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Abstract
Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the
control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors
(i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not
realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that
considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization
problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are
selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a
trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address
this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse
reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with
the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory
is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less
than 1m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel
consumption.
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Traditional urban traffic control is mainly conducted
from the infrastructure side, such as by traffic signals,
which assign green and red phases to different vehicle
movements. Human drivers follow the signal indicators
and control their vehicles’ maneuvers. With connected
and automated vehicle (CAV) technology, not only traf-
fic signals but also the CAV trajectories can be con-
trolled, in either a centralized or a decentralized manner,
to further improve the efficiency of the intersection oper-
ations. CAV trajectory planning is a critical problem in
this new control paradigm and is applied to different sce-
narios, from mixed traffic conditions with human-driven
vehicles (HDVs) (1, 2) to autonomous intersection man-
agement (AIM) (3) in a full CAV environment. Full tra-
jectory planning includes two dimensions: longitudinal
(e.g., in-lane driving) and lateral (e.g., lane changing).
Although lane changing is an essential maneuver in many
driving scenarios, most existing studies only plan

longitudinal speed/acceleration without considering lane
changing (4, 5) or they model the lane changing in a sim-
plified way, assuming the maneuver is done instanta-
neously without explicitly modeling the vehicle trajectory
during lane changing (6). This simplification may result
in unrealistic trajectories which cannot be executed at the
vehicle level. In addition, it may also affect the following
vehicle in the target lane. Inaccurate prediction of the
behavior of a cut-in vehicle (i.e., the lane changing vehi-
cle) may cause safety issues. Therefore, the lateral maneu-
ver of lane changing should be coupled with longitudinal
speed in the planning process to generate more realistic
vehicle trajectories.
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The applications of imitation learning (7, 8) have been
fruitful in recent years. Imitation learning aims to mimic
human behaviors in a given task, such as CAV trajec-
tory planning. There are several benefits to planning
human-like CAV trajectories. First, human driving
behaviors are natural baselines for CAVs. Second,
human-like CAV trajectories are less disruptive in the
mixed traffic condition with HDVs. For example, some
existing studies proposed end-to-end learning models
(9, 10) to imitate human driving behaviors. Third,
unlike other hierarchical trajectory planning models,
which need to decide the lane changing time (or posi-
tion) on the upper level (11), imitation learning inte-
grates the car-following and lane changing maneuvers
into a full trajectory planning model. Finally, com-
pared with other deep learning based models (12) which
aim to derive the optimal policy, the main objective of
imitation learning is to obtain the cost function, which
requires much fewer data (i.e., demonstrations) and less
time. With the learned cost function, an optimization
problem can be formulated to generate smooth and
safe human-like trajectories as well as to predict the
trajectories of surrounding vehicles.

In this paper, such a full trajectory planning model
based on imitation learning is proposed. This work can
be briefly summarized as follows. The vehicle trajectory
planning is modeled as an optimization problem with
specifically designed features in the cost function repre-
senting safety, efficiency, and comfort. Maximum
entropy inverse reinforcement learning (IRL) is then
applied to obtain the weight vector of the cost function
based on the training dataset, which includes both in-
lane driving and lane changing scenarios. With the para-
meters learned from the IRL and a given initial state,
optimal trajectories are generated by solving the optimi-
zation problem. In the case study, the Next Generation
Simulation (NGSIM) Lankershim Boulevard Dataset
(13) is applied to evaluate the proposed model. Results
show that the generated trajectories are very close to the
ground truth trajectories. In addition, the safety perfor-
mance in relation to critical gaps and fuel consumption
of the generated trajectories are investigated.

The main contributions of the paper are listed as
follows:

1. A trajectory planning framework is proposed that
can generate human-like trajectories, including
the vehicle speed, acceleration, and heading angle
at each timestep with given origin, destination,
and arrival time. The model can be easily inte-
grated with either vehicle level control or intersec-
tion traffic control.

2. A cost function is designed for the IRL that inte-
grates both in-lane and lane changing scenarios

with consideration of road geometry, which
makes up most of the driving scenarios in a road
segment.

