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Abstract
This paper presents a human–robot collaborative symmetric lifting motion prediction using inverse dynamics optimization. 
The human and robot arm are modeled in Denavit-Hartenberg (DH) representation. A floating-base rigid body with 6 global 
degrees of freedom (DOFs) is similarly modeled as a three-dimensional (3D) table. A set of grasping forces characterizes the 
human-table and robot-table interactions. The joint torque squares of human arm and robot arm are minimized and subjected 
to physical and task related constraints. During lifting, the design variables include the cubic B-spline control points of joint 
angle profiles of the human arm, robot arm, and table. In addition, the discretized grasping forces are also treated as design 
variables. Both numeric and experimental human–robot lifting was performed with a 2 kg table. The simulation reports the 
human and robot arm’s joint angle profiles, joint torque profiles, and grasping force profiles. These profiles were validated 
with experimental data, which was collected using a motion capture system, force sensors, and the robot operating system 
(ROS). The human and robot arms’ joint angle and torque profiles demonstrate a similar trend in the experimental environ-
ment. The grasping force comparison implies that the human and robot share the load while lifting together.

Keywords  Motion planning · Human–robot lifting · Motion capture · Force sensors · ROS · Inverse dynamics 
optimization · and optimization

1  Introduction

Human–robot interaction is a topic of study with numerous 
applications and a significant impact on the economy [1]. 
Collaboration between humans and robots can significantly 
accelerate production processes, enhance manufacturing 
quality, and lower structural costs [2]. However, it is neces-
sary to predict the human–robot lifting motion with grasping 
forces to avoid human injuries. Researchers have developed 
various biomechanical prediction models for lifting over 
the previous few decades [3–7]. Furthermore, human–robot 
interaction research has made significant progress. This 
paper aims to use optimization techniques to design, simu-
late, and validate a human–robot collaborative symmetric 
optimal lifting motion.

Researchers are currently using different learning tech-
niques to successfully anticipate and execute lifting tasks. 

Evrard et al. [8] presented a controller which learned from 
a demonstration and was used to conduct a human–robot 
collaborative task with the help of a human operator. After 
learning, the robot could do collaborative lifting by con-
ditioning the Gaussian Mixture Model (GMM) with the 
perceived force/torque. It generated the velocity response 
using Gaussian Mixture Regression (GMR). By adjusting 
the impedance controller parameters, Evrard and Kheddar 
[9] were able to allocate leader/follower roles and solve the 
challenge of determining the robot’s involvement in a col-
laborative lifting operation. Furthermore, DelPreto and Rus 
[10] used electromyography (EMG) signals to estimate the 
human’s intention in a real-time interface for controlling col-
laborative lifting tasks. Calinon et al. [11] studied a robotic 
learning system to reproduce collaborative lifting with a 
haptic interface. The probabilistic relationships between the 
forces and the task’s kinematic characteristics were continu-
ally encoded. Then the robot was able to choose a controller 
on its own to replicate the collaboration skill with the desired 
behavior. Agravante et al. [12] proposed an integrated frame-
work that utilizes a visual servoing controller to perceive 
the task and a haptic channel to detect human intent. The 
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impedance control framework combined vision and force 
control, affecting all degrees of freedom (DOFs) simultane-
ously. Collaboratively lifting a table while keeping a ball 
on it is the job that was completed. In a collaborative task, 
Lawitzky et al. [13] proposed a novel approach that com-
bined planning and learning-based approaches. The recorded 
force readings were used by the robot to follow human 
supervision throughout the initial learning phase. Using 
measured force and motion data to train a Hidden Markov 
Model (HMM) to anticipate the human’s subsequent actions, 
the robot gradually learned to take a more active role. Sheng 
et al. [14] presented an integrated human–robot collaborative 
framework that utilizes imitation and reinforcement learning 
to make a table stay horizontally between the human and 
robot. A reactive controller attempted to keep the system sta-
ble, while proactive actions were taken by a proactive con-
troller based on human motion prediction. Both holding the 
table steady and controlling the table were taught through 
imitation learning. The findings reveal that confidence in 
the motion predictor was used to switch controller modes 
automatically, and that this method works well for collabo-
rative manipulation. A model for human–robot haptic col-
laboration was proposed by Rozo et al. [15]. Their technique 
learned to map reported forces to the impedance parameters 
required to actuate the robot through the demonstration. In 
[16], the author applied a task-parameterized GMM-based 
technique for cooperative transportation tasks, which allows 
for structuring the robot’s mobility as a function of the task 
parameters and optimal control. It was extended by adding 
stiffness estimates based on a convex optimization in [2]. 
Wang et al. [17] designed a robot controller that uses an 
HMM-based high-level controller to encode motion trajec-
tories. It was used to predict human intentions and adjust the 
reference trajectory as needed based on haptic input of the 
current human state at each time point.

