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d

In this paper, we prove a uniform version of Poonen’s “Mordell-Lang Plus Bogomolov’
theorem [12], based on Vojta’s method. Our main contribution is to generalize Remond’s
work on the large points in order to allow an extra e-neighborhood in the canonical

height topology. The part on small points follows from [8].

1 Introduction

Throughout, we work over an algebraic closure Q of the rationals Q. Let A be an abelian
variety defined over Q, and let A(Q) be the group of algebraic points on A. Let I" be a
finitely generated subgroup of A(Q). The division group I'" of I is defined as

I := {x € A(Q)| there exists n > 1 such that nx € I'}.

The Mordell-Lang conjecture, proved in the case of abelian varieties by Faltings
[5, 6], Vojta [18], and Raynaud [13], states that, if an integral subvariety X of A is not a
coset, that is, a translate of an abelian subvariety by a closed point, then the intersection
X(Q) NI’ is not Zariski dense in X.

Now assume moreover that A is equipped with a Néron-Tate height h: AQ) —
R.o. The Bogomolov conjecture proved by Ullmo [17] and Zhang [19], states that if X is
not a torsion coset, that is, a coset containing a torsion point, then there is some € > 0

such that the set of small points
(PeX@Q):hP) < ¢}
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is not Zariski dense in X.

Later, Poonen [12] (also by Zhang in [20]) shows that the Mordell-Lang conjecture
and the Bogomolov conjecture, together with an equidistribution theorem, imply a
stronger result, which trivially encompasses both conjectures. For ¢ > 0 and any set
S C A(Q), define the e-neighborhood S, of S as

S.={y+z:y €S, ze AQ), fz(z) < €}

What Poonen and Zhang proved is the following:

Theorem 1.1 (Poonen-Zhang). Let X C A be an integral subvariety, which is not a coset,
and let I' < A(Q) be a finitely generated subgroup. Then there is some € = ¢(X,4,T) > 0

such that the intersection X(Q) N '/ is not Zariski dense in X.

A standard recursive application of the above theorem leads to the following

stronger version:

Theorem 1.1’ (Poonen-Zhang). Let X C A be an integral subvariety, and let " < A(@) be
a finitely generated subgroup. Then there is some € = ¢(X, A, I') such that the intersection
X(Q) NT! is a finite union of Y;(Q) NI',, where {Y;}; is a finite set of cosets in X.

Define the special locus of X, denoted by Sp(X), as the union of positive-
dimensional cosets in X, which is Zariski closed as shown by Kawamata [9]. Denote
the open complement by X° := X — Sp(X). Then all cosets in X° are just points and
Theorem 1.1’ implies the finiteness of the set X°(Q) N r..

A motivating question for this paper could be: can we choose ¢ above to be
independent of the choice of ' ? The answer is yes and indeed we can get a more uniform
result, combining the uniform Mordell-Lang conjecture and the uniform Bogomolov
conjecture recently proved in our joint work with Gao and Kiihne [8].

Let L be a symmetric (that is, [-1]*L = L) ample line bundle on A, which induces

the associated Néron-Tate height h= I:LL tAQ) > R. (. Fix the following notations:
r:=dimX, g:=dimA, d :=deg; X, | := deg; A.
The main result of this paper is the following:

Theorem 1.2. There exist positive constants ¢ = ¢(r,g,d) and ¢ = c(r,g,d) with the

following property. For any abelian variety (4, L) defined over Q, any integral subvariety
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7362 T.Ge

X C A, and any finitely generated subgroup I' < A(Q) of rank p, we have

#X°(Q NI < e,

(See the Remark 1.3(ii) and (iii) below.)

Remark 1.3.

(i)

(iv)

(v)

Expressions such as ¢ = ¢(r, g, d) mean that the constant ¢ only depends on
r,g,d.
We can actually prove a stronger version with e replaced by a uniform
multiple of certain normalized Faltings height of A; see §7 for details.
The dependence on r = dim X in the above theorem can be removed easily,
by simply taking

€(g,d) == m'gg{e(r,g, d}, clg,d) = gax (c(r, g, d)}.

O<r

Though redundant in the result, the index r actually shows its ¢ arguments
later and we decide to keep this stratification for clarity.