3. The real-world NGSIM dataset is applied for
evaluation. The proposed model can generate tra-
jectories that are very close to human driving
behaviors with sufficient safety gaps and compa-
rable energy consumption.

4. The proposed trajectory generation model can
also be used to model car-following and lane
changing behaviors in microscopic traffic
simulation.

The remainder of the paper is arranged as follows.
The next section reviews related literature on CAV tra-
jectory planning. The third section introduces the meth-
odologies including the overall framework, trajectory
generation optimization problem, feature selection, and
the IRL model. The evaluation results from the NGSIM
dataset are presented in the fourth section. The final sec-
tion concludes the work, relates the proposed work to
urban traffic control, and lays out future research
directions.

Literature Review

Vehicle trajectory planning has been widely studied in
the literature. The problem can be generally divided into
two categories: in-lane driving (i.e., car following) and
lane changing. In past decades, numerous in-lane driving
models for HDVs, CAVs, and mixed traffic flow have
been proposed. Interested readers can refer to
Mahmassani (14) and Zhou et al. (15) for a comprehen-
sive review. For lane changing models, many earlier
methods only model the lane changing decision point
(whether and when to change lanes) without considering
the detailed changing process (16–18). Recently, some
studies have proposed to model the detailed lane chang-
ing process for CAV trajectory planning. For example,
Zhang et al. (19) proposed a dynamic trajectory planning
method, in which vehicle maneuvers are decomposed
into lane changing and lane keeping maneuvers, or a
combination of both. Vehicle state is estimated given the
current coordinates and heading within a short time
interval. Yang et al. (11) proposed a dynamic lane chang-
ing trajectory planning model. The lane changing point
was determined first and a cubic polynomial curve was
then applied to generate the lane changing trajectory.
The parameters of the curve are a function of vehicle
heading angle and the final coordinate of the trajectory.
Luo et al. (20) formulated the trajectory planning prob-
lem as an optimization problem with safety and comfort
constraints. Trajectory length and lane change time were
determined by the optimization function. All the above
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methods consider lane changing as a separate process
and need to determine the lane changing start time first.
A few recent studies tried to combine the car-following
and lane changing behaviors and formulated integrated
optimization problems to determine both longitudinal
speed and lane assignment simultaneously (21, 22).
However, these studies usually model lane changing as a
binary or integer variable by assuming that the lane
changing process can be completed in one time step.

Trajectory planning is a challenging task for CAVs, as
it involves multiple objectives such as safety, efficiency,
and comfort. The abovementioned car-following and lane
changing methods can only be applied to simplified road-
way conditions (e.g., a straight road without curvature)
because detailed vehicle dynamics and road geometries
are not considered. To plan more realistic trajectories that
can be directly applied at the vehicle control level, IRL
has been widely applied in recent years. With a specifi-
cally designed reward function, IRL can mimic different
driving policies and can handle varying roadway condi-
tions and driving scenarios such as curved roads and lane
changing and merging maneuvers. Naumann et al. (23)
explored the forms of the cost function for different tra-
jectory planning scenarios such as car-following, merging,
and lane changing. Separate cost functions for each sce-
nario were proposed and parameters of the cost function
were obtained using maximum entropy IRL. Andersen
et al. (24) focused on in-lane driving scenarios. Their pro-
posed model could overtake static obstacles in the urban
environment. However, the proposed method could only
guide the vehicle to make small lateral changes within the
lane. Wang et al. (6) separated the trajectory planning
problem into longitudinal and lateral decisions. The long-
itudinal control calculates the gap of the surrounding
vehicle and selects a gap to move to in each time step.
The lateral control decides whether to maintain the cur-
rent lane or move to the target lane. A vehicle is assumed
to move to the target gap instantaneously once the deci-
sion has been made. Best et al. (25) presented a naviga-
tion algorithm for autonomous vehicles. The approach
can guarantee vehicle safety while changing lanes. The
safety of the lane changing maneuver is guaranteed by
penalizing the vehicle if it is in the wrong lane. Kuderer
et al. (7) applied maximum entropy IRL to learn different
driving styles from demonstrations. The proposed model
can be applied to both in-lane driving and lane changing
behavior. However, the proposed model is not an end-to-
end learning model. The trajectory planning process is
divided into small time segments. Vehicle initial state and
environmental parameters need to be updated for each
planning segment. Sharifzadeh et al. (26) combined
projection-based IRL and Deep Q-Networks to generate
vehicle trajectories. The proposed method is computa-
tionally inefficient.

