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Abstract: Diabetes is a global epidemic with severe consequences for individuals and healthcare
systems. While early and personalized prediction can significantly improve outcomes, traditional
centralized prediction models suffer from privacy risks and limited data diversity. This paper
introduces a novel framework that integrates blockchain and federated learning to address these
challenges. Blockchain provides a secure, decentralized foundation for data management, access
control, and auditability. Federated learning enables model training on distributed datasets without
compromising patient privacy. This collaborative approach facilitates the development of more
robust and personalized diabetes prediction models, leveraging the combined data resources of
multiple healthcare institutions. We have performed extensive evaluation experiments and security
analyses. The results demonstrate good performance while significantly enhancing privacy and
security compared to centralized approaches. Our framework offers a promising solution for the
ethical and effective use of healthcare data in diabetes prediction.

Keywords: diabetes prediction; blockchain; federated learning; machine learning; personalized
healthcare

1. Introduction

Diabetes mellitus is a chronic disease reaching epidemic proportions worldwide. The
International Diabetes Federation estimates that over 530 million adults currently live with
diabetes, a figure projected to rise dramatically in the coming decades [1]. Uncontrolled
diabetes significantly increases the risk of blindness, kidney failure, heart disease, stroke,
and lower limb amputation, placing a tremendous burden on individuals, families, and
healthcare systems [2].

Early detection and intervention are crucial in mitigating the devastating complications
of diabetes [3]. Personalized prediction models have the potential to identify individuals at
high risk even before the onset of symptoms. This allows for proactive lifestyle modifica-
tions, targeted monitoring, and tailored treatment plans, ultimately leading to improved
health outcomes and reduced healthcare costs [4].

Traditional approaches to diabetes prediction often rely on centralized data reposi-
tories where vast amounts of patient information are aggregated [5]. While offering the
potential for large-scale analysis, these models pose significant challenges. Centralizing
sensitive patient data, including medical history, lab results, and lifestyle factors, creates a
single point of vulnerability [6]. Data breaches or unauthorized access can have devastating
consequences for individuals, leading to potential discrimination, insurance issues, and
the misuse of personal health information [7]. The movement of data across networks and
its storage in centralized databases further increases these risks [8]. Furthermore, central-
ized models often rely on datasets sourced from specific hospitals, healthcare systems, or
geographical regions. This can introduce biases that limit a model’s generalizability [9].
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Variations in demographics, environmental factors, and healthcare practices across differ-
ent populations may not be adequately represented. Consequently, these models might
underperform when applied to individuals or groups outside the original dataset’s scope.

These limitations raise ethical concerns about patient privacy and highlight the po-
tential for inaccurate or inequitable predictions generated by centralized approaches. The
risks of data breaches and the inherent biases within centralized datasets demand a more
secure and inclusive approach to diabetes prediction. Moreover, the sensitive nature of
healthcare data necessitates strict adherence to privacy regulations such as HIPAA [10] and
GDPR [11]. Navigating the complex landscape of data sharing and analysis while ensuring
compliance with these regulations presents a significant challenge.

Machine learning offers a powerful toolkit for diabetes prediction [12], with classic
algorithms such as support vector machines (SVM) [13] and random forests [14] widely
used due to their interpretability and ability to handle mixed data types. More recently,
deep learning with neural networks [15] has gained traction, particularly for analyzing
large, complex datasets and potentially extracting meaningful patterns from raw health
data. Some studies aim to tailor predictions to specific risk factors. For instance, research
might focus on the role of genetic markers [16], lifestyle factors, or specific demographic
groups for individualized risk assessment.

Research on the use of blockchain in healthcare has rapidly expanded in recent years,
demonstrating the technology’s potential to transform various aspects of the healthcare
landscape. A key area of focus is the secure storage of electronic health records (EHRs).
Blockchain’s decentralization offers resilience against data breaches, while its immutability
creates a verifiable audit trail of medical data, crucial for ensuring integrity [17]. Blockchain-
powered EHRs can empower patients with greater control over their data, allowing them
to grant granular access permissions to different healthcare providers, facilitating seamless
interoperability while protecting their privacy [18].

Moreover, blockchain enables patients to selectively share their health information,
supporting secure medical research and personalized care [19]. Smart contracts on the
blockchain streamline complex healthcare processes by automating data-sharing agree-
ments, payments, and various workflows [20]. Additionally, blockchain’s strengths in
tracking provenance are invaluable for ensuring the authenticity and quality control of
pharmaceuticals and medical devices, vital for combating counterfeiting and supply chain
inefficiencies [21].

Despite these benefits, research also highlights challenges that need to be addressed
for widespread blockchain adoption in healthcare. Scalability issues arise due to the need
to efficiently store and process large volumes of healthcare data [22]. While blockchain
offers enhanced security, healthcare data are subject to stringent privacy regulations like
HIPAA. Balancing the need for transparency and auditability on a public blockchain with
the requirement to protect patient confidentiality poses a significant challenge [23]. Privacy-
preserving techniques and encryption are being explored to address this issue.

To address the limitations of existing diabetes prediction models and bridge the gap
between data privacy, regulatory compliance, and collaborative model development, this
paper introduces a novel framework that synergistically integrates blockchain and federated
learning. While previous studies have explored the individual applications of blockchain
or federated learning in healthcare, our approach distinguishes itself by combining these
technologies in a cohesive manner to create a decentralized, secure, and privacy-preserving
environment for personalized diabetes prediction.

Furthermore, recognizing the scalability challenges that can arise in federated learning
with large-scale networks and massive datasets, our framework employs a decentralized
peer-to-peer (P2P) aggregation strategy to mitigate potential bottlenecks and enhance
efficiency.

e  Blockchain as the foundation: Blockchain technology provides a decentralized, im-
mutable, and transparent ledger for secure data management and access control.
Patient data can be registered on the blockchain, establishing ownership and en-



Biomedicines 2024, 12, 1916

30f20

abling fine-grained permissions for how the data can be used. Smart contracts on the
blockchain automate data-sharing agreements, ensuring compliance and facilitating
auditable transactions between healthcare institutions.

e Federated learning for privacy preservation: Federated learning allows machine
learning models to be trained on distributed datasets without requiring the movement
of sensitive patient data. Instead of sending data to a central server, local models
are trained on each institution’s dataset. Only model updates, such as gradients or
parameters, are exchanged, significantly reducing privacy risks.

e  Blockchain securing federated learning: Blockchain further strengthens federated
learning by addressing potential vulnerabilities. It provides a secure channel for model
updates, preventing tampering or interception. Additionally, blockchain enables the
verification of participating institutions and a transparent audit trail for model training,
ensuring trust and accountability within the collaborative network.

This collaborative approach, built on the twin pillars of blockchain and federated learn-
ing, enables more robust and personalized prediction models empowered by the combined
data resources of multiple healthcare institutions. By preserving privacy and allowing
for diverse data sources, the framework aims to overcome the bias and generalization
issues inherent in traditional centralized models. Furthermore, our work contributes to
the growing body of research exploring the intersection of blockchain, federated learning,
and decentralized technologies, with potential implications for areas such as secure data
sharing in edge computing and trust management in IoT environments.

