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SUMMARY

We discover a connection between the Benjamini—-Hochberg procedure and the e-Benjamini—
Hochberg procedure (Wang & Ramdas, 2022) with a suitably defined set of e-values. This insight
extends to Storey’s procedure and generalized versions of the Benjamini-Hochberg procedure and
the model-free multiple testing procedure of Barber & Candés (2015) with a general form of rejection
rules. We further summarize these findings in a unified form. These connections open up new pos-
sibilities for designing multiple testing procedures in various contexts by aggregating e-values from
different procedures or assembling e-values from different data subsets.

Some key words: Benjamini-Hochberg procedure; E-value; False discovery rate; Leave-one-out analysis;
Multiple testing.

1. INTRODUCTION

When working with high-dimensional data in modern scientific fields, the problem of multi-
ple testing often arises when we explore a vast number of hypotheses with the goal of detecting
signals while also controlling some error measures, such as the false discovery rate (FDR). The
Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely used
FDR-controlling procedure that rejects a hypothesis whenever its p-value is less than or equal to
an adaptive rejection threshold determined by the whole set of p-values. Barber & Candeés (2015)
proposed a model-free FDR-controlling procedure that estimates the number of false rejections by
leveraging the symmetry of p-values or test statistics under the null and compares each p-value or
test statistic with an adaptive threshold.

More recently, there is a growing literature on utilizing e-values for statistical inference under dif-
ferent contexts; see, e.g., Shafer (2021), Vovk & Wang (2021), Xu et al. (2021), Dunn et al. (2023),
Ignatiadis et al. (2023), Grinwald et al. (2024) and Xu & Ramdas (2024). In particular, Wang &
Ramdas (2022) proposed a multiple testing procedure named the e-Benjamini-Hochberg procedure
by applying the Benjamini—-Hochberg procedure to e-values, which was shown to control the FDR
even when the e-values exhibit arbitrary dependence.

In this work, we establish a connection between the Benjamini-Hochberg and e-Benjamini—
Hochberg procedures with a suitably defined set of e-values, proving that they yield identical rejection
sets. We next extend this connection to Storey’s procedure and generalized versions of the Benjamini—
Hochberg and the Barber—Candé¢s procedures, which can have a more general form for the rejection
rules. All these connections can be summarized in a unified form. Additionally, these connections
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provide an effective way of constructing multiple testing procedures in different contexts. Specifically,
we propose two new multiple testing procedures by aggregating e-values from different procedures or
the same procedure with different tuning quantities, and assembling e-values from different datasets.

2. PRELIMINARIES

2.1. False discovery rate
Suppose that we are interested in testing n hypotheses (Hj,..., H,) simultancously. Let 6 =
61,...,0,) € {0,1}" indicate the underlying truth of each hypothesis, where 6; = 0 if H; is under
the null and 6; = 1 otherwise. Denote by § = (8y,...,8,) € {0,1}" a decision rule for the n hypo-
theses, where we reject the ith hypothesis if and only if §; = 1. The FDR for the decision rule § is
defined as the expectation of the false discovery proportion (FDP), i.e.,

Yo (1 —6)8
Ivyr, s’

where a V b = max(a, b). The goal of an FDR-controlling procedure is to ensure that the FDR is
bounded from above by a prespecified number « € (0, 1).

FDR(8) = E[FDP(5)],  FDP(5) =

2.2. The Benjamini—Hochberg procedure
The Benjamini—-Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely
used FDR-controlling method. To describe the procedure, suppose that we observe a p-value p; for
each H;. Sort the p-values in ascending order as p) < -+ < p(), and let k = max{i: P < (ai)/n}.
The Benjamini-Hochberg procedure rejects all hypotheses H ;, with i < k, where H, (i 1s the hypothesis
associated with p ;. This procedure is equivalent to rejecting all H; with p; < Tgy, where Ty is defined
as

nt
Tgy = 0<tr<1: < 1
BH SUP{ < ) Ol} (1)

with R(1) =" 1{p; < 1} the number of rejections given threshold 7, and 1{A4} denoting the
indicator function associated with a set A4.

Assumption 1. The null p-values are mutually independent, and are independent of the alternative
p-values.

We say that a p-value p is superuniform under the null if Py(p < ¢) < ¢ for each ¢ € [0, 1],
where P, denotes the probability measure under the null hypothesis. It is well known that, under
Assumption 1 and if the null p-values are superuniform, the Benjamini—-Hochberg procedure at level
a controls the FDR at level any/n < «, where ng is the number of hypotheses under the null (Ferreira
& Zwinderman, 2006).

