Journal of Intelligent & Robotic Systems (2023) 109:80

https://doi.org/10.1007/510846-023-02013-y

REGULAR PAPER q

Check for
updates

Human-Robot Collaborative Lifting Motion Prediction
and Experimental Validation

Asif Arefeen’ - Joel Quarnstrom’ - Shahbaz P. Qadri Syed' - He Bai' - Yujiang Xiang'

Received: 24 August 2022 / Accepted: 2 November 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract

This paper presents a human-robot collaborative symmetric lifting motion prediction using inverse dynamics optimization.
The human and robot arm are modeled in Denavit-Hartenberg (DH) representation. A floating-base rigid body with 6 global
degrees of freedom (DOFs) is similarly modeled as a three-dimensional (3D) table. A set of grasping forces characterizes the
human-table and robot-table interactions. The joint torque squares of human arm and robot arm are minimized and subjected
to physical and task related constraints. During lifting, the design variables include the cubic B-spline control points of joint
angle profiles of the human arm, robot arm, and table. In addition, the discretized grasping forces are also treated as design
variables. Both numeric and experimental human—robot lifting was performed with a 2 kg table. The simulation reports the
human and robot arm’s joint angle profiles, joint torque profiles, and grasping force profiles. These profiles were validated
with experimental data, which was collected using a motion capture system, force sensors, and the robot operating system
(ROS). The human and robot arms’ joint angle and torque profiles demonstrate a similar trend in the experimental environ-

ment. The grasping force comparison implies that the human and robot share the load while lifting together.

Keywords Motion planning - Human-robot lifting - Motion capture - Force sensors - ROS - Inverse dynamics

optimization - and optimization

1 Introduction

Human-robot interaction is a topic of study with numerous
applications and a significant impact on the economy [1].
Collaboration between humans and robots can significantly
accelerate production processes, enhance manufacturing
quality, and lower structural costs [2]. However, it is neces-
sary to predict the human—robot lifting motion with grasping
forces to avoid human injuries. Researchers have developed
various biomechanical prediction models for lifting over
the previous few decades [3—7]. Furthermore, human-robot
interaction research has made significant progress. This
paper aims to use optimization techniques to design, simu-
late, and validate a human—robot collaborative symmetric
optimal lifting motion.

Researchers are currently using different learning tech-
niques to successfully anticipate and execute lifting tasks.
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Evrard et al. [8] presented a controller which learned from
a demonstration and was used to conduct a human-robot
collaborative task with the help of a human operator. After
learning, the robot could do collaborative lifting by con-
ditioning the Gaussian Mixture Model (GMM) with the
perceived force/torque. It generated the velocity response
using Gaussian Mixture Regression (GMR). By adjusting
the impedance controller parameters, Evrard and Kheddar
[9] were able to allocate leader/follower roles and solve the
challenge of determining the robot’s involvement in a col-
laborative lifting operation. Furthermore, DelPreto and Rus
[10] used electromyography (EMG) signals to estimate the
human’s intention in a real-time interface for controlling col-
laborative lifting tasks. Calinon et al. [11] studied a robotic
learning system to reproduce collaborative lifting with a
haptic interface. The probabilistic relationships between the
forces and the task’s kinematic characteristics were continu-
ally encoded. Then the robot was able to choose a controller
on its own to replicate the collaboration skill with the desired
behavior. Agravante et al. [12] proposed an integrated frame-
work that utilizes a visual servoing controller to perceive
the task and a haptic channel to detect human intent. The
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impedance control framework combined vision and force
control, affecting all degrees of freedom (DOFs) simultane-
ously. Collaboratively lifting a table while keeping a ball
on it is the job that was completed. In a collaborative task,
Lawitzky et al. [13] proposed a novel approach that com-
bined planning and learning-based approaches. The recorded
force readings were used by the robot to follow human
supervision throughout the initial learning phase. Using
measured force and motion data to train a Hidden Markov
Model (HMM) to anticipate the human’s subsequent actions,
the robot gradually learned to take a more active role. Sheng
et al. [14] presented an integrated human—robot collaborative
framework that utilizes imitation and reinforcement learning
to make a table stay horizontally between the human and
robot. A reactive controller attempted to keep the system sta-
ble, while proactive actions were taken by a proactive con-
troller based on human motion prediction. Both holding the
table steady and controlling the table were taught through
imitation learning. The findings reveal that confidence in
the motion predictor was used to switch controller modes
automatically, and that this method works well for collabo-
rative manipulation. A model for human—robot haptic col-
laboration was proposed by Rozo et al. [15]. Their technique
learned to map reported forces to the impedance parameters
required to actuate the robot through the demonstration. In
[16], the author applied a task-parameterized GMM-based
technique for cooperative transportation tasks, which allows
for structuring the robot’s mobility as a function of the task
parameters and optimal control. It was extended by adding
stiffness estimates based on a convex optimization in [2].
Wang et al. [17] designed a robot controller that uses an
HMM-based high-level controller to encode motion trajec-
tories. It was used to predict human intentions and adjust the
reference trajectory as needed based on haptic input of the
current human state at each time point.

