GeM.

If the relative dimension is 0, we trivially get the same result as in Theorem [1.3
Otherwise, by applying Theorem [1.3] to the family of curves J' — V, there exists
an integer ¢; > 1 such that for any s € S(Q), and any subgroup I' C A,(Q) of finite
rank r and any a € V,(Q), we have #(),(Q)NT) < ;™. Let D be a uniform upper

bound for deg(Xs), with respect to L, for any s € S(Q). We need the following
lemma for Mumford’s inequality.

Lemma 6.2. For any s € S(Q), any P € X;(Q), any I' C A;(Q) of rank r and
any subset ¥ C X,(Q) NT of cardinality > N + D? - c%+r, there exist P, Py € X
such that (P, Py, P2) is an isolated point in the fiber of the restricted Faltings—Zhang
morphism Dg : X3 — A2,

Proof. Note that (P, P, P») is isolated in the fiber over (P, — P, P, — P) if and
only if the local dimension of (Xs; — P) N (Xs — P1) N (Xs — P2) at the identity 0 is
zero. Since # Stab(X, — P) < N, there are at most N points P; € A,(Q) such that
(Xs—P)N(Xs—P1) = Xs— P. Pick P; € ¥ such that dim((Xs —P)N(Xs—P1)) < 1.
Assume P, is such that the local dimension of (X5 — P)N (Xs — P1) N (X5 — P) at
the identity 0 is not zero. Then X; — P> must contain some irreducible component

0 € C of dimension one of (Xs; — P) N (Xs — P1). This implies that

Pe(J(X-a)=Xn (] (X% —a).

acC acC\{0}
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Note that the right-hand side is contained in some X; N (X5 — a) of dimension 1 for
some a € (C'NV,)(Q). So there are at most ¢}™" such P, € T' by the paragraph
above the lemma. On the other hand, the number of such irreducible components
C is at most

ZdegC < deg(X;,)* < D2
c

So for (P, Py), there are at most D? - ¢]™" choices of P; such that (P, Pp, P») is not
isolated in the fiber of the Faltings—Zhang morphism. Hence, the claim. O

Now we are ready to use Vojta’s and Mumford’s inequalities. Since deg X5 and
n are bounded for the family X — S, we can take a uniform constant ca > 1 for
both the constants obtained in Lemmas [4.1] and 4.2

Regard I' ® R as a normed vector space of dimension r. By [30, Corollaire 6.1],
we can cover the vector space by at most (1 + /8c2)" closed cones, such that for
any x,y in the same cone, we have (z,y) > (1 — 1/c2)|z||y|-

Inside any one of the cones, consider the set of points in Xs(Q)NT whose Néron—
Tate heights are greater than

comax{l, h(X), his,CNT,s }-

Since the set is finite, we may arrange them so that |Py| < |Pi| < .... Then
Lemmas 4.2 and [6.2] tells us that for any number B > co max{1, h(X), b1 s, cNT,s },
there are at most N+ D?-c} ™" points P; with B < |P;| < (1+1/c2)B. In particular,
we have

|Pi+(N+D2_C}+T)| > (14 1/co)|P;|, for any i.
Let Ny := [log;.,(c2)] so that (1 + 1/c2)Nt > co. Write
Ny := (N +D?-c1%") - Ny,

which depends on r as well. Then |Piip,| > (1 + 1/¢2)M|Pi| > co| P for any i.
Then we cannot have more than 2/N» points in the cone, since otherwise the triple
(Po, Pn,, Pan,) contradicts Lemma [4.1]

Overall, we have at most (1 + /8c2)" cones and at most 2N, large points in
each cone, so

#{P e X,(Q)NT : h(P) > cymax{1, h(Xs), h1s, N5} }
S (]. =+ 8CQ)T . 2N2
=(1+V8c2)" - 2(N+D?*- ;") - Ny < 5"

for some ¢z > 0. As in [6, (8.4), (8.7) and (8.8)], we have h(X;),h1s,cNT,s
cs max{1, h(s)} for some ¢4 > 1 which does not depend on s and I'. So take ¢
max{cacy, c3} and we are done.

Finally, we can give the proof of the main theorem of this paper.