2.3. Storey’s procedure

Storey’s procedure (Storey, 2002; Storey et al., 2004) improves the Benjamini—-Hochberg procedure
by using the p-values to estimate the null proportion 7y := ny/n. Specifically, we define

» . L+n—R®)

TS T o ()
where A € [0, 1) is fixed. Storey’s procedure rejects all H; with p; < Tsr, where Tt is defined as
nmlt
TSTzsup{0<t<A: lvl(’m)ga} (3)
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When 7§ < 1, Storey’s procedure makes more rejections than the Benjamini-Hochberg procedure.
If Assumption 1 holds and the null p-values are uniformly distributed on [0, 1], Storey’s procedure
has finite sample FDR control (Storey et al., 2004).

2.4. The Barber—Candes procedure

In a seminal paper by Barber & Candés (2015), the authors proposed a model-free multiple testing
procedure that exploits the symmetry of the null p-values or test statistics to estimate the number of
false rejections. More precisely, the Barber—Candés procedure specifies a data-dependent threshold,
denoted T'pc, which is determined as

“)

1 Tol{pi>1—t
TBC=sup{O<t<0.5: + 2 Lp }<a},

1V R() =

and it rejects all H; with p; < Tpc. The Barber—Candes procedure has been shown to provide finite
sample FDR control under suitable assumptions (Barber & Candes, 2015).

2.5. E-values and the e-Benjamini—Hochberg procedure

A nonnegative random variable e is called an e-value if E[e] < 1 under the null hypothesis.
Suppose that we observe n e-values ey,...,e, corresponding to hypotheses Hi,...,H,. The
a-level e-Benjamini-Hochberg procedure involves sorting the e-values in decreasing order as
e = -+ = ep and rejecting the hypotheses associated with the k largest e-values, where
k =max{l <i<n:ez =n/(ia)}. Notethat P(1/e; < t) < t by Markov’s inequality, which indicates
that 1/e; is superuniform. Thus, the e-Benjamini-Hochberg procedure is simply the Benjamini—
Hochberg procedure applied to the p-values {1/e;}}_,. An advantage of the e-Benjamini-Hochberg
procedure is that it controls the FDR at level & even under unknown arbitrary dependence among
the e-values.

PROPOSITION 1 (THEOREM 2 OF WANG & RAMDAS, 2022). Suppose that the nonnegative random
variables {e;} satisfy

Z Ele;] < n, (5

i€t

where Ho = {1 < i < n:6; = 0}. Then, the a-level e-Benjamini—Hochberg procedure applied to {e;}
controls the FDR at level «, regardless of the dependence structure among {e;}.

In the multiple testing context, the requirement that E[e] < 1 in the definition of e-values can be
relaxed. More precisely, we refer to {e;} as a set of e-values if they satisfy condition (5) throughout
the rest of the paper.

3. CONNECTIONS BETWEEN THE PROCEDURES

3.1. Connections between the Benjamini—Hochberg and e- Benjamini—Hochberg procedures

We first establish the equivalence between the Benjamini-Hochberg procedure and the corres-
ponding e-Benjamini—-Hochberg procedure with a suitably defined set of e-values. This equivalence
appears to be a new finding that has not been explicitly stated in the previous literature.

To see the connection between the Benjamini-Hochberg and e-Benjamini-Hochberg procedures,
we define the e-value associated with H; to be

e = TLﬂ{Pi < Tgu}, (6)

BH
where Tgy is given in (1). The e-value defined in (6) coincides with the e-value defined in equation (1)
of Banerjee et al. (2023) when the decision rule therein is specified using the Benjamini-Hochberg
procedure. Let [n] = {1,2,...,n} for any positive integer n. Under Assumption 1 and if the null
p-values are superuniform, by Lemmas 3-4 of Storey et al. (2004), it is straightforward to show that
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Zie%o Ele;] = ng, which implies that the e-values defined by (6) satisfy (5). The detailed derivation
is provided in the Supplementary Material. Thus, by Proposition 1, the corresponding e-Benjamini—
Hochberg procedure controls the FDR at the desired level. Moreover, we claim that the e-Benjamini—
Hochberg procedure based on the e-values defined in (6) is equivalent to the Benjamini-Hochberg
procedure in the sense that they produce the same set of rejections; see Theorem 2 below for a precise
statement.