On the other hand, force/torque sensors and optimization 
techniques have been used for intention prediction and opti-
mal motion prediction by several researchers. A cooperative 
manipulation task was presented in [18], in which a human 
and a robot worked together to move a large table. Force/
torque sensors were used to identify the intent, and a math-
ematical model was utilized to process their findings. Task 
modeling produced a role allocation parameter which ena-
bled leader–follower role arbitration. The user was given a 
haptic input via the cooperatively manipulated object. A 1 
DOF impedance control law proposed by Bussy et al. [19] 
created a time-dependent reference trajectory path for a robot 
to follow in order to achieve the required trajectory. The robot 
anticipates the human’s intended movement by identifying a 
collection of primitive motions and constructs a time-depend-
ent trajectory consistent with the prediction in a combined 
table-carrying task. The process was repeated with the robot 
being teleoperated by another person, and in this case, the 

human lifter followed the robot’s lead. Furthermore, to adjust 
the robot’s behavior, wrist-mounted force-torque sensors were 
added to the robot. Li et al. [20] calculated target positions 
using force. As the robot plays a more proactive role, estimat-
ing the human’s desired target position reduces the amount of 
power the robot should exert. An impedance controller was 
used to incorporate the human’s predicted motion. Passen-
berg et al. [21] utilized a 2-DOF haptic device to simulate a 
human–robot interaction. The interaction forces were used to 
accomplish the autonomous response. They determined the 
optimal assistance levels for specific tasks based on a human’s 
effort and task performance criteria. In [22], a dynamical 
human model was developed that uses a Lagrangian formu-
lation to describe the relationship between contact points and 
the resulting contact force. The statically equivalent serial 
chain approach was used for the human model structure. Dur-
ing a co-manipulation or handover task, the human’s pose was 
optimized to minimize torque on the human joints. In terms 
of the Rapid Entire Body Assessment (REBA) score, Van 
der Spaa et al. [23] optimized a discrete sequential plan of 
postures for human–robot cooperation tasks. It was also noted 
that it was too computationally expensive to be used for online 
planning. Xiang et al. [6] developed a human–human collabo-
rative lifting motion prediction with grasping forces. In addi-
tion, an optimization-based human–robot collaborative lifting 
motion prediction was developed in previous research [24].

A few research focuses on human–robot cooperation for 
precise object positioning and human adaptability. Wojtara 
et al. [25] constructed a robotic system to place an object 
on a surface with precision. The human interacts with the 
robot’s impedance to adapt to the final position, whereas the 
robotic system just has a general location of the goal posi-
tion. Maurice et al. [26] presented a study on the human’s 
ability to adapt to non-biological movements when the 
human and the robot lift together. It was reported that a 
robot that moved along a course in a biological velocity 
pattern rather than a predetermined velocity pattern helped 
the human function better, and the human exerted less force 
on the robot. Parker and Croft [27] studied human follow-
ing behavior in a cooperative vertical object lifting task as a 
response to a leading robotic manipulator. They discovered 
that the pace of the task and differences across subjects had 
a substantial impact on the results.

The proposed work uses inverse dynamics optimiza-
tion to predict the human–robot collaborative symmetric 
lifting motion and the grasping forces. A sequential quad-
ratic programming (SQP) algorithm in a sparse nonlinear 
optimizer (SNOPT) [28] is used to solve the human–robot 
lifting problem. The predicted optimal results are used in 
the experimental human–robot lifting setup. Valid compari-
sons are established between the simulation and experiment. 
Therefore, the predicted optimal human–robot lifting motion 
and grasping forces can mitigate human injuries during 
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human–robot interaction. Table 1 summarizes the state-of-
the-art methods for human–robot collaborative lifting.

The proposed optimization based method has several 
advantages: 1) we formulate a computationally efficient 
optimization model for human–robot collaborative lift-
ing; 2) the simulation can generate the optimal trajectories 
for the human–robot lifting; 3) the optimization formula-
tion can optimize the grasping forces between human and 
table, and robot and table 4) we propose an easy and practi-
cal method to measure the grasping forces in real time in 
experiment. The major limitation for the current model is 
that the robot motion is pre-simulated and is not able to 
response to human adaptations during the lifting process. 

