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A B S T R A C T   

Infrastructure-assisted cooperative driving, which consists of connected and automated vehicle 
(CAV) trajectory planning and traffic signal control, can greatly improve the efficiency of 
signalized intersection operations. In existing studies, the CAV trajectory planning problem is 
simplified to only modeling longitudinal vehicle behaviors or assuming the lane changing can be 
executed instantaneously. The generated CAV trajectories are not realistic and can’t be imple
mented at the vehicle level. Instantaneous lane changing process may also lead to safety issues or 
uncomfortable driving behavior of following vehicles in a mixed traffic environment. To fill this 
research gap, we propose an optimization framework that integrates a full CAV trajectory plan
ning model with traffic signal control in a cooperative driving environment with both CAVs and 
human-driven vehicles (HDVs). A two-level optimization model is formulated based on discrete 
time. The high-level model optimizes traffic signal parameters, CAV arrival time, and lane 
assignment at the stop bar, to minimize total vehicle delay. Given arrival time and lane assign
ment, the low-level model generates trajectories with integrated car-following and lane-changing 
maneuvers to mimic a human driving policy based on imitation learning. Numerical experiments 
from a real-world intersection show that the proposed model outperforms adaptive and fixed time 
signal control by as much as 63.06% in terms of reduction of average vehicle delay, due to better 
utilization of lane capacity and reduced lost time. In addition to mobility benefits, fuel con
sumption is also significantly reduced under the proposed infrastructure-assisted cooperative 
driving framework.   

1. Introduction 

Advances in connected and automated vehicle (CAV) technologies are considered to have great potential in improving the effi
ciency of the transportation system. Through vehicle-to-everything (V2X) communication and/or onboard sensors such as cameras and 
Lidar, the CAVs can receive and/or capture real-time traffic information from other vehicles and infrastructure to adjust their tra
jectories to improve safety and reduce delay and fuel consumption. Moreover, the CAVs and infrastructure can be better coordinated 
through cooperative driving, as illustrated in the Society of Automotive Engineers J3216 standard (Nallamothu et al., 2020). Under the 
four classes of cooperation, prescriptive is the highest level in which an agent (e.g., an autonomous driving system or an infrastructure 
own operator (IOO)) has full authority to decide the actions of other road participants and/or infrastructure devices. A typical use case 
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of prescriptive cooperation is the joint optimization of traffic signal timing and CAV trajectories. 
In the past few years, this research topic has received wide attention. Li et al. are one of the first researchers that proposed the 

integrated optimization concept (Li et al., 2014). However, in their work, signal phasing is simplified and is determined by 
enumeration. Many researchers formulated this problem as a two-level optimization problem, in which the high-level optimizes traffic 
signal timing and/or vehicle arrival time parameters. The objective function is usually set to minimize vehicle delay or maximize 
throughput (Islam and Hajbabaie, 2017; Guo et al., 2019). The low-level optimizes vehicle trajectories with energy (or comfort) related 
objectives such as acceleration fluctuation (Feng et al., 2018) and engine power and brake force (Xu et al., 2019). Yu et al. proposed an 
integrated optimization model of traffic signals and CAVs’ trajectories with a mixed-integer linear programming (MILP) formulation at 
isolated intersections (Yu et al., 2018) and later at the corridor level (Yu et al., 2019). While most of the earlier works (Li et al., 2014; 
Yu et al., 2018; Yu et al., 2019) assume that all the vehicles are CAVs (i.e., controllable), recent studies consider a mixed traffic 
condition with both CAVs and human-driven vehicles (HDVs), such as (Yang et al., 2021; Niroumand et al., 2020; Jiang and Shang, 
2022). 

No matter considering a full CAV environment or a mixed traffic condition in existing studies, the CAV trajectory planning in the 
joint control problem is usually simplified in two ways. Some studies only consider longitudinal vehicle control when generating 
vehicle trajectories and assume the driver needs to take over when lateral maneuvers are required (e.g., mandatory lane changes) 
(Yang et al., 2021) or assume the vehicles are already generated in the desired lane (Niroumand et al., 2020; Jiang et al., 2021). Other 
studies model the lane changing maneuver but assume that the lane change can be executed instantaneously (e.g., in one time step) (Yu 
et al., 2018; Yu et al., 2019). This simplification will result in unrealistic trajectories that violate vehicle dynamics limits and thus can’t 
be executed at the vehicle level. In addition, since the lane changing maneuver also impacts the following vehicle in the target lane, an 
inaccurate observation/prediction of the lane changing vehicle (e.g., cut-in time) may cause safety issues. Therefore, a full trajectory 
planning model that includes both continuous longitudinal and lateral vehicle maneuvers is needed. 

Trajectory or path planning is an active research topic in autonomous driving. Traditional trajectory or path planning methods can 
be divided into four categories, including graph search based planning, sampling based planning, interpolating curve-based planning, 
and optimization based planning (Gonzalez Bautista et al., 2015). Graph search based planning methods traverse states in the grid and 
give a solution to the path planning problem. Widely used graph search based planning algorithms include Dijkstra algorithm 
(Anderson et al., 2012; Kala and Warwick, 2013) and A* algorithm (Ferguson et al., 2008). Sampling based planning method (e.g. 
rapidly-exploring random tree (RRT)) randomly samples the state space and finds connectivity inside it (Elbanhawi and Simic, 2014). 
For example, (Jeon, et al., 2013) applied RRT for vehicle motion planning by sampling the steering angle. (Kala and Warwick, 2011) 
adopted RRT to generate trajectories for multiple autonomous vehicles. Interpolating curve-based planning algorithms generate 
vehicle trajectory by inserting a set of data within the range of previously defined reference points. Clothoid curves (Broggi et al., 2012; 
Vorobieva et al., 2013), Polynomial curves (Glaser et al., 2010 Sep), or Bezier curves (Zhang et al., 2013) can be applied to generate 
continuous trajectories for autonomous vehicles. Optimization based planning algorithms generate vehicle trajectory by optimizing 
parameters such as speed, acceleration, and jerk (Gu and Dolan, 2023; Kogan and Murray, 2006). Recently, with new advances in 
machine learning techniques, many (deep) reinforcement learning based trajectory planning methods are proposed (Kiran et al., 
2021). Other methods that are related to but not the classical reinforcement learning models such as imitation learning also attract 
increasing attention (Kuderer et al., 2015; Zhang and Cho, 2016). In our previous work (Ying and Feng, 2022), we proposed an 
imitation learning based full trajectory planning model. Maximum entropy inverse reinforcement learning (IRL) is applied to learn 
optimal driving policies from demonstrative trajectories. Then the trajectory planning is formulated as an optimization problem with 
learned optimal driving policy as the objective function with vehicle dynamic constraints. The model generates continuous vehicle 
trajectories in both longitudinal and lateral dimensions, which essentially integrates the car following and lane changing maneuvers 
together. 

The abovementioned trajectory planning models are usually applied in the context of autonomous driving, where each vehicle 
makes decisions independently without cooperating with other vehicles and infrastructure. The resultant trajectories may conflict with 
each other or cannot achieve optimal at the system level in terms of overall efficiency (e.g., total delay). In this paper, we aim to bridge 
the research gaps by proposing an optimization framework that integrates a full CAV trajectory planning model with traffic signal 
optimization in a cooperative driving environment. We consider a mixed traffic condition with CAVs and HDVs. We assume that the 
CAVs are both controllable and observable, while the HDVs are only observable. The observability of HDVs could come from 1) the 
HDV is a connected vehicle (CV) that broadcasts its real-time status; 2) the HDV’s status is captured by infrastructure-based sensors (e. 
g., cameras); or 3) the HDV’s status is captured by nearby CAVs’ onboard sensors. The observed HDVs are denoted as observed vehicles 
(OV) hereafter. Given such a problem, a two-level optimization model is formulated based on discrete time. The high-level model 
optimizes traffic signal parameters, CAV arrival time at the intersection, and arrival lane assignment, to minimize total vehicle delay 
and the number of lane changing vehicles. Given arrival time and lane assignment, the low-level model optimizes CAV trajectories and 
predicts OV future trajectories with integrated car-following and lane changing maneuvers using imitation learning. Specifically, 
maximum entropy inverse reinforcement learning (IRL), one popular algorithm in imitation learning, is adopted to learn driving 
behaviors. Training data is collected from historical OV trajectories to make sure the learned CAV driving behaviors are similar to the 
OVs. Vehicle trajectories are planned or predicted one by one based on their distance to the stop bar. A rolling horizon scheme is 
applied to incorporate new vehicle arrivals and accommodate OV trajectory perdition errors. 