2. Materials and Methods
2.1. System Overview

As shown in Figure 1, our proposed framework establishes a decentralized, privacy-
preserving environment for diabetes prediction using federated learning and blockchain
technologies. Key components include patients who generate health data, healthcare
providers who store and contribute data as nodes on the blockchain network, and the
federated learning model itself. A secure blockchain network, utilizing a consensus mech-
anism like Proof-of-Stake [24], manages data transactions and ensures integrity. Smart
contracts on the blockchain enforce data access permissions, automate model exchange,
and potentially manage incentives for participation.

Sensitive patient data remains securely stored within each healthcare provider’s
local repository. The federated learning model is initialized either on a central server or
collaboratively by participants. Local training occurs at each healthcare provider, using only
their own data. Encrypted model updates are shared with the blockchain network for secure
aggregation, creating an improved global model. The updated model is then distributed
for further local refinement. This iterative process emphasizes privacy throughout.

The blockchain provides several security features. It facilitates patient-controlled
consent management, preventing unauthorized data use. Smart contracts streamline
access verification based on these consents. Additionally, the blockchain authenticates
healthcare providers to prevent malicious participation. Its immutable ledger ensures
the auditability of all model exchanges and aggregations, aiding in anomaly detection.
Secure communication through the blockchain prevents data leakage during the federated
learning process.

To address the critical challenge of integrating our framework with diverse Electronic
Health Record (EHR) systems, we are leveraging our prior experience in utilizing ontologies
and knowledge graphs to achieve interoperability in healthcare data management [25-28].
By mapping disparate data formats and terminologies onto a standardized schema, we
aim to facilitate seamless data exchange and ensure consistent interpretation of healthcare
information across different institutions and systems. This approach will be crucial for
realizing the full potential of our collaborative framework in real-world healthcare settings.
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Figure 1. System framework.

2.2. Privacy Preservation

The foundation of privacy preservation lies in the federated learning model itself.
Patient data never leaves the healthcare provider’s local repository. Instead, the machine
learning model “travels" to the data for training. Each healthcare provider trains a local
copy of the model using their own dataset. This drastically reduces the risk of sensitive
data breaches or unauthorized exposure compared to centralized training.

While federated learning provides inherent privacy, additional encryption safeguards
are crucial. Sensitive model updates (gradients, weights) exchanged during the aggregation
process are encrypted before transmission. Employ strong encryption techniques (e.g.,
homomorphic encryption [29], secure multi-party computation [30]) to guarantee confi-
dentiality while allowing computations on the encrypted data. Homomorphic encryption
allows computations to be performed directly on encrypted data without the need for
decryption. In our framework, homomorphic encryption can be used to securely aggregate
model updates from different participants without revealing the individual updates. This
ensures that sensitive model information remains confidential even during the aggregation
process. Secure multi-party computation (MPC) enables multiple parties to jointly compute
a function over their inputs while keeping those inputs private. In our framework, MPC is
used to perform secure computations on encrypted model updates, ensuring that no single
party has access to the raw data or the intermediate results of the computation.

Beyond these technical safeguards, our framework is designed to align with the core
principles of data protection regulations such as HIPAA and GDPR. Patient-controlled
consent management, where individuals explicitly grant permission for their data to be
used, is a cornerstone of our approach. The blockchain’s immutable ledger ensures that
these consents are recorded transparently and cannot be altered without authorization,
thus empowering patients and fostering trust. Furthermore, we are actively exploring the
integration of data anonymization techniques to further enhance privacy. By removing or
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modifying personally identifiable information, we can minimize the risk of re-identification
while still preserving the utility of the data for model training and analysis.

The blockchain records granular, patient-generated consents as immutable transac-
tions. Smart contracts automatically enforce these consents before granting access to data
for model training, research, or other purposes. This puts patients in control and streamlines
the consent management process.

Every model exchange, aggregation, and data access request creates a permanent
record on the blockchain. This immutable ledger provides a powerful tool for auditing in
cases of anomalies or suspected misuse. Additionally, the audit trail can boost transparency
and trust in the collaborative system.

2.3. Secure Collaboration

Our framework leverages smart contracts on the blockchain to enable secure and
efficient collaboration among patients, healthcare providers, and researchers.

2.3.1. Automating Security and Trust

Smart contracts are pivotal in automating and enforcing collaboration agreements
among patients, healthcare providers, and researchers. These contracts codify essential
terms such as the purpose of data use, duration, compensation, and validation criteria
for model updates. By embedding these terms into immutable code, smart contracts
ensure adherence to agreed-upon rules, thereby enhancing trust and compliance within the
network.

A critical aspect of our smart contracts is the detailed access control mechanism they
provide. This system defines who can access patient data, under what conditions, and for
what specific purposes. By clearly outlining the roles of data producers (such as healthcare
providers) and data consumers (such as researchers or other medical professionals), our
framework ensures that only authorized parties can access sensitive health information.
This role-based access control is crucial for maintaining patient privacy and data security.

Moreover, smart contracts play a crucial role in automating compliance with regulatory
requirements. Data-sharing agreements, which outline the terms and conditions under
which patient data can be accessed and used, can be encoded directly into smart contracts.
This ensures that any data access or sharing activity is automatically executed in accordance
with the predefined rules and regulations, minimizing the risk of non-compliance. Similarly,
access control policies can be enforced through smart contracts, granting or revoking access
permissions based on predefined criteria and regulatory requirements. This automation not
only streamlines the compliance process but also enhances transparency and auditability,
as all data access activities are recorded on the blockchain.

The authentication of participants within the network is securely managed through
the Ethereum blockchain’s public-key infrastructure. This setup allows for the reliable
verification of user identities by matching a participant’s public key with a pre-approved list
of keys stored on the blockchain. Following authentication, the smart contracts handle the
authorization process, determining the access level of each participant based on their role
and the permissions granted to them. This two-step process ensures that sensitive health
data are accessed only by verified and authorized entities, thereby preventing unauthorized
access and potential data breaches.

To maintain active and continuous participation, our framework employs blockchain-
based incentives. By rewarding healthcare providers for their contributions to data sharing
and model training, we promote a collaborative spirit. Smart contracts facilitate the trans-
parent and fair distribution of these incentives, ensuring that every contributor is recognized
and compensated for their efforts.

We have designed and implemented a suite of smart contracts to manage various
aspects of the system. Here we list some important contracts:
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The ModelUpdate smart contract plays a central role in orchestrating the secure and
efficient aggregation of model updates from participating healthcare providers in our
federated learning framework. Its core responsibilities include:

e  Submission of Model Updates: Healthcare providers, acting as federated learning
clients, submit their locally trained model updates (e.g., gradients, weights) to the
ModelUpdate contract. These updates are encrypted to ensure data privacy during
transmission and storage on the blockchain.

e Authenticity Verification: The contract verifies the authenticity of each submitted
update using digital signatures. Each participating healthcare provider has a unique
cryptographic key pair, and the update is signed using their private key. The contract
then uses the provider’s public key to verify the signature, ensuring that the update
originated from an authorized participant.

e  Validation and Integrity Checks: Before accepting an update, the contract performs
various validation and integrity checks to ensure the quality and trustworthiness of
the submitted model. These checks may include:

(1) Data Validation: Verifying that the update adheres to the expected data format
and structure.

