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Abstract: Background/Objective: Nutritionists play a crucial role in guiding individuals toward
healthier lifestyles through personalized meal planning; however, this task involves navigating a
complex web of factors, including health conditions, dietary restrictions, cultural preferences, and
socioeconomic constraints. The Analytic Hierarchy Process (AHP) offers a valuable framework for
structuring these multi-faceted decisions but inconsistencies can hinder its effectiveness in pairwise
comparisons. Methods: This paper proposes a novel hybrid Particle Swarm Optimization–Simulated
Annealing (PSO-SA) algorithm to refine inconsistent AHP weight matrices, ensuring a consistent and
accurate representation of the nutritionist’s expertise and client preferences. Our approach merges
PSO’s global search capabilities with SA’s local search precision, striking an optimal balance between
exploration and exploitation. Results: We demonstrate the practical utility of our algorithm through
real-world use cases involving personalized meal planning for individuals with specific dietary
needs and preferences. Results showcase the algorithm’s efficiency in achieving consistency and
surpassing standard PSO accuracy. Conclusion: By integrating the PSO-SA algorithm into a mobile
app, we empower nutritionists with an advanced decision-making tool for creating tailored meal
plans that promote healthier dietary choices and improved client outcomes. This research represents
a significant advancement in multi-criteria decision-making for nutrition, offering a robust solution to
the inconsistency challenge in AHP and paving the way for more effective and personalized dietary
interventions.

Keywords: multi-criteria decision-making; analytic hierarchy process; meal planning; particle swarm
optimization; simulated annealing; nutritional counseling; personalized nutrition

1. Introduction

Effective meal planning is a cornerstone of nutritional counseling, serving as a per-
sonalized roadmap toward achieving an individual’s health and wellness goals. However,
the process of crafting optimal meal plans is far from straightforward. Nutritionists must
navigate a complex landscape of competing factors, including nutritional value, adherence
to dietary restrictions or preferences (e.g., vegetarian, vegan, and gluten-free), cultural
considerations, budgetary limitations, palatability, and even sustainability concerns. This
multi-faceted decision-making process requires a structured approach to ensure that all
relevant criteria are considered and prioritized appropriately.

Multi-criteria decision-making (MCDM) methods, such as the Analytic Hierarchy
Process (AHP), have emerged as valuable tools in this context [1]. AHP, introduced by
Saaty in 1980 [2], enables nutritionists to systematically break down complex meal-planning
decisions into a hierarchical structure of goals, criteria, sub-criteria, and alternative meal
options [3,4]. This structured approach facilitates a comprehensive evaluation of diverse
factors, enabling nutritionists to tailor meal plans to individual needs and preferences.
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However, the efficacy of AHP hinges upon the consistency of pairwise comparisons
used to establish the relative importance of different criteria. Inconsistencies within the
weight matrix—a common issue in AHP—can result in skewed decision-making, undermin-
ing the method’s effectiveness [5]. This challenge is particularly pronounced in nutrition,
where the accurate prioritization of dietary criteria is paramount for achieving desired
health and preference outcomes.

Recent advancements in the field have sought to address the consistency problem
through various algorithms and optimization methods [5–7]. Yet, these solutions often face
limitations, such as increased computational demands or susceptibility to local optima,
which can hinder their practical application [8,9]. Moreover, existing approaches may not
fully capture the intricate interplay of biological, socioeconomic, and cultural factors that
shape individual dietary choices, as highlighted in our previous work on personalized
meal planning for diabetic patients [4].

Recognizing these constraints, our work introduces a novel Particle Swarm Optimization–
Simulated Annealing (PSO-SA) hybrid algorithm that synergizes both methods. This innovative
algorithm aims to refine the initial, inconsistent matrix into a consistent one, thereby enhancing
the decision-making process for nutritionists. By integrating PSO’s global search capabilities
with SA’s local search precision, we optimize the balance between exploration and exploitation,
ensuring a thorough and efficient search for the most consistent and accurate representation of the
nutritionist’s expertise and the client’s unique needs and preferences.

The significance of this research lies not only in its potential to revolutionize the
way nutritionists prioritize criteria for meal selection—a task that directly impacts meal
planning and dietary recommendations—but also in its ability to bridge the gap between
theoretical models and practical applications. By ensuring the consistency and accuracy of
the decision matrix, our algorithm promises to elevate the standard of nutritional guidance
provided to individuals, fostering improved health outcomes and greater client satisfaction.

2. Related Works

Optimizing meal planning is a complex task that extends beyond nutritional consider-
ations, encompassing personal preferences, cultural influences, and economic factors.

There has been a concerted effort in the literature to explore personalized meal plan-
ning, particularly for diabetic patients. The research emphasizes the importance of con-
sidering a variety of factors, including taste preferences, nutritional content, budgetary
constraints, and health requirements, to effectively manage diabetes [4,10].