The main contributions of the paper are listed as follows:  

1) To the best of our knowledge, this is the first work that integrates a comprehensive and vehicle-level trajectory planning model with 
traffic signal optimization. The proposed model can generate vehicle trajectories containing both car following and lane changing 
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Table 1 
Variables and notations.  

Variables Meaning 

General 
notations  

i Arm index 
j Lane index 
k Vehicle index 
ϕ Signal phase index 
M A constant large number 
f() Phase lane mapping function 
Intersection-level model parameters 
Parameters 
dstop

ijk Distance to stop bar of the kth vehicle in lane j of arm i (m) 

ωijk The kth vehicle in lane j of arm i 
CNL

i No lane change zone. The area within 70 m to the stop bar. 
Ltotal

i Total lane numbers in arm i 
vl Vehicle speed limit (m/s2) 
vlc The lower bound of lane changing vehicle’s speed (m/s2) 
vt Terminal speed, speed when vehicle passing the intersection (m/s2) 
vijk The current speed of the kth vehicle in lane j of arm i (m/s2) 
gp

ϕ Green elapse time of phase ϕ (s) 

tl
ϕ Lost time of phase ϕ (s) 

gmax Maximum green duration (s) 
gmin Minimum green duration (s) 
Iϕ Binary parameter. 1 if the current phase is green and 0 otherwise 
Jijk

target Target lane group for vehicle ωijk 

vlat
ijk Vehicle ωijk’s lateral speed (m/s) 

dlat
ijk Vehicle ωijk’s lateral deviation from lane center (m) 

f l
ijk Binary parameter to determine whether a vehicle is making a left lane change. 1 if vehicle ωijk’s lateral speed is greater than 0 and lateral 

deviation from the lane center is greater than or equal to 0.2 m and 0 otherwise 
f r

ijk Binary parameter to determine whether a vehicle is making a right lane change. 1 if vehicle ωijk’s lateral speed is less than 0 and lateral 
deviation from the lane center is greater than or equal to 0.2 m and 0 otherwise 

Pijk Travel distance from the starting of the lane of the kth vehicle in lane j of arm i (m) 
ddes Desire space headway (m) 
dv Vehicle length (m) 
dg Minimum space headway from the leading vehicle (m) 
theadway Desired time headway (s) 
dr Desired minimum distance (m) 
dacc

ijk Distance vehicle traveled when accelerating from the current speed to speed limit (m) 

ddel
ijk Distance vehicle traveled when decelerating from the speed limit to terminal speed (m) 

vCAV
avg CAV’s average speed when close to the intersection (m/s) 

vOV
avg OV’s average speed when close to the intersection (m/s) 

tdis
ijk Time for queue in front of vehicle ωijk to discharge 

Ilm
j Binary parameter. 1 if lane j is the left-most lane and 0 otherwise 

Irm
j Binary parameter. 1 if lane j is the right-most lane and 0 otherwise 

dmax Maximum vehicle deceleration in high-level optimization (m/s2) 
amax Maximum vehicle acceleration in high-level optimization (m/s2) 
Isafety Binary parameter. 1 if the safety distance between vehicle ωijk and its leading and follow vehicles in the adjacent lane is satisfied and 

0 otherwise 
Ispeed Binary parameter. 1 if the vehicle’s current speed is greater than the lower bound when making lane changing and 0 otherwise 
INCG Binary parameter. 1 if no multiple vehicles change to the same lane in the same gap and 0 otherwise 
GAPj Set of gaps in lane j 
gapq

j The qth gap in lane j 
dh Desire time headway (s) 
Kijk

front(j)
Set of leading vehicles for ego vehicle in lane j 

Kqj
L 

Set of vehicles at the adjacent left lane of gap q in lane j 

Kqj
R 

Set of vehicles at the adjacent right lane of gap q in lane j 
ddis A predefined distance to the stop bar before which the queue is guaranteed to be discharged in the next cycle 
ef(j)

ijk 
Binary parameter. 1 if the vehicle enters the intersection when current phase f(j) is red and 0 otherwise 

Decision 
Variables  

dijk Delay of the kth vehicle in lane j of arm i (s) 
ta
ijk Arrival time at the stop bar of the kth vehicle in lane j of arm i (s) 

rϕ Remaining red time of phase ϕ (s) 
gϕ Remaining green duration of phase ϕ (s) 

(continued on next page) 
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maneuvers (i.e., comprehensive). Trajectories are generated at a high resolution (i.e., 0.1 s) and can be directly applied for vehicle- 
level execution in real-time. 

2) Imitation learning is applied to generate and predict CAV and OV trajectories that can mimic different driving behaviors (accel
erate, follow, brake, lane change, etc.). The CAV trajectory generation policy is learned from historical OV trajectories so that they 
have very similar driving behaviors. The consistent behaviors between the two types of vehicles greatly reduce the heterogeneity in 
traffic flow, which improves the smoothness and reduces the prediction errors. In addition, the required number of trajectories in 
the training process is significantly smaller than other deep learning based methods.  

3) The proposed framework has great potential to be implemented in a cooperative driving environment with CAVs and connected 
infrastructure. 

The remainder of the paper is arranged as follows. Section II introduces the methodologies including the problem statement, high- 
level traffic signal and the arrival time/lane assignment optimization, and low-level full trajectory planning model. Section III presents 

Table 1 (continued ) 

Variables Meaning 

θϕ Phase duration (s) 
C Cycle length (s) 
δ0

ijk Binary variable. 1 if the kth vehicle in lane j of arm i will occupy the left-hand side lane in the next time step, and 0 otherwise. 

δ1
ijk Binary variable. 1 if the kth vehicle in lane j of arm i will occupy the current lane in the next time step, and 0 otherwise. 

δ2
ijk Binary variable. 1 if the kth vehicle in lane j of arm i will occupy the right-hand side lane in the next time step, and 0 otherwise. 

jnew New lane index of the vehicle after the lane assignment 
αijk Binary variable. 1 if current phase of lane j f(j) is green and the kth vehicle in lane j of arm i can pass the intersection during the current cycle and 

0 otherwise 
βijk Binary variable. 1 if current phase of lane j f(j) is red and the kth vehicle in lane j of arm i can pass the intersection in the upcoming green 

duration and 0 otherwise. 
tdis
ijk Discharging time for all downstream vehicles of the kth vehicle in lane j of arm i 

nr
ijk Number of downstream vehicles in the adjacent right lane of jnew changing to lane jnew and joining the queue 

nc
ijk Number of downstream vehicles in the lane of jnew maintaining in the queue 

nl
ijk Number of downstream vehicles in the adjacent left lane of jnew changing to lane jnew and joining the queue 

Vehicle-level model parameters 
parameters  
θ Objective function weight vector 
N Planning horizon 
amax L Maximum vehicle acceleration for the vehicle level model (m/s2) 
dmin Minimum safety gap that needs to be satisfied when generating vehicle trajectory 
Fcav Binary parameter. 1 if the ego vehicle is CAV, and 0 otherwise 
lf h Binary parameter. 1 if a leading vehicle exists in the same lane at time step h, and 0 otherwise 
mh Binary parameter. 1 if a leading vehicle exists in the target lane at time step h, and 0 otherwise 
nh Binary parameter. 1 if a following vehicle exists in the target lane at time step h, and 0 otherwise 
lc Binary parameter. 1 if the vehicle needs to make a lane change during the planning horizon, and 0 otherwise 
mlh Binary parameter. 1 if a leading vehicle exists in the left lane at time step h and 0 otherwise 
mrh Binary parameter. 1 if a leading vehicle exists in the right lane at time step h and 0 otherwise 
lcr Binary parameter. 1 if the leading vehicle in the left lane changes to the ego vehicle’s current lane and 0 otherwise 
lcl Binary parameter. 1 if the leading vehicle in the right lane changes to the ego vehicle’s current lane and 0 otherwise 
ψr

h Road heading at time step h 
vref Reference speed 
ψmax rate Maximum heading rate 
ψmax dif f Maximum difference between vehicle heading and road heading 
xref Reference lateral position 
yref Reference longitudinal position 
yh,f ront adj Target lane leading vehicle longitudinal coordinate at time step h 
yh,follow adj Target lane following vehicle longitudinal coordinate at time step h 
vinter

min Minimum vehicle passing speed at the intersection (m/s2) 
vinter

max Maximum vehicle passing speed at the intersection (m/s2)

τ Time gap 
Decision 

variables  
s Set of vehicle trajectory points 
xh Vehicle lateral coordinate at time step h 
yh Vehicle longitudinal coordinate at time step h 
vh Vehicle speed at time step h (m/s) 
ah Vehicle acceleration at time step h (m/s2) 
ψh Vehicle heading angle at time step h 
dh,des Desire space headway (m) 
dh,act Actual space headway (m)  
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the solution algorithm for the two-level model and implementation details. Numerical experiments from an isolated intersection are 
presented in section IV. Section V concludes the work and lays out future research directions. 