Methodology

Problem Statement

The overall flow of the trajectory planning problem is
illustrated in Figure 1. First, a cost function ( f ) is con-
structed that consists of features representing different
aspects of driving behaviors. A training dataset (D)
which includes demonstration trajectories is collected
and processed. The maximum entropy IRL method is
then applied to learn the weight vector u of the cost func-
tion. After obtaining the cost function, the trajectory
generation model is formulated as an optimization prob-
lem. Given initial state and driving environment para-
meters (u), final trajectories can be generated by solving
the optimization problem. In the following, the trajec-
tory generation optimization problem is first introduced,
followed by feature selection in the cost function, then
how IRL is used to obtain the optimal weight vector.

The trajectory generation problem is shown in
Equation 1. The cost function is presented as uT f s, uð Þ,
where u is the weight vector and s is the set of trajectory
points. s ¼ ðs1; s2; . . . ; sN Þ, where si is the trajectory point
at timestep i and N is the length of the whole trajectory.
Each trajectory point si is a vector consisting of five vari-
ables: vi; ai; xi; yi;ji, where vi is the ego vehicle speed at
timestep i; ai is the acceleration at timestep i; xi; yi is the
longitudinal and lateral coordinate respectively at time-
step i; and ji is the vehicle heading angle at timestep i. u
represents the vehicle’s initial state and driving environ-
ment parameters. The vehicle’s initial state includes the
initial vehicle speed and acceleration and heading angle,
and its initial and terminal position. The driving environ-
ment parameters include position of the leading vehicle,
speed limit of the road segment, road geometry in rela-
tion to lane heading, and position of leading and

Figure 1. Trajectory planning framework.
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following vehicles in the target lane for the lane changing
scenario. Feature selection for the objective function and
the constraints will be introduced in the following
section.

minimizesu
T f s; uð Þ ð1Þ

s.t
vehicle dynamics constraints

Cost Function

The cost function consists of a linear combination of
driving features. Different features represent different
objectives in trajectory planning. In total, 10 features are
included that reflect three main objectives: safety, effi-
ciency, and comfort. The combination of all features
including their associated weights defines a driving pol-
icy. By minimizing the weighted cost function, the aim is
to balance safety, efficiency, and comfort. The proposed
features are generic and can be applied to both in-lane
driving and lane changing scenarios. For the in-lane driv-
ing behavior, the vehicle either follows a leading vehicle
or drives in free flow. For the lane changing behavior,
the vehicle changes to an adjacent lane and keeps safe
distances from surrounding vehicles. The necessity of
lane changing in trajectory planning is determined by the
initial and terminal positions of the vehicle. If the initial
and terminal positions are in the same lane, an in-lane
trajectory will be planned. If they are located in different
lanes, then a trajectory that consists of the lane changing
maneuver will be planned. The terminal position can be
obtained from a high-level trajectory planning module
(e.g., path planning) of the CAV. It can also come from
the infrastructure in a cooperative driving automation
environment. For example, the infrastructure provides
high-level guidance for CAV as to arrival time and lane
assignment, from which the terminal point can be
obtained. Note that this study does not consider the cir-
cumstances in which the vehicle changes multiple lanes
in one trajectory planning period. If such a maneuver is
needed, multiple trajectory planning will be conducted.
The three selected features in the cost function are elabo-
rated below.

Comfort Cost.

1. Acceleration: f1 ¼ 1
N

P
i
jaij
amax

, where amax is the max-

imum acceleration the vehicle can achieve. f1 sums
up jaij of the whole trajectory. By minimizing the
total acceleration, uncomfortable motions are
penalized, with potential for reduced fuel con-
sumption and emissions.

2. Jerk: f2 ¼ 1
N�1

P
i jai+ 1 � aij. f2 is introduced to

prevent large acceleration changes.

3. Yaw rate: f3 ¼ 1
N�1

P
i jji+ 1 � jij. The difference

between two consecutive heading angles is mini-
mized to keep the curve smooth.