(2) Model Performance Metrics: Checking if the update meets certain performance
criteria or thresholds to prevent the inclusion of potentially harmful or inaccu-
rate models.

3) Dataset Verification: Ensuring that the update was trained on an authorized
and relevant dataset, preventing the inclusion of models trained on biased or
irrelevant data.

e  Secure Aggregation: Once the updates are validated, the contract employs secure
aggregation mechanisms to combine them into a new global model. This aggregation
process may utilize techniques such as:

(1) Federated Averaging: A simple and widely used approach that averages the
model updates from different participants, weighted by the size of their local
datasets.

2 Secure Multi-Party Computation (MPC): Enables the computation of the aggre-
gated model without revealing the individual updates, ensuring data privacy.

©)] Homomorphic Encryption: Allows computations to be performed directly on
encrypted data, further enhancing privacy during aggregation.

e  Consensus Mechanisms: The contract leverages the underlying blockchain’s consensus
mechanism (e.g., Proof-of-Stake) to ensure agreement among network participants
on the final aggregated model. This prevents malicious actors from manipulating the
model or introducing biased updates.

e Model Distribution: After successful aggregation, the updated global model is securely
distributed back to the participating healthcare providers, enabling them to continue
local training and further refine the model in subsequent iterations.

Data Access Control: The DataAccessControl contract manages patient consent and
data access permissions. It enforces fine-grained access control based on patient preferences
and regulatory requirements, ensuring that data are used only for authorized purposes.

Incentive contract: The Incentive contract handles the distribution of rewards to
healthcare providers for their contributions to data sharing and model training. It uses
transparent and auditable logic to calculate and distribute incentives fairly, promoting
active participation in the network.

These smart contracts are implemented using the Solidity programming language
and deployed on the Ethereum blockchain. We have carefully designed the contract logic
to be gas-efficient and secure, minimizing transaction costs and potential vulnerabilities.
Detailed examples of smart contracts can be found in Section 3.3.2. Blockchain Smart
Contract Evaluation with Use Cases.
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2.3.2. Enhancing Security in Federated Learning

In addition to fostering collaboration, our framework emphasizes the security of the
federated learning process, employing blockchain technology to protect data integrity and
participant privacy.

e  Model Authentication: Blockchain verifies the identities of healthcare providers par-
ticipating in federated learning, mitigating the risk of malicious actors or corrupted
model updates.

e  Secure Parameter Aggregation: Smart contracts provide a safe channel for model
update exchange and aggregation. Advanced techniques like secure multi-party
computation or homomorphic encryption can be integrated into the smart contract
logic to ensure the confidentiality of updates during aggregation.

e  Auditability and Quality Control: Storing model updates, metadata (e.g., hyperpa-
rameters, dataset origins), and aggregation outcomes on the blockchain creates an
immutable audit trail. This promotes transparency and facilitates the investigation
of anomalies. Smart contracts can enforce validation checks on model updates (for
accuracy, fairness, or adherence to agreed-upon datasets) before they are accepted into
the global model.

2.3.3. Empowering Patients with Data Sovereignty

The framework seamlessly integrates patient-generated health data from wearables
and personal devices. Blockchain technology empowers patients to directly contribute to
research with granular control over data permissions. Smart contracts ensure that patient
data are used solely in accordance with their preferences, driving personalized model
development.

2.4. Personalized Diabetes Prediction

In the development of our personalized diabetes prediction model, the choice of ma-
chine learning techniques plays a pivotal role and is largely dictated by the characteristics
of the data at hand. For instance, time series data such as continuous glucose monitoring
(CGM) readings or sequential health records necessitate models like Recurrent Neural
Networks (RNNs) [31] and Long Short-Term Memory Networks (LSTMs) [32], which are
adept at capturing temporal patterns and long-range dependencies, respectively. These
models are particularly useful for analyzing trends in glucose levels over time. For struc-
tured data, which includes demographics, lab results, and medication logs presented in
tabular form, models like Decision Trees [33] or Random Forests [34] are preferred for
their interpretability and ability to handle diverse data types. Support Vector Machines
(SVMs) [35] are another option, known for their efficacy in classification tasks and capability
to manage high-dimensional spaces, making them suitable for complex datasets. When
it comes to medical image analysis, such as identifying signs of diabetic retinopathy in
retinal scans, Convolutional Neural Networks (CNNs) [36] are the go-to choice. These deep
learning models are specifically designed for image processing, enabling them to extract
intricate features that are indicative of diabetes-related complications.

The federated learning process underpins the personalization aspect of the model.
Initially, a global model is either trained on a small, curated dataset that complies with pri-
vacy regulations or is collaboratively initialized by participants sharing secure parameters.
Subsequently, each healthcare provider enhances this global model with their local data,
contributing only encrypted model updates back to the network, thereby safeguarding
patient privacy.

The aggregation of these updates into a refined global model is managed through
smart contracts, ensuring a secure and verifiable process. These contracts not only receive
the encrypted updates but also oversee the execution of secure aggregation methods, like
federated averaging, to integrate the updates into an improved model. This model is then
redistributed to all participants for further local tuning, with the cycle of updates and
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aggregation continuing until the model converges or reaches a predetermined number of
iterations.

The strength of federated learning lies in its ability to learn from the vast and varied
data across multiple healthcare providers, enhancing the robustness of the global model.
This diversity enables the model to make more accurate predictions across different patient
demographics, treatment regimens, and risk factors. Moreover, the analysis of aggregated
model updates can uncover unique patient subgroups, offering insights into tailored
treatment approaches and contributing to more personalized diabetes care in the future.

2.5. Scalability Considerations

Blockchain networks, particularly public ones like Ethereum, face inherent scalability
challenges due to their decentralized nature and consensus mechanisms. These challenges
become especially critical in the context of healthcare applications, where the handling
of large datasets and the need for frequent transactions are commonplace. Ethereum'’s
limitations, such as high gas fees and limited transaction throughput, can significantly
impact the practicality and cost-effectiveness of any blockchain-based solution.

In our framework, we have taken a proactive approach to address these scalability
concerns through careful design choices and targeted technical implementations. One key
strategy involves leveraging the InterPlanetary File System (IPFS) for off-chain data storage.
IPFS, a decentralized and peer-to-peer file storage system, allows for efficient and secure
management of large datasets. In our implementation, we utilize IPFS to store sensitive
patient data and computationally intensive model updates, thereby reducing the burden
on the Ethereum blockchain. Only the corresponding hashes and essential metadata are
recorded on-chain, significantly decreasing the on-chain data footprint and transaction
volume, ultimately leading to improved scalability and reduced gas fees.

Furthermore, we have meticulously designed our smart contracts with a focus on gas
efficiency and minimizing unnecessary computations. This optimization involves utilizing
efficient data structures like mappings and arrays to streamline the storage and retrieval
of information within the contract, thus reducing storage costs and enhancing execution
speed. We have also employed optimized algorithms for critical functions such as data
validation, access control, and model aggregation, aiming to minimize gas consumption
during contract execution. Additionally, we have adopted a modular approach by breaking
down complex operations into smaller, reusable functions. This enhances code readability
and reduces the overall contract size, thereby lowering both deployment and execution
costs.

