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In this paper, we prove a uniform version of Poonen’s “Mordell-Lang Plus Bogomolov”

theorem [12], based on Vojta’s method. Our main contribution is to generalize Rèmond’s

work on the large points in order to allow an extra ε-neighborhood in the canonical

height topology. The part on small points follows from [8].

1 Introduction

Throughout, we work over an algebraic closure Q̄ of the rationals Q. Let A be an abelian

variety de!ned over Q̄, and let A(Q̄) be the group of algebraic points on A. Let " be a

!nitely generated subgroup of A(Q̄). The division group "′ of " is de!ned as

"′ := {x ∈ A(Q̄)| there exists n ≥ 1 such that nx ∈ "}.

The Mordell-Lang conjecture, proved in the case of abelian varieties by Faltings

[5, 6], Vojta [18], and Raynaud [13], states that, if an integral subvariety X of A is not a

coset, that is, a translate of an abelian subvariety by a closed point, then the intersection

X(Q̄) ∩ "′ is not Zariski dense in X.

Now assume moreover that A is equipped with a Néron–Tate height ĥ : A(Q̄) →
R≥0. The Bogomolov conjecture proved by Ullmo [17] and Zhang [19], states that if X is

not a torsion coset, that is, a coset containing a torsion point, then there is some ε > 0

such that the set of small points

{P ∈ X(Q̄) : ĥ(P) < ε}
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is not Zariski dense in X.

Later, Poonen [12] (also by Zhang in [20]) shows that the Mordell-Lang conjecture

and the Bogomolov conjecture, together with an equidistribution theorem, imply a

stronger result, which trivially encompasses both conjectures. For ε > 0 and any set

S ⊆ A(Q̄), de!ne the ε-neighborhood Sε of S as

Sε := {γ + z : γ ∈ S, z ∈ A(Q̄), ĥ(z) < ε}.

What Poonen and Zhang proved is the following:

Theorem 1.1 (Poonen–Zhang). Let X ⊆ A be an integral subvariety, which is not a coset,

and let " ≤ A(Q̄) be a !nitely generated subgroup. Then there is some ε = ε(X, A, ") > 0

such that the intersection X(Q̄) ∩ "′
ε is not Zariski dense in X.

A standard recursive application of the above theorem leads to the following

stronger version:

Theorem 1.1’ (Poonen–Zhang). Let X ⊆ A be an integral subvariety, and let " ≤ A(Q̄) be

a !nitely generated subgroup. Then there is some ε = ε(X, A, ") such that the intersection

X(Q̄) ∩ "′
ε is a !nite union of Yi(Q̄) ∩ "′

ε , where {Yi}i is a !nite set of cosets in X.

De!ne the special locus of X, denoted by Sp(X), as the union of positive-

dimensional cosets in X, which is Zariski closed as shown by Kawamata [9]. Denote

the open complement by X◦ := X − Sp(X). Then all cosets in X◦ are just points and

Theorem 1.1’ implies the !niteness of the set X◦(Q̄) ∩ "′
ε .

A motivating question for this paper could be: can we choose ε above to be

independent of the choice of "? The answer is yes and indeed we can get a more uniform

result, combining the uniform Mordell-Lang conjecture and the uniform Bogomolov

conjecture recently proved in our joint work with Gao and Kühne [8].

Let L be a symmetric (that is, [−1]∗L += L) ample line bundle on A, which induces

the associated Néron-Tate height ĥ = ĥL : A(Q̄) → R≥0. Fix the following notations:

r := dim X, g := dim A, d := degL X, l := degL A.

The main result of this paper is the following:

Theorem 1.2. There exist positive constants ε = ε(r, g, d) and c = c(r, g, d) with the

following property. For any abelian variety (A, L) de!ned over Q̄, any integral subvariety
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7362 T. Ge

X ⊆ A, and any !nitely generated subgroup " ≤ A(Q̄) of rank ρ, we have

#(X◦(Q̄) ∩ "′
ε) ≤ c1+ρ .

(See the Remark 1.3(ii) and (iii) below.)

Remark 1.3.

(i) Expressions such as c = c(r, g, d) mean that the constant c only depends on

r, g, d.

(ii) We can actually prove a stronger version with ε replaced by a uniform

multiple of certain normalized Faltings height of A; see §7 for details.

(iii) The dependence on r = dim X in the above theorem can be removed easily,

by simply taking

ε(g, d) := min
0≤r≤g

{ε(r, g, d)}, c(g, d) := max
0≤r≤g

{c(r, g, d)}.

Though redundant in the result, the index r actually shows its c arguments

later and we decide to keep this strati!cation for clarity.

(iv) The functions ε(r, g, d), c(r, g, d) are constructed in an increasing lexico-

graphic order, which we now describe. The set {(r, g, d)} is totally ordered by

the following rule: (r1, g1, d1) < (r2, g2, d2) if either r1 < r2; or r1 = r2, g1 < g2;

or r1 = r2, g1 = g2, d1 < d2. Then ε(r1, g1, d1), c(r1, g1, d1) are de!ned before

ε(r2, g2, d2), c(r2, g2, d2) if (r1, g1, d1) < (r2, g2, d2).