2. Methodology 

2.1. Notations 

In this section, parameters and decision variables for the high-level joint optimization model and low-level vehicle trajectory 
planning model are introduced. Several types of parameters are introduced, including intersection geometric parameters, traffic signal 
parameters, and vehicle parameters. Intersection geometric parameters mainly describe intersection layout and road heading. Traffic 
signal parameters include the current green phase, green elapse and remaining time, and lost time. Vehicle parameters denote vehicles’ 
current position and status (speed, acceleration, heading). Decision variables include traffic signal related variables and vehicle related 
variables. All notations are summarized in Table 1. 

2.2. Problem description 

In this section, an overview of the optimization framework is provided. The model contains two levels, vehicle level, and inter
section level as shown in Fig. 1. We consider a mixed traffic condition with CAVs and OVs. Both CAVs and OVs are observable but only 
CAVs are controllable. This setting is applied in many previous studies such as (Guo et al., 2019 Jan; Yang et al., 2021 Mar). Through 
V2X communications, CAVs can broadcast Safety Messages (BSMs) to the intersection. Besides vehicle status information, we also 

Fig. 1. Optimization model framework.  

Fig. 2. A typical intersection with four arms.  
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assume that CAVs broadcast routing information to the intersection since the intersection needs to assign both arrival travel time and 
lane index to CAVs, where the assigned lane should be feasible to the vehicle route. As a result, vehicle route is necessary information to 
provide the feasible lane set based on the intersection channelization. For example, in Fig. 2, a vehicle that travels from west to south 
(right turning vehicle) should be assigned to the rightmost lane j + 1. Given BSMs, CAV routes, and signal phasing and timing (SPAT), 
the intersection controller jointly optimizes the signal timing plan, CAVs’ arrival time, and lane assignment at the stop bar. The optimal 
signal timing plan is sent to the controller to execute. As for the OVs, since they are observed by surrounding CAVs, their status (i.e., in 
terms of surrogate BSMs) will also be sent to the intersection, but no vehicle routing information. Because the OVs are not controllable, 
their future trajectories such as arrival time and arrival lane index need to be predicted. In this study, an OV’s arrival time is estimated 
according to its leading and following vehicle arrival time and its position in the queue. An OV’s arrival lane index is assumed to be its 
current lane unless lateral deviation and lateral speed (i.e., a lane changing maneuver) are observed. 

OVs’ predicted trajectories are generated by the intersection from downstream to upstream and sent to CAVs as surrounding ve
hicles’ future state, along with optimized lane assignment, and arrival time for trajectory generation through the trajectory planning 
model at the vehicle level. Given the lane assignment and arrival time, each CAV first generates a series of reference points using the 
trajectory planning model with a large time gap (1 s). Given the reference points, the CAV generates a detailed trajectory with a 0.1 s 
time gap for vehicle-level execution. 

A typical intersection with three types of vehicle movements: left-turning, through, and right-turning is shown in Fig. 2. The arm 
index starts at zero from the south to north direction, increasing in clockwise order. For each arm, the lane index starts at zero from the 
right-most lane. Denote Ci as the control zone in arm i. Within the control zone (i.e., communication range), the intersection controller 
can receive vehicle information and send trajectory planning guidance to CAVs. In this study, we assume the length of the control zone 
is 300 m, which is a typical V2X communication range. CNL

i is the no lane change zone, which is set to 70 m to the stop bar. Within the 
no lane change zone, both CAVs and OVs keep their current lanes but the arrival time can still be updated over time. For example, 
CAV1 can be assigned with both a new lane index and arrival time while CAV2 can only be assigned a new arrival time since it is in the 
no lane change zone. Next, we will introduce the intersection level (high-level) and vehicle level (low-level) optimization models. 

2.3. High-Level optimization model 

In this section, the high-level intersection optimization model is presented. The intersection model is responsible for the optimi
zation of traffic signal parameters (green duration and cycle length), CAVs’ arrival time, and lane assignments. After entering the 
intersection control zone, vehicles are mapped to the lane and sorted according to their distance to the stop bar. Vehicle speed and 
location are obtained from the BSMs, along with the CAV’s routing information. Given the vehicle information and SPAT, a mixed 
integer linear programming (MILP) model is formulated. The main objective of the high-level optimization model is to minimize total 
vehicle delay with a secondary objective to minimize the number of lane changing CAVs. 

minimize
∑

i

∑

j

∑

k
(dijk + δ0

ijk + δ2
ijk) (1)   

s.t 
signal constraints (eqs (3)–(8) 
lane assignment constraints (eqs (9)–(25) 
arrival time constraints (eqs (26)–(50) 

dijk = ta
ijk −

dstop
ijk

vl
(2) 

Fig. 3. NEMA dual-ring barrier structure.  
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Where i is the arm index, j is the lane index and k is the vehicle index in the lane. dijk is the delay of the kth vehicle in lane j, arm i. vl is the 
speed limit of the road. dijk is calculated as the difference between the vehicle arrival time and the free flow travel time. δ0

ijk and δ2
ijk are 

two binary variables, indicating if the vehicle changes lane to the left/right. Lane change vehicle number is included in the objective 
function to avoid unnecessary lane changing for CAVs. 

2.4. Signal constraints 

Signal constraints are formulated based on the NEMA dual-ring barrier structure, as shown in Fig. 3. Equation (3) denotes that the 
summation of the green duration of ring 1 and ring 2 should be equal to the cycle length. Equations (4) and (5) illustrate that the 
green duration of ring 1 and ring 2 should be equal for each barrier. Equation (6) demonstrates that when phase ϕ is green, the 
remaining green duration of phase ϕ is equal to the green duration of phase ϕ subtracting the green elapse time and the lost time. gϕ = 0 
when phase ϕ is red. Equation (7) denotes that when phase ϕ is red, the remaining red duration of phase ϕ is the summation of the 
remaining green duration of phase ϕg, the time lost in phase ϕg and the green duration of phases turning to green before phase ϕ. 
Equation (8) denotes that the green duration of phase ϕ should be bounded by the minimum and maximum green duration. 

∑4

i=1
θϕi =

∑8

i=5
θϕi = C (3)  

∑2

i=1
θϕi =

∑6

i=5
θϕi (4)  

∑4

i=3
θϕi =

∑8

i=7
θϕi (5)  

gϕ = Iϕ

(
θϕ − gp

ϕ − tl
ϕ

)
, ∀ϕ (6)  

rϕ = (1 − Iϕ)(gϕg + tl
ϕg

+
∑

ϕp

θϕp ), ∀ϕ (7)  

gmin ≤ θϕ ≤ gmax (8)  

2.5. Lane assignment constraints 

The lane assignment constraints are mainly used to determine whether CAVs need to change lane(s) to reach the next edge on their 
route or whether the intersection can reduce the total vehicle delay by assigning different lanes. The lane changing behavior of an OV is 
determined by its own driving model based on the current position and lateral speed, which is assumed to be unknown in the model 
until certain lateral deviation (≥ 0.2m) and speed (> 0 m/s) is observed. OV’s arrival time is estimated according to its speed, position, 
and arrival time of its leading and following vehicle. The details of the constraints are shown in Equations (9) − (25). 