On the other hand, force/torque sensors and optimization
techniques have been used for intention prediction and opti-
mal motion prediction by several researchers. A cooperative
manipulation task was presented in [18], in which a human
and a robot worked together to move a large table. Force/
torque sensors were used to identify the intent, and a math-
ematical model was utilized to process their findings. Task
modeling produced a role allocation parameter which ena-
bled leader—follower role arbitration. The user was given a
haptic input via the cooperatively manipulated object. A 1
DOF impedance control law proposed by Bussy et al. [19]
created a time-dependent reference trajectory path for a robot
to follow in order to achieve the required trajectory. The robot
anticipates the human’s intended movement by identifying a
collection of primitive motions and constructs a time-depend-
ent trajectory consistent with the prediction in a combined
table-carrying task. The process was repeated with the robot
being teleoperated by another person, and in this case, the

@ Springer

human lifter followed the robot’s lead. Furthermore, to adjust
the robot’s behavior, wrist-mounted force-torque sensors were
added to the robot. Li et al. [20] calculated target positions
using force. As the robot plays a more proactive role, estimat-
ing the human’s desired target position reduces the amount of
power the robot should exert. An impedance controller was
used to incorporate the human’s predicted motion. Passen-
berg et al. [21] utilized a 2-DOF haptic device to simulate a
human-robot interaction. The interaction forces were used to
accomplish the autonomous response. They determined the
optimal assistance levels for specific tasks based on a human’s
effort and task performance criteria. In [22], a dynamical
human model was developed that uses a Lagrangian formu-
lation to describe the relationship between contact points and
the resulting contact force. The statically equivalent serial
chain approach was used for the human model structure. Dur-
ing a co-manipulation or handover task, the human’s pose was
optimized to minimize torque on the human joints. In terms
of the Rapid Entire Body Assessment (REBA) score, Van
der Spaa et al. [23] optimized a discrete sequential plan of
postures for human—robot cooperation tasks. It was also noted
that it was too computationally expensive to be used for online
planning. Xiang et al. [6] developed a human—human collabo-
rative lifting motion prediction with grasping forces. In addi-
tion, an optimization-based human—robot collaborative lifting
motion prediction was developed in previous research [24].

A few research focuses on human—-robot cooperation for
precise object positioning and human adaptability. Wojtara
et al. [25] constructed a robotic system to place an object
on a surface with precision. The human interacts with the
robot’s impedance to adapt to the final position, whereas the
robotic system just has a general location of the goal posi-
tion. Maurice et al. [26] presented a study on the human’s
ability to adapt to non-biological movements when the
human and the robot lift together. It was reported that a
robot that moved along a course in a biological velocity
pattern rather than a predetermined velocity pattern helped
the human function better, and the human exerted less force
on the robot. Parker and Croft [27] studied human follow-
ing behavior in a cooperative vertical object lifting task as a
response to a leading robotic manipulator. They discovered
that the pace of the task and differences across subjects had
a substantial impact on the results.

The proposed work uses inverse dynamics optimiza-
tion to predict the human-robot collaborative symmetric
lifting motion and the grasping forces. A sequential quad-
ratic programming (SQP) algorithm in a sparse nonlinear
optimizer (SNOPT) [28] is used to solve the human—robot
lifting problem. The predicted optimal results are used in
the experimental human-robot lifting setup. Valid compari-
sons are established between the simulation and experiment.
Therefore, the predicted optimal human-robot lifting motion
and grasping forces can mitigate human injuries during
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human-robot interaction. Table 1 summarizes the state-of-
the-art methods for human-robot collaborative lifting.

The proposed optimization based method has several
advantages: 1) we formulate a computationally efficient
optimization model for human—robot collaborative lift-
ing; 2) the simulation can generate the optimal trajectories
for the human-robot lifting; 3) the optimization formula-
tion can optimize the grasping forces between human and
table, and robot and table 4) we propose an easy and practi-
cal method to measure the grasping forces in real time in
experiment. The major limitation for the current model is
that the robot motion is pre-simulated and is not able to
response to human adaptations during the lifting process.

Learning-based methods can overcome this limitation, but
they require numerous demonstrations and complicated
training procedures. In this study, we focus on proposing
a novel optimization formulation to predict collaborative
human-robot lifting motion, optimize the grasping forces,
and validate the simulation with experiments.