(v) The result of the above theorem is weaker if we decrease ε or increase c, but

since our goal is to prove the existence, we will freely weaken the results, to

ease our notations. By (3), without loss of generality we can and we do always

make the following assumptions:

– ε decreases in all three variables;

– c increases in all three variables; and

– c(r, g, d1 + d2) ≥ c(r, g, d1) + c(r, g, d2).

Then we may use the result even when X is not irreducible or equidimen-

sional. For example, if X = X1 ∪X2 with X1, X2 irreducible of dimension r and

degree d1, d2 respectively, then with ε = ε(r, g, d1 + d2), by the third bullet

point above we have

#(X◦(Q̄) ∩ "′
ε) ≤ #(X◦

1(Q̄) ∩ "′
ε) + #(X◦

2(Q̄) ∩ "′
ε)

≤ c(r, g, d1)1+ρ + c2(r, g, d2)1+ρ ≤ c(r, g, d1 + d2)1+ρ .
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The proof of Theorem 1.2 is based on Vojta’s method, which has a dichotomy of

large and small points in terms of their Néron–Tate heights. For the small points, we

invoke a result of our previous work [8] joint with Gao and Kühne, on a version of the

uniform Bogomolov conjecture called the New Gap Principle; see §4. The main part of

this paper is to generalize the work of Rémond [14, 15] and David-Philippon [3] on the

large points to allow an extra ε-neighborhood. Many ideas in the proof are borrowed

from their work.

Remark that our proof is different from the proofs of Poonen and Zhang. Their

proofs assume the Mordellic part (the case when " is !nitely generated) of the Mordell–

Lang conjecture, dive into the proof of the Bogomolov conjecture and argue by contradic-

tion using a more careful analysis of the equidistribution of almost division points (see

[20, Theorem 1.1]). It seems impossible to derive a uniform result from their approach.

Our proof is closer to the approach of Rémond [16], in which he establishes the Mordell–

Lang plus Bogomolov for semiabelian varieties without assuming equidistribution.

Needless to say, the uniformity requires a more careful treatment.

Theorem 1.2 can be improved to a slightly stronger version, in the "avor of

Theorem 1.1’, as follows, which is shown in §6.

Theorem 1.2’. There exist positive constants ε = ε(g, d) and c = c(g, d) with the

following property. For any abelian variety (A, L) de!ned over Q̄, any integral subvariety

X ⊆ A, and any !nitely generated subgroup " ≤ A(Q̄) of rank ρ, the intersection X(Q̄)∩"′
ε

is contained in the set of Q̄-points of a union of at most c1+ρ many cosets in X.

Note that Theorem 1.2’ encompasses both the uniform Mordell–Lang conjecture

and the uniform Bogomolov conjecture proved in [8], but it does not follow directly from

them.

Notations and Conventions

Q̄ an algebraic closure of Q.

A an abelian variety over Q̄.

A(Q̄) the group of Q̄-points on A.

L a symmetric ample line bundle on A.

ĥ the Néron–Tate height ĥL : A(Q̄) → R≥0 associated to L.

" a !nitely generated subgroup of A(Q̄).

X an integral (irreducible and reduced) subvariety of A.

X◦ the open complement of the special locus of X.

ρ the rank of " as an abelian group.
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r dimension of X.

g dimension of A.

d degree of X with respect to L.

l degree of A with respect to L.

〈·, ·〉 the inner product on A(Q̄) ⊗Z R induced by ĥ.

| · | magnitude associated to the inner product; so |P|2 = ĥ(P) for P ∈ A(Q̄).

h(X) height of X with respect to the canonical adelic metric on L; see §3.

hFal(A) the stable Faltings height of A; see [5].

2 Technical Lemmas

In this section, we prove several easy lemmas about Euclidean spaces. The reader shall

feel free to skip this section and come back only when a lemma is invoked.

Lemma 2.1. Let V be a real vector space with an inner product 〈·, ·〉. For θ ∈ (0, π), there

exists 0 < δ = δ(θ) < 1 with the following property: if v1, v2 ∈ V satisfy |v2 − v1| ≤ δ · |v1|,
then the angle between v1, v2 is at most θ .

Proof. Take δ = sin θ . !

Lemma 2.2. Let V be a !nite-dimensional real vector space with an inner product 〈·, ·〉,
of dimension ρ. For any c > 1, the vector space can be covered by at most (1 +

√
8c)ρ

regions, such that for any v1, v2 in a same region, we have

〈v1, v2〉 ≥ (1 − 1
c
)|v1||v2|.

Proof. This is [14, Corollaire 6.1]. We include the proof here for completeness.

Let θ := 1
2 arccos(1− 1

c ). Denote by B(x, R), the closed ball in V of radius R centered

at x. We aim to !nd a covering of the unit sphere S by small pieces, such that the angle

between any two points in a piece is at most 2θ . Then we can just cover V by the one-sided

cones spanned by these pieces, such that for any two vectors v1, v2 in a cone,

〈v1, v2〉 ≥ cos(2θ)|v1||v2| = (1 − 1
c
)|v1||v2|.