Safety Cost.

1. Safety distance to the leading vehicle in the
same lane: f4 ¼ jdi;des � di;actjmi ¼ jdmin+ theadwayvi
�di;actjmi. f4 measures the difference between the
desired space headway and the actual space head-
way. mi is an indicator variable that measures the
existence of the leading vehicle. mi ¼ 0 if there is
no leading vehicle and mi =1 otherwise. dmin is
the desired minimum distance, vi is the vehicle
speed at timestep i, theadway is a time constant
which represents the driver’s reaction time in the
car-following model. In this research, dmin= 7m
and theadway=1.5 s.

2. Distance to the leading vehicle in the target lane:

f5 ¼ 1
N

P
i

1
a+ jxi�xi;front jjyi � yi;frontjlpi. f5 measures

the longitudinal distance between the ego vehicle
and the leading vehicle in the target lane during
the lane changing process. ( xi; yiÞ is the coordi-
nate of the ego vehicle, ( xi;front; yi;frontÞ is the coor-
dinate of the leading vehicle in the target lane.
This feature only influences the trajectory plan-
ning during the lane changing process. l is a bin-
ary parameter, which equals 1 when the vehicle
needs to change its lane during the trajectory
planning process, and 0 otherwise. Note that the
value of l is determined by the initial and terminal
positions of the trajectory planning process. pi is
another binary parameter, which equals 1 if there
is a leading vehicle in the target lane at timestep i,
and 0 otherwise. After the lane changing is com-
plete, jyi � yi;frontj will be close to zero. Therefore,

this feature will not influence the remaining time
steps in the trajectory planning.

3. Distance to the following vehicle in the target

lane: f6 ¼ 1
N

P
i

1
a+ jxi�xi;followjjyi � yi;followjlmi:f6 mea-

sures the longitudinal distance between the ego
vehicle and the following vehicle in the target lane
during the lane changing process. Similarly, mi is
a binary parameter, which equals 1 if there is a
following vehicle in the target lane at timestep i,
and 0 otherwise. f5 and f6 guarantee the safety
distances to vehicles in the target lane during the
lane changing process.

4. Road geometry: f7 ¼ 1
N

P
i jji � jr

i j. f7 measures

the difference between the vehicle heading and
road heading. jr

i is the road heading at timestep

i. This feature guarantees the vehicle’s heading to
be consistent with road orientation.
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Efficiency Cost.

1. Speed limit: f8 ¼ 1
N

P
i
jvi�vlimj

vlim
, where vlim is the

speed limit of the road. f8 represents the efficiency
of trajectory planning. The vehicle’s speed is
expected to be close to the speed limit of the road
segment.

2. Longitudinal terminal position: f9 ¼ jxN � xterj,
where xN is the longitudinal coordinate of the
vehicle at the end of the planning horizon and xter
is the longitudinal position of the terminal point.

3. Lateral terminal point: f10 ¼ jyN � yterj, where yN
is the lateral coordinate of the vehicle at the end
of the planning horizon, and xter is the lateral
position of the terminal point. f9 and f10 push the
vehicle to reach the desired coordinate at the end
of the planning time.

Vehicle Dynamic Constraints

The vehicle dynamic constraints represent the kinematics
of vehicle motion, shown in Equations 2–4. Vehicles are
considered as mass points and parameters such as vehicle
length and vehicle width are ignored. The constraints
include the evolution of the vehicle’s position, speed, and
heading angle.

x t+ 1ð Þ ¼ x tð Þ+ vcosðj tð ÞÞt ð2Þ
y t+ 1ð Þ ¼ y tð Þ+ vsinðj tð ÞÞt ð3Þ

v t+ 1ð Þ ¼ v tð Þ+ ta tð Þ ð4Þ

In addition, the boundaries of the vehicle’s kinematic
parameters are considered in Equations 5–9.