The functions €(r,g,d),c(r,g,d) are constructed in an increasing lexico-
graphic order, which we now describe. The set {(r, g, d)} is totally ordered by
the following rule: (r;,g;, d;) < (ry,9,,d,) if eitherr; < ry;orry =ry,9; < gy;
orry =71,,9; = go,d; < d,. Then €(ry,9;,4d,),¢(r;,9,,d,) are defined before
€(ry,95,dy),C(ry, gy, dy) if (ry,9,,dy) < (ry, g, d5).

The result of the above theorem is weaker if we decrease € or increase ¢, but
since our goal is to prove the existence, we will freely weaken the results, to
ease our notations. By (3), without loss of generality we can and we do always
make the following assumptions:

— € decreases in all three variables;

— cincreases in all three variables; and

- ¢(r,g.dy +dy) > c(r,g,dy) +c(r,g,dy).

Then we may use the result even when X is not irreducible or equidimen-
sional. For example, if X = X; UX, with X, X, irreducible of dimension r and
degree d;, d, respectively, then with € = €(r, g,d; + d,), by the third bullet

point above we have
#X°(Q NTL) < #X(Q NTY) +#X3@Q NTY)

< C(r,g,d1)1+’° + CZ(rrgl d2)1+,0 = C(rrgldl + d2)1+p'
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The proof of Theorem 1.2 is based on Vojta’s method, which has a dichotomy of
large and small points in terms of their Néron-Tate heights. For the small points, we
invoke a result of our previous work [8] joint with Gao and Kiihne, on a version of the
uniform Bogomolov conjecture called the New Gap Principle; see §4. The main part of
this paper is to generalize the work of Rémond [14, 15] and David-Philippon [3] on the
large points to allow an extra e-neighborhood. Many ideas in the proof are borrowed
from their work.

Remark that our proof is different from the proofs of Poonen and Zhang. Their
proofs assume the Mordellic part (the case when I is finitely generated) of the Mordell-
Lang conjecture, dive into the proof of the Bogomolov conjecture and argue by contradic-
tion using a more careful analysis of the equidistribution of almost division points (see
[20, Theorem 1.1]). It seems impossible to derive a uniform result from their approach.
Our proof is closer to the approach of Rémond [16], in which he establishes the Mordell-
Lang plus Bogomolov for semiabelian varieties without assuming equidistribution.
Needless to say, the uniformity requires a more careful treatment.

Theorem 1.2 can be improved to a slightly stronger version, in the flavor of

Theorem 1.1', as follows, which is shown in §6.

Theorem 1.2’. There exist positive constants ¢ = €(g,d) and ¢ = c(g,d) with the
following property. For any abelian variety (4, L) defined over Q, any integral subvariety
X C A, and any finitely generated subgroup I' < A(Q) of rank p, the intersection X(Q)N I,

is contained in the set of Q-points of a union of at most c!*” many cosets in X.

Note that Theorem 1.2’ encompasses both the uniform Mordell-Lang conjecture

and the uniform Bogomolov conjecture proved in [8], but it does not follow directly from

them.
Notations and Conventions
Q an algebraic closure of Q.
A an abelian variety over Q.
AQ the group of Q-points on A.
L a symmetric ample line bundle on A.
h the Néron-Tate height fLL CAQ) — R>¢ associated to L.
r a finitely generated subgroup of A(Q).
X an integral (irreducible and reduced) subvariety of A.
Xx° the open complement of the special locus of X.

P the rank of I as an abelian group.
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dimension of X.

~

g dimension of A.

d degree of X with respect to L.

l degree of A with respect to L.

o) the inner product on A(Q) ®; R induced by h.

|- magnitude associated to the inner product; so P12 = ﬁ(P) for P € A(Q).
h(X) height of X with respect to the canonical adelic metric on L; see §3.
hEa1(4) the stable Faltings height of A; see [5].

2 Technical Lemmas

In this section, we prove several easy lemmas about Euclidean spaces. The reader shall

feel free to skip this section and come back only when a lemma is invoked.

Lemma 2.1. Let V be a real vector space with an inner product (-, -). For 6 € (0, ), there
exists 0 < § = §(9) < 1 with the following property: if v,, v, € V satisfy |v, —v;| < §-|vy],

then the angle between v, v, is at most 6.
Proof. Take § = siné. |

Lemma 2.2. Let V be a finite-dimensional real vector space with an inner product (-, -),
of dimension p. For any ¢ > 1, the vector space can be covered by at most (1 4+ +/8¢)”

regions, such that for any v;, v, in a same region, we have

1
(vi,vg) = (1 — E)|V1||V2|-

Proof. This is [14, Corollaire 6.1]. We include the proof here for completeness.