Learning-based methods can overcome this limitation, but 
they require numerous demonstrations and complicated 
training procedures. In this study, we focus on proposing 
a novel optimization formulation to predict collaborative 
human–robot lifting motion, optimize the grasping forces, 
and validate the simulation with experiments.

The contents of this article are organized as follows: 
the human–robot modeling method is first described in 
Section 2, and the equations of motion (EOM) and sen-
sitivities are also detailed. Section 3 covers the details of 
the experimental method. The optimization formulation 
for the human–robot lifting problem is presented in Sec-
tion 4. Section 5 presents simulation conditions, results, and 

Table 1   Comparisons of the human–robot lifting methods in the literature

Reference Human model Robot Interaction information Simulation method

Evrard et al. [8] Human subject 30-DOF HRP (Humanoid 
Robotics Project)-2 human-
oid robot

Haptic interaction Gaussian Mixture Model 
(GMM) and Gaussian 
Mixture Regression (GMR) 
learning algorithms

DelPreto and Rus [10] Human subject 7-DOF Rethink Baxter robot 
(one arm)

Human muscle activity via 
EMG

Experimental and genetic 
algorithm for parameters 
optimization

Lawitzky et al. [13] Human subject 7-DOF mobile robot Contact forces and motion 
data

Feedback planning and learn-
ing based motion prediction 
approaches

Sheng et al. [14] Human subject 25-DOF Nao humanoid robot Human–robot relative posi-
tion

Reinforcement learning

Bussy et al. [19] Human subject 30-DOF HRP-2 (Humanoid 
Research Project-2)

A collection of human primi-
tive motions

Compliant position control 
method

Peternel et al. [22] 5-DOF 2D model 7-DOF Kuka Lightweight 
robot arm

Experimentally measured 
contact forces and muscle 
activity

Constrained optimization

Van der Spaa et al. [23] Human subject 32-DOF bimanual mobile 
robot

Human’s pose and external 
forces

Experimental data-based 
supervised learning and 
graph search algorithm

Parker and Croft [27] Human subject 6-DOF CRS (Cylindrical 
Revolute Spherical) A460 
articulated robot arm

Vertical displacement of 
object ends

Experimental approach

Lorenzini et al. [29] Human subject 7-DOF Kuka Lightweight 
robot arm

Human’s pose and visual 
feedback

Feed-forward artificial neural 
network (ANN)

Roveda et al. [30] Human subject 7-DOF Kuka iiwa (intelligent 
industrial work assistant) 
14 R820

Muscle activity and vision ANN

Kim et al. [31] 5-DOF human model 7-DOF Kuka Lightweight 
robot arm

Experimentally measured 
human’s pose, vertical 
ground reaction forces 
(GRF) and interaction 
forces

Constrained optimization

Sartore et al. [32] 48- DOF human model 53-DOF iCub humanoid 
robot

Robot energy expenditure Interior point method for 
nonlinear optimization

Al-Yacoub et al. [33] Human subject 15-DOF SDA (Slim Dual 
Arm) 10D dual-arm robot

Haptic interaction Random forest (RF) and 
weighted random forest 
(WRF) regression methods

Arefeen et al. [34] 13-DOF 3D arm 10-DOF Sawyer robot arm Table location and optimized 
grasping forces

Gradient-based optimization
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experimental validations. Finally, discussion and concluding 
remarks are given in Section 6.

2 � Human–robot Model and Equation 
of Motion

The recursive Lagrange approach is used in this section 
to describe the human–robot modeling and EOM for the 
human–robot and table systems.

2.1 � Human–robot System

This study takes into account a 13-DOF 3D human skel-
eton arm model and a 10-DOF robot arm model. A floating-
base rigid table with 6 DOFs is also utilized for lifting, as 
illustrated in Fig. 1. The skeletal arm model and robot arm 
model consist of one physical arm branch and one virtual 
branch, including the global DOFs. The human skeletal arm 
branch includes the upper spine, shoulder, elbow, and wrist 
joints. In this work, we only considered the arm lifting of 
a lightweight table collaboratively with a robot, and the 
whole-body waist joint was not considered. The Denavit-
Hartenberg (DH) approach was used to construct all models 
[35]. Furthermore, two grasping force vectors ( f c

1
 and f c

2
 ) 

act on the table’s two bottom edges. In this study, human 
anthropometric data are generated from generator of body 
data (GEBOD) [36].