� płj tð Þłp ð5Þ
� 3ł a tð Þł 3 ð6Þ

� 0:1ł a t+ 1ð Þ � a tð Þł 0:1 ð7Þ
� 0:2łj t+ 1ð Þ � j tð Þł 0:2 ð8Þ
� 0:15łj tð Þ � jr tð Þł 0:15 ð9Þ

Equation 5 limits the vehicle’s heading angle within
the range �p;pð Þ:Equation 6 constrains the maximum
acceleration and deceleration to be less than 3m/s2,
Equation 7 demonstrates that the jerk in the trajectory
planning process should be less than 0.1m/s3. Equation
8 sets constraints of the vehicle’s heading angle change
rate. Equation 9 limits the difference between the vehi-
cle’s heading angle and the road heading.

IRL

After designing all the features, the next step is to deter-
mine the associated weight vector (i.e., u). Maximum

entropy IRL, a specific method in imitation learning, is
applied to obtain the weight vector of the cost function.
The IRL process is briefly reviewed below, more details
can be found in Ziebart et al. (8).

First, a set of demonstration trajectories (i.e., D) are
needed as the training dataset. Each demonstration
includes the trajectory trace of the ego vehicle and the
associated driving environment parameters. The feature
vector fiði ¼ 1; 2; . . . ; 10Þ proposed above captures the
trajectory characteristics and maps them to real values
with the weight vector. The empirical feature vector of
the demonstration trajectories can then be represented as

~f ¼ 1
N

PN
d¼1 f esdð Þ; d 2 D ð10Þ

where esd are trajectories in the demonstration dataset.
The objective of the maximum entropy IRL is to find

the optimal weight vector u that can generate trajectories
similar to the demonstration trajectories. More specifi-
cally, the aim here is to find the weight vector u that max-
imizes the log-likelihood function in Equation 11.

u� ¼ argmaxuL uð Þ ¼ argmaxu
X

d2D lnPðsd ju; udÞ ð11Þ

P sd ju; udð Þ is the probability of trajectory sd given
weight vector u and its initial state and driving environ-
ment parameters ud. The probability is estimated based
on the principle of maximum entropy and has the form

Pðsd ju; udÞ ¼
e�uT f sd ;udð ÞP

sk2Kd
e�uT f sk ;udð Þ : ð12Þ

where Kd is the trajectory set generated following the
maximum entropy principle given the initial state and
driving environment.

Therefore, the gradient of the log-likelihood function
can be presented as the difference between the expected
feature value calculated from the demonstrations and the
expected feature value obtained from the learning model.

ruL uð Þ ¼ 1

m

X
d2D EP sd ju;udð Þ½f sd ; udð Þ� � ~f ð13Þ

where EP sd ju;udð Þ½f sd ; udð Þ� can be approximated by

f ðargminsduT f ðsd ; udÞÞ, and m is the size of the demon-
stration dataset.

The pseudo-code of the IRL algorithm is shown
below.

Experiments

To validate the proposed trajectory planning framework,
the NGSIM Lankershim Boulevard Dataset (13) is
applied. This section will first introduce the data process-
ing and then show the trajectory planning results.
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Description of Dataset and Data Processing

The NGSIM Lankershim Boulevard Dataset (13) pro-
vides detailed vehicle trajectories and road geometry
information. Vehicle trajectories within each road seg-
ment are extracted for this study. Because of the noise
in the raw data, all trajectories are first smoothed using
the Kalman filter, a widely accepted filtering method
to deal with the inconsistency in vehicle trajectories
(27, 28).

Figure 2 shows the comparison of the smoothed tra-
jectory and the ‘‘real NGSIM’’ trajectory. As shown in
Figure 2a, the smoothed trajectory is close to the real
trajectory. The acceleration profile is smoother than the
‘‘real NGSIM’’ trajectory and the trend of the speed is
close to the ‘‘real NGSIM’’ trajectory. It can be seen that
the smoothing mainly reduces noise in speed and accel-
eration while maintaining vehicle position data
unchanged, which is the most important factor in trajec-
tory planning. The average Euclidean distance between
the smoothed and the unsmoothed NGSIM trajectory is
only 0.179m, which essentially filters out high order
noises but keeps the human driving behaviors.