Let6 = % arccos(1— %). Denote by B(x, R), the closed ball in V of radius R centered
at x. We aim to find a covering of the unit sphere S by small pieces, such that the angle
between any two points in a piece is at most 26. Then we can just cover V by the one-sided

cones spanned by these pieces, such that for any two vectors v;, v, in a cone,

1
(V1,v2) 2 €08(20)[v,[[va] = (1 = D)lv,[Ivy.

The strategy is to cover S first by small balls with centers on S, of radius sin6.
Each piece cut out by the intersection of S and a small ball has the required property.

Indeed, the distance between any v, v, in a piece is at most 2siné, which by an easy
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geometric argument in the isosceles triangle of side lengths 1,1,2sin 6, implies that the
angle between the vectors v, v, is at most 26.

Now we construct our cover inductively as follows. Assume that we have chosen
centers x,..,x,, and that S ¢ |Ji_, B(x;,sin6). Then we pick x,,; in S that is not yet
covered. By the compactness of S, the procedure stops at a finite step. Assume eventually,
we pick out centers x;, ..., xy, and no more points can be picked.

Notice that by our choice, the distance between any x;,x; for i # j is greater
than sin#. So in particular, we have B(x;, % sin6) N B(x;, % sind) = ¢. Meanwhile,
Uﬁ\lle(Xi,%sinQ) C B(O,1 + %sin@). Since Vol(B(0,R)) = R’ - Vol(B(0,1)), we get by
comparing the volumes that N < ((1+ 3 sin6)/4 sin 0)p = (1 4+ +/8c)”, where the last
equality follows from sinf = /(1 — cos(20))/2 and cos(20) =1 — % [ |

Lemma 2.3. Let VV be a finite-dimensional real vector space with an inner product (-, ),
of dimension p. Then a ball of radius ¢ can be covered by at most (1 + 2¢/c’)? balls of

radius ¢’

Proof. See also [14, Lemme 6.1].

Same idea as the proof of Lemma 2.2. Exhaust points x;,...,xy € B(0,c) so that
the distance between each pair is at least ¢’. Then B(0, ¢) is covered by the balls of radius
¢’ centered at ¢; fori = 1,...,N. Also, we have U?; B(x;, %c’) C B(0,c+ %c’). Comparing
the volumes, we get N < ((c + 1c)/1c))’ = 1 + 2¢/c)". [ ]

3 Large Points

In this section, we review results of Rémond and apply them to our setting for a uniform
treatment of large points. Many ideas are due to Rémond and our job is to carefully take
the e-neighborhood into account.

We assume L to be moreover very ample and induce a projectively normal closed
immersion into some projective space, for this section. It is not much harder to show the
general case, since if L is ample then L®* satisfies our assumption, see for example [11].
We have h°(A,L) = I/g! (recall that | = deg; A); see [8, §2]. So A can be embedded in P"
withn =1/g! —1.

The symmetric line bundle L is endowed with a unique canonical adelic metric;
the corresponding adelic metrized line bundle is denoted by L. We can then define the
height h(X) of a subvariety X € A with respect to L using the arithmetic intersection
theory. See [2, §9] for details.
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3.1 Inequalities

There are two important constants that appear in the work of Rémond, namely ¢yt and
hy.Let h: P*(Q) — R be the logarithmic Weil height. The first one cyy is a bound arising
from the construction of Néron-Tate heights on the abelian variety. It satisfies |ﬁ(P) —
h(P)| < cyg for any P € A(Q). The second one h, is the Weil height of the polynomials
defining the addition and subtraction on the abelian variety. It is known that there is a

constant ¢’ = ¢/(g, ) such that
cxtr by < ¢ max({1, hg,(A)). (*)

See [3, (6.41)] and [4, (8.4) and (8.7)] for details.

The Néron-Tate height h induces an inner product (-,-) on the vector space
A(Q) ®y R, so that for any point P € A(Q), we have (P,P) = il(P). Write | - | for the
induced norm.

Let Dy : X"t — AT (recall that r = dimX) be the morphism defined by
(xg,--.,%,) > (x; — Xg,...,X, — X). The following theorem by Rémond gives explicit

generalized Vojta's inequality and Mumford's inequality.