∑

j′=0,1,2

δj′
ijk = 1 (9)  

δj’
ijk = 0 if j’ ∕∈ Jijk

target, ωijk ∈ ΩCAV (10)  

f l
ijk = 1 if vlat

ijk > 0, dlat
ijk ≥ 0.2 (11)  

f r
ijk = 1 if vlat

ijk < 0, dlat
ijk ≤ − 0.2 (12)  

δ1
ijk = 1 if ωijk ∈ ΩOV , f l

ijk = 0, f r
ijk = 0 (13)  

δ2
ijk = 1 if ωijk ∈ ΩOV , f r

ijk = 1 (14)  

δ0
ijk = 1 if ωijk ∈ ΩOV , f l

ijk = 1 (15)  

jnew = δ0
ijk(j + 1) + δ1

ijk(j) + δ2
ijk(j − 1) (16)  

Where, δj′
ijk is a binary variable denoting lane occupancy. j′ denotes the left-hand side lane, the original lane, and the right-hand side 

lane. δ0
ijk = 1 if vehicle ωijk changes to the left-hand side lane, and δ0

ijk = 0 otherwise. Similar for δ2
ijk. δ1

ijk = 1 denotes that vehicle ωijk 
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maintains the current lane. Each vehicle can only select the adjacent lane while making a lane change. Jijk
target denotes the target lane 

group for vehicle ωijk. Jijk
target is decided according to vehicle’s route. One vehicle may have more than one target lane according to its 

route. One target lane group has at least one lane and at most Ltotal
i lanes. Jijk

target are lanes that have a connection to the next edge on its 
route. f l

ijk and f r
ijk are binary parameters denoting OV’s desire for changing lane to left/right. Equation (9) denotes that each vehicle can 

only change to one lane or occupy the current lane. Equation (10) denotes that a CAV should stay within the target lane group or 
change towards its target lane group. Equations (11) and (12) denote the vehicle’s desire to change to the left/right-hand side lane. 
Equations (13)–(15) demonstrate OV’s lane assignment criteria. An OV will be assigned to its neighboring lane only if it shows a 
desire for lane changing. Equation (16) demonstrates the new lane index according to the vehicle movement. 

(Pijnewkf − Pijk) − max

(
v2

ijk − v2
ijnewkf

2dmax
+ dr, ddes

)

≥ −
(

1 − δj’
ijk

)
M (17)  

(
Pijk − Pijnewkfl

)
− max

(
v2

ijnewkfl − v2
ijk

2dmax
+ dr, ddes

)

≥ −
(

1 − δj’
ijk

)
M (18)  

dr = dv + dg (19)  

ddes = dr + theadway × vijk (20)  

vijk − vlc ≥ − (1 − δj′
ijk)M (21)  

δ1
ijk = 1 if Pijk ∈ CNL

i (22)  

(
1 − Ilm

j

) ∑

kl∈Kqj
L

δ2
i(j+1)Kqj

L
+

(
1 − Irm

j

) ∑

kr ∈Kqj
R

δ0
i(j−1)Kqj

R
≤ 1, ∀gapq

j ∈ GAPJ (23)  

Equations (17)–(19) denote that vehicle ωijk can move to the adjacent lane only if the safety distance between vehicle ωijk and the 
vehicles on the adjacent lane are guaranteed. The safety distance is calculated as the summation of distances that vehicle ωijk needs to 
decelerate to the leading vehicle’s speed and an extra safety distance. The lower bound of the safety distance is set to the desired space 
headway, calculated in Equation (20). Equation (21) demonstrates that vehicle ωijk can move to the adjacent lane only when its 
current speed is larger than vlc. In most of the existing control systems for autonomous vehicles, longitudinal and lateral movement are 
jointly controlled (Weng et al., 2020). The maximum lateral speed that a vehicle can achieve is constrained by vehicle speed (Defi
nition of Vehicles, Vehicle Types, and Routes - SUMO Documentation [Internet]. [cited, 2023). Low vehicle speed will lead to low 
lateral speed and a slow lane changing process. Therefore, by setting minimum lane changing speed, Equation (21) avoids long lane 
changing processes, which will lead to potential collisions. Equations (17)–(21) are valid when vehicle ωijk is CAV. Equation (22) 
shows that vehicle ωijk is supposed to maintain its current lane if it is within the no lane change zone. For a group of vehicles in the same 
lane, the gap is the space between the leading vehicle and its following vehicle. gapq

j denotes the qth gap in lane j, index from the 
downstream to upstream. For any gapq

j in lane j, at most one vehicle can change to this gap (Equation (23)). Equation (23) reduces the 
potential collision by preventing two vehicles from changing lanes towards the same gap. 

δ0
ijk = 1, if j − min

(
Jijk

target

)
< 0, Isafety = 1, Ispeed = 1, INCG = 1, Pijk ∕∈ CNL

i (24)  

δ2
ijk = 1, if j − max

(
Jijk

target

)
> 0, Isafety = 1, Ispeed = 1, INCG = 1, Pijk ∕∈ CNL

i (25)  

Isafety is a binary parameter indicating whether the safety distance between vehicle ωijk and its leading and following vehicles in the 
adjacent lane is guaranteed. Isafety = 1 denotes that the safety distance is satisfied and 0 otherwise. The calculation of safety distance is 
the same as Equations (17)–(20). Ispeed is a binary parameter denoting whether the minimum speed (vlc) for the vehicle to start lane 
change is satisfied. Ispeed = 1 if the vehicle’s current speed is larger than or equal to vlc. INCG = 1 if no vehicles are changing to the same 
gap according to their route as vehicle ωijk. INCG = 0 otherwise. For example, two vehicles travel from west to east. The current lane for 
both vehicles is the leftmost lane and both vehicles need to change to the righthand side lane according to their routes. When the 
leading and following vehicles in the target lane are the same, two vehicles changing to the same gap may lead to a collision. Therefore, 
at most one vehicle can utilize the gap. In this case, INCG = 0, the vehicle close to the stop bar will change its lane. Pijk ∕∈ CNL

i dem
onstrates that vehicle ωijk is outside the no lane change zone. Equations (24) and (25) denote that when vehicle ωijk’s current lane has 
no connection to the next edge on its route, vehicle ωijk can change to the target lane only if the safety distance and initial speed are 
guaranteed. Equations (24) and (25) are valid when vehicle ωijk is CAV. 
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2.6. Arrival time constraints 

The arrival time constraints determine whether the vehicle can pass through the intersection during the current or next cycle. 
Assuming the intersection is under-saturated, no vehicle needs to stop twice at the intersection. 

ϕ = f (j) (26)  

M
(
1 − αijk

)
≥ If (jnew)

(
ta
ijk − gf (jnew)

)
≥ − Mαijk (27)  

Mαijk ≥ If (jnew)

(
gf (jnew) + tl

f (jnew) + C − θf (jnew) + tdis
ijk − ta

ijk

)
≥ − M(1 − αijk) (28)  

Mβijk ≥
(
1 − If (jnew)

)(
rf (jnew) + θf (jnew) − ta

ijk

)
≥ − M

(
1 − βijk

)
(29)  

(
1 + If (jnew)

)
≥ βijk ≥ (1 − If (jnew)) (30)  

ta
ijk ≥

(
1 − If (jnew)

)(
rf (jnew) + tdis

ijk

)
(31)  

tdis
ijk =

(
nr

ijk + nc
ijk + nl

ijk

)
dh (32)  

nr
ijk = nr green

ijk If (jnew) + nr red
ijk

(
1 − If (jnew)

)
(33)  

nr green
ijk =

∑

k′∈Kijk
front(jnew−1)

(
1 − αi(jnew−1)k′

)(
δ0

i(jnew−1)k′

)
(34)  

nr red
ijk =

∑

k′∈Kijk
front(jnew−1)

(
βi(jnew−1)k′

)(
δ0

i(jnew−1)k′

)
(35)  

nc
ijk = nc green

ijk If (jnew) + nc red
ijk (1 − If (jnew)) (36)  

nc green
ijk =

∑

k’∈Kijk
front(jnew)

(
1 − αijnewk’

)(
δ1

ijnewk’

)
(37)  

nc red
ijk =

∑

k′∈Kijk
front(jnew)

(
βijnewk′

)(
δ1

ijnewk′

)
(38)  

nl
ijk = nl green

ijk If (jnew) + nl red
ijk (1 − If (jnew)) (39)  

nl green
ijk =

∑

k’∈Kijk
front(jnew+1)

(
1 − αi(jnew+1)k’

)(
δ2

(jnew+1)k’

)
(40)  

nl red
ijk

∑

k′∈Kijk
front(jnew+1)

(
βi(jnew+1)k′

)(
δ2

i(jnew+1)k′

)
(41)  

Where f(•) is the function that maps the lane to phases. Equations (27) and (28) are valid when the current phase f
(
jnew

)
is green. 