The DH parameters for the human, robot, and table 
models are described in Tables 2, 3, and 4, respectively. 
The required link lengths and mass data of the robot arm 

model are available in the literature [37]. A revolute joint 
has variable (motion) on θ, and a prismatic joint has vari-
able on d. The default DH parameters define the original 
configuration, DOFs’ sequence, and the local coordinates’ 
orientations. When we apply the DH parameters to the 
transformation matrices, the motion variables (xθ for 
a revolute joint and xd for a prismatic joint) should add 
the default corresponding DH parameters for the human, 
robot, and table.

Fig. 1   a The 3D human skeletal arm model, b 3D table model, and c Sawyer robot arm

Table 2   DH parameters for human arm model

DOF ϴ (rad) d (m) a (m) α (rad) Translation/ Rotation

1 �/2 0 0 �∕2 Global translation (GT1)
2 �/2 0 0 �∕2 Global translation (GT2)
3 �/2 L1 0 �∕2 Global translation (GT3)
4 �/2 0 0 �∕2 Joint rotation (Q1)
5 �/2 0 0 �∕2 Joint rotation (Q2)
6 -�/2 L2 L3 −�∕2 Joint rotation (Q3)
7 �/2 0 0 �∕2 Joint rotation (Q4)
8 -�/2 0 0 �∕2 Joint rotation (Q5)
9 0 -L4 0 �∕2 Joint rotation (Q6)
10 0 0 0 �∕2 Joint rotation (Q7)
11 0 L5 0 −�∕2 Joint rotation (Q8)
12 �/2 0 0 −�∕2 Joint rotation (Q9)
13 0 0 -L6 0 Joint rotation (Q10)
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2.2 � Equations of Motion

In this paper, the kinematics and dynamics of the human, 
robot, and table systems are studied using recursive kinemat-
ics and Lagrangian dynamics, and details refer to [6, 38]. The 
process is comprised of two parts: forward kinematics and 
backward dynamics. Forward kinematics transmits motion 
from the root to the end-effectors, while backward dynamics 
transfers forces from the end-effectors to the root. The system’s 
dynamics equation can be written as [6, 38]

where in the right side of Eq. (1), the first term is inertia 
and Coriolis torque, the second term is the torque due to 
gravity, the third term is the torque due to external forces, 
and the fourth term is the torque due to external moments. 
�i is the global position transformation matrices ( 4 × 4 ) for 
the ith joint.

(1)τi = tr

(
��i

�qi
�i

)

− �T
��i

�qi
�i − �T

k

��i

�qi
�i −�T

i
�i−1�0

(2)�i = �i�
T
i
+ �i+1�i+1

(3)�i = mi�i + �i+1�i+1

(4)�i = �kδik + �i+1�i+1

In Eq. (1), tr(∙) is the trace of a matrix, �i is global accel-
eration transformation matrices, �i is the inertia matrix for 
link i, �i is the recursive inertia and Coriolis matrix, �i 
is the recursive vector for gravity torque calculation, �i 
is the recursive vector for external force-torque calcula-
tion, �i is the recursive vector for external moment torque 
calculation, � is the gravity vector, mi is the mass of link 
i, �i is the center of mass (COM) of link i in the ith local 
frame, �k= [ fkx fky fkz 0 ]

T is the external force applied 
on link k, �k is the position of the external force in the kth 
local frame, �k = [ hx hy hz 0 ]

T is the external moment 
applied on link k, �

0
= [ 0 0 1 0 ]

T is for a revolute joint, 
�
0
= [ 0 0 0 0 ]

T is for a prismatic joint, finally, δik is Kro-
necker delta, and the starting conditions are �

n+1 = [�] and 
�
n+1 = �

n+1 = �
n+1 = [�] . The sensitivity to state variables 

is described in [6, 38].

2.2.1 � Equation of Motion of Floating‑base Table

The table only has six global DOFs ( z
1
, z

2
, z

3
, z

4
, z

5
, z

6
 ) as 

shown in Fig. 1b, it is called a floating-base table. The grasp-
ing forces of the human and robot keep the table balanced 
with inertia and gravity forces during the lifting process, as 
shown below,

where τi is the torque of the ith virtual joint of the table. The 
virtual joint generates global motion for the table and has 
zero link mass except for the last joint as shown in Fig. 1b.