Vehicle speed, acceleration, and heading angle are cal-
culated using the smoothed trajectories. In addition to
vehicle trajectories, the road geometry, which is an
important feature in both in-lane driving and lane chang-
ing maneuvers, is also processed. Waypoints of the road
segment are extracted from the OpenStreetMap (29) to
calculate the road orientations. Each trajectory point is
then mapped to the nearest road segment based on the
GPS coordinates so that the difference between the head-
ing angle and road orientation can be calculated (i.e., f7).
To obtain distances between the ego vehicle and its sur-
rounding vehicles and calculate the safety features (i.e.,
f4; f5; f6), the distance to stop bar of each vehicle in the
road segment, position of the leading vehicle in the same
lane, position of the leading vehicle in the target lane,

and position of the following vehicle in the target lane
are all extracted and associated to the ego vehicle. The
roadway speed limit is obtained using Google Maps. As
a result, all features used for the IRL model are obtained
with the processed data.

Result Analysis

Model Training. Twenth-four trajectories are used for
training and 98 trajectories are used for testing. In both
training and testing datasets, in-lane driving trajectories
and lane changing trajectories are split into half and half.
The resolution of the trajectories in the dataset is 10Hz,
which is consistent with the trajectory planning model.
The length of each trajectory is 6 s, to guarantee the com-
pleteness of the lane changing process.

The gradient of the log-likelihood function ruL uð Þ
is considered as the loss function in the IRL model.
Figure 3 shows the training loss during the training pro-
cess. The learning rate g is set as 0.1. The training loss
converges to 0.1 after 8 to 10 iterations.

Accuracy Evaluation. Figure 4 presents the comparison
between the generated and ground truth in-lane driving
trajectory. Note that the ground truth trajectory refers to
the post-filtering trajectory in the NGSIM dataset. In
Figure 4a, the x-axis is the longitudinal coordinate and
the y-axis is the lateral coordinate. Because of the termi-
nal cost (i.e., f9; f10), the generated trajectory ends at
(almost) the same location as the ground truth trajectory
within the same time period. This is an important feature
for trajectory planning in the context of urban traffic
control, where the travel time and travel distance of a
CAV may be constrained by a central controller or
consensus-based decisions. It is different from open-
ended trajectory planning problems for single CAV navi-
gation. In Figure 4, b–d, the x-axis is the simulation time
and the y-axis is the speed, acceleration, and vehicle
heading angle, respectively. It can be seen that the gener-
ated trajectory follows the ground truth trajectory very
well and the trend for the change of speed, acceleration
and heading is close to the ground truth profiles.

Figure 5 presents an example of the comparison
between the generated and ground truth lane changing
trajectory. As shown in Figure 5a, the position profile is
also very similar to the original trajectory. The accelera-
tion and speed profiles of the generated trajectory are
smoother than the original trajectory, which motivates
the comparison of fuel consumption and safety gaps dis-
cussed in the next sections.

To further quantify the performance of the model,
The average position displacement in relation to
Euclidean distance is used to measure the accuracy of
the generated trajectory, as shown in Equation 14.

Algorithm 1: Learning Weight Vector

Compute the feature vector value on the training dataset
~f ¼ 1

N

PN
d¼1 f esdð Þ; d 2 D

Initialize weight vector u randomly.

While 1
m

P
d2D EP sdju;udð Þ½f sd;udð Þ� � ~f

��� ���.threshold :

{
For i=1:m
{

Generate vehicle trajectory sui by solving Equation 1, given ui2D
}

Calculate the gradient of the log-likelihood function ruL uð Þ.
Update feature vector u k+ 1ð Þ ¼ u kð Þ+ gruL uð Þ, g is the
learning rate.

}
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Euclideandistance sg; so
� �

¼
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxgi � xoiÞ2 + ðygi � yoiÞ2

q
N

ð14Þ

where ðxgi; ygiÞ is the coordinate of the generated trajec-
tory, and ðxoi; yoiÞ is the coordinate of the ground truth
trajectory. N is the total length of the trajectory. In this
study, N=60.

Table 1 represents the average position displacement
in relation to Euclidean distance for both training and
testing datasets under both in-lane driving (car-following)
and lane changing scenarios. Overall, the model performs
quite well. The average displacement for the in-lane sce-
narios is less than 1m and less than 1.2m for the lane
changing scenarios. Lane changing scenarios involve both
longitudinal and lateral control, which is more difficult to
imitate. Note that the length of a typical mid-sized vehicle
is about 4.5m, so an average displacement of 1m is less
than one-quarter of a car length.