Equation (27) denotes that if vehicle ωijk passes the intersection during the current cycle, the vehicle arrival time should be less than 
the remaining green duration. Equation (28) demonstrates that if the vehicle ωijk passes the intersection during the next cycle, the 
vehicle arrival time should be larger than the summation of the remaining green duration of phase f(jnew), the lost time of phase f(jnew), 
the time before phase f(jnew) turns to green in the next cycle and the queue discharge time in the lane jnew. Equations (29) and (31) are 
valid when the current phase f

(
jnew

)
is red. Equation (29) demonstrates that if vehicle ωijk’s arrival time is less than the summation of 

the remaining red duration and the green duration of phase f(jnew), the vehicle will pass through the intersection when phase f(jnew)

turns green in the current cycle. Equation (30) denotes that vehicle ωijkarrives at the intersection when the phase f(jnew) is red will pass 
through the intersection when phase f(jnew) turns green. Equation (30) avoids the vehicle stopping twice at the intersection. Equation 
(31) demonstrates that if vehicle ωijk arrives at the intersection when phase f(jnew) is red, its arrival time should be greater than the 
summation of the remaining red duration of phase f(jnew) and the discharging time of its leading vehicle. Equation (32) denotes the 
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time for the queue in front of vehicle ωijk to discharge. Equation (33) calculates the number of leading vehicles in the adjacent right 
lane of jnew changing to lane jnew and waiting in the queue, considering the status of the current phase f(jnew). When the current phase 
f(jnew) is green and vehicle ωijk can’t pass the intersection during the current green phase, nr green

ijk is equal to the number of leading 
vehicles in the adjacent right lane of jnew changing to lane jnew but can’t pass the intersection in the current cycle, as shown in Equation 
(34). Equation (35) is valid when the current phase f(jnew) is red, and nr red

ijk is equal to the number of leading vehicles in the adjacent 
right lane of jnew changing to lane jnew. Equations (36)–(38) calculate the number of leading vehicles in the lane jnew maintaining in jnew 
and waiting in the queue. Equations (39)–(41) calculate the number of leading vehicles in the adjacent left lane of jnew changing to 
lane jnew and wait in the queue. 

ta
ijk ≥

dstop
ijk − dacc

ijk − ddec
ijk

vl
+

vl − vijk

amax
+

vl − vt

dmax
if dstop

ijk ≥ dacc
ijk + ddec

ijk (42)  

ta
ijk ≥

dstop
ijk

vCAV
avg

if ωijk ∈ ΩCAV , dstop
ijk < dacc

ijk + ddec
ijk (43)  

ta
ijk ≥

dstop
ijk

vOV
avg

if ωijk ∈ ΩOV , dstop
ijk < dacc

ijk + ddec
ijk , vijk ≤ vOV

avg (44)  

ta
ijk ≥

dstop
ijk

vijk
if ωijk ∈ ΩOV , dstop

ijk < dacc
ijk + ddec

ijk , vijk > vOV
avg (45)  

ta
ijk ≥ (rf (jnew) + tdis

ijk )(1 − If (jnew)) (46)  

ta
ijk ≥ (tijnewk′ + dh)δ1

ij
newk′

, k′ ∈ Kijk
front(jnew)

(47)  

ta
ijk ≥ (ti(jnew−1)k′ + dh)δ0

ij
newk′

, k′ ∈ Kijk
front(jnew−1)

(48)  

ta
ijk ≥ (ti(jnew+1)k′ + dh)δ2

ij
newk′

, k′ ∈ Kijk
front(jnew+1)

(49)  

αijk = 1if dstop
ijk ≤ ddis and ef (j)

ijk = 1 (50)  

Equation (42) denotes that vehicle ωijk’s arrival time is larger than the summation of the time that the vehicle accelerates to the speed 
limit, decelerates to the terminal speed vt and travel with the free flow speed between the two processes. Equation (42) is valid when 
vehicle’s distance to the stop bar is larger than the summation of vehicle’s acceleration and deceleration distance. Equation (43) limits 
CAV’s arrival time to be larger than the time that the vehicle travels to the stop bar with average speed when approaching the 
intersection. Equations (44) and (45) constrain OV’s arrival time, which depends on OV’s average speed when approaching the 
intersection and current speed vijk. Equations (43)–(45) are valid when vehicle’s distance to the stop bar is not enough for the 
accelerate and decelerate process. Equation (46) constrains vehicle ωijk’s arrival time to be larger than the summation of the 
remaining red duration and the time for the queue in front of the ego vehicle to discharge. Equation (47) shows that vehicle ωijk’s 
arrival time should be greater than the immediate leading vehicle arrival time in the lane jnew that maintains its current lane plus a 
constant time headway. Equations (48) and (49) show that vehicle ωijk’s arrival time should be greater than the leading vehicle’s 
arrival time in the adjacent right/left lane of the lane jnew but changing to lane jnew plus the constant time headway. Equation (50) 
guarantees that the queue before ddis (e.g., 100 m in this study) from the stop bar will be discharged in the next cycle. ef(j)

ijk = 1 denotes 
that the vehicle enters the intersection when the current phase f(j) is red. Equation (50) avoids the queue building up in directions 
with uneven vehicle distribution. 

2.7. Low-Level trajectory planning model 

In this section, the low-level vehicle trajectory planning model is introduced. Given the lane assignment and arrival time from the 
high-level optimization model, each CAV generates its own trajectory using the trajectory planning model. The same trajectory 
planning model is applied to predict OV’s movement and used as a reference when generating CAVs’ trajectories. The trajectory 
planning model is formulated as a nonlinear optimization problem and is shown in Equation (51). θTf(s, u) is the cost function, θ is the 
weight vector, and is learned using maximum entropy inverse reinforcement learning (IRL) (Ying and Feng, 2022). s = (s1, s2, ⋯, sN). 
N is the planning horizon. sh denotes the trajectory point at time step h. Each trajectory point sh is a combination of xh; yh, vh, ah, ψh. xh 
and yh are the lateral and longitudinal coordinates at time step h. vh denotes the vehicle speed. ah denotes the vehicle acceleration. ψh is 
the vehicle’s heading angle at time step h. u denotes vehicle’s initial state, environmental parameters, and input from the high-level 
optimization. Vehicle initial states include vehicle’s position and vehicle status (acceleration, speed, and heading angle). Environment 
parameters include the surrounding vehicles’ positions and status (acceleration, speed) over the planning horizon and road geometry 
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information (speed limit, lane heading). Objective function feature selection and constraints will be introduced in the following 
section. More details on how to use IRL to obtain the optimal weight vector can be found in our previous study (Ying and Feng, 2022). 

minimizesθT f (s, u) (51)   

s.t 
vehicle dynamics constraints (eqs (63)–(70) 
safety constraints (eqs (71)–(75) 
Cost function 

The cost function is a linear combination of representative driving features. 11 features are selected in total, concerning safety, 
comfort, and consistency with high-level guidance. The proposed features are generic and can be applied to different driving scenarios, 
including free flow, car following, and lane changing. Lane assignment from the high-level guidance is converted to a reference po
sition in the cost function. If the initial lane and the lane assignment are the same, a car-following trajectory will be generated. 
Otherwise, a lane changing trajectory will be generated. Arrival time is converted to the planning horizon (N). Given the initial state 
and the high-level guidance, the generated trajectory can guide the vehicle to arrive at the reference point at the end of the planning 
horizon. Next, the selected features in the cost function are introduced. 

f1 =
1
N

∑N

h=1
a2

h (52)  

f2 =
1

N − 1
∑N−1

h=1
(ah+1 − ah)

2 (53)  

f3 =
1

N − 1
∑N−1

h=1
(ψh+1 − ψh)

2 (54)  

Equation (52) denotes the average square of acceleration fluctuation a2
h . Equation (53) denotes the average square of jerk for the 

whole trajectory. Equation (54) measures the vehicle heading change rate. Equations (52)–(54) punish the uncomfortable motions 
(large acceleration or vehicle heading change) and keep the trajectory smooth and comfortable. 

f4 =
1
N

∑N

h=1
(dh,des − dh,act)