2.3 � External Forces as Design Variables

External forces are expressed as fixed or variable compo-
nents in Eq. (6). The grasping external forces between the 
human and the table are treated as design variables in this 
research. For this reason, the joint torques of the EOM are 
dependent on both state variables q and varying external 
forces (grasping forces). The sensitivity of joint torque to 
external force must be determined in order to perform gra-
dient-based optimization. For example, for the single chain 
arm model, the external load in the vertical direction fky 
affects joint torques from the third term on the right hand 
side (RHS) of Eq. (6), the differentiation of �i with respect 
to fky can be calculated directly as:

(5)�i = �kδik +�i+1

(6)

τi = tr

(
��i

�qi
�i

)

− �T
��i

�qi
�i − �T

k

��i

�qi
�i = 0, i = 1, 2, 3, 4, 5, 6

(7)
��i

�fky
= [ 0 1 0 0 ]

��i

�qi
�i

Table 3   DH parameters for robot arm model

DOF ϴ (rad) d (m) a (m) α (rad) Translation/ Rotation

1 �/2 0 0 �∕2 Global translation (GT1)
2 �/2 0 0 �∕2 Global translation (GT2)
3 0 l9 0 0 Global translation (GT3)
4 0 l1 l2 −�∕2 Joint rotation (Q1)
5 −�∕2 l3 0 −�∕2 Joint rotation (Q2)
6 � l4 0 �∕2 Joint rotation (Q3)
7 0 l5 0 −�∕2 Joint rotation (Q4)
8 0 l6 0 −�∕2 Joint rotation (Q5)
9 � l7 0 −�∕2 Joint rotation (Q6)
10 -�∕2 l8 0 0 Joint rotation (Q7)

Table 4   DH parameters for table model

DOF ϴ (rad) d (m) a (m) α (rad) Translation/ Rotation

1 �/2 0 0 �/2 Global translation (GT1)
2 �/2 0 0 �/2 Global translation (GT2)
3 �/2 0 0 �/2 Global translation (GT3)
4 �/2 0 0 �/2 Global rotation (GR1)
5 �/2 0 0 �/2 Global rotation (GR2)
6 - �/2 0 0 - �/2 Global rotation (GR3)
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Furthermore, as illustrated in Fig. 2, the ground reaction 
force (GRF) is computed from human global joint torques. 
Considering the current state variables and external forces, 
joint torques can be calculated from the EOM without GRF. 
Then the resultant GRF can be obtained from the global joint 
torques at the point foot origin.

Similarly, the external loads fkx and fkz sensitivity can be 
computed as follows:

3 � Human–robot Lifting Experiment

The Institutional Review Board (IRB) approved collabora-
tive human–robot lifting study was conducted at Oklahoma 
State University with a single healthy male. Informed con-
sent was obtained from the individual participant included 
in the study. OptiTrack motion capture (MOCAP) was used 
to obtain 3D kinematic data at 120 Hz. The room was sur-
rounded by twelve prime 13W cameras. The subject was 
instructed to lift a 2 kg table with the robot collaboratively 
for the lifting task, as shown in Fig. 3. The data was pro-
cessed using the motion capture software Motive 2.2 after 
the experiment. The data were smoothed and transformed 
into a C3D file after all markers were labeled. After that, 
the C3D file was imported into Visual 3D (C-Motion, Inc.). 
A skeletal model was constructed using the marker protocol 
used in the experiments, and it had a total of 9 segments. 
Coordinates, joint angles, and joint moments were generated 
using this skeleton model. The subject’s anthropometric data 
were used to generate separate and accurate skeletal models, 
which enabled more precise calculations.

The positions at each robot joint from the simulation were 
provided in the robot operating system (ROS) to operate 
the robotic arm as shown in Fig. 4. The robot arm followed 
the optimal trajectory and executed the collaborative lifting 
task. We invoked the joint trajectory action server in velocity 
mode which allows trajectory execution by calculating and 

(8)
��i

�fkx
= [ 1 0 0 0 ]

��i

�qi
�i

(9)
��i

�fkz
= [ 0 0 1 0 ]

��i

�qi
�i

commanding the joint velocity required to move the arm 
through a set of joint positions at specified time instances 
[39]. The experiment was performed three times, and the 
robot’s joint angle and joint torque profiles for each joint 
were collected. The collected data were postprocessed in 
MATLAB and compared the average of the three experi-
mental trials against the predicted data.

The human hand grasping force was collected using force 
sensitive resistor (FSR) pads. These FSRs were attached to 
the lifting weight (table) (Fig. 5). This weight was a wooden 
board. There were four sensors on the bottom of the table 
and two on the top. A metal plate was attached to each set 
on the top and bottom to distribute the force evenly between 
FSRs. The subject grips the board using only one hand with 
his thumb contacting the top set of sensors, and his other 
four fingers contacting the bottom set of sensors. The resist-
ance of each FSR was measured using a voltage divider cir-
cuit connected to an Arduino. The Arduino was controlled 
by a desktop computer running a MATLAB data acquisition 
system through a wired connection. The red arrows in Fig. 5 
represent the location of the force vectors of the human’s 
fingers.