Crucially, our federated learning process employs a decentralized, peer-to-peer (P2P)
model aggregation strategy. This approach eliminates the reliance on a central server, which
can become a bottleneck in traditional federated learning implementations. By enabling
direct communication and aggregation of model updates among participating nodes, we
distribute the computational and communication load, enhancing the overall scalability
and fault tolerance of the system. This P2P approach also allows for parallel processing
of model updates, further improving efficiency as the number of participants and data
volume increase.

As will be further elaborated in the future work section, we are also committed to
exploring additional scalability-enhancing mechanisms, such as batching, aggregation, and
the adoption of alternative consensus mechanisms, to ensure our framework’s continued
adaptability and effectiveness in the face of evolving blockchain technologies and healthcare
data demands.

3. Results

Our study leverages a publicly available diabetes prediction dataset, which we deploy
on the Ethereum blockchain [37], to simulate realistic scenarios of data sharing and pre-
diction in a decentralized healthcare context. This approach allows us to not only explore
the practical applications of blockchain technology in managing sensitive health data but
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also rigorously evaluate the performance, privacy, and security aspects of our proposed
framework.

3.1. Experimental Setup
3.1.1. Blockchain Network

Platform: We utilized the Ethereum blockchain as the foundation for our decentralized
network due to its mature ecosystem, extensive developer tools, and support for smart
contracts.

Nodes: We simulated a network of five participating nodes, each representing a
healthcare provider or institution, to emulate a collaborative environment for data
sharing and model training.

Smart Contracts: We developed and deployed a suite of smart contracts on the
Ethereum blockchain using the Solidity programming language. These contracts
handle key functionalities such as user registration, authentication, data access control,
model update management, and incentive mechanisms.

Development Environment: The smart contracts were developed and tested using
the Remix Integrated Development Environment (IDE) [38], which provides a user-
friendly interface for interacting with and deploying smart contracts on the Ethereum
network.

3.1.2. Dataset

Source: We employed the publicly available diabetes prediction dataset [39], which
comprises medical and demographic data from patients along with their diabetes
status (positive or negative).

Data Partitioning: To simulate a distributed data scenario, we partitioned the dataset
into five distinct chunks, each assigned to a different node on the blockchain network.
This emulates the real-world situation where healthcare providers hold their own
portions of patient data.

Data Preprocessing: Prior to model training, we performed comprehensive data
preprocessing steps to ensure data quality and consistency:

(1) Missing Value Handling: Missing values were addressed using imputation
techniques [40] (e.g., mean/median replacement) or deletion based on the
extent and distribution of missingness.

2 Categorical Feature Encoding: Categorical features like gender and smoking
history were encoded using one-hot encoding [41] or ordinal encoding [42].

(3) Normalization and Scaling: Continuous features such as BMI and HbAlc levels
were normalized and scaled to enhance model stability and convergence.

4) Class Imbalance Handling: To address the class imbalance in the dataset (fewer
positive diabetes cases), we applied undersampling techniques [43] to create a
more balanced distribution.

3.1.3. Model Selection and Training

Algorithm: We chose the XGBoost algorithm [44] as our primary model due to its
proven effectiveness in handling structured healthcare data and its ability to manage
complex feature interactions.

Hyperparameter Optimization: We utilized Optuna [45], a hyperparameter opti-
mization framework, to fine-tune the XGBoost model and identify the most effective
combination of hyperparameters to maximize performance metrics, such as the F1
score.

3.2. Blockchain-Based Federated Learning Workflow

To replicate a real-world scenario of distributed healthcare data, we strategically

partition the diabetes dataset into chunks. Each chunk is then deployed to a distinct
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node within our blockchain network. This simulates a scenario where diverse healthcare
providers securely store their own portions of patient data.

Before initiating federated learning, we train a base global model using a small portion
of the dataset. This initial model serves as a common starting point for all participants in
the federated learning process. Each node on the blockchain network receives a copy of the
initialized global model. This marks the beginning of the federated learning process.

Each node, acting as a healthcare provider, fine-tunes the global model using the locally
stored chunk of the dataset. Importantly, only the model updates (gradients or parameters)
are shared with the blockchain, ensuring the raw patient data remains protected within
each node. The blockchain network uses the smart contract to securely aggregate the model
updates received from all nodes. The updated global model is distributed back to all nodes
in the network through a smart contract. These steps are repeated until the global model
achieves the desired performance level.

3.3. Evaluation Results
3.3.1. Federated Learning Model Performance

e  Metrics: We evaluated the performance of the federated learning model on an inde-
pendent test set using key metrics, including accuracy, precision, recall, and F1-score.

e Convergence: We observed that the accuracy, precision, recall, and Fl-score of the
individual client models improved over the training rounds, converging towards
stable and high performance after approximately four rounds (Figures 2-5).

e  Comparison with Centralized Learning: We also compared the communication over-
head of our federated learning approach with that of centralized learning, demonstrat-
ing a significant reduction in communication costs (Figure 6).

We initiated a global XGBoost model, distributing it to five participating clients for
training on their respective local datasets. The cornerstone of our federated learning
approach lies in aggregating these individually trained models back into a unified global
model. This aggregation is achieved by retraining the global model on a compilation of
predictions from each local model, effectively synthesizing diverse learnings into a cohesive
whole.

To refine and enhance the global model, we employed an iterative process of sending
the model back to each client for further training, followed by the aggregation step. This
cycle was repeated over 10 rounds, aiming to progressively improve the model’s predictive
performance. Upon completion, the federated learning model’s efficacy was rigorously
evaluated on an independent test set, focusing on accuracy, precision, recall, and F1-score
to assess its generalization capabilities.

As depicted in Figure 2, the accuracy of each client’s model improved over the training
rounds, converging towards a stable and high performance after approximately four rounds.
This demonstrates the effectiveness of the federated learning approach in collaboratively
enhancing the model’s ability to correctly classify instances of diabetes.
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Figure 2. Accuracy of individual client learners over time.
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Figure 3 illustrates the precision evolution across the training rounds. The precision of
each client improves as training progresses. This indicates the model’s increasing ability to
minimize false positive predictions.
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Figure 3. Precision of individual client learners over time.

In Figure 4, we observe a consistent upward trend in recall for each client, highlighting
the model’s enhanced ability to identify true positive cases and reduce the occurrence of
false negatives. The recall values largely converge after the fourth round.
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Figure 4. Recall of individual client learners over time.

The F1-score, a balanced metric combining precision and recall, showcases a steady
improvement across training rounds in Figure 5. Notably, the F1 scores for all clients reach
a stable point after the fourth round, reflecting the model’s growing capability to strike an
optimal balance between minimizing false positives and false negatives, ultimately leading
to a more robust and reliable diabetes prediction model.

F1

—t— client_1
== client_2
client_3
client_4
== client_5
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ROUND

Figure 5. Fl-score of individual client learners over time.
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In conclusion, our decentralized, federated learning approach successfully demon-
strates the potential of collaborative learning in enhancing the performance of diabetes
prediction models. The iterative training and aggregation process led to significant im-
provements in accuracy, precision, recall, and F1-score, with convergence observed after
approximately four rounds. This highlights the power of harnessing diverse data sources
while preserving privacy.