Recent technological advancements have led to the development of AI-powered meal
planners that consider health concerns, nutritional needs, and personal preferences—for
example, Amiri et al. [11] developed a system that uses reinforcement learning to create
meal plans with high user acceptance. Othman et al. [12] designed a recommender system
for diabetic patients incorporating blood glucose readings and BMI.

Zioutos et al. [13] introduced a recommendation system that offers personalized meal
plans by leveraging collaborative filtering and individuals’ health history analysis. This
system’s ability to dynamically adapt to users’ constraints and preferences provides a novel
approach to meal plan personalization.

Azzimani et al. [14] proposed an AI-based approach for personalized nutrition and
food menu planning, utilizing machine learning algorithms for practical solutions in the
nutrition field. Brintha et al. [15] developed a food recommendation system for predictive
diabetic patients using Artificial Neural Networks (ANN) and Convolutional Neural Net-
works (CNN), providing a food recognition and tracking system on their website. Rastogi
et al. [16] applied learning and semantics to offer personalized food recommendations,
utilizing a health coach platform that recommends personalized selections of food recipes
to diabetic patients.

Significant advancements have been made in meal planning and MCDM, for instance,
Simpson et al. [17] provided a framework for identifying nutritional targets, while Gazan
et al. [18] emphasized the role of mathematical optimization in developing sustainable
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diets. Srdjevic [19] improved the analytic hierarchy process by incorporating various
prioritization methods. However, Field [20] identified challenges in implementing multi-
sectoral nutrition planning, underlining the need for high-level political support. Lakshmi
et al. [21] revolutionized personalized nutrition using the Fuzzy Analytic Hierarchy Pro-
cess (F-AHP), the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution
(Fuzzy TOPSIS), and Multi-criteria Selection Analysis, involving dieticians and medical
professionals in the dietary plan evaluation process. These studies collectively highlight
the complexity of meal planning and the necessity to consider a wide range of criteria in
the decision-making process.

The AHP has been instrumental in addressing complex nutritional challenges. For ex-
ample, a systematic review of food recommender systems for diabetic patients highlighted
the use of AHP to tailor dietary recommendations, considering individual preferences and
nutritional needs, which is crucial for managing diabetes effectively [22]. AHP’s ease of
use and ability to incorporate both qualitative and quantitative data have contributed to its
successful application in various nutritional contexts, such as prioritizing dietary guide-
lines, evaluating food choices, and developing personalized meal plans [23,24]. Despite its
widespread use, AHP’s effectiveness can be compromised by inconsistencies in pairwise
comparisons, which are inherent to the method due to its reliance on subjective judgments.
These inconsistencies can lead to unreliable decision outcomes, particularly in complex
scenarios like meal planning, where multiple criteria need to be balanced.

Several approaches have been proposed to address the inconsistency issue in AHP.
Eigenvalue-based methods are commonly used—such as Saaty’s consistency ratio (CR) [2]—
which quantify the degree of inconsistency in a pairwise comparison matrix. While simple
to implement, they may not always accurately reflect the actual level of inconsistency,
especially in complex decision problems [25–27]. Optimization techniques are another
approach, aiming to minimize the inconsistency of the comparison matrix by adjusting the
pairwise judgments. Examples include goal programming and least squares methods [28];
however, these methods can be computationally expensive and may not always find the
optimal solution. Heuristic algorithms, such as genetic algorithms and simulated annealing,
offer a flexible and efficient way to search for consistent matrices [29,30]. They can handle
complex decision problems and often find good solutions quickly. However, they may not
guarantee finding the optimal solution and can be sensitive to parameter settings.

Our proposed PSO-SA hybrid algorithm falls under the category of heuristic algo-
rithms. It aims to address the limitations of existing methods by combining the strengths
of PSO’s global search capabilities with SA’s ability to escape local optima. This approach
seeks to achieve both consistency and accuracy in pairwise comparisons, thereby enhancing
the reliability and effectiveness of AHP-based meal-planning decisions.

Despite significant advancements in meal-planning optimization, many existing meth-
ods struggle to balance the complexity of multi-criteria decision-making with consistency
and efficiency in results. Our proposed PSO-SA hybrid algorithm aims to address this
gap by combining the strengths of PSO and SA, offering a novel approach to achieving
consistent and accurate pairwise comparisons in AHP-based meal planning. This inno-
vation enables more reliable and personalized nutritional recommendations, enhancing
decision-making in complex dietary scenarios.

3. Methodology

To address the challenge of inconsistency in AHP pairwise comparisons, particularly
in the context of complex nutritional decision-making like meal planning, we propose a
hybrid algorithm that synergizes PSO and SA. This approach leverages the strengths of
both algorithms to efficiently refine the initial, potentially inconsistent weight matrix into a
consistent one that closely reflects the expert’s (nutritionist’s) judgments.



Nutrients 2024, 16, 3117 4 of 18

3.1. Analytic Hierarchy Process in the Context of Meal Planning

The Analytic Hierarchy Process (AHP) is an MCDM tool that assists experts in structur-
ing complex decisions. It enables nutritionists to systematically break down meal planning
into a hierarchical model, facilitating the prioritization of various criteria and alternatives
through pairwise comparisons.