The contents of this article are organized as follows:
the human-robot modeling method is first described in
Section 2, and the equations of motion (EOM) and sen-
sitivities are also detailed. Section 3 covers the details of
the experimental method. The optimization formulation
for the human-robot lifting problem is presented in Sec-
tion 4. Section 5 presents simulation conditions, results, and

Table 1 Comparisons of the human—robot lifting methods in the literature

Reference

Human model

Robot

Interaction information

Simulation method

Evrard et al. [8]

DelPreto and Rus [10]

Lawitzky et al. [13]

Sheng et al. [14]
Bussy et al. [19]

Peternel et al. [22]

Van der Spaa et al. [23]

Parker and Croft [27]

Lorenzini et al. [29]

Roveda et al. [30]

Kim et al. [31]

Sartore et al. [32]

Al-Yacoub et al. [33]

Arefeen et al. [34]

Human subject

Human subject

Human subject

Human subject
Human subject

5-DOF 2D model

Human subject

Human subject

Human subject

Human subject

5-DOF human model

48- DOF human model

Human subject

13-DOF 3D arm

30-DOF HRP (Humanoid
Robotics Project)-2 human-
oid robot

7-DOF Rethink Baxter robot
(one arm)

7-DOF mobile robot

25-DOF Nao humanoid robot

30-DOF HRP-2 (Humanoid
Research Project-2)

7-DOF Kuka Lightweight
robot arm

32-DOF bimanual mobile
robot

6-DOF CRS (Cylindrical
Revolute Spherical) A460
articulated robot arm

7-DOF Kuka Lightweight
robot arm

7-DOF Kuka iiwa (intelligent
industrial work assistant)
14 R820

7-DOF Kuka Lightweight
robot arm

53-DOF iCub humanoid
robot

15-DOF SDA (Slim Dual
Arm) 10D dual-arm robot

10-DOF Sawyer robot arm

Haptic interaction

Human muscle activity via
EMG

Contact forces and motion
data

Human-robot relative posi-
tion

A collection of human primi-
tive motions

Experimentally measured
contact forces and muscle
activity

Human’s pose and external
forces

Vertical displacement of
object ends

Human’s pose and visual
feedback

Muscle activity and vision

Experimentally measured
human’s pose, vertical
ground reaction forces
(GRF) and interaction
forces

Robot energy expenditure

Haptic interaction

Table location and optimized
grasping forces

Gaussian Mixture Model
(GMM) and Gaussian
Mixture Regression (GMR)
learning algorithms

Experimental and genetic
algorithm for parameters
optimization

Feedback planning and learn-
ing based motion prediction
approaches

Reinforcement learning

Compliant position control
method

Constrained optimization

Experimental data-based
supervised learning and
graph search algorithm

Experimental approach

Feed-forward artificial neural
network (ANN)

ANN

Constrained optimization

Interior point method for
nonlinear optimization

Random forest (RF) and
weighted random forest
(WRF) regression methods

Gradient-based optimization
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experimental validations. Finally, discussion and concluding
remarks are given in Section 6.

2 Human-robot Model and Equation
of Motion

The recursive Lagrange approach is used in this section
to describe the human-robot modeling and EOM for the
human-robot and table systems.

2.1 Human-robot System

This study takes into account a 13-DOF 3D human skel-
eton arm model and a 10-DOF robot arm model. A floating-
base rigid table with 6 DOFs is also utilized for lifting, as
illustrated in Fig. 1. The skeletal arm model and robot arm
model consist of one physical arm branch and one virtual
branch, including the global DOFs. The human skeletal arm
branch includes the upper spine, shoulder, elbow, and wrist
joints. In this work, we only considered the arm lifting of
a lightweight table collaboratively with a robot, and the
whole-body waist joint was not considered. The Denavit-
Hartenberg (DH) approach was used to construct all models
[35]. Furthermore, two grasping force vectors (f] and f3)
act on the table’s two bottom edges. In this study, human
anthropometric data are generated from generator of body
data (GEBOD) [36].

The DH parameters for the human, robot, and table
models are described in Tables 2, 3, and 4, respectively.
The required link lengths and mass data of the robot arm

model are available in the literature [37]. A revolute joint
has variable (motion) on 6, and a prismatic joint has vari-
able on d. The default DH parameters define the original
configuration, DOFs’ sequence, and the local coordinates’
orientations. When we apply the DH parameters to the
transformation matrices, the motion variables (x, for
a revolute joint and x, for a prismatic joint) should add
the default corresponding DH parameters for the human,
robot, and table.