Theorem 3.1 (Rémond). Let X C A be an integral subvariety. There exist constants ¢; =

c,(r,g,d,l) > 1 and ¢, = cy(r,g,d,l) > 1 with the following property:
(i) (Vojta's inequality) If Py, ..., P, € X° (Q) satisfy
1
(PP y) > (1 — C—)|Pi||Pi+1| and [P | > c|P;],
1
for any i, then

|Pol? < ¢y max{l, h(X), hpy (A)}.

(ii) (Mumford's inequality) Suppose (P, ..., P,) is anisolated Q-point in the fiber
of Dy : X"t — AT If

1 1
(Po.P;) = (1 — —)|PylIP;] and |[|Py| — |P;]| < —I|Pyl,
4] G
for any i, then

Pyl? < ¢y max(1, h(X), hyy (A)}.
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Proof. Vojta's inequality is [15, Théoréme 1.1] and Mumford’s inequality is [14, Propo-

sition 3.4]. Note that we can remove ¢y, h; from them by (). |

The following proposition is similar to Rémond [14, Proposition 3.3]. It will be

used in Proposition 3.3 to ensure the extra condition in Mumford’'s inequality.

Proposition 3.2. Let & C X°(Q) be a set of points. Assume there is Py € X(Q) such that
for any Py,...,P, € E, the point (Py, Py, ..., P,) is not isolated in the fiber of Dy : X1
A". Then E is contained in the set of Q-points of a Zariski closed subset X’ C X with
deg; X' < d™*2.

Proof. If the dimension of the stabilizer Stab(X) of X in A is not 0, then every point of
X is in a positive dimensional coset of X, whence X° = (. So we assume Stab(X) is finite.
Notice that the fiber of Dy over (P, — Py, ..., P, — Py) is

{(Py+a,....,P,+a) e X TH(Q) :a e AQ)},

which is isomorphic to (;_,(X — P;), where (Py,...,P,) corresponds to O under the
isomorphism. Thus, the condition that (Py,...,P,) is isolated in the fiber is equivalent
to that the dimension of (/_,(X — P;) at the origin is 0.

Assume there exists P; € X (Q) such that dim, ﬂfZO(X — P;) # 0 for any choice
of P,,..., P, € E, where dim; Y stands for the dimension of ¥ at 0. Then we can use the

greedy algorithm to pick out step by step Py, Py, ..., P, for some r, < r with the following
property:

1 ro
dimy(X — Py) > dim, ﬂ(x —P)>...>dim, ﬂ(x —P),
i=0 i=0

and we cannot reduce the dimension at 0 in one step any more. In other words, if we let
Cy....,Csbe the top-dimensional irreducible components passing through 0 of ﬂ:io(X—
P;), then for any Q € E, the translate X — Q must contain some C;, for some i = i(Q). On
the other hand, C; C X —Q if and only if Q € ﬂaeCi(@) (X — a). So we have

1]

cJ N «-a.

i=1 aeC;(Q)
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Claim: ﬂaeCi(@) (X — a) is contained in a proper subvariety X; of X of degree at most d?.
Indeed, since Stab(X) is finite, there is some q; € C;(Q) such that X — a; # X. So simply
take X; := X N (X — a;). On the other hand, s < d” since deg(*,(X — P;) < d". Let X’ be
the union of X;'s. Then degX’ < d"*2? and E C X'(Q). [

3.2 Large points

In the proof of Theroem 1.2, we will use induction on the dimension of X. To make things

more clear, we extract the steps from the proof and make them propositions.

Proposition 3.3. Assume Theorem 1.2 holds for dimX < r — 1. In the case of dimX =r,
there exist positive constants €; = €,(r,g,d,l) and ¢; = c5(r, g,d, ) with the following

property. For any finitely generated subgroup I' € A(Q) of rank p, we have
# {P eX°@nNT., : h(P) > ¢, max(1, h(X), hFal(A)}} <,
where ¢, = ¢,(r, g,d, 1) is taken from Theorem 3.1.

Proof. Considerthe p-dimensional real vector space '®R = I"®R embedded in A(Q)®R,
equipped with the inner product induced by the Néron-Tate height.
Take ¢, = ¢,(r,g,d, 1) from Theorem 3.1. Let 6, := $[arccos(1 —%)—arccos(l —%)].