A block diagram of the experimental table electronics 
is shown in Fig. 6. All six FSR pads were wired to an indi-
vidual voltage divider circuits on a breadboard. The output 
signals of these voltage dividers were wired to the Arduino’s 
analog input pins. The Arduino recorded a voltage reading 
from each voltage divider about every 0.3 s and transmitted 

Fig. 2   Inverse dynamics calcu-
lation process

q , , and 
GRF =0

EOM

Fig. 3   Experiment for human–robot lifting
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Fig. 4   Robot arm control 
strategy

Robot joint’s optimal 

positions at specified 

time instances

Human-robot 

lifting model 

Simulation

(design variables, 

objective, and constraints)

(lifting motion prediction)

Robot operating 

system (ROS)

Execute and record 

human-robot 

lifting task

Post-process in 

MATLAB

Experiment
Optimization formulation

Solving optimization 
problem

Fig. 5   Force sensors on lifting 
weight

Fig. 6   Experimental force sensor data collection diagram
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them to the MATLAB application on the desktop computer. 
The computer then used the calibration curve to calculate 
each sensor’s force in grams.

The data collected by the Arduino was the output voltage 
( Vo ) of a voltage divider circuit (Fig. 7a) for each sensor over 
time. This voltage divider is based on the recommendation of 
the FSR manufacturer. These sensors ideally have a one-to-
one relationship between the applied load and the measured 
resistance. They do not have any dynamic effects. In order to 
determine the force corresponding to the detected voltages, 
the sensors were calibrated. A sensor was placed on a scale 
and incrementally loaded with 3-g weights. The voltage and 
scale weight values at each increment were recorded to pro-
duce a voltage vs force curve. This calibration process was 

performed four times, and a spline curve was fit to these four 
data sets (Fig. 7b). The spline served as a correlation between 
the recorded voltage and the actual force. Once the sensors were 
mounded on the experimental table with the metal plates taped 
against them, any preload on the sensors was subtracted out. 
To do this, the sensors were measured with no external force 
except for the weight of the metal plates and tension of the tape 
to determine if there was an unloaded non-zero force reading. 
This value for each sensor was subtracted from the recorded 
data to correct for preloading in the system.

A graphical user interface (GUI) was coded in MATLAB 
to start and stop the data recording and plot the sensor data 
as it was being collected (Fig. 8). After the experiment, the 
force from the top resistors was summed to get the force 

Fig. 7   FSR setup and calibration

Fig. 8   Data collection GUI
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applied by the thumb, and the sum of the force of the bottom 
resistors determined the force applied by the four fingers. 
The four-finger force minus the thumb force determined the 
total experimental hand reaction (grasping) force.

4 � Optimization Formulation

4.1 � Design Variables

The design variables (x) are joint angle control points Phuman, 
Probot, and Ptable for the human, robot, and table, since the 
joint angle profiles are discretized by cubic B-splines. Fur-
thermore, the grasping forces ( � c

1
 and � c

2
 ) between human and 

table, and robot and table, are treated as additional design 
variables. So, � = [�T

human
,�T

robot
,�T

table
, � cT

1
, � cT

2
]
T.

4.2 � Objective Functions

The objective function is the sum of joint torques squared 
for human and robot [6, 40].

where n_human = 13 , n_robot = 10 . The total time dura-
tion T is a specified input parameter, w

1
 and w

2
 are weight-

ing coefficients for human and robot performance measure, 
respectively.

4.3 � Constraints

The constraints presented in the following include (1) joint 
angle limits, (2) joint torque limits, (3) feet/robot base con-
tacting position, (4) table forward position, (5) table range 
of motion, (6) table grasping location, and (7) table global 
EOM. Time independent constraints include (8) initial and 
final table locations and (9) static conditions at the beginning 
and end of the motion. For time-dependent constraints, con-
straints (1–4) are imposed for both the human and robotic 
arm, and constraints (5–7) are imposed for the table. Time-
dependent constraints are calculated sequentially in the 
optimization process at every time discretization point. In 

(10)
J(�) = w

1

∑n_human

i=3 ∫
T

0

{�
2

i(human)

(
�
human

, � c
1

)
}dt

+ w
2

∑n_robot

i=3 ∫
T

0

{�
2

i(robot)

(
�
robot

, � c
2

)
}dt

contrast, the optimization calculates the time-independent 
constraints for the human and robotic arm at a specific time.