3.1.1. Criteria and Constraints in Meal Planning

Drawing from our previous work [11], we recognize that meal planning for individuals,
particularly those with dietary restrictions like diabetes, necessitates a comprehensive
consideration of diverse factors. These encompass the following:

• Health and medication restrictions: dietary needs based on medical conditions, aller-
gies, or medication interactions;

• Cultural and religious restrictions: food preferences and avoidances rooted in cultural
or religious beliefs;

• Food availability: access to specific ingredients or cuisines based on location or sea-
sonality;

• Budget limitations: affordability of meal options;
• Time constraints: preparation and cooking time available to the individual;
• Flavor preferences: taste preferences and dislikes;
• Popularity and ratings: consideration of popular or highly rated recipes;
• Serving size preferences: portion control and desired meal sizes.

3.1.2. Weighting and Integration

Within the AHP framework, these criteria are organized hierarchically, and pairwise
comparisons are conducted to establish their relative importance. The resulting weight
matrix reflects the priority assigned to each criterion, guiding the subsequent evaluation
and selection of meal options. To accurately represent individual needs, user surveys or
direct input can be utilized to elicit preferences and assign weights to these criteria. This
allows for a truly personalized meal-planning experience.

Central to AHP is the “nine value” scale introduced by Saaty (2001) [3], which assigns
numerical values to pairwise comparisons to express the relative importance of one element
over another. These values range from 1 (equal importance) to 9 (extreme importance), as
shown in Table 1.

Table 1. The “9 values” scale [3].

Definition Intensity of Importance

1 Equal importance
2 Weak importance
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong or demonstrated importance
8 Very, very strong
9 Extreme importance

The AHP can be applied in three steps: (1) defining the vector of criteria weights;
(2) computing the option scores matrix; and (3) grading the options.

The pairwise comparison A = {aij} is a square matrix N × N, where N is the number of
criteria and aij of matrix A represents the importance of the i-th criterion with respect to
the j-th criterion based on Table 1. If the paired comparison is consistent, the values of the
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original upper diameter are inversely proportional to the values of the original diameter,
and the main diameter is one.

aij =
1
aji

∀i ̸= j, (1)

aii = 1

The 1 × N normalized eigenvector is obtained based on comparison matrices. Sum
each column of A and normalize by dividing each matrix element by the column sum.
Averaging across rows yields the normalized principal eigenvector:

wi =
∑

N
i=1 aij

N
(2)

where wi is the weight of the i-th criterion; and aij is the normalized value of the j-th element
of the i-th row of matrix A.

An M × N matrix (where M is the number of alternatives and N is the number of
criteria) is built as an option score matrix S =

{

sij

}

, where sij represents the score of the
i-th option with respect to the j-th criterion. To attain such scores, for each of the N criteria,
a pairwise comparison matrix pi, i = {1, . . ., N} is created. The matrix Pi is a square matrix

M × M as pi = {p
i
jk

}

where M is the number of options and pi
jk is the importance of the

j-th option for the k-th option based on the i-th criterion. The constraint of matrix Pi is
the same as matrix A. Score vector is obtained for options based on each criterion, like the
weight vector, and finally, the score matrix is attained as P =

[

P1 . . . PN ]. In the final step,
the ranked options vector v can be calculated by multiplying P and w.

v = P·w (3)

The maximum value vi shows the most desirable option.

3.1.3. Consistency Rate

For an N × N square matrix A and eigenvector w, we calculate the following:

Aw = λw (4)

where λ is the eigenvalue. The largest eigenvalue is called the principal eigenvalue λmax.
Saaty [31] has shown that for a consistent pairwise matrix, λmax is equal to the number

of comparisons or λmax = N. Also, for all comparisons, aij, the transitivity rule is considered
(Equation (5)):

aij = aik.akj (5)

Due to the 9-value scale limitation, Equation (5) is often violated. This is because
when the options are between 1 and 9, their multiplication will likely exceed 9. It is hard to
achieve complete consistency. To calculate the inconsistency rate, a measure is introduced
as follows:

CI =
λmax − N

N − 1
(6)

We obtain the compatibility rate from Equation (7).

CR =
CI

RI
(7)

In Equation (7), RI is the Random Index, which Saaty [2] determines to estimate the
expected consistency index for a randomly generated pairwise comparison matrix. The RI
varies based on the number of elements being compared, as shown in Table 2.
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Table 2. The random indicator.

n 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

The decision-maker should review the judgments if the consistency rate is greater
than 0.1. Therefore, if we use AHP to determine the weights and the weights matrix is
inconsistent, then the inconsistency must be resolved. Finding a consistent matrix would
be time-consuming when numerous options and criteria exist.

3.1.4. Objective Function in Meal Planning

In the context of meal planning, the objective is to discover a refined pairwise compar-
ison matrix (representing the relative importance of different meal-planning criteria) that
exhibits both consistency and fidelity to the nutritionist’s initial judgments.