The strategy is to cover S !rst by small balls with centers on S, of radius sin θ .

Each piece cut out by the intersection of S and a small ball has the required property.

Indeed, the distance between any v1, v2 in a piece is at most 2 sin θ , which by an easy
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geometric argument in the isosceles triangle of side lengths 1, 1, 2 sin θ , implies that the

angle between the vectors v1, v2 is at most 2θ .

Now we construct our cover inductively as follows. Assume that we have chosen

centers x1, .., xn, and that S 1⊆ ⋃n
i=1 B(xi, sin θ). Then we pick xn+1 in S that is not yet

covered. By the compactness of S, the procedure stops at a !nite step. Assume eventually,

we pick out centers x1, . . . , xN , and no more points can be picked.

Notice that by our choice, the distance between any xi, xj for i 1= j is greater

than sin θ . So in particular, we have B(xi,
1
2 sin θ) ∩ B(xj,

1
2 sin θ) = ∅. Meanwhile,

⋃N
i=1 B(xi,

1
2 sin θ) ⊆ B(0, 1 + 1

2 sin θ). Since Vol(B(0, R)) = Rρ · Vol(B(0, 1)), we get by

comparing the volumes that N ≤
(
(1 + 1

2 sin θ)/1
2 sin θ

)ρ = (1 +
√

8c)ρ , where the last

equality follows from sin θ = √
(1 − cos(2θ))/2 and cos(2θ) = 1 − 1

c . !

Lemma 2.3. Let V be a !nite-dimensional real vector space with an inner product 〈·, ·〉,
of dimension ρ. Then a ball of radius c can be covered by at most (1 + 2c/c′)ρ balls of

radius c′.

Proof. See also [14, Lemme 6.1].

Same idea as the proof of Lemma 2.2. Exhaust points x1, ..., xN ∈ B(0, c) so that

the distance between each pair is at least c′. Then B(0, c) is covered by the balls of radius

c′ centered at ci for i = 1, . . . , N. Also, we have
⋃N

i=1 B(xi,
1
2c′) ⊆ B(0, c + 1

2c′). Comparing

the volumes, we get N ≤
(
(c + 1

2c′)/1
2c′)ρ = (1 + 2c/c′)ρ . !

3 Large Points

In this section, we review results of Rémond and apply them to our setting for a uniform

treatment of large points. Many ideas are due to Rémond and our job is to carefully take

the ε-neighborhood into account.

We assume L to be moreover very ample and induce a projectively normal closed

immersion into some projective space, for this section. It is not much harder to show the

general case, since if L is ample then L⊗4 satis!es our assumption, see for example [11].

We have h0(A, L) = l/g! (recall that l = degL A); see [8, §2]. So A can be embedded in Pn

with n = l/g! −1.

The symmetric line bundle L is endowed with a unique canonical adelic metric;

the corresponding adelic metrized line bundle is denoted by L̄. We can then de!ne the

height h(X) of a subvariety X ⊆ A with respect to L̄ using the arithmetic intersection

theory. See [2, §9] for details.
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3.1 Inequalities

There are two important constants that appear in the work of Rémond, namely cNT and

h1. Let h : Pn(Q̄) → R be the logarithmic Weil height. The !rst one cNT is a bound arising

from the construction of Néron-Tate heights on the abelian variety. It satis!es |ĥ(P) −
h(P)| ≤ cNT for any P ∈ A(Q̄). The second one h1 is the Weil height of the polynomials

de!ning the addition and subtraction on the abelian variety. It is known that there is a

constant c′ = c′(g, l) such that

cNT, h1 ≤ c′ max{1, hFal(A)}. (*)

See [3, (6.41)] and [4, (8.4) and (8.7)] for details.

The Néron-Tate height ĥ induces an inner product 〈·, ·〉 on the vector space

A(Q̄) ⊗Z R, so that for any point P ∈ A(Q̄), we have 〈P, P〉 = ĥ(P). Write | · | for the

induced norm.

Let DX : Xr+1 → Ar (recall that r = dim X) be the morphism de!ned by

(x0, . . . , xr) 3→ (x1 − x0, . . . , xr − x0). The following theorem by Rémond gives explicit

generalized Vojta’s inequality and Mumford’s inequality.

Theorem 3.1 (Rémond). Let X ⊆ A be an integral subvariety. There exist constants c1 =
c1(r, g, d, l) > 1 and c2 = c2(r, g, d, l) > 1 with the following property:

(i) (Vojta’s inequality) If P0, . . . , Pr ∈ X◦(Q̄) satisfy

〈
Pi, Pi+1

〉
≥ (1 − 1

c1
)|Pi||Pi+1| and |Pi+1| ≥ c1|Pi|,

for any i, then

|P0|2 ≤ c2 max{1, h(X), hFal(A)}.