3.2. Connections between the Storey and e- Benjamini—Hochberg procedures
Define the e-value associated with H; to be

1
i = ———L{p; < Tsr), 7
e néTST {p ST} ()

where 7 is defined in (2) and Tt is given in (3). We have the following result.

THEOREM 1. Suppose that Assumption 1 holds and that the null p-values follow the uniform distri-
bution on [0, 1]. Then, the e-values defined in (7) satisfy (5). Additionally, let Sst be the set of rejections
obtained through Storey’s procedure at the FDR level o, and let Sepy represent the set of rejections
obtained from the e-Benjamini—Hochberg procedure at the same FDR level «, with the e-values defined
in (7). Then we have Sst = Sepy.

3.3. Connections between the Barber—Candés and e- Benjamini—Hochberg procedures

As noted in the recent work of Ren & Barber (2024), the Barber—Candés procedure is equivalent
to the e-Benjamini-Hochberg procedure based on the e-values

_ nl{p; < Tsc}
1+37  Up; > 1 - Tl
where Ty is the threshold defined in (4).

€

4. THE FLEXIBLE BENJAMINI-HOCHBERG AND BARBER—CANDES PROCEDURES

4.1. The flexible Benjamini—Hochberg procedure

We generalize the Benjamini-Hochberg procedure to allow the rejection rule to take the form
vi(p;)) < t, where ¢; is a strictly increasing function and can differ for each i. This generalization
enables the testing procedure to utilize cross-sectional information among the p-values and external
structural information for each hypothesis, which often results in a higher multiple testing power. Let
F; = ¢; ' represent the inverse function of ¢;, g be some strictly increasing function and g~' be the
inverse function of g. Consider the rejection threshold given by

t
TFBH=sup{O<l<1'L()< },

“TVvRD ¢ ®)

where R(t) = Y7, 1{g;(p;) < t}. The flexible Benjamini-Hochberg procedure rejects H; whenever
©i(p;)) < Tgpy. Similar to the Benjamini-Hochberg procedure, the flexible Benjamini-Hochberg pro-
cedure can be equivalently implemented in the following way. We sort ¢; = ¢;(p;) in ascending order,
ie, g1y < -+ < qu» and find the largest k, represented as k, for which G < g Y (ak/n). We reject
H; for all i < k. The following proposition states that the flexible Benjamini—-Hochberg procedure
ensures FDR control at a certain level.

PROPOSITION 2. Suppose that Assumption 1 holds and that the null p-values are superuniform. The
flexible Benjamini—Hochberg procedure controls the FDR at level Ca, where

Fi(n)
1eCy ng(l) ’

C= Co={0<t<1:g() <al. 9)

ieH
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Additionally, if g(t) = n=' Y, Fi(¢) and Fi(t) = ¢;h(t), where ¢; is some positive constant and h is a
strictly increasing function of t, then the flexible Benjamini—Hochberg procedure controls the FDR at
level .

Proposition 2 broadens and enhances Theorem 7.1 of Penia et al. (2011) in two ways. First,
a careful inspection reveals that Theorem 7.1 of Pena et al. (2011) is a specific instance of
Proposition 2 with a particular choice of Fi(r) = n(t) and g(t) = (1/n)Y ., n:(t), where
{ni(®),...,n,(0)} 1s the multiple decision size vector defined in Pefia et al. (2011). Second, as
a consequence of Proposition 2, the flexible Benjamini-Hochberg procedure controls the FDR
at level « when C = ZieHO SUp,c, {1Fi(0)/ng(t)} < 1, which is weaker than the condition
19 SUP;c3q, SUP,ec, {Fi(1)/nng(D)} < 1 required in Theorem 7.1 of Pefia et al. (2011).

The following example illustrates that the flexible Benjamini-Hochberg procedure aligns with the
weighted Benjamini-Hochberg procedure for particular choices of g and ¢;.

Example 1. Let g(t) = t and ¢;(p) = p/w;, where w; denotes the weight for the ith hypothesis
with w; > 0 and Y}, w; = n. The flexible Benjamini-Hochberg procedure associated with this
choice of ¢; and g corresponds to the weighted Benjamini-Hochberg procedure first introduced by
Genovese et al. (20006). In this case, the rejection threshold can be expressed as Trpy = sup{0 < ¢ <
1: nt/{1 v R(t)} < a}, where R(¢) = >, 1{pi/w; < 1}.