• Consistency: The refined matrix should adhere to the transitivity rule of AHP, ensuring
logical coherence in the prioritization of criteria. This is crucial for generating reliable
and meaningful meal recommendations;

• Fidelity: the refined matrix should remain as close as possible to the original matrix,
preserving the essence of the nutritionist’s expert opinion and the client’s expressed
preferences.

To achieve these dual objectives, we define an objective function that quantifies the
discrepancy between the refined matrix (M′) and the original matrix (M) and the degree of
consistency in the refined matrix.

• Discrepancy Measure (DI): We adopt the distance scale introduced in [9] (Equation (8))
to calculate the distance between the alternative matrix (M′) and the initial matrix (M).
In this context, G and G′ represent row vectors containing the lower triangular elements
of the original and refined pairwise comparison matrices, respectively. The division
“./” is performed element-wise. A DI value of zero indicates perfect agreement
between the two matrices.

DI =
∣

∣|G′ − G|
∣

∣ =
|G′./G|+ |G./G′|

n2 − n
− 1 (8)

• Consistency Measure (λmax-N): The difference between the largest eigenvalue (λmax)
of the refined matrix and the number of criteria (N) serves as a measure of consistency.
A smaller difference signifies better consistency;

• Combined Objective Function/Objective Index (OI): these two measures are integrated
into a single objective function (Equation (9)).

OI = DI + (λmax)
−n (9)

• The algorithm aims to minimize this objective function, thereby finding a refined
matrix that is both consistent and faithful to the original expert judgments.

By optimizing this objective function, the proposed algorithm helps nutritionists
navigate the complex decision-making landscape of meal planning, ensuring that the
generated recommendations are not only scientifically sound and personalized but also
respect the nuanced priorities and preferences of both the expert and the client.

3.2. The PSO-SA Hybrid Algorithm for Meal Planning

3.2.1. Overview

Our hybrid PSO-SA algorithm is motivated by the need for a robust and efficient
method to resolve inconsistencies in AHP pairwise comparison matrices, a common issue
that can hinder the effectiveness of the AHP in real-world applications. We aim to achieve a
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balance between preserving the nutritionist’s original preferences and ensuring the logical
consistency of the decision matrix.

The central idea is to utilize PSO to explore the solution space and quickly identify
promising regions of consistent matrices. Then, SA is employed to refine the search in these
promising regions, effectively escaping local optima and converging towards a globally
optimal solution.

3.2.2. Particle Swarm Optimization

Introduced in 1995, Particle Swarm Optimization (PSO) is an algorithm inspired by
the social behaviors of organisms within large groups, such as flocks of birds or colonies of
bees [32]. The core concept of PSO is to simulate a ”swarm” of particles moving through
a multi-dimensional search space. Each particle adjusts its trajectory based on its own
experience and the collective wisdom of the swarm. This dynamic adjustment guides the
particles toward optimal solutions over successive iterations.

In PSO, each particle is essentially a point in an n-dimensional space, represented
as Xi

(

xi1 ; xi2 , . . . , xin

)

. The algorithm updates each particle’s position based on two key
values: the best solution it has encountered, known as (Pbest); and the best solution found
by any particle in the swarm, known as (Gbest).

The simplicity of PSO lies in its reliance on only two equations to update the velocity
and position of the particles:

Velocityi(t + 1) = w × Velocityi(t)
+c1 × random()× (Pbest(t)− Positioni(t))
+c2 × random()× (Gbest(t)− Positioni(t))

(10)

Positioni(t + 1) = Positioni(t) + Velocityi(t + 1) (11)

where Positioni and Velocityi represent the current position and velocity of the particle,
respectively; the function random() generates a uniform random number between 0 and 1;
the coefficients c1 and c2, the cognitive and social scaling factors, are typically set to 2; and
w is the inertia weight, which moderates the particle’s velocity to balance exploration and
exploitation.

To prevent the particles from diverging too far from the search space, the velocity is
constrained by a maximum value Vimax. If the calculated velocity exceeds Vimax, it is capped
at ±Vimax, ensuring that the particles’ movements remain within a controlled range.

3.2.3. Simulated Annealing

Simulated Annealing (SA) is a heuristic optimization technique that was first intro-
duced in 1983, drawing inspiration from the process of annealing in metallurgy [33]. This
probabilistic technique is renowned for its ability to escape local optima, making it a valu-
able tool in complex optimization scenarios. The SA algorithm mimics the physical process
where a material is heated and then slowly cooled to minimize defects and achieve a stable
crystal structure.