(ii) (Mumford’s inequality) Suppose (P0, . . . , Pr) is an isolated Q̄-point in the !ber

of DX : Xr+1 → Ar. If

〈
P0, Pi

〉
≥ (1 − 1

c1
)|P0||Pi| and

∣∣|P0| − |Pi|
∣∣ ≤ 1

c1
|P0|,

for any i, then

|P0|2 ≤ c2 max{1, h(X), hFal(A)}.
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Proof. Vojta’s inequality is [15, Théorème 1.1] and Mumford’s inequality is [14, Propo-

sition 3.4]. Note that we can remove cNT, h1 from them by (∗). !

The following proposition is similar to Rémond [14, Proposition 3.3]. It will be

used in Proposition 3.3 to ensure the extra condition in Mumford’s inequality.

Proposition 3.2. Let ( ⊆ X◦(Q̄) be a set of points. Assume there is P0 ∈ X(Q̄) such that

for any P1, . . . , Pr ∈ (, the point (P0, P1, . . . , Pr) is not isolated in the !ber of DX : Xr+1 →
Ar. Then ( is contained in the set of Q̄-points of a Zariski closed subset X ′ ! X with

degL X ′ < dr+2.

Proof. If the dimension of the stabilizer Stab(X) of X in A is not 0, then every point of

X is in a positive dimensional coset of X, whence X◦ = ∅. So we assume Stab(X) is !nite.

Notice that the !ber of DX over (P1 − P0, . . . , Pr − P0) is

{(P0 + a, . . . , Pr + a) ∈ Xr+1(Q̄) : a ∈ A(Q̄)},

which is isomorphic to
⋂r

i=0(X − Pi), where (P0, . . . , Pr) corresponds to 0 under the

isomorphism. Thus, the condition that (P0, . . . , Pr) is isolated in the !ber is equivalent

to that the dimension of
⋂r

i=0(X − Pi) at the origin is 0.

Assume there exists P0 ∈ X(Q̄) such that dim0
⋂r

i=0(X − Pi) 1= 0 for any choice

of P1, . . . , Pr ∈ (, where dim0 Y stands for the dimension of Y at 0. Then we can use the

greedy algorithm to pick out step by step P1, P2, ..., Pr0
for some r0 < r with the following

property:

dim0(X − P0) > dim0

1⋂

i=0

(X − Pi) > . . . > dim0

r0⋂

i=0

(X − Pi),

and we cannot reduce the dimension at 0 in one step any more. In other words, if we let

C1, . . . , Cs be the top-dimensional irreducible components passing through 0 of
⋂r0

i=0(X −
Pi), then for any Q ∈ (, the translate X − Q must contain some Ci, for some i = i(Q). On

the other hand, Ci ⊆ X − Q if and only if Q ∈ ⋂
a∈Ci(Q̄)(X − a). So we have

( ⊆
s⋃

i=1

⋂

a∈Ci(Q̄)

(X − a).
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Claim:
⋂

a∈Ci(Q̄)(X − a) is contained in a proper subvariety Xi of X of degree at most d2.

Indeed, since Stab(X) is !nite, there is some ai ∈ Ci(Q̄) such that X − ai 1= X. So simply

take Xi := X ∩ (X − ai). On the other hand, s ≤ dr since deg
⋂r0

i=0(X − Pi) ≤ dr. Let X ′ be

the union of Xi’s. Then deg X ′ ≤ dr+2 and ( ⊆ X ′(Q̄). !

3.2 Large points

In the proof of Theroem 1.2, we will use induction on the dimension of X. To make things

more clear, we extract the steps from the proof and make them propositions.

Proposition 3.3. Assume Theorem 1.2 holds for dim X ≤ r − 1. In the case of dim X = r,

there exist positive constants ε1 = ε1(r, g, d, l) and c3 = c3(r, g, d, l) with the following

property. For any !nitely generated subgroup " ⊆ A(Q̄) of rank ρ, we have

#
{
P ∈ X◦(Q̄) ∩ "′

ε1
: ĥ(P) > c2 max{1, h(X), hFal(A)}

}
≤ c1+ρ

3 ,

where c2 = c2(r, g, d, l) is taken from Theorem 3.1.

Proof. Consider the ρ-dimensional real vector space "⊗R = "′⊗R embedded in A(Q̄)⊗R,

equipped with the inner product induced by the Néron-Tate height.

Take c1 = c1(r, g, d, l) from Theorem 3.1. Let θ1 := 1
2 [arccos(1− 1

c1
)−arccos(1− 1

2c1
)].

By Lemma 2.1 with θ = θ1, there exists

ε1 = δ(θ1)2 = ε1(r, g, d, l) ∈ (0, 1),

such that for any v1, v2 ∈ A(Q̄) ⊗ R with |v2 − v1| <
√

ε1|v1|, the angle between v1, v2 is at

most θ1. We need to decrease ε1 further soon.

By Lemma 2.2, the ρ-dimensional vector space " ⊗ R can be covered by at most

(1 + 4
√

c1)ρ cones on which
〈
w1, w2

〉
≥ (1 − 1

2c1
)|w1||w2|. Suppose D is one such cone. Let

Dε1
be the ε1-neighborhood of D as de!ned in the introduction, and let D+

ε1
be the part of

large points v ∈ Dε1
with

|v|2 > c2 max{1, h(X), hFal(A)}.