By Lemma 2.1 with 6 = 6, there exists
€, =8(0))% =¢,(r,g,d, )€ (0,1),

such that for any v;,v, € A(Q) ® R with |v, — v;| < Jeilvyl, the angle between v, v, is at
most 0;. We need to decrease ¢; further soon.

By Lemma 2.2, the p-dimensional vector space I' ® R can be covered by at most
(1+4,/¢))” cones on which (w, w,) > (1 — ﬁ)|w1||w2|. Suppose D is one such cone. Let
D,, be the ) -neighborhood of D as defined in the introduction, and let D, be the part of

large points v € D, with
[v|? > ¢, max{1, h(X), hgy (A)).
Then for v, v, € D}, we claim that (vivy) =1 - é)|v1||vz|. Indeed, by definition, there

is w,,w, € D with |v; — w;| < . /e/lw;| for i = 1,2. So the angle between v;, w; is at

most 0; by the last paragraph, for i = 1,2. But the angle between w,, w, is at most
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arccos(1 — %). Therefore, by the triangle inequality, the angle between v;, v, is at most
20, + arccos(l — ﬁ) = arccos(1l — Cil), hence the claim.

It then suffices to bound the number of points in X°(Q) N Djl. This is where we
invoke the inequalities. In order to use Mumford’s inequality, we also need to use the
inductive hypothesis for lower dimensions.

Specifically, let us take any sequence of distinct points [P;| < |P,] < ... in
X°(Q) N D ordered by their heights. Note that we do not even know the finiteness of
the sequence yet and in fact we may need to shrink ¢, to ensure that. Replace ¢; by
min{e;, e(r — 1,9,d %)} and let N := c(r — 1,g,d"?)?*!, where ¢, c are the functions in
Theorem 1.2 for lower dimensions.

Claim: any subset E of X°(Q) N Dj’l with cardinality > N + 1 is not contained in
any Zariski closed subset X’ C X with deg; X’ < d"+2. Indeed, if X’ C X is a Zariski closed
subset containing E, then & € (X' N X°)(Q) < (X)°(Q). So (X")°(Q) N T, contains N + 1
points, which implies deg; X’ > d"*2.

So by Proposition 3.2 with & := {PJ-,PHI, ...,PJ-+N}, there is Qy, ..., Q, € E such that
(PJ-, Q,,...,Q,) is isolated in the fiber of Dy : X"l . A", whence Mumford’s inequality

applies and we get
1 .
1Pyl = 1Q;1 > (1+ C—)lel for any j.
1

Take M := M(c;) such that (1 + é)M > c;. Then
1 1 o
1Pl > (Lt ) Pyynn] > - > L+ YIB] > ¢ Byl
1 1

Then we must have #X°(Q) N Djl < rNM, since otherwise the sequence

P11P1+NM'P1+2NM""'P1+rNM

would contradict Vojta's inequality.

Overall, we see that
#[Pex @nT, AP > cymax(1, h(X), hey (A))] < (1 +44E)" - TNM.
The result follows by noticing that
(1+4c)° -rNM = (1 +4/c)" -r-c(r—1,9,d%)"*1 . M(c;) < c;”

for some c3 = c3(r, g, d, D). [ |
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7370 T.Ge

In particular, we get the following qualitative result as a corollary by applying
the uniform Bogomolov conjecture. This finiteness result will be used later in Proposition
3.5.

Proposition 3.4. Assume Theorem 1.2 holds for dimX < r — 1. In the case of dimX =r,
there exists a constant €, = €,(r, g, d,l) > 0 such that for any finitely generated subgroup
I' < A(Q), the intersection X°(Q) N Te, is finite.

Proof. By the uniform Bogomolov conjecture [Theorem 1.3] there is € = €(g,d) > 0,c =
c(g,d) > 0 such that for any Q € A(Q), we have

#HPeX° Q) :h(P-Q) <€) <c.
Let ¢y := % min{e, €;}. By Proposition 3.3, we just need to show that the set

{P € X°(@ NT, : h(P) < 4c, max(1, h(X), hFal(A)}}

is finite. For this, first cover the ball Bin I ® R of radius

Jac; max(1, h(X), hyy (4))

by finitely many balls of radius ,/€;. Then the ¢;-neighborhood B, is covered by the
€o-neighborhoods of the finitely many small balls. For any two points P,Q in the ¢;,-

neighborhood of a same small ball, we have

IP— Q| <26 +2,/6 =4&.