A
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Proof of Theorem [1.2. Induct on dim S. The case dim S = 0 holds trivially since
we can make c large enough to exclude all the cases. Assume dim .S > 0. Assume
S is integral, smooth and quasi-projective and assume X — S is flat. Then X" is
irreducible since all closed fibers are (geometrically) irreducible and S is irreducible.

By [10, Theorem 1.3] (see [11] for the correction), for m large enough,
D (X™F1) C A™ is non-degenerate. By Theorem [4.5] there is a dense Zariski
open subset U of D,,(X™*!) with constants ci,co > 0, such that for any

(Q1—P,...,Qm — P) €U(Q), we have

Z Qi — P) > m - (c1h(us(s)) — ¢2), (6.1)

where we use the pullback height on S from A, and the Néron-Tate heights from the
universal abelian scheme. We say two points P,Q € X(Q) for s € S(Q) are close if
h(P —Q) < c1h(1s(s)) — ca. By the induction hypothesis, we may moreover assume
U surjects onto S. We have the following lemma which is similar to Lemma [5.1]

Remark that an at most curve is a scheme of (relative) dimension at most 1.

Lemma 6.3. There exist S-varieties Sg = S,S51,...,Sm and algebraic families of

(at most) curves C; C Xs, — S; with the following property. For any P € X5(Q),
one of the following holds:

(1) either P € (Co)s(Q), or

(2) the points of Xs(Q) that are close to P are on an at most curve C = (C;)s for

some 1 <i<m and s € S;(Q) over s € S(Q).

Remark that the varieties above can be empty.

Proof. By the inequality (6.1)), there is a proper Zariski closed subset F,, of X™*1
such that if (P,Q1,...,Qm) € X™*1(Q) is such that all Q;’s are close to P, then
(P,Q1,...,Qm) € Fy.

Define F; decreasing-inductively for 0 < i < m — 1 as follows. Assume Fj; 1 is
defined. Let F; be the largest closed subset of X**! such that 7r;+11 (F;) C Fiyq,
where ;11 @ X2 — X1 is the projection leaving out the last component. In
other words, F; is the set of points of X**! over which fibers of m;41|p,,
dimensional, which is closed due to upper semi-continuity of fiber dimension [16]
Corollaire 13.1.5]. Let V; := X1\ F; for 0 < i < m. Then by definition F; RN
X1 is an at most curve over any point of V; for any 0 < i < m — 1.

are 2

Since V,,, surjects to S by the assumption above this lemma, F; is a proper
subset of X! for any 0 < ¢ < m, even fiber-wise over any s € S. In particular,
Fy C X is a family of (at most) curves over S.

Let Cog — So be Iy — S. Let C; — S; be Fimﬂ'l-_lv;‘_l —Viciforl1 <i<m.

Let P € X,(Q) for some s € S(Q).
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If P ¢ (Cy)s(Q), then let j(P) > 1 be the smallest integer j such that the
set of points (P,Q1,...,Q;) € XJ*1(Q) with Q; close to P for any 1 < i < j,
is contained in Fj(Q). Then j(P) < m. By definition of j(P), there is a point
(P,Q1,...,Qj(p)—1) with Q; close to P for any 1 < i < j(P)—1 in the complement
of Fjpy—1, namely Vjp)_;. Note that in the case j(P) = 1, the above should be
interpreted as: the set {Q1,...,Qjp)—1} = () and P is in the complement of Fy,
namely Vj.

By definition, any prolongation (P, Q1,...,Q;p)—1,Q) with @ close to P is in
F;(py. So the fiber of 7;p) : Fjpy — XI(P) over the point (P,Q1,...,Qj(p)-1)
contains all points that are close to P. The fiber of Fjpy over any point of Vjpy_1,
in particular (P, Q1,...,Qj(p)—1), is (at most) a curve in the family C; py — S;p).
So all points that are close to P must live in this (at most) curve. O

Since all X are GeM, all curves appearing in the families are GeM. By applying
Theorem [L.3] to these families of curves, there exists cg > 0 such that for any
0 <i<m,for any s € S(Q) and a subgroup I' C A,(Q) of finite rank r, and for
any s’ € S;(Q) over s, we have #(I' N (C;)s(Q)) < c3*". Let us remark that the
degenerate case is trivial. Indeed, we can easily deduce a version of Theorem [L.3]
with curves replaced by at most curves.