Table 2 DH parameters for human arm model

DOF O (rad) d(m) a(m) a(rad) Translation/Rotation

1 /2 0 0 /2 Global translation (GT1)
2 /2 0 0 /2 Global translation (GT2)
3 /2 L, 0 /2 Global translation (GT3)
4 /2 0 0 /2 Joint rotation (Q1)

5 /2 0 0 /2 Joint rotation (Q2)

6 -rt/2 L, L, —z/2 Joint rotation (Q3)

7 /2 0 0 /2 Joint rotation (Q4)

8 -rt/2 0 0 /2 Joint rotation (Q5)

9 0 -L, 0 /2 Joint rotation (Q6)

10 0 0 0 /2 Joint rotation (Q7)

11 0 Ls 0 —x/2  Joint rotation (Q8)

12 /2 0 0 —x/2  Joint rotation (Q9)

13 0 0 -Le 0 Joint rotation (Q10)

(a) (b)

Fig. 1 a The 3D human skeletal arm model, b 3D table model, and ¢ Sawyer robot arm
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Table 3 DH parameters for robot arm model

DOF O (rad) d(m) a(m) a(rad) Translation/Rotation

1 /2 0 0 /2 Global translation (GT1)
2 /2 0 0 /2 Global translation (GT2)
3 0 Iy 0 0 Global translation (GT3)
4 0 L 1, —x/2  Joint rotation (Q1)

5 —r/2 I 0 —x/2  Joint rotation (Q2)

6 T 1, 0 /2 Joint rotation (Q3)

7 0 I 0 —x/2  Joint rotation (Q4)

8 0 lg 0 —z/2  Joint rotation (Q5)

9 T 1, 0 —z/2  Joint rotation (Q6)

10 /2 Ig 0 0 Joint rotation (Q7)

Table 4 DH parameters for table model

DOF O (rad) d(m) a(m) a(rad) Translation/Rotation

1 /2 0 0 /2 Global translation (GT1)
2 /2 0 0 /2 Global translation (GT?2)
3 /2 0 0 /2 Global translation (GT3)
4 /2 0 0 /2 Global rotation (GR1)

5 /2 0 0 /2 Global rotation (GR2)

6 -7l2 0 0 -7l2 Global rotation (GR3)

2.2 Equations of Motion

In this paper, the kinematics and dynamics of the human,
robot, and table systems are studied using recursive kinemat-
ics and Lagrangian dynamics, and details refer to [6, 38]. The
process is comprised of two parts: forward kinematics and
backward dynamics. Forward kinematics transmits motion
from the root to the end-effectors, while backward dynamics
transfers forces from the end-effectors to the root. The system’s
dynamics equation can be written as [6, 38]

< 0A; ) 1 0A; 1 0A; T
v =tr| —D; | -g —E -, —F,-G/A_z, (1)
dg; 99 99,

where in the right side of Eq. (1), the first term is inertia
and Coriolis torque, the second term is the torque due to
gravity, the third term is the torque due to external forces,
and the fourth term is the torque due to external moments.
A, is the global position transformation matrices (4 X 4) for
the i joint.

D, =LC +T, D, 2
E =mr;+ T, E,, 3)
Fi=r8, +T,F, “4)

G, =hyd; + G,y )

In Eq. (1), tr(e) is the trace of a matrix, C, is global accel-
eration transformation matrices, I; is the inertia matrix for
link i, D; is the recursive inertia and Coriolis matrix, E,
is the recursive vector for gravity torque calculation, F;
is the recursive vector for external force-torque calcula-
tion, G; is the recursive vector for external moment torque
calculation, g is the gravity vector, m; is the mass of link
i, r; is the center of mass (COM) of link i in the i local
frame, fi=1[ fi, fiy fir 01 is the external force applied
on link k, r, is the position of the% external force in the k™
local frame, hy =[ h, h, h, 0] iTs the external moment
applied on link k,z, =[ 0 0 1 0] is for a revolute joint,
z,=[00 00 ] isforaprismatic joint, finally, §,, is Kro-
necker delta, and the starting conditions are D, ; = [0] and
E,.. =F,. =G, =[0]. The sensitivity to state variables
is described in [6, 38].

2.2.1 Equation of Motion of Floating-base Table

The table only has six global DOFs (z;, 2, 23, 24> 25, Z¢) @S
shown in Fig. 1b, it is called a floating-base table. The grasp-
ing forces of the human and robot keep the table balanced
with inertia and gravity forces during the lifting process, as
shown below,

0A, 1 0A; 1 0A, ,
T, =tr( —D, ) -g"—E —ff—F =0, i=1234,56
dq 9q; 9q;
(6)

where 7, is the torque of the i virtual joint of the table. The
virtual joint generates global motion for the table and has
zero link mass except for the last joint as shown in Fig. 1b.