So h(P — Q) < 16¢; < €. Thus there are at most ¢ points in such a neighborhood. To
conclude, we have finitely many regions and in each region we have finitely many points.

So we get finiteness. |

3.3 Removing h(X)

Lemma 3.4. Assume E C X(Q) is a finite set with the property that any equidimensional

subvariety X' C X of dimension r — 1 containing E satisfies deg; X’ > Id?/g!. Then

h(X) <dd/g'+1)" " - (r}r}ag h(P) + 31og(l/g! )) .
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Proof. This is [14, Lemme 3.1] with n =1[/g! —1. |

Using this lemma, we can remove h(X) from Proposition 3.3. The idea is to

consider all translates of X and find a relatively small height.

Proposition 3.5. Assume Theorem 1.2 holds for dimX < r — 1. In the case of dimX =,
there exist positive constants €, = €,(r, g, d, 1), ¢, = c,(r,g.d,l) and c5 = c5(r, g, d, ) such

that for any finitely generated subgroup I' € A(Q) of rank p, either
#X°(QnNTL, <c;*,
or there exists Q € X°@Qn I';, such that
#HP e X (Q NTL, : h(P — Qg) > csmax{l, hgy (A} < 577,
where ¢3 = c5(r, g, d, 1) is taken from Proposition 3.3.

Proof. Write N := c(r — 1,g,1d%/g!)!** + 1 and
€, '=min{e, (r,g,d,0),e(r—1,g, ldz/g! )}

where ¢, is taken from Proposition 3.3.

Take any Q € X°(Q)NI". If #X°(Q) NT., < N, there is nothing to prove. Otherwise,
there exist distinct points P, ..., Py of X° @ n Féz, then P, — Q,...,Py — Q are distinct
points of (X°(Q) — Q) N Féz, where (I, Q) is the subgroup of A(Q) generated by I' and Q.
By Theorem 1.2, the set E, := {P; — Q,...,Py — Q} is not contained in any subvariety
X' ¢ X — Q with dimX’ < r — 1 and deg; X' < ld?/g!, simply because (X)°(Q) N (F,O)’E2
does not contain so many points (recall that our convention allows us to apply Theorem

1.2 to reducible subvarieties). Thus, Lemma 3.4 applies to &, and X — Q and we have

hX —Q) <ddl/g'+1)" 1. (lma)lirfz(Pi — Q) + 3log(/g! )) .

Applying Proposition 3.3 to X — Q and (T, O)/62 with the above height bound, we
find the cardinality of

IP —0ex°@-Qn(,Q), :hE -0 >N, lma)livfl(Pi — Q) 4 N, max{1, hy, (A)}
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is at most C§+p for some N; = N,(r,g,d,l) and N, = N,(r,g,d,l), which in particular

implies that
# [P ex@nr, :he-0Q >N, max h(P; — Q) + N, max{1, hp(A)}} < 5™ (3.5.1)
1<i<

since I',, — Q is contained in (T, Q),.
Now let us restrict the choice of Q in the finite set X°(Q) N Féz. For each Q, by the
last paragraph there is a minimum M = M(Q) > 0 such that

#HPeX (QNTL, :h(P-Q) > M) <c;*.

By the finiteness, we can pick the smallest M, and assume M, = M(Q,) for some
Q, € X°(@Q N I';,. We are going to show that M, is bounded by a constant multiple of
max{l, hy, (A)}, with the constant only related tor, g, d, L.

Assume that
#X°(QNTL,) > c§+p + (N —1)-(1+8/N)*, (3.5.2)

where the left-hand side can be infinity a priori.

Consider the set W := {P € X°(Q) N F;Z : fz(P — Qy) < M,}. Then W is contained
in the €,-neighborhood of the (1 + p)-dimensional ball of radius /M, centered at Q, in
the vector space (F, Qo) ® R. In particular, by Lemma 2.3, W can be covered by at most
(1+8,/N,)!** many €,-neighborhood of small balls of radius 4‘\%%, centered in (I', Qo) QR.
Then #W > (N —1) - (1 + 8\/171)1“’. By the Pigeonhole principle, there exists one ¢,-
neighborhood of a small ball (call it D_,) that contains at least N points in W. Assume

that P, ..., Py € D, are distinct. Then,

VM,
9 +2./€
4,/N,

P, — P <2

for any 1 <i < N. Then by (3.5.1), we see that

/i,

M(P;) < Ny - (2- Y= + 26,2 + N, max(1, hy, (A)}.