2lf h =
1
N

∑N

h=1

(
dmin + theadwayvh − dh,act

)2lf h (55)  

f5 =
1
N

∑N

h=1

1
(

α + yh,frontadj − yh

)2mhlch (56)  

f6 =
1
N

∑N

h=1

1
(

α + yh − yh,followadj

)2nhlch (57)  

f7 =
1
N

∑N

h=1

(
ψh − ψr

h

)2 (58)  

Equations (55)–(58) are safety-related features. Equation (55) measures the difference between the desired space headway and the 
actual space headway. α is a constant to avoid f5,f6 becoming too large. Equations (56) and (57) guarantee vehicle safety by 
maximizing the distance between the ego vehicle and the leading/following vehicle in the target lane. ψ r

h is the road heading. 
Equation (58) limits the vehicle from deviating from the road. 

f8 =
(
xN − xref

)2 (59)  

f9 =
(
yN − yref

)2 (60)  

f10 =
1
N

∑N

h=1

(
xh − xref

)2 (61)  

f11 =
1
N

∑N

h=1

(
yh − yref

)2 (62)  

Equations (59) and (60) measure the difference between the vehicle’s terminal position and the reference position. f8 and f9 guar
antee the consistency between the low-level trajectory planning model and the high-level optimization model. f8 and f9 also guarantee 
the vehicle reaches the stop bar and assigned lane at the end of the planning horizon. Equations (61) and (62) push the vehicle to 
reach the stop bar and assigned lane as soon as possible. Equations (61) and (62) avoid the lane changing process being too long, 
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which may lead to a potential collision with other vehicles. 

2.8. Vehicle dynamic constraints 

In this section, vehicle dynamic constraints are introduced. Equations (63)–(70) demonstrate vehicle kinematic motion and 
vehicle kinematic parameter boundaries, which are valid for both CAVs and OVs. Equations (63)–(65) denote vehicle kinematic 
motions. Equations (66)–(70) demonstrate vehicle kinematic parameters’ boundaries. Equation (66) limits the vehicle acceleration 
and deceleration. Equation (67) denotes the vehicle heading change rate constraints. Equation (68) limits the difference between 
vehicle heading and road heading. Equation (69) limits vehicle’s maximum speed. Equation (70) limits vehicle speed when passing 
the intersection. Equation (70) is valid only if the ego vehicle is a CAV and its terminal position is the stop bar. 

x(t + 1) = x(t) + (vτ +
1
2

aτ2)cos(ψ(t)) (63)  

y(t + 1) = y(t) + (vτ +
1
2

aτ2)sin(ψ(t)) (64)  

v(t + 1) = v(t) + τa(t) (65)  

− amax L ≤ a(t) ≤ amax L (66)  

− ψm rate ≤
ψ(t + 1) − ψ(t)

τ ≤ ψm rate (67)  

− ψmax diff ≤ ψ(t) − ψr(t) ≤ ψmax diff (68)  

v(t) ≤ vl (69)  

vinter
min ≤ v(N) ≤ vinter

max (70)  

2.9. Vehicle safety constraints 

Vehicle safety constraints are demonstrated in this section. FCAV is a binary parameter indicating whether the ego vehicle is CAV. 
FCAV = 1 is the ego vehicle is CAV and 0 otherwise. Equations (71)–(73) guarantee the safety distance between the ego vehicle and the 
surrounding vehicles (leading vehicle in the same lane, leading and following vehicles in the target lane). Safety distance is calculated 
as the summation of distances the vehicle needs to decelerate to the leading vehicle speed and an additional safety gap dr. If the ego 
vehicle’s current speed is less than its leading vehicle’s speed, the safety distance is considered as dr. For OV, the safety distance is 
considered dr. Equation (71) is valid when the leading vehicle in the same lane exists. Equations (72) and (73) are valid when the ego 
vehicle changes its lane during the planning horizon and the leading/following vehicle in the target lane exists. 

(
yi,front − yi

)
≥ max

(
v2

i − v2
i,front

2amax L
, 0

)

× FCAV + dr if lf i = 1 (71)  

(
yi,front adj − yi

)
≥ max

(
v2

i − v2
i,frontadj

2amax L
, 0

)

× FCAV + dr if milci = 1 (72)  

(
yi − yi,follow adj

)
≥ max

(
v2

i,followadj
− v2

i

2amax L
, 0

)

× FCAV + dr if nilci = 1 (73) 

Equations (74) and (75) enable the cooperative lane changing and guarantee the safety distance between the ego vehicle and the 
left/right leading vehicle changing lane to the current lane during the whole lane change process. Equations (74) and (75) are valid 
when the ego vehicle is CAV and the leading vehicle in the neighboring lane exists and will change lane to the current lane according to 
high-level lane assignment. A CAV cooperates with its leading lane changing vehicle by taking the leading vehicle state as a reference 
and generating its own trajectory, potentially reducing the collision probability, and guaranteeing the safety gap during the lane 
change process. 

(
yi,front l − yi

)
≥ max

(
v2

i − v2
i,frontl

2amax L
, 0

)

+ dr if mrilcr
i = 1 (74)  

(
yi,front r − yi

)
≥ max

(
v2

i − v2
i,frontr

2amax L
, 0

)

+ dr if mlilcl
i = 1 (75) 
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Equations (63)−(69), (71)−(73) are valid for both CAV and OV. Equations (70),(74),(75) are valid only when the ego vehicle is 
CAV. 

3. Solution algorithms 

3.1. Model implementation 

The implementation of the two-level optimization framework is described in this section. A flow chart of the implementation 
procedure is shown in Fig. 4. Vehicle and signal information are collected at the beginning of every time step. If the traffic signal status 
is not in the transition period (yellow or all-red), the high-level optimization problem is solved to generate the optimal signal timing 
plan, CAV arrival time, CAV lane assignments, and predicted OV arrival time. CAV arrival time and lane assignments are sent to CAVs, 
and each CAV generates its detailed trajectory. If the signal status is in the transition period, signal timing will remain the same. CAVs 
generate their trajectories according to the previously allocated lane index and arrival time. A rolling horizon scheme is applied at the 
high-level optimization model to include new vehicle arrivals. The signal timing plan is generated for one cycle, but only the first 
second is implemented. A similar rolling horizon scheme is applied to the vehicle level trajectory generation, where only the first 
second of the generated trajectory is implemented. Vehicle arrival time and lane assignment are also updated every second, except 
when the signal status is in the transition period. 

3.2. Trajectory generation procedure 

Given the vehicle arrival time and lane assignment from the high-level model, details of the trajectory generation procedure for 
both CAVs and OVs are described in the following steps and shown in Fig. 5. 

Step 1: Receive vehicle arrival time and lane assignment from the high-level model. 
Step 2: Determine whether reference points need to be generated. If vehicle arrival time is greater than 6 s, then reference points 
will be generated in Step 3. Otherwise, detailed trajectories will be generated in Step 5. 
Step 3: Generate reference trajectory points by solving the low-level trajectory generation model with time step (τ) equal to 1 s, the 
terminal position at the stop bar, and the planning horizon equal to the arrival time. 
Step 4: If the solution is feasible, go to Step 5. Otherwise, the vehicle will execute a car-following model. In this study, the 
Intelligent Driving Model(IDM) is used. 
Step 5: Solve the low-level trajectory generation model with τ = 0.1s. The maximum planning horizon for the low-level trajectory 
generation model is set to 6 s to guarantee sufficient lane change time. If the vehicle arrival time is greater than 6 s, the terminal 

Fig. 4. Implementation framework.  
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point is set to the reference point at t = 6s and the planning horizon is set to 6 s. Otherwise, the terminal position is set at the stop 
bar and the planning horizon is set to vehicle’s arrival time. 
Step 6: If the model is feasible, go to Step 7. Otherwise, connect the generated reference points from Step 3 by interpolation with 
τ = 0.1s. 
Step 7: If the vehicle is a CAV, go to Step 8. Otherwise, the vehicle executes a car-following model. 
Step 8: Control vehicle movement. 