i

2.3 External Forces as Design Variables

External forces are expressed as fixed or variable compo-
nents in Eq. (6). The grasping external forces between the
human and the table are treated as design variables in this
research. For this reason, the joint torques of the EOM are
dependent on both state variables ¢ and varying external
forces (grasping forces). The sensitivity of joint torque to
external force must be determined in order to perform gra-
dient-based optimization. For example, for the single chain
arm model, the external load in the vertical direction f;,
affects joint torques from the third term on the right hand
side (RHS) of Eq. (6), the differentiation of 7; with respect
to fy, can be calculated directly as:

%% 101 0012
— = —F, 7
o o4, @
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Furthermore, as illustrated in Fig. 2, the ground reaction
force (GRF) is computed from human global joint torques.
Considering the current state variables and external forces,
joint torques can be calculated from the EOM without GRF.
Then the resultant GRF can be obtained from the global joint
torques at the point foot origin.

Similarly, the external loads f;, and f;, sensitivity can be
computed as follows:

%% (10 001%%F 8
Ufiex ag; ' ©
%% 100 101 2ip 9
o 2q; ©

3 Human-robot Lifting Experiment

The Institutional Review Board (IRB) approved collabora-
tive human-robot lifting study was conducted at Oklahoma
State University with a single healthy male. Informed con-
sent was obtained from the individual participant included
in the study. OptiTrack motion capture (MOCAP) was used
to obtain 3D kinematic data at 120 Hz. The room was sur-
rounded by twelve prime 13W cameras. The subject was
instructed to lift a 2 kg table with the robot collaboratively
for the lifting task, as shown in Fig. 3. The data was pro-
cessed using the motion capture software Motive 2.2 after
the experiment. The data were smoothed and transformed
into a C3D file after all markers were labeled. After that,
the C3D file was imported into Visual 3D (C-Motion, Inc.).
A skeletal model was constructed using the marker protocol
used in the experiments, and it had a total of 9 segments.
Coordinates, joint angles, and joint moments were generated
using this skeleton model. The subject’s anthropometric data
were used to generate separate and accurate skeletal models,
which enabled more precise calculations.

The positions at each robot joint from the simulation were
provided in the robot operating system (ROS) to operate
the robotic arm as shown in Fig. 4. The robot arm followed
the optimal trajectory and executed the collaborative lifting
task. We invoked the joint trajectory action server in velocity
mode which allows trajectory execution by calculating and

Fig.2 Inverse dynamics calcu-
lation process

q, fxy,and
GRF =0

,I : |

Fig.3 Experiment for human-robot lifting

commanding the joint velocity required to move the arm
through a set of joint positions at specified time instances
[39]. The experiment was performed three times, and the
robot’s joint angle and joint torque profiles for each joint
were collected. The collected data were postprocessed in
MATLAB and compared the average of the three experi-
mental trials against the predicted data.

The human hand grasping force was collected using force
sensitive resistor (FSR) pads. These FSRs were attached to
the lifting weight (table) (Fig. 5). This weight was a wooden
board. There were four sensors on the bottom of the table
and two on the top. A metal plate was attached to each set
on the top and bottom to distribute the force evenly between
FSRs. The subject grips the board using only one hand with
his thumb contacting the top set of sensors, and his other
four fingers contacting the bottom set of sensors. The resist-
ance of each FSR was measured using a voltage divider cir-
cuit connected to an Arduino. The Arduino was controlled
by a desktop computer running a MATLAB data acquisition
system through a wired connection. The red arrows in Fig. 5
represent the location of the force vectors of the human’s
fingers.

A block diagram of the experimental table electronics
is shown in Fig. 6. All six FSR pads were wired to an indi-
vidual voltage divider circuits on a breadboard. The output
signals of these voltage dividers were wired to the Arduino’s
analog input pins. The Arduino recorded a voltage reading
from each voltage divider about every 0.3 s and transmitted

Ground reaction

forces
A
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Fig.4 Robot arm control
strategy

Fig.5 Force sensors on lifting
weight

Simulation

Human-robot
lifting model

v

Optimization formulation
(design variables,
objective, and constraints)

'

Solving optimization
problem
(lifting motion prediction)

v

Robot joint’s optimal
positions at specified
time instances

Experiment

Robot operating

= system (ROS)

-

Execute and record
human-robot —>
lifting task

Post-p:

MATLAB

rocess in

I

(a) Top view of CAD model

(b) Bottom view of CAD model

(c) Top view of experimental table

Experimental box

Top FSR set

Bottom FSR set

Voltage divider
resistors
(on breadboard)

USB cable

(d) Bottom view of experimental table

MATLAB data
collection GUI
(on desktop

Arduino

Fig.6 Experimental force sensor data collection diagram

computer)
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them to the MATLAB application on the desktop computer.
The computer then used the calibration curve to calculate
each sensor’s force in grams.