Then for v1, v2 ∈ D+
ε1

, we claim that
〈
v1, v2

〉
≥ (1 − 1

c1
)|v1||v2|. Indeed, by de!nition, there

is w1, w2 ∈ D with |vi − wi| <
√

ε1|wi| for i = 1, 2. So the angle between vi, wi is at

most θ1 by the last paragraph, for i = 1, 2. But the angle between w1, w2 is at most
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arccos(1 − 1
2c1

). Therefore, by the triangle inequality, the angle between v1, v2 is at most

2θ1 + arccos(1 − 1
2c1

) = arccos(1 − 1
c1

), hence the claim.

It then suf!ces to bound the number of points in X◦(Q̄) ∩ D+
ε1

. This is where we

invoke the inequalities. In order to use Mumford’s inequality, we also need to use the

inductive hypothesis for lower dimensions.

Speci!cally, let us take any sequence of distinct points |P1| ≤ |P2| ≤ . . . in

X◦(Q̄) ∩ D+
ε1

ordered by their heights. Note that we do not even know the !niteness of

the sequence yet and in fact we may need to shrink ε1 to ensure that. Replace ε1 by

min{ε1, ε(r − 1, g, dr+2)} and let N := c(r − 1, g, dr+2)ρ+1, where ε, c are the functions in

Theorem 1.2 for lower dimensions.

Claim: any subset ( of X◦(Q̄) ∩ D+
ε1

with cardinality ≥ N + 1 is not contained in

any Zariski closed subset X ′ ! X with degL X ′ ≤ dr+2. Indeed, if X ′ ! X is a Zariski closed

subset containing (, then ( ⊆ (X ′ ∩ X◦)(Q̄) ⊆ (X ′)◦(Q̄). So (X ′)◦(Q̄) ∩ "′
ε1

contains N + 1

points, which implies degL X ′ > dr+2.

So by Proposition 3.2 with ( := {Pj, Pj+1, ..., Pj+N}, there is Q1, ..., Qr ∈ ( such that

(Pj, Q1, . . . , Qr) is isolated in the !ber of DX : Xr+1 → Ar, whence Mumford’s inequality

applies and we get

|Pj+N | ≥ |Qi| > (1 + 1
c1

)|Pj| for any j.

Take M := M(c1) such that (1 + 1
c1

)M ≥ c1. Then

|Pj+NM | > (1 + 1
c1

)|Pj+N(M−1)| > . . . > (1 + 1
c1

)M |Pj| ≥ c1|Pj|.

Then we must have #X◦(Q̄) ∩ D+
ε1

≤ rNM, since otherwise the sequence

P1, P1+NM , P1+2NM , . . . , P1+rNM

would contradict Vojta’s inequality.

Overall, we see that

#
{
P ∈ X◦(Q̄) ∩ "′

ε1
: ĥ(P) > c2 max{1, h(X), hFal(A)}

}
≤ (1 + 4

√
c1)ρ · rNM.

The result follows by noticing that

(1 + 4
√

c1)ρ · rNM = (1 + 4
√

c1)ρ · r · c(r − 1, g, d2g)ρ+1 · M(c1) ≤ c1+ρ
3

for some c3 = c3(r, g, d, l). !
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In particular, we get the following qualitative result as a corollary by applying

the uniform Bogomolov conjecture. This !niteness result will be used later in Proposition

3.5.

Proposition 3.4. Assume Theorem 1.2 holds for dim X ≤ r − 1. In the case of dim X = r,

there exists a constant ε0 = ε0(r, g, d, l) > 0 such that for any !nitely generated subgroup

" ≤ A(Q̄), the intersection X◦(Q̄) ∩ "ε0
is !nite.

Proof. By the uniform Bogomolov conjecture [Theorem 1.3] there is ε = ε(g, d) > 0, c =
c(g, d) > 0 such that for any Q ∈ A(Q̄), we have

#{P ∈ X◦(Q̄) : ĥ(P − Q) ≤ ε} < c.

Let ε0 := 1
16 min{ε, ε1}. By Proposition 3.3, we just need to show that the set

{
P ∈ X◦(Q̄) ∩ "′

ε0
: ĥ(P) ≤ 4c2 max{1, h(X), hFal(A)}

}

is !nite. For this, !rst cover the ball B in " ⊗ R of radius

√
4c2 max{1, h(X), hFal(A)}

by !nitely many balls of radius √
ε0. Then the ε0-neighborhood Bε0

is covered by the

ε0-neighborhoods of the !nitely many small balls. For any two points P, Q in the ε0-

neighborhood of a same small ball, we have

|P − Q| ≤ 2
√

ε0 + 2
√

ε0 = 4
√

ε0.

So ĥ(P − Q) ≤ 16ε0 ≤ ε. Thus there are at most c points in such a neighborhood. To

conclude, we have !nitely many regions and in each region we have !nitely many points.

So we get !niteness. !

3.3 Removing h(X)

Lemma 3.4. Assume ( ⊆ X(Q̄) is a !nite set with the property that any equidimensional

subvariety X ′ ⊆ X of dimension r − 1 containing ( satis!es degL X ′ > ld2/g!. Then

h(X) ≤ d(l/g! +1)r+1 ·
(

max
P∈(

ĥ(P) + 3 log(l/g! )

)
.
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Proof. This is [14, Lemme 3.1] with n = l/g! −1. !