According to the high-level intersection optimization model, vehicles assigned to pass the intersection during the next cycle or 
when arriving on red may have longer arrival time (e.g., >30 s). The solving time of the trajectory generation model increases 
dramatically when the planning horizon is long. For example, the average solving time with the planning horizon equals 6 s is less than 
0.1 s but quickly increases to 1 s when the planning horizon is around 30 s. Besides, vehicle state and assigned arrival time vary at each 
time step. Generating detailed trajectory for the entire planning horizon is inaccurate and unnecessary. As a result, we divide the 
planning horizon into small segments (6 s in our case) when it is too long. In addition, solving the low-level model for the first 6 s 
without considering the terminal condition will lead to infeasible solutions when the vehicles are too close to the intersection. In order 
to guarantee feasible solutions for all segments of short planning horizon, as well as improve the solving time, mid-level reference 
points are generated with time gap τ = 1 s, which essentially provides terminal points for each short segment. For rare cases, the 
optimization can’t generate feasible solutions, vehicles will be controlled by a car-following model (i.e., IDM). Vehicle trajectories are 
generated in sequence based on their distance to the stop bar. Upstream CAVs can utilize downstream vehicles’ planned trajectories 

Fig. 5. Trajectory generation procedure.  
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(CAVs) or predicted trajectories (OVs) when generating their own trajectories. 

4. Numerical experiments 

To validate the proposed model and ensure the simulation results are meaningful, a real-world intersection (Plymouth Rd and 
Huron Pkwy) in Ann Arbor, Michigan is built in SUMO, as shown in Fig. 6. The control zone is set to 300 m. The no lane change zone in 
each arm is set to 70 m. The volumes and turning ratios of each movement are calibrated with the real traffic demand collected from 
the afternoon peak hour (4:00p.m. – 5:00p.m.), as shown in Table 2. The CAV penetration rates are set to 25 %, 50 %, 75 %, and 100 %. 
The desired speeds (vinter

min , vinter
max ) for vehicles passing the intersection are 8–10 m/s. To incorporate the uncertainties in OV’s car- 

following behavior, the desired time headway for HDV is set to be three different values, 1.6 s, 1.8 s, and 2.0 s. Other simulation 
parameters are summarized in Table 3. 

Fig. 6. Plymouth Rd. and Huron Pkwy.  

Table 2 
Traffic volume (veh/h).   

Left turn Through movement Right turn 

Westbound 205 773 109 
Eastbound 12 826 179 
Northbound 251 308 338 
Southbound 192 227 13  

Table 3 
Simulation parameters.  

Parameter name Value 

Speed limit 16.7 m/s 
Minimum green time 6 s 
Maximum green time 100 s 
Yellow interval 3 s 
All-red clearance interval 1 s 
CAV headway 1.8 s 
OV headway 1.6 s, 1.8 s, 2.0 s 
Maximum acceleration (intersection level) 5 m/s2 

Maximum deceleration (intersection level) 5 m/s2 

Maximum acceleration (vehicle level) 9 m/s2 

Maximum vehicle heading change rate π/4 
Maximum deviation from road heading π/6 
Vehicle length 5 m 
Desired safety distance 8 m 
Desired safety gap with front vehicle 3 m 
Minimum safety distance 7.3 m 
Minimum speed vehicle start lane changing 6m/s 
Maximum planning horizon (low level) 6 s  
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The optimization model is solved using Gurobi (Leader, 2023) at the high-level and Pyomo (Pyomo [Internet]. Pyomo. [cited, 
2023) at the low-level. The high-level intersection optimization model can be solved within 0.1 s with a 0.1 % gap to the optimal 
solution. For the low-level trajectory planning model, the optimal solution can also be found within 0.1 s, which guarantees real-time 
performance. 

Two baselines are set up for comparison 1) fixed time control without trajectory optimization; and 2) adaptive signal control 
without trajectory optimization. The fixed time control is generated according to Webster’s optimal cycle length model (Mannering 
and Washburn, 2020). The formulation of the adaptive signal control model is the same as the proposed high-level model with 0 % CAV 
penetration rate (i.e., all vehicles are OVs). Vehicle arrival time and lane assignment are generated but are not sent to vehicles. All the 
vehicles are controlled by SUMO internal models, where the intelligent driving model (IDM) (SUMO Documentation, 2023) is used for 
car-following model with driver reaction time set to 1.6 s, 1.8 s, and 2.0 s. SUMO’s internal sub-lane model “SL2015” (SUMO 
Documentation, 2023) is selected as the lane changing model with lateral resolution equal to 0.1 s. Other parameters such as the rolling 
horizon settings and signal lost time remain the same. In the low-level trajectory planning model, weight vectors for the selected 
features are obtained by IRL. To avoid redundancy, more details of the training process and validation can be found in our previous 
study (Ying and Feng, 2022). The total simulation time for each scenario is 1800 s, with the simulation step size equal to 0.1 s. To make 
a fair comparison, the mean desired headway for both SUMO-controlled vehicles in the baselines and CAVs in the proposed model is set 
to be equal to 1.8 s. 

Fig. 7. Comparison between Ground Truth and Generated Trajectory (Car-following).  
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4.1. Trajectory planning model evaluation 

To train the IRL model, 119 SUMO-controlled vehicle trajectories are extracted from simulation. 25 trajectories are used for 
training and 94 trajectories are used for testing. In both training and testing datasets, 52 % of the trajectories are car-following sce
narios and 48 % conduct lane-changing maneuvers. The resolution of the trajectory is 0.1 s, which is the same as the trajectory 
planning resolution. The length of the trajectory is 6 s, which is the same as the low-level model’s maximum planning horizon. 

Fig. 7 shows the comparison between the generated trajectory and the ground truth trajectory for the car following scenario. In 
Fig. 7(a), the x-axis is the longitudinal coordinate, and the y-axis is the lateral coordinate. As shown in Fig. 7(a), the generated tra
jectory has a similar position profile as the ground truth trajectory. Since there is no lateral deviation, the generated trajectory overlaps 
with the ground truth trajectory. Fig. 7(b)(c)(d) show the speed, acceleration, and vehicle heading angle profiles. The generated 
trajectory has a very similar trend as the ground truth trajectory in all profiles. 

Fig. 8 shows an example of comparison between the generated trajectory and the ground truth trajectory under lane changing 
scenario. The figure shows that the generated trajectory has a similar profile as the ground truth trajectory, in terms of position, speed, 
acceleration, and heading angle. 

To further evaluate the accuracy of the trajectory planning model, average displacement error (ADE) and final displacement error 
(FDE) are used to measure the difference between the generated trajectory and the ground truth trajectory, as shown in Equations (76) 
and (77). (xg

i , yg
i ) denotes the coordinate of the generated trajectory at time step i. (xo

i , yo
i ) denotes the coordinate of ground truth 

trajectory at time step i. N is the total length of the trajectory. 

ADE =

∑N
i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xg
i − xo

i )
2

+ (yg
i − yo

i )
2

√

N
(76) 

Fig. 8. Comparison between Ground Truth and Generated Trajectory (Lane Changing).  
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FDE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xg
N − xo

N)
2

+ (yg
N − yo

N)
2

√

(77) 

Table 4 shows the ADE and FDE for the SUMO dataset, including both car-following and lane changing scenarios. The results 
indicate that the model performs well in both car-following and lane changing scenarios. Even though the desired time headway for 
car-following trajectories varies from 1.6 s to 2.0 s, the longitudinal ADE for car-following trajectory is 0.9 m, less than 1/5 of a vehicle 
length. Although the ADE for the lane change scenario is a little higher (1.68 m), the FDE is only 0.12 m, indicating that the vehicle can 
reach the desired position precisely at the end of the planning horizon. The result also indicates that the proposed trajectory planning 
model can mimic lateral driving behavior well. Given that the lane width of the SUMO network is 3.2 m, the lateral ADE (0.27 m) is 
only 1/12 of the lane width. 

4.2. Integrated optimization result analysis 

Comprehensive simulation experiments are conducted under different penetration rates and traffic demand levels. Figs. 9-10 show 
examples of the vehicle trajectories and signal timing of westbound and eastbound directions under 100 % CAV penetration rate. The 
discontinuous trajectories are caused by lane changes. As shown in Figs. 9-10, CAVs adjust their speeds and lane allocations to pass 

Table 4 
ADE and FDE of the Trajectory Generation Model.   