	(1).	 Joint angle limits

where �L
human

 and �L
robot

 are the lower joint angle limits, 
and �U

human
 and �U

robot
 are the upper joint limits for the 

human and robot arm [41, 42], respectively.
	(2).	  Joint torque limits

where  �L
human

 and �U
human

 are human lower and upper 
joint torque limits, and  �L

robot
   and �U

robot
 are robot 

lower and upper torque limits [41, 42], respectively.
	(3).	 Point foot/robot base contacting position

where phuman_foot(t) and probot_base(t) are calculated 
point human foot and robot base locations during the 
optimization process.  ps

human_foot
 and ps

robot_base
 are the 

(11)
�L
human

≤ �human(t) ≤ �U
human

�L
robot

≤ �robot(t) ≤ �U
robot

(12)
�L
human

≤ �human(t) ≤ �U
human

�L
robot

≤ �robot(t) ≤ �U
robot

(13)
phuman_foot(t) = ps

human_foot

probot_base(t) = ps
robot_base

Fig. 9   Table forward position 
constraint

Y

OZ

Fig. 10   Table grasping location 
constraint
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specified point foot and robot base contacting posi-
tions on the level ground with fixed given values.

	(4).	 Table forward position

where Zhuman_wrist and Zhuman_pelvis are the global Z 
coordinates of wrist and pelvis points of the human, 
as shown in Fig. 9. This constraint ensures that the 
table remains in front of the human and prevents it 
from penetrating the human body.

	(5).	 Table range of motion

where �L
table

 is the lower table joint angle limits and 
�U
table

 is the upper limit.
	(6).	 Table grasping location

where phuman_wrist and probot_end_effector are the wrist and 
end-effector (EE) positions of the human and robot 
arm, respectively. pL

table
 and pR

table
 are the left and right 

edge positions of the table as shown in Fig. 10.

	(7).	 Table global EOM

where � table is the global joint force and torque values 
of the table, � = 1N for force and � = 1Nm for torque. 
To keep the table balanced, two external grasping 
forces act on the edges.

	(8).	 Initial and final hand positions

where phuman_hand(t) and probot_EE(t) are the calculated 
hand and robot end-effector (EE) positions in the 
optimization process. ps

human_hand
 and ps

robot_EE
 are the 

specified hand and EE positions at initial and final 
times.

	(8).	 Initial and final static conditions

(14)Zhuman_wrist(t) − Zhuman_pelvis(t) ≥ 0

(15)�L
table

≤ �table(t) ≤ �U
table

(16)
phuman_wrist(t) − pR

table
(t) = 0

probot_end_effector(t) − pL
table

(t) = 0

(17)
||
|
�
table
i

||
|
≤ �, i = 1, 2, 3, 4, 5, 6

(18)
phuman_hand(t) = ps

human_hand
(t);t = 0, t = T

probot_EE(t) = ps
robot_EE

(t)

(19)
�̈
human

(t) = �; t = 0, t = T

�̈
robot

(t) = �

�̈
box(t) = �

5 � Numerical Results

The nonlinear programming problem (NLP) for human–robot 
lifting is solved using an SQP method in SNOPT [28]. The initial 
guess for the optimization is �T =

[
�T

human
,�T

robot
,�T

table

]
= [�], 

� c
1
= � c

2
= [��] . There are a total of 224 design variables and 898 

nonlinear constraints. The optimal solution was obtained in 
15.93 s on a laptop with an Intel® Core™ i7 2.11 GHz CPU and 
16 GB RAM. The input data related to the human–robot lifting 
task are given in Table 5.

First, Figs. 11 and 12 illustrate the snapshots of the pre-
dicted 3D human–robot arm lifting motion from the simu-
lation and the experimental scenario. Figure 13 presents a 
comparison of experimental and simulation joint angles for 
human shoulder flexion and elbow flexion. Furthermore, the 
joint torque profiles for human shoulder flexion, and elbow 
flexion are shown in Fig. 14. Human table grasping force com-
parisons are presented in Fig. 15. Figure 16 shows the com-
parison of experimental and simulation joint angle profiles for 
the robot arm. The experimental trials for robot joint torque 

Table 5   Task parameters for the lifting

Parameters

Table weight (kg) 2
Table width (m) 0.31
Table height (m) 0.02
Table depth (m) 0.45
Initial and final human feet contact position (m) 0.4
Vertical initial hand and EE position (m) 0.9
Initial and final robot base contact position (m) 0.85
Vertical final hand and EE position (m) 1.4
Standing distance, L(m) 1.9
T (s) 2.0

Robot 
0

0.5

3

1

Human-robot Lifting Trajectory

z 
(m

)

1.5

2

2.5 12 Human 
0.51.5

y (m) x (m)

01
-0.50.5

-10
-0.5

Trajectory
Initial Position
Final Position

Fig. 11   Simulation snapshots for human–robot lifting
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trajectories are shown in Fig. 17. Finally, Fig. 18 provides 
the comparison of experimental and simulation joint torque 
profiles for the robot arm.