Now if we take s € S(Q) such that h(ts(s)) > max{1, 26%}, then S h(us(s)) <
c1h(1s(s)) — ¢o. This means, if two points P,Q in X,(Q) satisfy h(P — Q) <
2 h(1s(s)), then they are close. Consider a subgroup I' € A,(Q) of finite rank
r. By induction hypothesis, we may assume ts : S — A, is the restriction of a
finite morphism S — Ag for some compactification S of S; see Zariski’s main the-
orem [17, Corollaire 18.12.13]. Since the pullback along a finite morphism of an
ample line bundle is ample, the height function on Ag fixed in Sec. 2.2 induces a
height function on S by ts by composition. Note that although the induced height
on S is not necessarily from an immersion, a positive constant multiple is and it
does not affect the result. So we can still apply Proposition [6.1] to see that there
exists a constant ¢4 > 0 such that the number of large points P € X,(Q) NI with
h(P) > csmax{1, h(1s(s))} = cah(es(s)) is at most 17" So it suffices to bound the
number of points P € X,(Q) N T with A(P) < csh(rs(s)).

To do this, we use a classical argument by regarding I' ® R as a normed vector
space of dimension r with norm given by | - | = h'/2. Let Ry := \/csh(1s(s)) and
Ry := /5 h(ts(s))/2. The closed ball of radius R; centered at 0 is covered by at
most (14+2R1/R2)" = (1+4+/2¢4/c1)" closed balls of radius Re by [30, Lemme 6.1].
In any closed ball of radius Ro, we have two possibilities. One is that it contains

only points in (Cp)s(Q)NT', which is fine since we know their number is bounded by
3", The other is the opposite: it contains some point P outside (Co)s(Q) NT. But

by our choice of Ry, all the points in the ball are close to P. So by Lemma[6.3] they

must belong to a curve (C;)s for some 1 < i < m and s’ € S;(Q) over s € S(Q).
Since #((C;)s (Q)NT) < 2™, the number of points in the closed ball of radius Ry
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is at most cé” In any case, a closed ball of radius Ry contains at most cé'” points.
So the ball of radius R; contains at most c3™" - (14 44/2c4/c1)" points.
Overall, we have

#(X ((@) ﬁF) < 0411+T + Cl+r . (1 +4 /264/61)T < Cl+r

for ¢ = max{1,2ca/c1,cq + c3(1 + 4y/2ca/c1)} whenever h(ig(s)) > ¢ > max{1,
2cy/c1}. Note that ¢ does not depend on s € S(Q) or I'.

7. Application

Consider a smooth irreducible projective curve C of genus g > 3 over a number
field F. Let Jac(C) be its Jacobian variety. Suppose there is a quadratic point
P € C(F") for some quadratic extension F’ of F', and let P’ be its Galois conjugate.
The symmetric product C'(?) := % corresponds to divisors of degree 2 on C. It
is well known that the morphism

C? = Jac(0),

{Q1,Q2} — [Q1 + Q2 — P — P’

is injective on closed points if C' is not hyperelliptic. Let W5(C) be its scheme-
theoretic image. It is shown in |20, Theorem 2] that W5(C) contains no curves of
genus 1 if C' is neither hyperelliptic nor bielliptic. Clearly, W5(C') is not a translate
of an abelian surface, since C' (hence W5(C')) generates J(C'). Namely, W5(C) is
GeM. Therefore, Faltings’ Theorem [8] tells us that there are only finitely many
rational points on Wy (C') which implies the same for C(?). Note that there is a map
from the set of quadratic points C(F,2) of C to the set of rational points of C'?),
whose fibers consist of at most two points; see the proof of [20, Corollary 3] for
details. Therefore, #C(F,2) is finite in this case.