4.2, Connections between the flexible and e- Benjamini—Hochberg procedures

Analogous to the Benjamini-Hochberg procedure, we show that the flexible Benjamini-Hochberg
procedure is equivalent to the e-Benjamini—-Hochberg procedure applied to the e-values

_ Hei(pi) < Trpu}

10
g(Tren) (10)

i

where Trpy is defined in (8). By the leave-one-out argument, we prove the following result.

PROPOSITION 3. Under the assumptions in Proposition 2, the e- Benjamini—Hochberg procedure with
e-values defined in (10) controls the FDR at level Ca, where C is defined in (9).

Additionally, we can prove that the e-Benjamini—-Hochberg procedure and the flexible Benjamini—
Hochberg procedure deliver the same set of rejections.

THEOREM 2. Let Sgpy be the set of rejections obtained through the flexible Benjamini—Hochberg
procedure at the FDR level «, and let Segn represent the set of rejections obtained from the
e-Benjamini—Hochberg procedure at the same FDR level o, with the e-values defined in (10). Then we
have SFBH = SeBH~

The e-value for the Benjamini—-Hochberg procedure is a special case of (10) with ¢;(¢) = ¢ and
g(t) = t. Consequently, the e-Benjamini-Hochberg procedure based on (6) yields the same rejection
set as the Benjamini—-Hochberg procedure.

4.3. The flexible Barber—Candés procedure

In this section, we generalize the Barber—Cand¢s procedure with the rejection rule given by
@:(p;) < t. Similar ideas have been pursued in the literature for structure-adaptive multiple testing
(Lei & Fithian, 2018; Zhang & Chen, 2022). We assume that the null p-value satisfies the condition

Pp;<a)<Pp;21—a)=P1—p;<a) forall0<a<0.5. (11
Condition (11) is weaker than the mirror conservativeness in Lei & Fithian (2018), and it can be

shown that superuniformity implies (11). Indeed, P(1 —p; < a) 2 1 —P(p; < 1 —a) > 1 —
(1—-a) = a > P(p; < a). Assume that ¢; is an increasing and continuous function, and define
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Fi(x) = sup{0 < p < 1: ¢i(p) < x}. We claim that P{g;(p;)) < b} = P{p; < F;(b)}. To see this,
consider two cases. If ¢;(p;) < b, by the definition of F;(b), we have p; < F;(b). On the other hand,
if p; < Fi(b) then ¢;(p;) < ¢i{Fi(b)} = limpyyr4) @i(p) < b, where we use the fact that ¢; is increasing
to get the two inequalities, and the equality is due to the continuity of ¢;. Therefore, the above claim
together with (11) implies that

Ploi(p) < b} = Plp; < Fi(b)} < P{1 — p; < Fi(b)} = Ploi(1 — pi) < b}
for all ¢;(0) < b < ¢;(0.5). Hence, we have

Z"67'10 Heip) < 1} < ZieHO (1 — pi)

g < 1+ 300 He( —p) < 1)
IV Mo <6} ™ 1V 30, Heip)

0T VYL Hep) <1

<
<

where < means less than or equal to asymptotically and the last term can be viewed as a conservative
estimate of the Fpp. Motivated by this observation, we define the threshold for the flexible Barber—
Candes procedure as

1T He(—py) < 1) < } (12)

Trpc = sup {0 <t < Ty &Y Zn L) < 1) <
i=1 Vi) X

which is the largest cut-off such that the FDP estimate is bounded above by «, where T, satisfies
Ty < min,; ¢;(0.5). The flexible Barber—-Candés procedure rejects H; whenever ¢;(p;) < Trac.

PROPOSITION 4. Suppose that Assumption 1 holds and that the null p-values satisfy (11). Assuming
that ¢; is a monotonic increasing and continuous function for all i, then the flexible Barber—Candés
procedure ensures FDR control at level a.

Remark 1. Compared to the flexible Benjamini-Hochberg procedure, the flexible Barber—Candés
approach affords us greater flexibility in selecting ¢;, as it no longer requires ¢; to be strictly increasing,
and its generalized inverse function does not have to fulfill the condition in Proposition 2 to achieve
FDR control.