4./N,

So by our choice of M, we get

MO
My < Ny - 2 +4€p) + Ny max(1, hgy (4)),
1
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from which we derive

M, < 16N - €, + 2N, max{1, hy, (A)}. (3.5.3)

Finally, simply notice that the right-hand side of (3.5.2) can be bounded by
c}f’“ for some ¢, = c¢4(r,g,d,]) and the right-hand side of (3.5.3) can be bounded by
cs max{l, hy, (A)} for some c5 = c5(r, g, d, D). |

4 Small Points

We say an irreducible subvariety X C A generates A, if X — X is not contained in any
proper abelian subvariety of A. We need the following New Gap Principle to study small

points.

Theorem 4.1. [8, Theorem 1.2] For any irreducible subvariety X C A that generates 4,
there exist constants cg = c4(g,d) > 0 and ¢; = ¢,(g,d) > 0 such that the set

T = {P e X°(Q) : h(P) < cgmax(1, hFal(A)}}

is contained in some Zariski closed subset X’ C X with deg; (X") < c;.

Corollary 4.2. Assume Theorem 1.2 holds for dimX < r — 1. In the case of dimX = r
with X generating A, there exist constants €5 = €3(r, g, d) and cg = cg(r, g, d) such that

for any finitely generated subgroup I' < A(Q) of rank p and any Q € A(Q), we have
# {P eX°(@NT, : A(P— Q) < cgmax(l, hFal(A)}} <t

Proof. Take €5 := €(r—1,g9,¢;) and cg = c(r — 1,9, c7)2. Note that for any subvariety
X' € X,we have X°NX' C (X)°, since the special locus of X contains the special locus of
X' by definition. By Theorem 4.1, the set

%o = {P e X°(Q) : k(P — Q) < cgmax(l, hy(A)}}
is contained in some X;, C X with deg; (X)) < c,. By the induction hypothesis, we have

#((Xp°@ N(r,Q),) <cr—1,9,6)*" < cg*’

for some cg = cg(r, g, d) > 0. In particular, we get #(X, N Fég) < Céﬂ’ as a subset. [ |
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5 Proof of Theorem 1.2

We will construct €(r, g, d) and c(r, g, d) inductively on dim X.

For dimX = 0, take €(0,g,d) = oo and ¢(0,g,d) = d. Then the theorem holds
trivially, and the assumption in Remark 1.3(v) is satisfied.

Assume the theorem holds for dim X < r — 1. Consider the case when dimX = r.
Note that we can assume without loss of generality that X generates A. Indeed, if we
can prove the case when X generates A, simply replace A by the abelian subvariety A’
generated by X and I' by 'NA’(Q), so that g and p decrease, and the result follows trivially.

Let €,,€3,C3,C4, Cs5, Cg, Cg be as in Proposition 3.5 and Corollary 4.2. Let

1
€ = min{62,63, ECS}.

Assume #X°(Q) N r. > c};’p. Then by Proposition 3.5, there exists Q; € X°(Q) NT such
that

#[Pex @nT,:h®- Qg > csmax(l, hyy ()} = .

Consider the complement X := {P eX°(QNTL:h(P—Qp) <cs max{l,hFal(A)}}. Note
that ¥ is contained in the e-neighborhood of the (1 + p)-dimensional ball of radius

Jes max(1, hyy (4))

centered at Q, in the vector space (I, Qy) ® R. Cover ¥ using e-neighborhoods of small
balls of radius ;./cgmax{l, hg,(A)} centered in (I',Qy) ® R. By Lemma 2.3, £ can be
covered by (1 + 8 /E—Z)Hp such neighborhoods of the small balls. For P;,P, in a same

e-neighborhood, we have

2
h(P, —P,) < <2¢E+ 2. %\/CG max{l,hFal(A)}) < cgmax{l, hgy(4)).

Hence, by Corollary 4.2, there are at most c;“) points of X°(Q)NT" in one e-neighborhood.
So

1+p
= C
#X°(@QNT) <# +c3" < (1 +8 /C—5 ) Tt <t
6

for some c=c(r,g,d,l) > c,.
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Finally, since X generates A, the degree [ of A is actually bounded by a function
of the degree d of X and dimension g of A; see [8,§2]. So we can remove the dependence

on [ and we are done.