A significant advantage of federated learning over centralized approaches lies in its
dramatically reduced communication overhead. In centralized learning, the entirety of the
raw data from all clients must be transmitted to a central server for model training. This
process not only incurs substantial communication costs, especially when dealing with
large and complex datasets, but also raises significant privacy concerns as sensitive patient
information is exposed during transmission. In contrast, our federated learning framework
drastically minimizes communication overhead by only transmitting model parameters
or updates between the clients and the central server. These updates are typically much
smaller in size compared to the raw data, resulting in significantly reduced communication
requirements. This efficiency is particularly crucial in healthcare settings, where bandwidth
limitations and privacy regulations may pose challenges to data transfer.

Figure 6 visually illustrates the stark difference in communication overhead between
centralized and federated learning. The bar represents centralized learning towers over
those of federated learning, emphasizing the substantial communication savings achieved
by the latter. This reduction in communication not only improves the efficiency and
scalability of the training process but also enhances privacy by minimizing the exposure
of sensitive data during transmission. Furthermore, the decentralized nature of federated
learning eliminates the need for a single point of data collection, further mitigating the
risk of data breaches and unauthorized access. By keeping the data localized at each client,
our approach ensures that patient privacy is maintained while still enabling collaborative
model training.
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<
w
z 150,000
w
>
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> 50,000
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>
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< 0
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Figure 6. Communication overhead between centralized and federated learning.

In summary, the reduced communication overhead of federated learning, as clearly
demonstrated in Figure 6, makes it a highly attractive solution for privacy-conscious
and resource-constrained healthcare environments. By minimizing the amount of data
transmitted and avoiding the need for centralized data storage, our framework offers a
more efficient, secure, and scalable approach to diabetes prediction.

3.3.2. Blockchain Smart Contract Evaluation with Use Cases

We showcased the effectiveness of our smart contracts in enhancing data privacy and
security through a series of use cases, illustrating their functionalities for user registra-
tion, authentication, data access control, secure model aggregation, and malicious update
prevention (Figures 7-12).
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Our implementation of the Ethereum blockchain allowed us to rigorously assess how
smart contracts enhance data privacy and security within the healthcare system. We present
the following use cases, each illustrated with screenshots of smart contract execution results,
to demonstrate the effectiveness of our approach.

e  Data Owner Registration

Nora, a patient, has chosen to utilize our blockchain-based application for the secure
and decentralized management of her health records. By registering on the platform with
her Ethereum address (0x5B3....eddC4), Nora establishes a unique identifier that ensures all
her health data generated during hospital visits is securely stored and exclusively accessible
through the application.

[vm] from: ©@x5B3...eddC4

to:
° HealthDataAccessControl.registerDataOwner(address,string,uint256 Debug
,5tring) ©0xd91...39138
value: 0 wei data: @xaad...00000 logs: 1 hash: @xbc4...fa5Sel

status 0x1 Transaction mined and execution succeed

transaction hash

block hash

block number

from

to

gas

transaction cost

execution cost

input

decoded input

0xbcdccacobbd67fd82ea79e10d520309e650c988784408af2636a673d62dfa5e
1 @

Bx7b36ee76d7ef20413184277ef99c1e66chbac88ad@fd10e8bbab73565357acaa

0x5B38Daba701c568545dCfcBO3FcB875f56beddC4 (O

HealthDataAccessControl. registerDataOwner(address,string,uint256,

string) @xd9145CCE52D3861254917e481eB44e9943F39138 (O

186803 gas (€

162437 gas Q

139869 gas (O

Oxaad...00000 O

It
1

"address _userAddress":
"Ox5B38Da6a701c568545dCfcBO3FcB875f56beddC4",

"string _pame": "Nora",
"uint256 _age": “27",
"string _previousMedication": "Medicine M1"

Figure 7. A new patient (Data Owner) is registered.

e  Granting Access to Healthcare Providers

Nora wishes to grant her new healthcare provider, Dr. Alex (Ethereum address
0xADbS....35cb2), access to her health records. She registers Dr. Alex in the system and
assigns him the role of a healthcare practitioner (producer). Figure 8a,b demonstrate
the corresponding smart contract and the execution log. The smart contract successfully
registers Dr. Alex with the designated role and establishes a link between his Ethereum
address and Nora’s health data. The transaction receipt confirms the successful execution,
and the contract’s internal state reflects the granted access permissions. This ensures that
Dr. Alex can securely access and potentially contribute to Nora’s health data within the
platform.
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// Grant access to Healthcare Provider (Data Producer or Consumer)

function grantAccess(address _patientAddress, address _dataUserAddress) public { B infinite gas
require(users[_patientAddress].userAddress == _patientAddress, "Patient is not registered");
require(users[_dataUserAddress].userAddress == _dataUserAddress,
“Healthcare Provider is not registered");

patientToDataUserMapping[_patientAddress] [_dataUserAddress] = true;
emit AccessGranted(_patientAddress, _dataUserAddress, users|_dataUserAddress].role);

}

// Update a patient's medication by Health Provider (Data Producer only)

function updateMedication(address _patientAddress, string memory _newMedication) public { @ infinite gas
require(patientToDataUserMapping[_patientAddress] [msg.sender], “Unauthorized access!");
require(keccak256(bytes(users[msg.sender].role)) == keccak256(bytes{"producer")),
"Only an authorized Healthcare Provider (producer) can modify patient's medication if necessary");

patientInfos(_patientAddress].previousMedication = _newMedication
emit MedicationUpdated(_patientAddress, _newMedication);

(a) Smart contracts

logs

"from":
"@xaE@36c65C649172b43ef7156b009c6221B596B8b" ,
“"topic":
"@xc7e5¢807251689b9bc3cb624155714afc5988F3e3bde20ccbabobd
7bad6faeca"”,
"event": "AccessGranted"”,
"args": {
e
"@x5B38Da6a701c568545dC fcBO3FcB875f56beddC4",
i bk
"@xAb8483F64d9C6d1ECFIb849Ae677dD3315835¢ch2",
"2": "producer",
"patient":
"@x5B38Da6a701c568545dC fcBO3FcB875f56beddC4",
"datalUser":
"OxAb8483F64d9C6d1EcFI9b849Ae677dD3315835¢ch2",
“role": "producer"
}
}

(b) Transaction receipt

Figure 8. Data Owner (Nora) has granted her patient data access to Data Producer (Dr. Alex).

e  Revoking Access

Nora decides to revoke Dr. Alex’s access to her health records due to a change in
healthcare providers or privacy concerns. Utilizing the smart contract’s RevokeAccess()
function, Nora successfully removes Dr. Alex’s permissions to her health data. As shown
in Figure 9, the transaction receipt confirms the execution, and the contract’s internal state
is updated to reflect the revoked access. This ensures that Dr. Alex can no longer view or
modify Nora’s health information, upholding her control and autonomy over her personal

data.
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logs [
{
"from":
"@x3c725134d74D5c45B4E4ABd2e5e2a109b5541288",
"topic":

"'0x0a2382b7b0T44ee62df753c00034038c109332bT9b8152418a1742a2859780fb

"event": "AccessRevoked",
“args": {
e
""@x5B38Da6a701c568545dCfcB@3FcB875f56beddC4",
b e
"@xAb8483F64d9C6d1EcF9b849Ae677dD3315835¢ch2",