The SA algorithm begins with a randomized initial solution and introduces small,
random changes to this solution at each step. The objective function value of the new
solution, f (sn), is then compared to the current solution, f (sc), as shown in Equation (12):

∆E = f (sn)− f (sc) (12)

The decision to accept the new solution is governed by a probability function, detailed
in Equation (13):

p =

{

1 i f ∆E < 0
e

∆E
T otherwise

(13)
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In this context, ∆E represents the change in the objective function value, and T is a
temperature parameter that gradually decreases over time according to Equation (14):

Ti+1 = γTi (14)

where γ is a factor between zero and one, dictating the rate at which the temperature
decreases. Initially, SA allows a higher probability of accepting worse solutions to facilitate
exploration and prevent premature convergence to local optima. As the algorithm pro-
gresses and the ”temperature” lowers, accepting suboptimal solutions becomes less likely,
steering the search towards the global optimum.

The effectiveness of SA is partially dependent on the quality of the initial solution and
the cooling schedule. The algorithm concludes either upon finding an optimal solution or
after a pre-determined number of iterations, as described by Bertsimas in 1993 [34].

3.2.4. PSO-SA Hybrid Algorithm
Integration of PSO and SA

The PSO-SA hybrid algorithm [35,36] stands as a testament to the power of combining
different optimization strategies to achieve superior results. It represents an innovative
fusion of Particle Swarm Optimization (PSO) and Simulated Annealing (SA), capitalizing
on the strengths of both to overcome their respective limitations. PSO is known for its
robust search capabilities and rapid convergence, while SA excels in local search and
escaping local optima. This amalgamation leverages the exploratory prowess of PSO
with the exploitative finesse of SA, creating a comprehensive search strategy that is both
wide-ranging and detail-oriented.

In the context of meal planning, the PSO-SA algorithm refines the AHP weight matrix,
which reflects the relative importance of various criteria (e.g., glycemic control, nutrient
density, palatability, and convenience). This refined matrix guides the evaluation and
scoring of meal options, ensuring that the final recommendations align closely with both
the nutritionist’s expertise and the client’s individual needs and preferences. In this hybrid
model, PSO quickly navigates the search space, identifying regions of potential optimality.
Upon finding a promising solution, SA takes over, conducting an intensive local search
in the vicinity of PSO’s best-found solution. This dual-phase approach ensures that the
algorithm does not prematurely converge on suboptimal solutions, a common pitfall in
optimization algorithms.

The algorithm’s inherent random movement is key to its success as it allows for
exploration of the search space without being confined to a deterministic path. The PSO
component propels the algorithm towards areas of interest, while the SA meticulously
refines the search, honing in on the optimal solution.

To address the challenge of finding a consistent matrix that also reflects an expert’s
initial suggestions, we propose a hybrid algorithm that utilizes the strengths of PSO and
SA. The algorithm aims to refine the pairwise weight matrix to achieve consistency while
remaining as close as possible to the original matrix.

The algorithm initiates by generating random sets of meal options (particles), evaluates
them using the AHP-based objective function (considering the refined weight matrix), and
iteratively updates these meal combinations based on their individual best scores (Pbest)
and the overall best score (Gbest). If the Gbest surpasses a pre-defined threshold, new meal
combinations are generated in its vicinity, and the process continues until convergence or
the maximum number of iterations is reached. The final Gbest represents the optimal meal
plan that best satisfies the client’s diverse criteria and constraints.

After updating all particles within a generation, if the obtained Gbest exceeds a pre-
defined error threshold, new particles are introduced within the neighborhood of (Gbest).
The size of this neighborhood decreases with each iteration. The evaluation function is then
recalculated for these new particles, and if any demonstrate a value better than the current
(Gbest), the (Gbest) is updated to this new value. In cases where no improvement is found,
the difference in evaluation ∆E is computed, and a new (Gbest) based on a probability
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function is potentially accepted. Subsequently, the velocity and position of each particle are
updated in preparation for the next generation. This process is iterated until the algorithm
either reaches the maximum number of iterations or meets the specified error criteria.

In developing this proposed algorithm, we considered the need for a method that
balances global and local search capabilities, given the complexity of the optimization
problems we aimed to solve. The rationale behind combining PSO and SA is rooted in the
complementary strengths of these techniques: PSO’s ability to swiftly explore the search
space and SA’s proficiency in refining solutions to escape local optima. This synergy is
particularly advantageous in refining the pairwise weight matrix, ensuring both consistency
and adherence to expert suggestions.

The parameters for our hybrid algorithm, including the inertia weight, cognitive and
social coefficients for PSO, and the cooling schedule for SA, were carefully selected through
empirical testing and domain expertise. These settings ensure a balanced trade-off between
exploration and exploitation, which is crucial for the algorithm’s performance.

In Algorithm 1, we introduce our proposed algorithm, detailing our approach’s main
steps and procedures. This pseudocode offers a comprehensive overview of the algorithm’s
structure and workflow.