Now consider the moduli space M, of smooth irreducible projective curves of
genus ¢ over Q with level-I-structure. It is representable by an irreducible quasi-
projective variety over Q, see for example [29, Theorem 1.8]. It is well known that
the locus of hyperelliptic curves of genus g forms a (29 — 1)-dimensional closed
subvariety H, in Mg; see [2, XIIL.8]. The locus of bielliptic curves of genus g forms
a (29 — 2)-dimensional closed subvariety Mb® in My; see [3]. We are interested in
the complement of these two loci and define M := M, \ (Hy UMP®), which is an
open subset of dimension 3g — 3 in M,,.

Let € — Mg be the universal non-hyperelliptic non-bielliptic curve of genus
g with level-l-structure. Let J; := Jac(€y/Myj) be the relative Jacobian. It is a
principally polarized abelian scheme with an induced level-I-structure. To embed
the curves in their Jacobians, we need a quasi-section. By [17, Corollaires 17.16.2
and 17.16.3], there exists an étale surjective quasi-finite morphism S — My for
some affine variety S, such that the base change € := € X Mg S — S has a sectlon

: S — €. Write J — S for the base change of jo — M° Then we embed C — S
into J — S using the section 7, by sending Cs to C —i(s ) C Js for any s € S.
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The symmetric product C?) := % of C — S exists since S is quasi-projective.
Let X' := W5(C) be the image of C(?) inside J. Let 15 : S — A, be the modular map
induced by J — S. Then s is quasi-finite since the Torelli morphism My — A, is
quasi-finite and S — M, is quasi-finite.

The proof of Theorem [1.1]is similar to [6, Proof of Theorem 1.1].

Proof of Theorem [1.1l Let us fix I = 3 for this proof and consider level-3-
structure only.

Take a non-hyperelliptic non-bielliptic smooth geometrically irreducible projec-
tive curve C of genus g defined over some number field F with [F : Q] < d. Let
s0 € S(Q) be a point over which the fiber X, corresponding to an embedding of
C® in the Jacobian (over Q). Let s1 := tg(s0) € A,(Q). The Jacobian of C' cor-
responds to an F-rational point sy of Ay 1, the coarse moduli space of principally
polarized abelian varieties of dimension g without level structure. The fine moduli
space of principally polarized abelian varieties of dimension g with level-3-structure
A, is a quasi-finite cover of Ay with A; — A, defined over Q(¢3). Let m be
the maximal geometric cardinality of a fiber of A; — A, ;. Then [k(s1) : F] < 2m,
whence [k(s1) : Q] < 2md.

By applying Theorem [L.2] to the family X — S inside J — S, there exists a

constant ¢ > 1 such that for any s € S(Q) with h(ts(s)) > ¢, and any subgroup

I' € Js(Q) of finite rank r, we have #(X,(Q) NT) < c¢!*". The constant c is
independent of s € S(Q) and T'.

On the other hand, by Northcott’s property, there are only finitely many points
defined over a number field of bounded degree md in A, with height at most
c. Say they correspond to principally polarized abelian varieties A;, ..., An. For
this finite set, we apply Rémond’s estimate [5, p. 643] to each individual abelian
variety and the subvariety. For any i and any GeM subvariety X C A;, we have
#(X(@Q)NT) < CH for any subgroup I' € A;(Q) of rank r, where C; depends
on the principally polarized abelian variety (A;, L;) and X, but not on I'. We are
only interested in X5 over some A;. Hence, we can find a constant which by abuse
of notation we still denote as ¢ > 1, such that for any s € S(Q) over some 4;, we
have #(Xs(Q) NT) < ¢'*" for any subgroup I' C 4;(Q) = J:(Q) of finite rank r.

In short, we get uniformity for the fibers over those s € S(Q) with large height
or small degree of its defining field.