ADE FDE ADE (lateral) ADE (longitudinal) 

In-lane  0.90  0.01  0.00  0.90 
Lane changing  1.68  0.12  0.27  1.61 
All  1.27  0.06  0.13  1.24  

Fig. 9. Trajectories of vehicles in (a) through and right turning lane, (b) through lane (c) left turning only lane. (100% CAV penetration 
rate, westbound). 
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through the intersection during the green time with desired speeds. Most of the CAVs do not need to make complete stops. In some 
cases, vehicles entering the intersection at the end of the current green phase are assigned a large arrival time and have to stop and wait 
for the next cycle. The traffic signal adjusts the green durations according to the number of approaching vehicles dynamically. Due to 
the imbalance traffic volume, although no vehicle is approaching the stop bar at the end of the second cycle in the westbound (Fig. 9b), 
green time is still extended for the approaching vehicles from the eastbound direction (Fig. 10b). Figs. 11-12 show an example of 
vehicle trajectories and signal timing of westbound and eastbound directions under 50 % CAV penetration rate. Compared with Figs. 9- 
10, the vehicle distribution on the two through lanes is less even and more vehicles have to make complete stops at the intersection. 
Such differences lead to higher delays and fuel consumption, which will be discussed in the following section. 

Fig. 13 and Table 5 show the comparison of average vehicle delay under different scenarios. Note that the “3400 veh/h” scenario 
represents the real-world traffic demand. The proposed model outperforms the two baselines under all CAV penetration rates and 
traffic demand levels. The average vehicle delay under 100 % CAV penetration rate when the volume is 3000 veh/h is 27.16 s, 32.63 s 
when the volume is 3400 veh/h, and 38.60 s when the volume is 3800 veh/h. Compared with the adaptive control, the proposed model 
reduces the delay by 43.79 %, 49.72 %, and 54.82 % respectively. The delay reduction is mainly due to the reallocation of vehicle 
arrival time and lanes to balance queues (better utilization of lane capacity) and reduce the startup and clearance delay during the 
transition period. Compared with the fixed time control, the proposed model can reduce vehicle delays by 54.74 %, 60.12 %, and 
63.06 % respectively. Apart from the above-mentioned benefits, compared to fixed-time control, the proposed model dynamically 
adjusts signal timing according to the number of vehicles approaching the intersection and avoids vehicles stopping twice at the 
intersection. Note that we set the mean desired headway of CAVs and OVs to be the same in the experiments. The performance can be 
further improved by considering CAV platooning as in other studies (Yang et al., 2021 Mar). 

When the volume grows from 3000 veh/h to 3800 veh/h, the average vehicle delay under 100 % CAV penetration rate only in
creases slightly from 27.16 s to 38.6 s (11.44 s). Under the adaptive signal control, the vehicle delay increases from 48.32 s to 85.44 s 
(37.12 s) while under the fixed time control, the vehicle delay increases from 60.01 s to 104.48 s (44.47 s). This comparison illustrates 
that the proposed model results in higher intersection capacity and is more robust to handle near-saturation and over-saturation traffic 
conditions. 

Fig. 10. Trajectories of vehicles in (a) through and right turning lane, (b) through lane (c) left turning only lane. (100% CAV penetration 
rate, eastbound). 
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When the penetration rate of CAV decreases, the vehicle delay increases under all demand levels. One reason is that OVs need to 
make complete stops at the red light and introduce startup delays at the beginning of the green signal. Another reason is the prediction 
errors in the OV trajectories. In the lane changing process, CAVs enable cooperative lane changing by considering the leading lane 
changing vehicle’s future trajectory as a reference when generating its own trajectory. The following CAV in the neighboring lane can 
obtain the leading CAV’s lane changing decision and react to it before the CAV crosses the lane boundary. When the following vehicle 
is an OV, it will only react to the lane changing CAV when it is close enough to the lane boundary. As a result, the lane changing gap for 
the CAV may not be fulfilled so that the CAV may not be able to change to the assigned lane and return to its original lane during the 
lane changing process. 

We also investigate the environmental benefit of the proposed model in terms of fuel consumption. Fig. 14 and Table 6 show the 
comparison of average fuel consumption for the proposed model, adaptive signal control, and fixed time signal control under three 
demand levels. The calculation of fuel consumption follows the Handbook of Emission Factors for Road Transport (HBEFA) criterion 
(HBEFA - Handbook Emission Factors for Road Transport [Internet]. [cited, 2023). 

The overall trend for fuel consumption is similar to vehicle delays. The proposed model performs better than the adaptive control 
and fixed time signal control under all CAV penetration rates. The average fuel consumption under 100 % CAV when the volume is 
3000 veh/h is 58.96 mg/m and 87.65 mg/m when the volume is 3800 veh/h. There is no significant growth for the proposed model 
under 100 % CAV when the volume increases. However, the average fuel consumption increases dramatically under adaptive signal 
control (193.42 mg/m to 556.31 mg/m) and fixed time control (279.27 mg/m to 1225.37 mg/m). Compared with the adaptive control, 
the proposed model adjusts CAVs’ speeds and avoids complete stops at the intersection, reducing fuel consumption during the stop- 
and-start process. Compared with the fixed time control, the signal timing is adjusted dynamically according to vehicle numbers at 
each cycle and vehicle distribution among different lanes, effectively avoiding oversaturation (vehicles stop more than once) at the 
intersection. When the volume is 3800 veh/h, the fuel consumption for 100 % CAV is 87.65 mg/m while for fixed time control is 

(a)

Fig. 11. Trajectories of vehicles in (a) through and right turning lane, (b) through lane (c) left turning only lane. (50% CAV penetration 
rate, westbound). 
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Fig. 12. Trajectories of vehicles in (a) through and right turning lane, (b) through lane (c) left turning only lane. (50% CAV penetration 
rate, eastbound). 

Fig. 13. Average vehicle delay.  
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1225.37 mg/m. Apart from the above-mentioned reasons, when the intersection is over-saturated, some vehicles need to decelerate to 
change lanes and finish their routes. The slow-moving lane changing vehicles block the following vehicles and increase fuel con
sumption. However, for 100 % CAV penetration rate, CAVs cooperate to create gaps for neighboring vehicles to change lanes and avoid 
large deceleration during the lane change process. 

5. Conclusions and future research 

In this paper, we developed a two-level optimization framework to jointly optimize traffic signal parameters and CAV trajectories 
under mixed traffic conditions. Different from previous studies, the proposed framework considers a full CAV trajectory planning 
model, which generates integrated car-following and lane-changing maneuvers. At the high-level, the intersection optimizes the signal 
timing, CAV arrival time, and arrival lane to minimize the total vehicle delay. At the low-level, each CAV generates detailed trajectories 
following the guidance from the intersection. Simulation results show that the proposed model can reduce the average vehicle delay by 

Table 5 
Average vehicle delay.  

Volume Average delay (s/veh)  

Proposed control with different penetration rate   

100 % CAV 75 % CAV 50 % CAV 25 % CAV Adaptive control Fixed time control 

3000 veh/h  27.16  32.97  34.10  38.30  48.32  60.01 
3400 veh/h  32.63  43.33  53.40  60.60  64.90  81.82 
3800 veh/h  38.60  51.84  70.82  77.30  85.44  104.48  

Fig. 14. Average fuel consumption.  

Table 6 
Average Fuel consumption.  

Volume Average fuel consumption (mg/m)  

Proposed control with different penetration rate   

100 % CAV 75 % CAV 50 % CAV 25 % CAV Adaptive control Fixed time control 

3000 veh/h  58.96  84.91  101.21  155.63  193.42  279.27 
3400 veh/h  72.51  116.05  168.62  224.53  333.63  464.05 
3800 veh/h  87.65  141.69  254.71  314.95  556.31  1225.37  
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up to 54.82 % compared with the adaptive signal control and up to 63.06 % compared with the fixed time signal control. Significant 
fuel consumption benefits are also observed in the simulation experiments. 

A few research directions can be pursued in the future. Currently, we conduct the CAV trajectory planning in sequence based on 
their locations at the intersection. When the traffic volume increases, it becomes more difficult to find a safety gap for CAVs upstream 
to change lanes thus reducing the solution quality. Multi-agent reinforcement learning can be applied to learn the interaction between 
vehicles to jointly optimize trajectories for a group of vehicles simultaneously and potentially increase lane change opportunities. In 
addition, the computation time is quite long (around 1 s) when generating detailed CAV trajectories with a long planning horizon. This 
is also the main reason why we applied a mid-level reference point generation and split the entire trajectory into smaller segments. A 
more efficient solution algorithm needs to be developed for solving the high-dimensional nonlinear trajectory generation problem. 
Finally, extending the current control framework to the network level and considering the route choice behavior is another interesting 
research direction. 
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