Algorithm 1. PSO-SA Algorithm

itr = 1
Initialize swarm size, T,ᾳ

ᾳ

ffi

Initialize particle Position and Velocity
Stop Condition = maxiterations or predefine error
while Not stop Condition do

for each particle I = 1 to swarm size, do
Evaluate f(particle(i))

if the f(particle(i)) is better than the f(Pbest) then
Update current Pbest.

end
if f(Pbest) is better than f(Gbest) then

Gbest = Pbest
end

end
if f(Gbest) > predefine error then

Generate neighborhoods(Gbest, ᾳ

ᾳ

ffi

)
For j = 1 to neighborhoods size do

Evaluate f(Neighborhood(j))
if the f(Neighborhood(j)) is better than the f(Gbest) then

Gbest = Neighborhood(j)
Elseaccept the Neighborhood with a probability p defined by

∆E = f(Neighborhood(i).Pbest) − f(Gbest)
P = e−∆E/T

end
update T

end
update ᾳ

ᾳ

ffi

itr = itr + 1
endupdate ᾳ

ᾳ

ffi

itr = itr + 1
end

3.3. Advanced Decision-Making Tool in Nutritional Counseling

The practical application of our algorithm is demonstrated through its ability to refine
the pairwise weight matrix to achieve consistency while remaining as close as possible to
the original matrix. This refined matrix is then used by nutritionists to evaluate and score
meal options, enabling them to recommend meals that optimally align with the client’s
needs and preferences.
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By incorporating the PSO-SA hybrid algorithm into their practice, nutritionists can
be equipped with an advanced decision-making tool that enhances the accuracy and
personalization of meal planning. This methodology empowers nutritionists to deliver
dietary recommendations that are scientifically sound and tailored to their client’s unique
preferences and health goals.

4. Evaluations

To assess the efficacy and real-world applicability of the PSO-SA hybrid algorithm, we
employed a multi-faceted evaluation approach encompassing the following.

4.1. Prototype System and User Interaction

We have integrated the PSO-SA hybrid algorithm into a previously developed mobile
app designed for personalized meal planning [4]. As shown in Figure 1, this app streamlines
the meal-planning process by leveraging a web crawler to gather diverse recipes, a recipe
parser to extract key nutritional information, and a sophisticated meal-planning module
powered by the PSO-SA algorithm.

ᾳ

ᾳ

ffi

Figure 1. The architecture of the meal planning app using the proposed algorithm.

User experience: Users begin by creating a profile and inputting their health con-
ditions, dietary restrictions, preferences, and goals. The app then utilizes the PSO-SA
algorithm to generate personalized meal plans that cater to these individual needs. Users
can further interact with the app by providing feedback on recommended meals, allowing
for continuous refinement and adaptation of the meal plans.

4.2. Use Case Evaluations

We present two illustrative use cases that mirror real-world scenarios encountered by
nutritionists. These cases showcase the algorithm’s capacity to optimize meal planning for
individuals with distinct dietary requirements and health objectives.

Use case 1—Personalized Meal Planning for a Client with Type 2 Diabetes

Client 1’s profile is as follows:
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Client1 Profile

• 45-year-old male recently diagnosed with type 2 diabetes;
• BMI of 30 (classified as obese);
• Sedentary lifestyle;
• Dietary preferences: enjoys Mediterranean cuisine, prefers home-cooked meals, dislikes

overly bland food;
• Dietary restrictions: limiting carbohydrate intake, saturated fats, and added sugars is neces-

sary;
• Health goals: improve glycemic control (HbA1c levels), manage weight (lose 5% body weight

in 3 months), increase energy levels.

Pairwise Comparison Matrix and Refinement:

The nutritionist collaborates with the client to identify the following criteria as crucial
for meal selection:

• Glycemic control (GC);
• Nutrient density (ND);
• Palatability (P);
• Convenience (C).

The initial pairwise comparison matrix, based on the client’s priorities and the nu-
tritionist’s expertise, is presented in Table 3. This matrix reveals a strong emphasis on
glycemic control, but its consistency ratio (CR) of 0.12 exceeds the acceptable threshold,
indicating inconsistency in the judgments.

Table 3. The initial pairwise comparison matrix.

GC ND P C

GC 1 6 8 9

ND 1/6 1 3 5

P 1/8 1/3 1 4

C 1/9 1/5 1/4 1

Applying the PSO-SA hybrid algorithm refines this matrix, balancing the need for
consistency with the client’s preferences. The resulting refined matrix (Table 4) achieves a
CR of 0.017, signifying acceptable consistency while retaining the prioritization of glycemic
control.

Table 4. The refined pairwise comparison matrix.

GC ND P C

GC 1 4 6 8

ND 1/4 1 2 4

P 1/6 1/2 1 2

C 1/8 1/4 1/2 1

Meal Evaluation and Recommendation:

Using the refined matrix, the nutritionist evaluates various meal options. For in-
stance, a typical Mediterranean lunch option like grilled chicken salad is scored against the
following criteria:

• GC score: high (due to low glycemic index ingredients);
• ND score: high (rich in vitamins and minerals);
• P score: moderate (flavorful with herbs and spices);
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• C score: moderate (requires preparation but can be made in advance).