Fuel Consumption. Reduced fuel consumption is another
major objective in many trajectory planning models (30).
Although the proposed model does not specifically
include fuel consumption as part of the cost function,
minimizing acceleration and jerk usually has an impact

Figure 2. Comparison for smoothed trajectory and ‘‘Real NGSIM’’ trajectory: (a) position, (b) acceleration, and (c) speed.

Figure 3. Training loss in inverse reinforcement learning.
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on fuel consumption. To measure the fuel consumption
of the generated trajectories quantitatively, the VT-
Micro model is applied (31). The VT-Micro model mea-
sures fuel consumption and emissions as polynomial
combinations of the vehicle’s instantaneous speed and
acceleration, as shown in the following equation.

lnðMOEeÞ ¼
P3

i¼0

P3
j¼0 Lei;j 3 si 3 aj

� �
; for aø 0P3

i¼0

P3
j¼0 Me

i;j 3 si 3 aj
� �

; for a\0

8<
: ð15Þ

where
lnðyÞ = natural logarithm function of y;
s = instantaneous vehicle speed (km/h);
a = instantaneous vehicle acceleration (km/h/s);
MOEe = instantaneous fuel consumption or emission

rate (L/s or mg/s);
e= index denoting fuel consumption or emission type;
Me

i;j = model regression coefficient for MOEe at speed
power i and acceleration power j when the acceleration is
negative;

Lei;j = model regression coefficient for MOEe at speed
power i and acceleration power j when the acceleration is
positive.

The model coefficients applied in this research to cal-
culate the fuel consumption can be found in Alsabaan
et al. (31). Table 2 shows the average fuel consumption of
all generated trajectories and the comparison with the
ground truth trajectories in the testing dataset under both
in-lane and lane changing scenarios. Since the travel dis-
tance for each trajectory is different, the result is normal-
ized by distance.

According to Table 2, the average fuel consumption
for generated trajectories for in-lane scenarios is close to
the ground truth trajectories, while the average fuel con-
sumption for lane changing scenarios is higher by 15.9%.
Although the generated trajectories for lane changing
scenarios consume more fuel, the frequency of lane
changing maneuvers is much less compared with in-lane
driving. As a result, it is reasonable to argue that the fuel
consumption of the proposed trajectory generation
model is comparable with the ground truth.

Figure 4. Comparison between ground truth and generated trajectory (in-lane): (a) position, (b) speed, (c) acceleration, and (d) heading
angle.
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Safety Performance. Safety is the most critical criterion in
trajectory planning. To validate whether the generated
trajectories satisfy the safety gaps between the ego vehi-
cle and its critical surrounding vehicles, the distributions
of gaps during the planning period between the gener-
ated trajectories and ground truth trajectories are com-
pared. Three types of critical surrounding vehicles are
considered. For in-lane driving scenarios, the gap to the
leading vehicle is considered critical. For lane changing
scenarios, in addition to the leading vehicle in the same
lane, the leading and following vehicle in the target lane

are also considered critical. Note that, after the lane
changing is complete, only the leading vehicle in the
same lane is considered. Figure 6 shows an example of
the gap distributions in a lane changing scenario. Figure
6a presents the gap distributions of the leading vehicle
distance. Figure 6, b and c, are the gap distributions of
the leading and following vehicles in the target lane. The
x-axis is the distance to the surrounding vehicle and the
y-axis is the frequency. Although the distance distribu-
tion of the generated trajectory is slightly different from
the ground truth trajectory, the safety gaps for the

Figure 5. Comparison between ground truth and generated trajectory (lane changing): (a) position, (b) speed, (c) acceleration, and (d)
heading angle.

Table 1. Euclidean Distance for Training and Testing Datasets

Euclidean distance
(training dataset) (m)

Euclidean distance
(testing dataset) (m)

In-lane 0.831 0.834
Lane changing 1.228 1.184
All 1.005 0.997

Table 2 Fuel Consumption for Original and Generated
Trajectory

Ground truth
trajectory (mL/m)

Generated
trajectory (mL/m)

In-lane 1.222 1.294
Lane changing 1.760 2.040
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generated trajectory are no smaller than those of the
ground truth trajectory, which illustrates that generated
trajectories do not present more aggressive driving
behaviors.