"2": "Access is Revoked! Patient Data
Access is no longer available",

"patient":
"'@x5B38Da6a7@1c568545dCfcBB3FcB875f56beddC4",

"datalUser":
"@xAb8483F64d9C6d1EcFIb849Ae677dD3315835¢cb2",

"message": "Access is Revoked! Patient Data
Access is no longer available"

+

Figure 9. Access has been revoked by the data owner.

e  Unauthorized Access Prevention

A malicious actor, not registered in the system (e.g., 0xdDS8. . ..92148), attempts to
gain unauthorized access to Nora’s health data or modify her medication records, such
as previous medication. The smart contract’s access control mechanism detects that the
requesting entity lacks the necessary permissions. The transaction is automatically denied,
returning a “false” state. Any attempted changes are reverted, ensuring the integrity
and confidentiality of Nora’s health information. This demonstrates the system’s robust
protection against unauthorized intrusion. Only if the actor gets authorized (then he must
be a producer) can he modify the patient’s (Nora) medication records.

logs [
{
“from":
"@x3c725134d74D5c45B4E4ABd2e5e2a109b5541288",
"topic":

"@x2deaf6517256c589e0fbad4cf08886099913c508f7831e73bac77c5bad75efcd

"
’

"event": "UnauthorizedAccessAttempt",
"args": {
"M
""@x5B38Daba701c568545dCfcBO3FcB875f56beddC4”,
et b
"@xdD870fA1b7C4700F2BD7f44238821C2617392148",
"2": "Unauthorized access is denied",
"patient":
"@x5B38Daba701c568545dC fcB@3FcB875f56beddCa™,
"dataUser":
"@xdD870fA1b7C4700F2BD7144238821C2617392148",
"message': "Unauthorized access is denied"

‘
'
1 0

Figure 10. Access from an unauthorized entity is denied.

e  Secure Model Aggregation of Federated Learning

Multiple authorized FL clients, such as hospitals and research centers, submit their
locally trained models to the blockchain. The smart contract verifies the authenticity and
integrity of each submitted model, ensuring that only updates from authorized participants
are included in the aggregation process. As shown in Figure 11, after several rounds of
secure aggregation, the global model’s accuracy reaches 86%. This demonstrates the smart
contract’s crucial role in maintaining the security and validity of the federated learning
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process, ultimately leading to a more accurate and reliable model without compromising
data privacy.

logs [
{
“from":
"@xe2899bddFD890e320e643044c6b9589B0b84157A",
“topic":
"@xe7a2879c2ee21458d292¢79a5119f1328d98e040d6fa
f29877f85f504ec36214",

"event": "ModelAggregated",
“args": {
"@": "AggregatedModel",
"3re NB8e",
‘aggregatedModel":
"AggregatedModel”
"updatedAccuracy": "86"

}
}

Figure 11. Local models are aggregated into global models.

e  Mitigating Malicious Model Updates of Federated Learning

In a simulated attack, a compromised FL client attempts to inject malicious model
updates into the federated learning process. The smart contract’s security mechanisms,
including data validation and integrity checks, successfully detect malicious updates. As
shown in Figure 12, a non-registered FL Client (0xdDS8. . ..92148) tried to submit a malicious
update. The smart contract rejects the particular model update and reverts the transaction
to the initial state since only registered participants can perform the model submission.
The contract rejects the submission and prevents the compromised model from influencing
the global model. This demonstrates the effectiveness of blockchain-based defenses in
maintaining the integrity and trustworthiness of the federated learning process, even in the
face of potential threats.

[vm] from: @xdD8...92148

° to: FederatedlLearning.submitUpdate(uint256,string) @xe28...4157A Debug
value: @ wei data: O@xeab...00000 Logs: @ hash: @xee5...bcBe2

transact to FederatedLearning.submitUpdate errored: Error occcurred: revert.

revert
The transaction has been reverted to the initial state.
Reason provided by the contract: "Only registered participants can perform this action.”.

Figure 12. Malicious model updates are avoided.

4. Discussion

Our study demonstrates the successful integration of blockchain technology and
federated learning (FL) for privacy-preserving diabetes prediction. By leveraging the
decentralized nature of blockchain and the collaborative learning capabilities of FL, we
achieved significant improvements in model performance while safeguarding sensitive
patient data. The key findings and interpretations are summarized as follows:

(1) Enhanced Model Performance: The federated learning approach, as evidenced by
the convergence of accuracy, precision, recall, and F1-score after just a few rounds
(Figures 2-5), demonstrates the power of collaborative learning from diverse data
sources. This suggests that the model can effectively generalize to new, unseen data,
making it a promising tool for real-world diabetes prediction.

(2) Robust Privacy and Security: The implementation of smart contracts on the Ethereum
blockchain ensured the secure management of patient data throughout the process.
The use cases illustrated the efficacy of access control mechanisms in preventing
unauthorized access and modification attempts (Figures 7-10). Additionally, the



Biomedicines 2024, 12, 1916

17 of 20

secure aggregation of local models in federated learning further reinforced data
privacy.

(3) Reduced Communication Overhead: The significant reduction in communication
overhead compared to centralized learning (Figure 6) not only improves efficiency but
also minimizes potential data breaches. This is particularly important in healthcare
settings, where privacy regulations and bandwidth limitations are critical considera-
tions.

Our blockchain-powered collaborative framework significantly enhances security
and privacy in diabetes prediction. By keeping patient data decentralized and utilizing
federated learning, we inherently minimize the risk of data breaches and unauthorized
access. Additionally, the integration of smart contracts on the Ethereum blockchain provides
robust defenses against various threats:

(1) Secure model sharing: Blockchain’s immutable ledger ensures a transparent and
tamper-proof record of model updates, safeguarding against unauthorized modifica-
tions.

(2) Malicious update prevention: Simulated attacks, such as the injection of malicious
model updates, were successfully thwarted by our smart contract’s data validation
and integrity checks.

(8) Access control: Smart contracts enforce strict authorization and access control, using
token-based mechanisms and Solidity modifiers to prevent unauthorized actions and
mitigate reentrancy attacks.

(4) Transparency and traceability: The blockchain ledger’s transparency enables the
tracking of all model updates and data access requests, ensuring auditability and
accountability.

(5) DoS mitigation: The Ethereum network’s gas fee requirement naturally limits the
number of requests a single source can make, effectively mitigating Denial of Service
(DoS) attacks.

(6) MITM and replay attack prevention: Token-based authentication with private/public
key verification secures communications within the network, preventing Man-in-the-
Middle (MITM) and replay attacks.

(7) Input validation and sanitization: Smart contracts rigorously validate and sanitize all
incoming data, including model updates and patient consent, to prevent malicious
data injection or manipulation.

(8) Anomaly detection: The blockchain’s immutable ledger and transparent transaction
history enable the implementation of anomaly detection mechanisms to identify and
address suspicious activities or potential security breaches.

(9) Blockchain-specific attack mitigation: We have considered potential blockchain-
specific attacks such as 51% attacks and double-spending. Our framework leverages
the security features of the underlying blockchain network and employs additional
safeguards within the smart contract logic to mitigate these risks.

These multifaceted security measures, combined with the inherent privacy advantages
of federated learning, establish our framework as a trustworthy and reliable solution for
diabetes prediction in the healthcare domain.