Using this lemma, we can remove h(X) from Proposition 3.3. The idea is to

consider all translates of X and !nd a relatively small height.

Proposition 3.5. Assume Theorem 1.2 holds for dim X ≤ r − 1. In the case of dim X = r,

there exist positive constants ε2 = ε2(r, g, d, l), c4 = c4(r, g, d, l) and c5 = c5(r, g, d, l) such

that for any !nitely generated subgroup " ⊆ A(Q̄) of rank ρ, either

#X◦(Q̄) ∩ "′
ε2

≤ c1+ρ
4 ,

or there exists Q0 ∈ X◦(Q̄) ∩ "′
ε2

such that

#{P ∈ X◦(Q̄) ∩ "′
ε2

: ĥ(P − Q0) > c5 max{1, hFal(A)}} ≤ c2+ρ
3 ,

where c3 = c3(r, g, d, l) is taken from Proposition 3.3.

Proof. Write N := c(r − 1, g, ld2/g! )1+ρ + 1 and

ε2 := min{ε1(r, g, d, l), ε(r − 1, g, ld2/g! )}

where ε1 is taken from Proposition 3.3.

Take any Q ∈ X◦(Q̄)∩"′. If #X◦(Q̄)∩"′
ε2

< N, there is nothing to prove. Otherwise,

there exist distinct points P1, . . . , PN of X◦(Q̄) ∩ "′
ε2

, then P1 − Q, . . . , PN − Q are distinct

points of (X◦(Q̄) − Q) ∩ "′
ε2

, where 〈", Q〉 is the subgroup of A(Q̄) generated by " and Q.

By Theorem 1.2, the set (Q := {P1 − Q, . . . , PN − Q} is not contained in any subvariety

X ′ ! X − Q with dim X ′ ≤ r − 1 and degL X ′ ≤ ld2/g!, simply because (X ′)◦(Q̄) ∩ 〈", Q〉′ε2

does not contain so many points (recall that our convention allows us to apply Theorem

1.2 to reducible subvarieties). Thus, Lemma 3.4 applies to (Q and X − Q and we have

h(X − Q) ≤ d(l/g! +1)r+1 ·
(

max
1≤i≤N

ĥ(Pi − Q) + 3 log(l/g! )

)
.

Applying Proposition 3.3 to X − Q and 〈", Q〉′ε2
with the above height bound, we

!nd the cardinality of

{
P − Q ∈ (X◦(Q̄) − Q) ∩ 〈", Q〉′ε2

: ĥ(P − Q) > N1 max
1≤i≤N

ĥ(Pi − Q) + N2 max{1, hFal(A)}
}
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is at most c2+ρ
3 for some N1 = N1(r, g, d, l) and N2 = N2(r, g, d, l), which in particular

implies that

#
{

P ∈ X◦(Q̄) ∩ "′
ε2

: ĥ(P − Q) > N1 max
1≤i≤N

ĥ(Pi − Q) + N2 max{1, hFal(A)}
}

≤ c2+ρ
3 (3.5.1)

since "′
ε2

− Q is contained in 〈", Q〉′ε2
.

Now let us restrict the choice of Q in the !nite set X◦(Q̄) ∩ "′
ε2

. For each Q, by the

last paragraph there is a minimum M = M(Q) ≥ 0 such that

#{P ∈ X◦(Q̄) ∩ "′
ε2

: ĥ(P − Q) > M} ≤ c2+ρ
3 .

By the !niteness, we can pick the smallest M0 and assume M0 = M(Q0) for some

Q0 ∈ X◦(Q̄) ∩ "′
ε2

. We are going to show that M0 is bounded by a constant multiple of

max{1, hFal(A)}, with the constant only related to r, g, d, l.

Assume that

#(X◦(Q̄) ∩ "′
ε2

) > c2+ρ
3 + (N − 1) · (1 + 8

√
N1)1+ρ , (3.5.2)

where the left-hand side can be in!nity a priori.

Consider the set W := {P ∈ X◦(Q̄) ∩ "′
ε2

: ĥ(P − Q0) ≤ M0}. Then W is contained

in the ε2-neighborhood of the (1 + ρ)-dimensional ball of radius
√

M0 centered at Q0 in

the vector space
〈
", Q0

〉
⊗ R. In particular, by Lemma 2.3, W can be covered by at most

(1+8
√

N1)1+ρ many ε2-neighborhood of small balls of radius
√

M0
4
√

N1
, centered in

〈
", Q0

〉
⊗R.

Then #W > (N − 1) · (1 + 8
√

N1)1+ρ . By the Pigeonhole principle, there exists one ε2-

neighborhood of a small ball (call it Dε2
) that contains at least N points in W. Assume

that P1, ..., PN ∈ Dε2
are distinct. Then,

|Pi − P1| ≤ 2 ·
√

M0

4
√

N1
+ 2

√
ε2

for any 1 ≤ i ≤ N. Then by (3.5.1), we see that

M(P1) ≤ N1 · (2 ·
√

M0

4
√

N1
+ 2ε2)2 + N2 max{1, hFal(A)}.