To further quantify critical gaps of all generated tra-
jectories, mean average error (MAE) is applied to mea-
sure the difference between the gap distributions. The
MAE is calculated by Equation 16, which measures the
difference in safety gaps between the ground truth and
generated trajectories.

MAE P;Qð Þ ¼ 1

m

Xm

i¼1
jpi � qij ð16Þ

where pi is the safety gap for generated trajectory P at
time step i, qi is the safety gap for the original trajectory
Q at time step i. m is the total number of time steps when
the leading vehicle in the same lane, the leading vehicle
in the target lane, and the following vehicle in the target
lane are all present.

MAEs for all trajectories are aggregated to reflect the
overall performance. Table 3 shows that the average

MAE of gaps for all critical surrounding vehicles is less
than 0.75m and the standard deviation is less than
0.75m. The results further validate that the proposed
model has very similar in-lane and lane changing beha-
viors to the ground truth trajectories.

Conclusion, Discussion, and Future
Research

In this research, an imitation learning model to learn
human driving policies for full vehicle trajectory

Figure 6. Safety gap distribution comparison: (a) front vehicle distance distribution, (b) target lane front vehicle distance distribution,
and (c) target lane following vehicle distance distribution.

Table 3. Mean Average Error (MAE) and Standard Deviation of
Safety Gaps between Original and Generated Trajectories

MAE (m)
Standard

deviation (m)

Leading vehicle (same lane) 0.604 0.507
Leading vehicle (target lane) 0.711 0.736
Lagging vehicle (target lane) 0.706 0.711
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planning is proposed. Maximum entropy IRL was
applied to obtain the parameters of the cost function.
The trajectory generation problem was then formulated
as an optimization problem with the parameters obtained
from the IRL model. In the numerical study, a real-world
dataset, the NGSIM Lankershim Boulevard Dataset,
was applied to evaluate the model performance. Distance
displacement in relation to Euclidean distance is calcu-
lated to measure the accuracy of the generated trajec-
tories. Results show that the average displacement is
only about one-quarter of a passenger vehicle’s length,
which indicates that the generated trajectory can mimic
human driving behavior very well. Meanwhile, the safety
gaps between the CAVs with generated trajectories and
their critical surrounding vehicles are guaranteed and the
fuel consumption is comparable with that of the ground
truth trajectories.

The proposed model could be applied for urban traf-
fic control, especially in a cooperative driving environ-
ment where traffic signals and vehicle trajectories are
jointly optimized. Hierarchical control frameworks are
usually applied in the joint control problem where the
infrastructure provides high-level guidance based on tra-
jectory data collected from CAVs while each CAV plans
its own trajectory independently following the guidance
(5, 32). This architecture has advantages over purely cen-
tralized control where the dimensionality of the problem
is huge and purely distributed control where the system
optima may not be reached. The proposed model can fit
well into the hierarchical control framework. The high-
level guidance from the infrastructure can be converted
to the terminal coordinates in the cost function that
forces the vehicle to reach the destination on time. The
planned trajectory and observed trajectories from sur-
rounding vehicles can be sent to the infrastructure to
serve as input data for future traffic control decisions.
There are two benefits to generating CAV trajectories
that mimic human driving behaviors. First, it simplifies
the traffic flow model used to predict traffic states at the
infrastructure side. Instead of mixed traffic conditions
with heterogenous traffic, a homogenous traffic flow
model with one vehicle type can be applied. Second,
some studies show that human driving behaviors may
change around the CAVs, depending on their level of
trust in the technology (33). A human-like CAV trajec-
tory could increase the trust level and decrease the varia-
tions in human driving behaviors.

In future work, the authors will investigate how to
incorporate the impact of traffic signals into the imita-
tion learning trajectory planning framework. The authors
also plan to integrate the proposed trajectory planning
model into a cooperative driving framework, such as inte-
grated optimization with traffic signals. In addition, it
would be interesting to explore further the reason why

lane changing scenarios consume more fuel, using more
detailed fuel consumption and vehicle powertrain models.
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