5. Conclusions

This study presents a novel framework that combines blockchain technology and
federated learning to address the critical challenges of privacy, security, and data diversity
in diabetes prediction. Our approach leverages the strengths of both technologies to
create a decentralized, secure, and collaborative environment for developing personalized
prediction models.

The evaluation results demonstrate the effectiveness of our framework in achieving
high predictive performance while preserving patient privacy. The federated learning
approach, with its iterative model training and aggregation, significantly improved model
accuracy, precision, recall, and F1 score. The smart contract-based system on the Ethereum
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blockchain ensured secure data management, access control, and model exchange, safe-
guarding sensitive patient information throughout the process.

Furthermore, our framework’s robust security measures, including data validation,
access controls, and blockchain-based authentication, effectively mitigated various potential
threats, such as unauthorized access, malicious model updates, and denial-of-service
attacks. The immutability and transparency of the blockchain ledger provided an additional
layer of trust and accountability, further enhancing the overall security of the system.

The successful implementation of our framework using a real-world diabetes dataset
showcases the practicality and potential impact of this approach in the healthcare domain.
By enabling secure and collaborative model training without compromising data privacy,
we pave the way for the development of more accurate and personalized diabetes prediction
models, ultimately leading to improved patient outcomes and healthcare delivery.

However, challenges such as scalability, integration with existing healthcare systems,
and evolving regulatory frameworks need to be addressed for the widespread adoption
of blockchain-based federated learning in healthcare. Future research should focus on
optimizing the scalability of blockchain networks, developing standardized data models
and ontologies, and establishing clear legal frameworks to ensure compliance with privacy
regulations and data protection laws.

In particular, we recognize the need to further enhance the scalability of our framework
to accommodate the growing volume of healthcare data and the increasing number of par-
ticipants in federated learning networks. Future work will investigate the implementation
of advanced scalability-enhancing mechanisms, such as:

e Batching and Aggregation: Combining multiple model updates or data transactions
into a single transaction to reduce the overall number of on-chain transactions and
associated gas fees.

e Alternative Consensus Mechanisms: Exploring consensus mechanisms like Proof-
of-Stake (PoS) or Delegated Proof-of-Stake (DPoS) that offer improved scalability
compared to Ethereum’s current Proof-of-Work (PoW) mechanism.

By addressing these challenges and incorporating these advancements, we aim to
create a truly scalable, secure, and privacy-preserving framework that can revolutionize
the way healthcare data are shared, analyzed, and utilized for personalized and preventive
care.

In conclusion, our proposed framework represents a significant step towards a more
secure, privacy-conscious, and collaborative future for healthcare data sharing and analysis.
By harnessing the power of blockchain and federated learning, we have demonstrated a
promising pathway for unlocking the full potential of healthcare data while upholding
ethical and regulatory standards, paving the way for a new era of personalized and
preventive healthcare.

Author Contributions: Conceptualization, Q.L. and J.L.; methodology, M.R.H. and J.L.; software,
M.R.H. and U.S,; validation, M.R.H., U.S. and ].L.; formal analysis, J.L.; investigation, M.R.H. and ].L.;
writing—original draft preparation, M.R.H. and Q.L.; writing—review and editing, ].L.; visualization,
M.R.H. and U.S,; supervision, J.L.; project administration, J.L.; funding acquisition, J.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Science Foundation (NSF) with award numbers
1722913 and 2218046.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The diabetes prediction dataset can be found at: https:/ /www.kaggle.
com/datasets /iammustafatz/diabetes-prediction-dataset/data (accessed on 20 August 2024).



Biomedicines 2024, 12, 1916 19 of 20

Acknowledgments: The authors would like to express their sincere gratitude to the anonymous
reviewers for their insightful comments and constructive suggestions, which have significantly
improved the quality and clarity of this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Diabetes Facts and Figures. International Diabetes Federation. Available online: https://idf.org/about-diabetes/diabetes-facts-
figures/ (accessed on 18 July 2024).

Diabetes. Division of Global Health Protection. Global Health. CDC. Available online: https://www.cdc.gov/globalhealth/
healthprotection/ncd/diabetes.html (accessed on 18 July 2024).

Herman, W.H.; Ye, W.; Griffin, S.J.; Simmons, R.K.; Davies, M.].; Khunti, K.; Rutten, G.E.H.M.; Sandbaek, A.; Lauritzen, T.;
Borch-Johnsen, K.; et al. Early Detection and Treatment of Type 2 Diabetes Reduce Cardiovascular Morbidity and Mortality: A
Simulation of the Results of the Anglo-Danish-Dutch Study of Intensive Treatment in People with Screen-Detected Diabetes in
Primary Care (ADDITION-Europe). Diabetes Care 2015, 38, 1449-1455. [CrossRef] [PubMed]

Dennis, ].M. Precision Medicine in Type 2 Diabetes: Using Individualized Prediction Models to Optimize Selection of Treatment.
Diabetes 2020, 69, 2075-2085. [CrossRef]

Hulsen, T.; Jamuar, S.S.; Moody, A.R.; Karnes, ]. H.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.A.; McKinney, E.F. From Big
Data to Precision Medicine. Front. Med. 2019, 6, 34. [CrossRef]

Thapa, C.; Camtepe, S. Precision Health Data: Requirements, Challenges and Existing Techniques for Data Security and Privacy.
Comput. Biol. Med. 2021, 129, 104130. [CrossRef]

Cushman, R.; Froomkin, M.; Cava, A.; Abril, P.; Goodman, K.W. Ethical, Legal and Social Issues for Personal Health Records and
Applications. J. Biomed. Inform. 2010, 43, S51-S55. [CrossRef]

Anand, D.; Khemchandani, V. Data Security and Privacy Functions in Fog Computing for Healthcare 4.0. In Studies in Big Data;
Springer: Cham, Switzerland, 2020; Volume 76, pp. 387—420. [CrossRef]

Huang, W.; Ye, M,; Shi, Z.; Wan, G.; Li, H,; Du, B.; Yang, Q. Federated learning for generalization, robustness, fairness: A survey
and benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 1-20.

HIPAA Home. HHS.Gov. Available online: https:/ /www.hhs.gov/hipaa/index.html (accessed on 15 August 2024).