The algorithm calculates weighted scores for each meal, factoring in the relative
importance of each criterion as defined in the refined matrix. This enables the nutritionist to
recommend a weekly meal plan comprising diverse Mediterranean dishes that align with
the client’s health goals and dietary preferences, promoting improved glycemic control and
weight management.

Use case 2—Tailoring Dietary Recommendations for an Elderly Client with Chronic

Conditions

Client 2’s profile is outlined below:

Client2 Profile

• 70-year-old female with a history of hypertension and osteoporosis;
• BMI of 22 (within the normal range);
• Moderately active lifestyle with daily walks and light exercise;
• Dietary preferences: prefers a plant-based diet, enjoys mild flavors, and has a penchant for

traditional dishes;
• Dietary restrictions: needs to limit sodium intake and increase calcium-rich foods to manage

hypertension and support bone health;
• Health goals: maintain blood pressure within the normal range, prevent bone density loss,

and enhance overall well-being.

Pairwise Comparison Matrix and Refinement:

The nutritionist collaborates with the client to prioritize the following criteria for meal
selection:

• Blood pressure management (BPM);
• Bone health (BH);
• Flavor (F);
• Ease of preparation (EP).

The initial pairwise comparison matrix (Table 5) emphasizes blood pressure manage-
ment but shows inconsistency with a CR of 0.14.

Table 5. The initial pairwise comparison matrix for client 2.

BPM BH F EP

BPM 1 6 8 9

BH 1/6 1 4 6

F 1/8 1/4 1 4

EP 1/9 1/6 1/4 1

Applying the PSO-SA hybrid algorithm leads to a refined matrix (Table 6) with a CR
of 0.015, ensuring consistency while preserving the client’s preferences.

Table 6. The refined pairwise comparison matrix for client 2.

BPM BH F EP

BPM 1 3 6 8

BH 1/3 1 3 4

F 1/6 1/3 1 2

EP 1/8 1/4 1/2 1
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Meal Evaluation and Recommendation:

The refined matrix guides the evaluation of meal options like kale and quinoa salad:

• BPM score: high (low in sodium);
• BH score: high (rich in calcium);
• F score: moderate (mild yet flavorful);
• EP score: high (easy to prepare).

Leveraging the algorithm’s weighted scoring, the nutritionist recommends a person-
alized meal plan featuring plant-based, calcium-rich, low-sodium dishes that cater to the
client’s health goals and dietary needs.

Overall Impact:

These use cases highlight the PSO-SA hybrid algorithm’s role in enhancing personal-
ization and addressing inconsistencies in dietary interventions. By integrating client data
and preferences into the AHP framework, the algorithm empowers nutritionists to make
informed decisions, leading to improved client adherence and satisfaction. Its effectiveness
underscores its potential as a valuable tool in nutritional counseling.

4.3. Additional Evaluation Approaches

To further validate the effectiveness of the PSO-SA hybrid algorithm, we employed
additional evaluation methods beyond the use case demonstrations, as outlined below.

4.3.1. Algorithm Performance Metrics

We quantitatively assessed the algorithm’s performance using the following metrics
(Table 7):

Table 7. Performance metrics.

Metric Description

Consistency Improvement
The reduction in Consistency Ratio (CR) after

applying PSO-SA demonstrating its effectiveness
in resolving inconsistencies.

Convergence Speed
The number of iterations required for the

algorithm to converge to a consistent matrix
showcasing its efficiency.

Solution Quality
Comparison of the final objective function value

achieved by PSO-SA against standard PSO,
highlighting its ability to find superior solutions.

Figure 2 provides a visual comparison of the proposed PSO-SA implementation and
the standard PSO algorithm in terms of the objective function value (OI) over iterations.
It illustrates that PSO-SA consistently achieves a lower OI (indicating a better solution)
compared to PSO, demonstrating its superior performance in finding consistent matrices
that closely align with the nutritionist’s initial judgments.
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Figure 2. The comparison of the results of the PSO-SA and PSO.

4.3.2. Manual Verification

All meal plans generated by the PSO-SA algorithm underwent a rigorous manual
verification process. A team of researchers meticulously reviewed each meal plan to ensure
the following:

• Adherence to dietary guidelines: the meal plans complied with established dietary
guidelines for the clients’ specific health conditions and dietary restrictions;

• Nutritional adequacy: the meal plans provided a balanced and sufficient intake of
essential nutrients, considering the clients’ age, gender, activity levels, and health
goals;

• Appropriateness for client profiles: the meal plans reflected the clients’ individual
preferences, cultural considerations, and lifestyle factors, promoting adherence and
satisfaction.

The results of this manual verification process are summarized in Table 8.

Table 8. Manual verification summary.

Number of Use Cases
Number of Meal
Plans Generated

Number of Meal
Plans Approved

Approval Rate

30
30 × 7 (one week for

each client)
206 98.09%

The 98.09% approval rate across 30 use cases underscores the PSO-SA algorithm’s
ability to generate meal plans that are not only personalized and consistent but also
nutritionally sound and clinically appropriate.