6 Finiteness of Cosets

In this section, we show that Theorem 1.2 can be improved to Theorem 1.2', to include
the counting of the positive dimensional cosets. The idea is the same as [7, Lemma 10.4].
Basically, we need to bound the degrees of subvarieties in the special locus and use

induction.

Proof of Theorem 1.2'. Without loss of generality, assume X generates A. Let X(X) be
the set of positive dimensional abelian subvarieties B C A such that there is x € X(Q)
satisfying x + B C X, and B is maximal for x. Bogomolov [1, Theorem 1] shows that there
is an upper bound §; = §,(g, d) for the degree of B € X (X). Rémond [14, Proposition 4.1]
proves that there is N; := N,(g,l,§,(g, d)) such that #X(X) < N;.

The key idea is to take a complement B+ of B, such that B+ B = A and BN B~ is
finite. It is possible to choose such a B+ with degree at most 8, = 8,(g, d, [); see [10]. The
Bt will serve as a substitute for A/B. Write (X : B) := {x € X : x+B C X}. Note that (recall
r = dim X)

X:B)=[)X+b)=[)X+by
beB i=0

if we choose by, ..., b, € Bin a general position, for dimension reason. Then we let X :=
(X : B) N BL. We have Xy + B = (X : B). By Bézout's theorem, the degree of X is bounded
by d™*+1. 8, < 84 =85(g,d,]). Note also that Sp(X) can be written as a union

spe= |J @:m= |J &+B),

BeX(X) BeX(X)

where the second inequality uses the fact that if x + B’ C Xj, then

x+ (B+B)C (X:(B+B)).

Take any finitely generated subgroup I' < A(Q) of rank p. For each B € £ (X), we
define I'y € BX(Q) to be the pullback of T + B/B under the isogeny B+ — A/B. Then I'y is
of the same rank. Note that (X3 +B)(Q) NT. € (X5(@Q) N Iy ) +B.
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Applying Theorem 1.2 to X; and I'y, we get € = €(g,83),¢ = c(g,83) such that
(recall that we choose the constants in a way that they also work for reducible varieties)
#(X3(Q) NTg,) < c'*P. Then we have

spx)@nr.c |J [&@nTp)+B],
BeX(X)

where the right-hand side is the union of at most #%(X) - ¢! ™* < Ny - c!*? cosets. Since
X generates A, we could bound [ in terms of g and d and hence remove [ in a trivial way.

So we are done by simply combining the above result on Sp(X) with the result on X°. B

7 Further Comments

In Theorem 1.2, ¢ is only related to the dimension of the abelian variety A and the degree
of the subvariety X. On the other hand, as suggested by the New Gap Principle 4.1, the
“generic” distance between two points on X is proportional to max({1, hy,(B)}, where B
is the abelian subvariety generated by X (recall from §4 that this means X — X is not
contained in any proper abelian subvariety of A). The exact same method (except in
Proposition ??, one needs to invoke the New Gap Principle 4.1) can be used to show that

Theorem 1.2 is true with ¢ replaced by
€- 111{;1)({1,115‘15l hpa(B)},

where the infimum is taken over all positive-dimensional abelian subvarieties B of A.
The method does not work without taking the infimum above, since one has no control
over X’ in the New Gap Principle (4.1).

We cannot in general hope ¢ to be replaced by an even stronger form e -
max{l, hy,(A)}. A counterexample may be easily constructed: consider X x {0} € A x B
with A fixed and B varying of the same dimension. Then the degree of X x {0} and the
dimension of A x B are fixed, but the Faltings height of A x B has no bound. A possible
way to get around is to only consider the points that are “transverse”, as suggested by
the referee.

We might also consider the set
(xeX°(Q):dx T ®R) <alx|+ B}

with «, 8 positive constants and d(x, ' ® R) denoting the distance from x to any R-linear

combination of vectors of I', as in [20, Theorem 1.3]. What we showed is the existence

Gz0z Jequisldas /0 uo Jesn Aleiqr] seousiog Aq L 8y2EZ//09E 2/6/120Z /o104 ulwl/woo dnooiwapese//:sdiy Wol) papeojumoq



Uniform Mordell-Lang Plus Bogomolov 7377

of a uniform B with ¢ = 0 to make this set uniformly bounded in terms of the rank. It

would be interesting to investigate whether we can pick positive «, 8 with the similar

uniformity.
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