So by our choice of M0, we get

M0 ≤ N1 · 2(
M0

4N1
+ 4ε2) + N2 max{1, hFal(A)},

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/9/7360/7232481 by Sciences Library user on 07 Septem
ber 2025



Uniform Mordell–Lang Plus Bogomolov 7373

from which we derive

M0 ≤ 16N1 · ε2 + 2N2 max{1, hFal(A)}. (3.5.3)

Finally, simply notice that the right-hand side of (3.5.2) can be bounded by

c1+ρ
4 for some c4 = c4(r, g, d, l) and the right-hand side of (3.5.3) can be bounded by

c5 max{1, hFal(A)} for some c5 = c5(r, g, d, l). !

4 Small Points

We say an irreducible subvariety X ⊆ A generates A, if X − X is not contained in any

proper abelian subvariety of A. We need the following New Gap Principle to study small

points.

Theorem 4.1. [8, Theorem 1.2] For any irreducible subvariety X ⊆ A that generates A,

there exist constants c6 = c6(g, d) > 0 and c7 = c7(g, d) > 0 such that the set

) :=
{
P ∈ X◦(Q̄) : ĥ(P) ≤ c6 max{1, hFal(A)}

}

is contained in some Zariski closed subset X ′ ! X with degL(X ′) < c7.

Corollary 4.2. Assume Theorem 1.2 holds for dim X ≤ r − 1. In the case of dim X = r

with X generating A, there exist constants ε3 = ε3(r, g, d) and c8 = c8(r, g, d) such that

for any !nitely generated subgroup " ≤ A(Q̄) of rank ρ and any Q ∈ A(Q̄), we have

#
{
P ∈ X◦(Q̄) ∩ "′

ε3
: ĥ(P − Q) ≤ c6 max{1, hFal(A)}

}
≤ c1+ρ

8 .

Proof. Take ε3 := ε(r − 1, g, c7) and c8 = c(r − 1, g, c7)2. Note that for any subvariety

X ′ ⊆ X, we have X◦ ∩ X ′ ⊆ (X ′)◦, since the special locus of X contains the special locus of

X ′ by de!nition. By Theorem 4.1, the set

)Q := {P ∈ X◦(Q̄) : ĥ(P − Q) ≤ c6 max{1, hFal(A)}}

is contained in some X ′
Q ! X with degL(X ′

Q) < c7. By the induction hypothesis, we have

#
(
(X ′

Q)◦(Q̄) ∩ 〈", Q〉′ε3

)
≤ c(r − 1, g, c7)2+ρ ≤ c1+ρ

8

for some c8 = c8(r, g, d) > 0. In particular, we get #()Q ∩ "′
ε3

) ≤ c1+ρ
8 as a subset. !
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5 Proof of Theorem 1.2

We will construct ε(r, g, d) and c(r, g, d) inductively on dim X.

For dim X = 0, take ε(0, g, d) = ∞ and c(0, g, d) = d. Then the theorem holds

trivially, and the assumption in Remark 1.3(v) is satis!ed.

Assume the theorem holds for dim X ≤ r − 1. Consider the case when dim X = r.

Note that we can assume without loss of generality that X generates A. Indeed, if we

can prove the case when X generates A, simply replace A by the abelian subvariety A′

generated by X and " by "∩A′(Q̄), so that g and ρ decrease, and the result follows trivially.

Let ε2, ε3, c3, c4, c5, c6, c8 be as in Proposition 3.5 and Corollary 4.2. Let

ε := min{ε2, ε3,
1
16

c6}.

Assume #X◦(Q̄) ∩ "′
ε > c1+ρ

4 . Then by Proposition 3.5, there exists Q0 ∈ X◦(Q̄) ∩ " such

that

#
{
P ∈ X◦(Q̄) ∩ "′

ε : ĥ(P − Q0) > c5 max{1, hFal(A)}
}

≤ c2+ρ
3 .

Consider the complement ) :=
{
P ∈ X◦(Q̄) ∩ "′

ε : ĥ(P − Q0) ≤ c5 max{1, hFal(A)}
}
. Note

that ) is contained in the ε-neighborhood of the (1 + ρ)-dimensional ball of radius

√
c5 max{1, hFal(A)}

centered at Q0 in the vector space
〈
", Q0

〉
⊗ R. Cover ) using ε-neighborhoods of small

balls of radius 1
4

√
c6 max{1, hFal(A)} centered in

〈
", Q0

〉
⊗ R. By Lemma 2.3, ) can be

covered by (1 + 8
√

c5
c6

)1+ρ such neighborhoods of the small balls. For P1, P2 in a same

ε-neighborhood, we have

ĥ(P1 − P2) ≤
(

2
√

ε + 2 · 1
4

√
c6 max{1, hFal(A)}

)2

≤ c6 max{1, hFal(A)}.

Hence, by Corollary 4.2, there are at most c1+ρ
8 points of X◦(Q̄)∩"′

ε in one ε-neighborhood.