To prove the theorem, we may assume there is a quadratic point P € C(F”)
for some number field F' O F with [FY : F] < 2 and let P’ denote its Galois
conjugate. There is an F-morphism from C®) to Jac(C) by sending (Q1,Q2) to
[@Q1+ Q2 — P — P']. Denote the image by W5 (C). By the discussion in the beginning
of this section, C? — W, (C) is injective on points, due to the non-hyperelliptic
assumption on C'. Note that Jac(C) = Js,. We regard I' = Jac(C)(F') as a subgroup

of J5,(Q). By the Mordell-Weil Theorem, T is of finite rank. Note also that W2 (C)

is a translate of Xs by some point a € A;(Q). By our discussion, then

#W2(C)(F) = #(W2(C)(Q) NT) < #(X:(Q) N (T, a)) < **7.
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Note that there is an (at most) two-to-one (not necessarily surjective) map of
sets

C(F,2) - CA(F),
P {P, P},

where P’ is either the conjugate of P, or equal to P if P € C(F). Therefore, we
have

#CO(F,2) <2 #Wa(C)(F) < 2747 < (2¢%)177. O
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Appendix A. Proof of Theorem [4.6]

In this appendix, we reproduce the proof of Theorem [4.6] using the non-degenerate
subvariety constructed in Proposition B.5l The argument is a modification of the
proof in Gao’s survey [12] Proposition 8.3]. We need the following theorem (see [23]
Lemma 23] and in particular [12] Corollary 8.2] for the version below, which is a
consequence of Kiihne’s equidistribution result [23, Theorem 1]. Fix Q < C.

Theorem A.1l. Let S be a smooth quasi-projective variety over Q. Let A — S be
a principally polarized abelian scheme with level-l-structure. Let X C A be a non-
degenerate integral subvariety. Assume X, A, S and the morphisms between them are
defined over a number field F'. Let p be the equilibrium measure on X (C), which is a
constant multiple of w" "™ ¥ with w the Betti (1,1)-form on X; see |6, Proposition
2.2]. Then for any continuous function f on X(C) with compact support and € > 0,
there exists § = 0(f,€) > 0, such that the union

(e X(@):h@) >0 ULzex@): #Ol(x) 3 f(:c’)—/X(C)fu <e
2/€0(z)
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contains a dense open subset of X, where O(x) denotes the Galois orbit of x
over F'.

Now let us prove Theorem [4.6]

Assume C, A, S and the morphisms between them are defined over a number
field F.

Induct on dim.S. By the induction hypothesis, we may assume without loss of
generality that S is smooth quasi-projective, C — S is flat and C5™ — S is smooth.
These assumptions will be convenient later. For the family of curves C — 5, there is
an induced morphism from S to the Hilbert scheme Hilb(2(,/A ). If this morphism
is not generically finite, then the scheme-theoretic image, say S’, is a variety of lower
dimension. Denote the family induced by S’ as C’ — S’ and the abelian scheme by
A’ — 5. By induction, the result holds for the family C’ — S’. Since C — S is just
the pullback of C' — S’, we get the result for C — S naturally.

Thus, we may as well assume S — Hilb(2,/A,) is generically finite. Then
Proposition 3.5 applies (the geometric generic fiber Cj is integral and generates Ay;
see the earlier short version of the proof of Theorem [4.6) and there exists n such
that C™ C A™ is non-degenerate. It is this non-degenerate subvariety that we will
study. Write &' := C". Then Stab(X5) is finite.

Consider the following variant of the restricted Faltings—Zhang morphism:

D: X" A

(Xo,. .. ,Xm) — (Xl — X0y X — mel),

which is clearly defined over F'. Since Stab(X7) is finite, for m large enough this map
is of generic degree equal to d := # Stab(X};). One way of seeing this is suggested to
us by the referee as follows. Clearly, the fiber over D(xq, ..., Xm) is )ity (X — x;).
An easy inductive argument shows that the generic sequence of xg, ..., X,, for any
m > dim(Xj;) will cut down the dimension of the fiber to zero; see [31, Lemme
2.1] for details. Note that this is essentially because the containment of a closed
subvariety is a closed condition. By intersecting once more using a generic point,
we can always cut down the cardinality of the finite set to # Stab(Xj) in m =
dim(X5) + 1 steps. Fix this m.

The image Im D is not necessarily non-degenerate, but X x gImD C A™M™+1 g
non-degenerate (an easy exercise since a Betti map for the product abelian scheme
is the product of two Betti maps for two abelian schemes). Write ) := X x g ImD.
Write D' := idx x gD : X™+2 — Y. Note that X™+2 C A™"+2) and y C An(7+1)
are irreducible and non-degenerate. We will compare the equilibrium measures pq
on X™*2(C) and pz on Y(C).