The data collected by the Arduino was the output voltage
(V,) of a voltage divider circuit (Fig. 7a) for each sensor over
time. This voltage divider is based on the recommendation of
the FSR manufacturer. These sensors ideally have a one-to-
one relationship between the applied load and the measured
resistance. They do not have any dynamic effects. In order to
determine the force corresponding to the detected voltages,
the sensors were calibrated. A sensor was placed on a scale
and incrementally loaded with 3-g weights. The voltage and
scale weight values at each increment were recorded to pro-
duce a voltage vs force curve. This calibration process was

Fig.7 FSR setup and calibration

(a) Voltage divider circuit

performed four times, and a spline curve was fit to these four
data sets (Fig. 7b). The spline served as a correlation between
the recorded voltage and the actual force. Once the sensors were
mounded on the experimental table with the metal plates taped
against them, any preload on the sensors was subtracted out.
To do this, the sensors were measured with no external force
except for the weight of the metal plates and tension of the tape
to determine if there was an unloaded non-zero force reading.
This value for each sensor was subtracted from the recorded
data to correct for preloading in the system.

A graphical user interface (GUI) was coded in MATLAB
to start and stop the data recording and plot the sensor data
as it was being collected (Fig. 8). After the experiment, the
force from the top resistors was summed to get the force

Sensor Calibration

V ‘
+ -
35 =
7
3 /
o
FSR &
25 /
z
o
g 2 /
5 -
O 9 /-
1 1.5 /
V 1 — Spline curve fit
2 kQ 0 Calibration 1
Calibration 2
‘ 0.5 Calibration 3
Calibration 4
I O 0 i i 3 ; i i ; m ; i
p— 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Force (g)

(b) Sensor calibration

Fig. 8 Data collection GUI =
4 MATLAB App

1600
1400
1200
1000

800

Force (g)

600 p

400

200

FSR data

——— Sensor S (bottom)
Sensor 6 (bottom)

Sensor 1 (top)
Sensor 2 (top)
Sensor 3 (bottom)
Sensor 4 (bottom)

23 232 234 236 238 24 242 244 246 248
Time (s)
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Exit
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applied by the thumb, and the sum of the force of the bottom

resistors determined the force applied by the four fingers.
The four-finger force minus the thumb force determined the
total experimental hand reaction (grasping) force.

4 Optimization Formulation
4.1 Design Variables

The design variables (x) are joint angle control points Py,
P, ., and P, for the human, robot, and table, since the
joint angle profiles are discretized by cubic B-splines. Fur-
thermore, the grasping forces (f} and f5) between human and
table, and robot and table, are treated as additional design

: _ pT T T ¢T pcT1T
variables. So, x = [leman,thm, Ptahle’fl ,f2 1.

4.2 Objective Functions

The objective function is the sum of joint torques squared
for human and robot [6, 40].

T
n_human 2 ¢
J(X) =w 2,':3 /0 {Ti(human) (Phuman’ 1 ) }dt

T
n_robot 2 c
+ W Zi=3 /0 {Ti(mbot) (Pmb(’f’ f2 ) }dt

where n_human = 13, n_robot = 10. The total time dura-
tion 7 is a specified input parameter, w, and w, are weight-
ing coefficients for human and robot performance measure,
respectively.

(10)

4.3 Constraints

The constraints presented in the following include (1) joint
angle limits, (2) joint torque limits, (3) feet/robot base con-
tacting position, (4) table forward position, (5) table range
of motion, (6) table grasping location, and (7) table global
EOM. Time independent constraints include (8) initial and
final table locations and (9) static conditions at the beginning
and end of the motion. For time-dependent constraints, con-
straints (1-4) are imposed for both the human and robotic
arm, and constraints (5-7) are imposed for the table. Time-
dependent constraints are calculated sequentially in the
optimization process at every time discretization point. In

Fig. 10 Table grasping location
constraint

probot_end_effector

Fig.9 Table forward position
constraint

Zhuman,wrist
-

Z human_pelvis

contrast, the optimization calculates the time-independent
constraints for the human and robotic arm at a specific time.

(1). Joint angle limits

L U
qguman < qhuma"(t) S(j]human
qrabot = qmb(’f(t) < qrobot

1)

whereq. andq’, are the lower joint angle limits,
and qffuman and qg)bo . are the upper joint limits for the
human and robot arm [41, 42], respectively.