6 � Discussion and Conclusions

The trajectory of the simulated human–robot lifting 
motion and the human–robot initial, midway, and final 
position in the experiment are depicted in Figs. 11 and 12. 

In this study, the optimization predicts a natural collabora-
tive lifting motion. In Fig. 13, the trends of the predicted 
human joint angle profiles closely follow the experimental 
joint angle profiles. However, the predicted elbow flexion 
values are less than the experimental elbow flexion values, 
and the peak values difference between them is 10.69%. 
For the shoulder flexion joint angle profiles, predicted val-
ues are higher than the experimental values until 90% of 
the lifting cycle, and the peak values difference between 
the prediction and experiment is 19.56%. These deviations 

Fig. 12   Experiment snapshots for human–robot lifting

Fig. 13   Human arm joint angle 
profiles comparison between 
simulation and experiment
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Fig. 14   Human arm joint torque 
profiles
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may be due to lack of constraints on the subject’s arm 
motion in the experiment. In addition, the lifting trajectory 
may differ from subject to subject, and it is quite difficult 
to follow the simulation results precisely in a real-world 
scenario. Furthermore, when the joint angle increases, as 
shown in Fig. 13, so does the magnitude of the simulated 

joint torque profile of elbow flexion (Fig. 14). In the same 
way, the magnitude of the joint torque profile of the shoul-
der flexion follows the joint angle trends, as illustrated in 
Fig. 14.

In the comparison of human table grasping forces shown 
in Fig. 15, the experimental vertical grasping force on the 
human side is initially lower than the simulated force. The 
experimental force, however, follows the simulated grasping 
force after the first 25% of the overall lifting duration. Five 
force sensors were utilized in the experiment, and it is antici-
pated that naturally, the human did not press the sensors 
adequately at first. Overall, the predicted vertical grasping 
force values closely follow the trends of the experimental 
data. The peak value difference between the predicted and 
the experimental vertical grasping forces is 12.52%.

The joint angles of the robot arm in the simulation and 
experiment are identical, as shown in Fig. 16. The positions 
at each joint are provided from the simulation. The mag-
nitudes and the trends of the robot joint torques for three 
experimental trials are similar as shown in Fig. 17. Moreo-
ver, the average of three trials is taken to compare against 
the predicted robot joint torques. The joint torques of the 
robot arm are compared in Fig. 18, and the predicted robot 
joint torques have similar trends to experimental robot joint 
torques. The robot’s third joint has the largest peak value 
difference of 18.03%, and the second joint has the lowest 
peak value difference of 3.72%, between the predicted and 
experimental data.
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-12.5
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25
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50
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)
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Fig. 15   Human table grasping force comparison between simulation 
and experiment

Fig. 16   Robot arm joint angles 
comparison between simulation 
and experiment
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In this study, an inverse dynamics optimization formula-
tion was used to predict human–robot lifting motion and 
grasping forces. The NLP optimization problems were suc-
cessfully solved by SNOPT, a gradient-based optimizer. The 
simulation results were compared to the experimental data, 
including human joint angle profiles from motion capture, 

robot joint torque profiles, and hand grasping force profiles 
from force sensors. The proposed optimization formulation 
can be used to design the best human–robot collaborative 
lifting to prevent human injury.

In addition, the human–robot collaborative lifting was 
carried out without using any learning techniques. The 

Fig. 17   Robot arm joint torque 
trajectories for three experimen-
tal trials
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Fig. 18   Robot arm joint torques 
comparison between simulation 
and experiment
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simulation provided the robot’s position, velocity, and accel-
eration at each joint, and the human adapted to the robot 
during the lifting. The next goal is to establish a lifting 
database, and we will conduct the experiments and simula-
tions with different subjects and varying table weights [33] 
in the future. In addition, a 3D musculoskeletal model will 
be considered to simulate human–robot collaborative lifting 
motion.
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