General Data Protection Regulation (GDPR)—Legal Text. Available online: https://gdpr-info.eu/ (accessed on 15 August 2024).
Sisodia, D.; Sisodia, D.S. Prediction of Diabetes Using Classification Algorithms. Procedia Comput. Sci. 2018, 132, 1578-1585.
Santhanam, T.; Padmavathi, M.S. Application of K-Means and Genetic Algorithms for Dimension Reduction by Integrating SVM
for Diabetes Diagnosis. Procedia Comput. Sci. 2015, 47, 76-83. [CrossRef]

Maniruzzaman, M.; Kumar, N.; Menhazul Abedin, M.; Shaykhul Islam, M.; Suri, H.S.; El-Baz, A.S.; Suri, ].S. Comparative
Approaches for Classification of Diabetes Mellitus Data: Machine Learning Paradigm. Comput. Methods Programs Biomed. 2017,
152,23-34. [CrossRef]

Yasashvini, R.; Raja Sarobin, M.V,; Panjanathan, R.; Graceline Jasmine, S.; Jani Anbarasi, L. Diabetic Retinopathy Classification
Using CNN and Hybrid Deep Convolutional Neural Networks. Symmetry 2022, 14, 1932. [CrossRef]

Mohsen, F.; Al-Absi, H.R.H.; Yousri, N.A.; El Hajj, N.; Shah, Z. A Scoping Review of Artificial Intelligence-Based Methods for
Diabetes Risk Prediction. Npj Digit. Med. 2023, 6, 197. [CrossRef] [PubMed]

Dubovitskaya, A.; Baig, F; Xu, Z.; Shukla, R.; Zambani, P.S.; Swaminathan, A.; Jahangir, M.M.; Chowdhry, K.; Lachhani, R,;
Idnani, N.; et al. ACTION-EHR: Patient-Centric Blockchain-Based Electronic Health Record Data Management for Cancer Care. J.
Med. Internet Res. 2020, 22, €13598. [CrossRef] [PubMed]

Al Mamun, A.; Azam, S.; Gritti, C. Blockchain-Based Electronic Health Records Management: A Comprehensive Review and
Future Research Direction. IEEE Access 2022, 10, 5768-5789. [CrossRef]

Mettler, M. Blockchain Technology in Healthcare: The Revolution Starts Here. In Proceedings of the 2016 IEEE 18th International
Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14-16 September 2016; pp. 1-3.
[CrossRef]

Mayer, A.H.; da Costa, C.A.; Righi, R.d.R. Electronic Health Records in a Blockchain: A Systematic Review. Health Inform. J. 2020,
26,1273-1288. [CrossRef]

Ghadge, A.; Bourlakis, M.; Kamble, S.; Seuring, S. Blockchain Implementation in Pharmaceutical Supply Chains: A Review and
Conceptual Framework. Int. J. Prod. Res. 2023, 61, 6633-6651. [CrossRef]

Mazlan, A.A.; Daud, S.M.; Sam, S.M.; Abas, H.; Rasid, S.Z.A.; Yusof, M.F. Scalability Challenges in Healthcare Blockchain
System-A Systematic Review. IEEE Access 2020, 8, 23663-23673. [CrossRef]

Benaich, R.; El Mendili, S.; Gahi, Y. Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting
Electronic Health Records. HighTech Innov. J. 2023, 4, 630-652. [CrossRef]

Gazi, P; Kiayias, A.; Zindros, D. Proof-of-Stake Sidechains. In Proceedings of the 2019 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 19-23 May 2019; pp. 139-156. [CrossRef]

Sarani Rad, F.; Hendawi, R.; Yang, X.; Li, ]. Personalized Diabetes Management with Digital Twins: A Patient-Centric Knowledge
Graph Approach. J. Pers. Med. 2024, 14, 359. [CrossRef] [PubMed]



Biomedicines 2024, 12, 1916 20 of 20

26.

27.

28.

29.

30.

31.
32.

33.
34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

Hendawi, R.; Li, J. Comprehensive Personal Health Knowledge Graph for Effective Management and Utilization of Personal
Health Data. In Proceedings of the 2024 IEEE 1st International Conference on Artificial Intelligence for Medicine, Health and
Care, AIMHC 2024, Laguna Hills, CA, USA, 5-7 February 2024; pp. 92-100. [CrossRef]

Pandey, V.; Li, J.; Alian, S. Evaluation and Evolution of NAOnto—An Ontology for Personalized Diabetes Management for Native
Americans. In Proceedings of the 7th International Conference on Computer and Communications, ICCC 2021, Chengdu, China,
10-13 December 2021; pp. 1635-1641. [CrossRef]

Hendawi, R.; Alian, S.; Li, J. Breaking Down Barriers: Empowering Diabetes Patients with User-Friendly Medical Explanations.
In Proceedings of the the 15th IEEE International Conference on Information and Communication Systems (ICICS 2024), Irbid,
Jordan, 13-15 August 2024.

Yi, X.; Paulet, R.; Bertino, E. Homomorphic Encryption; SpringerBriefs in Computer Science; Springer: Cham, Switzerland, 2014;
pp. 27-46. [CrossRef]

Knott, B.; Venkataraman, S.; Hannun, A.; Sengupta, S.; Ibrahim, M.; van der Maaten, L. CrypTen: Secure Multi-Party Computation
Meets Machine Learning. Adv. Neural Inf. Process Syst. 2021, 34, 4961-4973.

Schmidt, R.M. Recurrent Neural Networks (RNNs): A Gentle Introduction and Overview. arXiv 2019, arXiv:1912.05911.
Fischer, T.; Krauss, C. Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. Eur. . Oper. Res.
2018, 270, 654-669.

Kotsiantis, S.B. Decision Trees: A Recent Overview. Artif. Intell. Rev. 2013, 39, 261-283. [CrossRef]

Cutler, A.; Cutler, D.R;; Stevens, ].R. Random Forests. In Ensemble Machine Learning, 2nd ed.; Zhang, C., Ma, Y.Q., Eds.; Springer:
New York, NY, USA, 2012; pp. 157-175. [CrossRef]

Huang, S.; Nianguang, C.A.L; Penzuti Pacheco, P.; Narandes, S.; Wang, Y.; Wayne, X.U. Applications of Support Vector Machine
(SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41. [CrossRef]

Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing.
ISPRS ]. Photogramm. Remote Sens. 2021, 173, 24—49. [CrossRef]

17th International Symposium on INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 21-23 March 2018;
pp. 1-6. [CrossRef]

Remix—Ethereum IDE & Community. Available online: https://remix-project.org/?lang=en (accessed on 18 July 2024).
Diabetes Prediction Dataset. Available online: https:/ /www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/
data (accessed on 18 July 2024).

Zhang, Z. Missing Data Imputation: Focusing on Single Imputation. Ann. Transl. Med. 2016, 4, 9. [CrossRef]

Seger, C. An Investigation of Categorical Variable Encoding Techniques in Machine Learning: Binary versus One-Hot and Feature
Hashing. Bachelor’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2018.

Sadyr, J.; Mukherjee, S.; Thoresz, K.; Sinha, P. The Fidelity of Local Ordinal Encoding. Adv. Neural Inf. Process Syst. 2001, 14, 1-8.
Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine Learning with Oversampling and Undersampling Techniques: Overview
Study and Experimental Results. In Proceedings of the 11th International Conference on Information and Communication
Systems (ICICS), Irbid, Jordan, 7-9 April 2020; pp. 243-248. [CrossRef]

Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13-17 August 2016; pp. 785-794. [CrossRef]

Akiba, T,; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2019, Anchorage, AK,
USA, 4-8 August 2019; pp. 2623-2631. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction 
	Materials and Methods 
	System Overview 
	Privacy Preservation 
	Secure Collaboration 
	Automating Security and Trust 
	Enhancing Security in Federated Learning 
	Empowering Patients with Data Sovereignty 

	Personalized Diabetes Prediction 
	Scalability Considerations 

	Results 
	Experimental Setup 
	Blockchain Network 
	Dataset 
	Model Selection and Training 

	Blockchain-Based Federated Learning Workflow 
	Evaluation Results 
	Federated Learning Model Performance 
	Blockchain Smart Contract Evaluation with Use Cases 


	Discussion 
	Conclusions 
	References