(2). Joint torque limits

L U
Thuman < Th”ma"(t) < Thuman

L 12)
Tmbut < T"UbUl(t) < Tmbot
where & and t¥ are human lower and upper
o human =" ~human L U
joint torque limits, and < and T are robot
robot robot

lower and upper torque limits [41, 42], respectively.
(3). Point foot/robot base contacting position

phumanjoot(t) = pzuman_ﬁ)m} (13)
p robot_base(l) =P ‘;(;bmibase

Where pruman_foor() aNA Py pase(?) are calculated
point human foot and robot base locations during the

optimization process. p, foor and are the

s
p robot_base

L
Ptable
/ phuman_wrist

@ Springer



80 Page 10 of 16 Journal of Intelligent & Robotic Systems (2023) 109:80
specified point foot and robot base contacting posi-  Table5 Task parameters for the lifting
tions on the level ground with fixed given values. P
7. arameters
(4). Table forward position
Table weight (kg) 2
Zhuman_wrist(t) - Zhuman _pelvis(t )20 14) Table width (m) 0.31
Table height (m 0.02
where Z,,,.0n wrist A0 Zyman veis ar€ the global Z ght (m)
. r Pevis, Table depth (m) 0.45
coordinates of wrist and pelvis points of the human, . y
. . . X Initial and final human feet contact position (m) 0.4
as shown in Fig. 9. This constraint ensures that the L N
i A R Vertical initial hand and EE position (m) 0.9
table remains in front of the human and prevents it B -
" tratine the h bod Initial and final robot base contact position (m) 0.85
rom penetrating the human body.
P g y Vertical final hand and EE position (m) 14
Standing distance, L(m) 1.9
T (s) 2.0

(5). Table range of motion

qtl;zble < qtable(t) < ngle (15)

where tha s 18 the lower table joint angle limits and
qY, . is the upper limit.
(6). Table grasping location

phuman_wrist(t) - pﬁzble(t) =0

16
pmhot_end_eﬁ‘ecmr(t) - pf;zble(t) =0 (16)

where p human_wrist and p robot_end_effector are the wrist and
end-effector (EE) positions of the human and robot
arm, respectively. p© and p¥  are the left and right
edge positions of the table as shown in Fig. 10.

(7). Table global EOM

T_table

<e i=123,45,6 (17)

where /%" is the global joint force and torque values

of the table, e = 1N for force and € = 1Nm for torque.
To keep the table balanced, two external grasping
forces act on the edges.

(8). Initial and final hand positions

phuman_hand(t) = pilumanﬁhand(t);t =0,r=T

probotiEE(t) = pf‘obot?EE(t) (1 8)

Where prman_nana(t) and p,p,, pp(2) are the calculated
hand and robot end-effector (EE) positions in the
optimization process. Phuman_hang 309 P)p0; g AT€ the
specified hand and EE positions at initial and final
times.

(8). [Initial and final static conditions

qhuman(t) =0;r=0,t=T
thot(t) =0 (19)
qbox(t) =0

@ Springer

5 Numerical Results

The nonlinear programming problem (NLP) for human—robot
lifting is solved using an SQP method in SNOPT [28]. The initial
guess for the optimization is P7 = [P}{umm, P Pf;ble] = [0],
f7 = {5 = [10]. There are a total of 224 design variables and 898
nonlinear constraints. The optimal solution was obtained in
15.93 s on a laptop with an Intel® Core™ {7 2.11 GHz CPU and
16 GB RAM. The input data related to the human—robot lifting
task are given in Table 5.

First, Figs. 11 and 12 illustrate the snapshots of the pre-
dicted 3D human-robot arm lifting motion from the simu-
lation and the experimental scenario. Figure 13 presents a
comparison of experimental and simulation joint angles for
human shoulder flexion and elbow flexion. Furthermore, the
joint torque profiles for human shoulder flexion, and elbow
flexion are shown in Fig. 14. Human table grasping force com-
parisons are presented in Fig. 15. Figure 16 shows the com-
parison of experimental and simulation joint angle profiles for
the robot arm. The experimental trials for robot joint torque

Human-robot Lifting Trajectory

--e-- Trajectory
—o-—Initial Position

~o—Final Position

0.5

Fig. 11 Simulation snapshots for human-robot lifting
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Fig. 12 Experiment snapshots for human-robot lifting

Fig. 13 Human arm joint angle

(a) Elbow flexion

(b) Shoulder flexion

profiles comparison between 200 - - 150
simulation and experiment 150 —s'm”"_’“w“
- — Experiment 100
> 50
-
°2
2 0
<
-
£
5] -50
S
-100
0 25 50 75 100 0 25 50 75 100
Time (%) Time (%)

trajectories are shown in Fig. 17. Finally, Fig. 18 provides
the comparison of experimental and simulation joint torque
profiles for the robot arm.

6 Discussion and Conclusions
The trajectory of the simulated human-robot lifting

motion and the human—robot initial, midway, and final
position in the experiment are depicted in Figs. 11 and 12.