Claim: p; # (degD’)~1D™* uy near the point (xg,Xo, . . .,Xo), where xq is a fixed
smooth algebraic point of & such that the Betti rank at xg is maximal, whence the
Betti form at xq is positive by [23] Lemma 11]. Note that here the pullback D’* s
is defined through the pullback of the form defining the measure. Note also that
(x0,Xo, - - -, X0) is a smooth point of X™2(C).
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In fact, since D’'(xq,Xo,...,X0) = (X0,0,...,0) and the fiber of D’ over
(%0,0,...,0), containing all points of the form (xg,x,...,x), is of nonzero
dimension, the differential of D’ has nonzero kernel. But p; # 0 at (xo,Xo,---,X0)
since that the Betti form at xq is positive implies the Betti form at (xg,...,Xo) is
positive; see for instance [23, Lemma 25].

By the claim, there exists a continuous function f’ on X™*+2(C) with compact
support, and some € > 0 such that

/ f/,ul o (degD/)fl/ ]L'/D/*‘u2
X7n+2(c) X7n+2(c)

We can actually choose f’ in a way such that f/ comes from a compactly supported
function f on Y(C). Indeed, spread out Stab(X};) to a finite étale group scheme G
over S. Shrinking S if necessary, assume moreover that G(S) is naturally isomorphic
to the generic fiber. Assume that Stab(X;) = G, for s € S(C). There is a Zariski
dense open subset V' C Y such that D’ restricted to U = D'~V C Xx™*2 is a finite
morphism such that the fibers are Gs-torsors for any point of V over s € S(C).

> 2e. (A1)

A standard analysis near (xo,...,Xo) shows that there exists f’ supported on a
compact subset of U, such that (A.L) holds. Simply take f™(z) := 3 cqs) f'(z +
o(s)) for any z € X™+2(C). Also note that replacing f’ by f’* multiplies the left-
hand side of [A.T by deg D’ since ji1, D'* 1o are both invariant under “translation by
G(S)”. Then we can descend f"™* to f on V since f* is G-invariant.

We apply Theorem [A.T twice, for the triples (XY™ "2 f’ ¢) and (), f, €), respec-

tively. There is 6 = §(f,€) > 0 such that for any x € U(Q) and y € V(Q), we
have

- 1
h(x) >4 "(x') — "y | >
w2 (o B e )

and

) 1
h(y)>d or " — > e
(y)>46 o yZ fy) /y(c)fuz > e

For an algebraic point y € V(Q) and any algebraic point x € U(Q) such that
D'(x) =y, it is clear that

1 oI\ 1 ’

x'€0(x) y'€0(y)

using the fact that D’|y is a finite morphism defined over F.
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If we have
1 / /
70 x,ezo(x)f <X)‘/Xm+2(c)f pa| <€ and
]' /
700 6203() T = Lo T2 <
then

/ fllul - f,UQ < 267
Xm+2(C) Y(C)

contradicting the choice of f. So we must have either h(x) > § or h(y) > 8. Assume
x = (20,%1,--+,Zm+1)- Then y = D'x = (20,22 — Z1, - - -, Zm+1 — Zm)- S0

h(y) < h(zo) + 2[h(z2) + h(z1)] + - + 2[A(Z 1) + h(Zm)] < 4h(x).

Therefore, we always have h(x) > 16.

Overall, we found a dense open subset U of the fiber product X"*2 = ¢(m+2)
such that for any x € U(Q), we have h(x) > 14. Using the induction hypothesis,
5 ™ m+2)§ We claim
that there is ¢z > 0 such that for any s € S(Q), the number of small points

#{P € Cs(Q) : A(P) <1} < ea

This is an application of [I12] Lemma 7.3]. In fact, by the lemma, there is ¢z > 0,
independent of s € S(Q), such that if ¥ C C,(Q) and #X > ¢y, then X("+2) 0
U<(Q) # 0. But obviously

{P€Cy(Q): h(P) < e }"™ ) NUL(Q) =

by our choice of ¢;. So we are done!

we may assume the projection U — S is surjective. Take ¢; =
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