These multi-faceted evaluations collectively demonstrate the practicality and effective-
ness of the PSO-SA hybrid algorithm in real-world nutritional counseling scenarios. The
algorithm’s capacity to refine AHP decision-making, coupled with its integration into a
user-friendly mobile app, positions it as a valuable tool for nutritionists seeking to provide
personalized and evidence-based dietary recommendations.
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5. Limitations and Future Directions

While the PSO-SA hybrid algorithm shows promise in refining the AHP process
for personalized meal planning, it is not without limitations. One such limitation is
the potential for premature convergence on suboptimal solutions if the balance between
the PSO and SA components is not carefully managed. Additionally, the algorithm’s
performance is highly dependent on the parameter settings, which may require fine-tuning
for different use cases.

Another limitation is that the algorithm relies on user input to define dietary prefer-
ences, restrictions, and health goals. The accuracy and consistency of these inputs directly
impact the quality of the generated meal plans. Furthermore, the current implementation
focuses on meal planning for individuals with specific dietary needs, such as diabetes.
Further research is needed to explore its applicability to other populations and dietary
scenarios.

Future research should aim to address these limitations. This could involve investi-
gating alternative techniques to mitigate premature convergence and exploring adaptive
parameter tuning mechanisms to enhance the algorithm’s robustness across different con-
texts. Additionally, incorporating more comprehensive user data, such as individual genetic
predispositions or gut microbiome profiles, could further personalize meal-planning rec-
ommendations. Integrating real-time feedback mechanisms within the mobile app could
also enable dynamic adjustments to meal plans based on user experience and outcomes.

6. Discussion

Our research introduces the PSO-SA hybrid algorithm to optimize consistency in
AHP-based meal planning. This approach builds on previous efforts to enhance the AHP
method and streamline personalized nutrition through various techniques. Our hybrid
algorithm offers improvements in balancing global and local search optimization while
minimizing consistency ratios.

To demonstrate the advantages of the PSO-SA hybrid approach, we compared our
findings with existing studies, focusing on meal planning and consistency in decision-
making frameworks. Table 9 presents a summary of key aspects, including the study focus,
optimization techniques used, the prioritization of preferences, efforts to minimize the con-
sistency ratio, and the balance between global and local searches. This comparative analysis
highlights the comprehensive strengths of our PSO-SA hybrid algorithm, particularly its
ability to maintain both global and local search efficiency while ensuring consistency in
AHP-based decision-making processes.

Table 9. Comparison of studies on meal planning and AHP. The “6” indicates that the criterion is
addressed in the study, while “:” indicates that it is not addressed.

Study Focus
Optimization
Techniques

Preference
Priority

Minimize
Consistency

Ratio

Global and Local
Search Balance

Amiri et al. [10] Meal Planning

Reinforcement
Learning and
Collaborative

Filtering

6 : :

Othman et al. [12] Meal Planning Collaborative
Filtering 6 : :

Benítez et al. [6] AHP Matrix
Minimization : 6 :

Zadeh et al. [4] Meal Planning MCDM Approach 6 : :

Lin et al. [5] AHP Adaptive AHP : 6 :

PSO-SA Hybrid
Approach

Combination
(Meal Planning

and AHP)

PSO-SA Hybrid
Algorithm 6 6 6
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7. Conclusions

The AHP framework has proven valuable for structuring complex decision-making
processes like meal planning but maintaining consistency in pairwise comparisons becomes
increasingly challenging as the number of criteria and options grows. This inconsistency
can affect the quality of personalized meal plans, which must balance various factors such
as glycemic control, nutrient density, and individual preferences. Our research addresses
this challenge by integrating the PSO-SA hybrid algorithm into the AHP framework.

The PSO-SA hybrid algorithm plays a crucial role in resolving inconsistencies within
the AHP framework by automating the refinement process of pairwise comparison matrices.
This algorithm not only ensures that the final matrix aligns closely with expert judgment but
also incorporates individual preferences more accurately, creating a more personalized and
reliable meal-planning tool. In this way, the PSO-SA algorithm and the AHP framework
work together to enhance both the consistency and effectiveness of decision-making in
meal planning.

The different components of this work—AHP, PSO, and SA—are interconnected in that
the PSO-SA hybrid improves the traditional AHP method by addressing its limitations. The
introduction of heuristic optimization techniques allows for more accurate and consistent
decisions in meal planning, ensuring that nutritionists can create tailored meal plans
efficiently and effectively.

Moving forward, further development of this work could involve validating the
PSO-SA hybrid algorithm in real-world settings through clinical trials and user studies.
This will help assess its impact on adherence to dietary recommendations and client
satisfaction. Additionally, future research could explore integrating advanced machine
learning techniques to expand the algorithm’s capabilities, allowing it to account for a
wider range of factors in real time. Such developments could revolutionize personalized
meal planning, enabling nutritionists to generate meal plans that dynamically adapt to
individual health conditions and preferences.
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