In this study, the optimization predicts a natural collabora-
tive lifting motion. In Fig. 13, the trends of the predicted
human joint angle profiles closely follow the experimental
joint angle profiles. However, the predicted elbow flexion
values are less than the experimental elbow flexion values,
and the peak values difference between them is 10.69%.
For the shoulder flexion joint angle profiles, predicted val-
ues are higher than the experimental values until 90% of
the lifting cycle, and the peak values difference between
the prediction and experiment is 19.56%. These deviations

Fig. 14 Human arm joint torque (a) Elbow flexion (b) Shoulder flexion
profiles 20 20
15 15
10 10
£, £, /N/-\
Z £
[} 0 [ 0
3 3
g g
o -5 o -5
+ +
- -
£ 10 £ 10
) ]
] ]
-15 -15
-20 -20
0 25 50 75 100 0 25 50 75 100
Time (%) Time (%)
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Verticle force on the Human side
50

.
—e—Simulation

375 - - Experiment

25

Force (N)
N
(3,]

50 100

Time (%)

Fig. 15 Human table grasping force comparison between simulation
and experiment

may be due to lack of constraints on the subject’s arm
motion in the experiment. In addition, the lifting trajectory
may differ from subject to subject, and it is quite difficult
to follow the simulation results precisely in a real-world
scenario. Furthermore, when the joint angle increases, as
shown in Fig. 13, so does the magnitude of the simulated

Fig. 16 Robot arm joint angles

(a) 1st Joint Angle Robot

joint torque profile of elbow flexion (Fig. 14). In the same
way, the magnitude of the joint torque profile of the shoul-
der flexion follows the joint angle trends, as illustrated in
Fig. 14.

In the comparison of human table grasping forces shown
in Fig. 15, the experimental vertical grasping force on the
human side is initially lower than the simulated force. The
experimental force, however, follows the simulated grasping
force after the first 25% of the overall lifting duration. Five
force sensors were utilized in the experiment, and it is antici-
pated that naturally, the human did not press the sensors
adequately at first. Overall, the predicted vertical grasping
force values closely follow the trends of the experimental
data. The peak value difference between the predicted and
the experimental vertical grasping forces is 12.52%.

The joint angles of the robot arm in the simulation and
experiment are identical, as shown in Fig. 16. The positions
at each joint are provided from the simulation. The mag-
nitudes and the trends of the robot joint torques for three
experimental trials are similar as shown in Fig. 17. Moreo-
ver, the average of three trials is taken to compare against
the predicted robot joint torques. The joint torques of the
robot arm are compared in Fig. 18, and the predicted robot
joint torques have similar trends to experimental robot joint
torques. The robot’s third joint has the largest peak value
difference of 18.03%, and the second joint has the lowest
peak value difference of 3.72%, between the predicted and
experimental data.

(b) 2nd Joint Angle Robot

comparison between simulation = 100 = 160
and experiment Q 154 D 155
2 5 2 450
% = Simulation % g 7
é 25 — - Experiment é 145
e 0 ‘ ‘ ‘ ‘ - 140 ‘ ‘ ‘ ‘
5 0 20 40 60 80 100 5 0 20 40 60 80 100
= ) = .
Time (%) Time (%)
(c) 3rd Joint Angle Robot (d) 4th Joint Angle Robot
-50 ‘ ‘ ‘ -165 ‘ ‘ :
o )
] @
2 3
° ° -170
<) <)
< <
- \ \ w 175 ‘ ‘ ‘ ‘
5 0 20 40 60 80 100 5 0 20 40 60 80 100
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(e) 5th Joint Angle Robot (f) 6th Joint Angle Robot
- T T T - 175 T T
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Fig. 17 Robot arm joint torque
trajectories for three experimen-
tal trials

In this study, an inverse dynamics optimization formula-
tion was used to predict human—robot lifting motion and
grasping forces. The NLP optimization problems were suc-
cessfully solved by SNOPT, a gradient-based optimizer. The
simulation results were compared to the experimental data,
including human joint angle profiles from motion capture,

Fig. 18 Robot arm joint torques
comparison between simulation
and experiment
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robot joint torque profiles, and hand grasping force profiles
from force sensors. The proposed optimization formulation
can be used to design the best human-robot collaborative
lifting to prevent human injury.

In addition, the human—robot collaborative lifting was
carried out without using any learning techniques. The

(b) 2nd Joint Torque

-

20 40 60 80 100
Time (%)
(d) 4th Joint Torque

- -

20 40 60 80 100
Time (%)
(f) 6th Joint Torque

25 |

20 40 60 80 100
Time (%)
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simulation provided the robot’s position, velocity, and accel-
eration at each joint, and the human adapted to the robot
during the lifting. The next goal is to establish a lifting
database, and we will conduct the experiments and simula-
tions with different subjects and varying table weights [33]
in the future. In addition, a 3D musculoskeletal model will
be considered to simulate human-robot collaborative lifting
motion.
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