So

#(X◦(Q̄) ∩ "′
ε) ≤ #) + c2+ρ

3 ≤
(

1 + 8
√

c5

c6

)1+ρ

· c1+ρ
8 + c2+ρ

3 ≤ c1+ρ

for some c = c(r, g, d, l) ≥ c4.
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Finally, since X generates A, the degree l of A is actually bounded by a function

of the degree d of X and dimension g of A; see [8,§2]. So we can remove the dependence

on l and we are done.

6 Finiteness of Cosets

In this section, we show that Theorem 1.2 can be improved to Theorem 1.2’, to include

the counting of the positive dimensional cosets. The idea is the same as [7, Lemma 10.4].

Basically, we need to bound the degrees of subvarieties in the special locus and use

induction.

Proof of Theorem 1.2’. Without loss of generality, assume X generates A. Let )(X) be

the set of positive dimensional abelian subvarieties B ⊆ A such that there is x ∈ X(Q̄)

satisfying x + B ⊆ X, and B is maximal for x. Bogomolov [1, Theorem 1] shows that there

is an upper bound δ1 = δ1(g, d) for the degree of B ∈ )(X). Rémond [14, Proposition 4.1]

proves that there is N1 := N1(g, l, δ1(g, d)) such that #)(X) ≤ N1.

The key idea is to take a complement B⊥ of B, such that B + B⊥ = A and B ∩ B⊥ is

!nite. It is possible to choose such a B⊥ with degree at most δ2 = δ2(g, d, l); see [10]. The

B⊥ will serve as a substitute for A/B. Write (X : B) := {x ∈ X : x +B ⊆ X}. Note that (recall

r = dim X)

(X : B) =
⋂

b∈B

(X + b) =
r⋂

i=0

(X + bi)

if we choose b0, . . . , br ∈ B in a general position, for dimension reason. Then we let XB :=
(X : B) ∩ B⊥. We have XB + B = (X : B). By Bézout’s theorem, the degree of XB is bounded

by dr+1 · δ2 ≤ δ3 = δ3(g, d, l). Note also that Sp(X) can be written as a union

Sp(X) =
⋃

B∈)(X)

(X : B) =
⋃

B∈)(X)

(X◦
B + B),

where the second inequality uses the fact that if x + B′ ⊆ XB, then

x + (B + B′) ⊆ (X : (B + B′)).

Take any !nitely generated subgroup " ≤ A(Q̄) of rank ρ. For each B ∈ )(X), we

de!ne "B ⊆ B⊥(Q̄) to be the pullback of " + B/B under the isogeny B⊥ → A/B. Then "B is

of the same rank. Note that (X◦
B + B)(Q̄) ∩ "′

ε ⊆ (X◦
B(Q̄) ∩ "′

B,ε) + B.
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Applying Theorem 1.2 to XB and "B, we get ε = ε(g, δ3), c = c(g, δ3) such that

(recall that we choose the constants in a way that they also work for reducible varieties)

#(X◦
B(Q̄) ∩ "′

B,ε) ≤ c1+ρ . Then we have

Sp(X)(Q̄) ∩ "′
ε ⊆

⋃

B∈)(X)

[
(X◦

B(Q̄) ∩ "′
B,ε) + B

]
,

where the right-hand side is the union of at most #)(X) · c1+ρ ≤ N1 · c1+ρ cosets. Since

X generates A, we could bound l in terms of g and d and hence remove l in a trivial way.

So we are done by simply combining the above result on Sp(X) with the result on X◦. !

7 Further Comments

In Theorem 1.2, ε is only related to the dimension of the abelian variety A and the degree

of the subvariety X. On the other hand, as suggested by the New Gap Principle 4.1, the

“generic” distance between two points on X is proportional to max{1, hFal(B)}, where B

is the abelian subvariety generated by X (recall from §4 that this means X − X is not

contained in any proper abelian subvariety of A). The exact same method (except in

Proposition ??, one needs to invoke the New Gap Principle 4.1) can be used to show that

Theorem 1.2 is true with ε replaced by

ε · max{1, inf
B⊆A

hFal(B)},

where the in!mum is taken over all positive-dimensional abelian subvarieties B of A.

The method does not work without taking the in!mum above, since one has no control

over X ′ in the New Gap Principle (4.1).

We cannot in general hope ε to be replaced by an even stronger form ε ·
max{1, hFal(A)}. A counterexample may be easily constructed: consider X × {0} ⊆ A × B

with A !xed and B varying of the same dimension. Then the degree of X × {0} and the

dimension of A × B are !xed, but the Faltings height of A × B has no bound. A possible

way to get around is to only consider the points that are “transverse”, as suggested by

the referee.

We might also consider the set

{x ∈ X◦(Q̄) : d(x, " ⊗ R) ≤ α|x| + β}

with α, β positive constants and d(x, " ⊗R) denoting the distance from x to any R-linear

combination of vectors of ", as in [20, Theorem 1.3]. What we showed is the existence
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of a uniform β with α = 0 to make this set uniformly bounded in terms of the rank. It

would be interesting to investigate whether we can pick positive α, β with the similar

uniformity.
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