Example 2. Suppose that the p-value p; is generated independently from the two-group mixture
model: m;fy + (1 — m;)f1;, where 7; € (0,1) is the mixing proportion and f; and f;,; denote the
p-value distributions under the null and alternative, respectively. The local FDR is defined as
Lfdr;(p) = mifo(p) /{m:fo(p) + (1 — ;) f1.:(p)}, which is the posterior probability that the ith hypothesis
is under the null given the observed p-value being p. The monotone likelihood ratio assumption (Sun
& Cai, 2007) states that f1,;(p)/fo(p) is decreasing in p. Under this assumption, ¢;(p) = Lfdr;(p) is
monotonically increasing in p and thus fulfills the requirement in Proposition 4. Additionally, it has
been shown in the literature that the rejection rule ¢;(p;) = Lfdr;(p;) < tis optimal in the sense of
maximizing the expected number of true positives among the decision rules that control the marginal
FDR at level «; see, ¢.g., Sun & Cai (2007), Lei & Fithian (2018) and Cao et al. (2022).

4.4. Connections between the flexible Barber—Candeés and e-Benjamini—Hochberg procedures

We show that the flexible Barber—Candés procedure is equivalent to the e-Benjamini-Hochberg
procedure with the e-values

_ nl{g;(p;) < Trsc)
1+ 370 Ty (1 = p) < Tesc)

(13)

i

where Tgpc is defined in (12). By equation (B.1) in the Supplementary Material, we have
> e Ele;] < n, which implies that the corresponding e-Benjamini—Hochberg procedure controls the
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Table 1. The selections of m(t) and R;(t) for different methods

Method m(1) Ri(0)
BH nt Ipi <t}

FBH ng(1) Heip) < )
ST nmit 1{pi < 1)
BC L+ pi=1—1) Ipi <t}

FBC 1+ He(l—p) < 1) Hei(p) < 1)

BH, the Benjamini-Hochberg procedure; FBH, the flexible Benjamini-Hochberg procedure; ST, Storey’s proce-
dure; BC, the Barber—Candés procedure; FBC, the flexible Barber—-Candeés procedure.

FDR at the desired level. Furthermore, the following theorem shows that the e-Benjamini-Hochberg
procedure with the e-values defined above is equivalent to the flexible Barber—Candés procedure.

THEOREM 3. Let Sgpc be the set of rejections obtained through the flexible Barber—Candés procedure
at the FDR level a, and let S.gy represent the set of rejections obtained from the e- Benjamini—Hochberg
procedure at the same FDR level o, with the e-values defined in (13). Then we have Sggc = Scph.

4.5. A unified viewpoint

The connection between the aforementioned procedures and the e-Benjamini-Hochberg pro-
cedure can be unified in the following way. Suppose that we reject the ith hypothesis if R;(7T) = 1
with

T {z p. "0 }
=supyteD: - <ay.
IV 2 R

Here D denotes the domain of the threshold, m () is an estimate of the number of false discoveries and
> -1 R;(1) is the total number of rejections, with R;(¢) indicating whether or not the jth hypothesis
should be rejected at threshold z. The corresponding e-Benjamini-Hochberg procedure is defined
based on the e-values ¢; = nR;(T)/m(T) for 1 < i < n. The selections of m(f) and R;(¢) for different
methods are summarized in Table 1.

5. AGGREGATING AND ASSEMBLING €-VALUES

We have shown that the Benjamini-Hochberg and Barber—Candés procedures and their gener-
alized versions are all equivalent to the e-Benjamini—-Hochberg procedure based on specific forms
of e-values. This equivalence opens up new possibilities for designing multiple testing procedures
by aggregating/combining e-values from different procedures, or the same procedure with different
tuning quantities, or assembling e-values from various subsets of the data. We present the following
results for combining and assembling e-values, which have not been explicitly stated in the existing
literature. We refer the reader to the Supplementary Material for a more detailed illustration. The
result in Proposition 5 below is under the case where we have L sets of e-values from L procedures,
while the result in Proposition 6 below is under the case where we have L sets of e-values obtained
from L different datasets.

PROPOSITION 5. Suppose that we have L sets of e-values {¢': i € [n]}-_, from L different procedures,
where {ef f‘: , are the L e-values associated with H; and ZieHO E[eﬁ] <n Let e = Z,L:] w/,,veﬁ be the

weighted e-value, where w;; > 0 is the aggregating weight. If Z,LZI max; w;; < 1, the weighted e-values
satisfy (5).

The condition 3, E[el] < n for all / ensures that each procedure controls the FDR. Propo-
sition 5 suggests that the e-Benjamini-Hochberg procedure applied to the weighted e-values still
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controls the FDR. Moreover, when E[ef] < 1 for all i and /, the condition Zf‘:l max; w;,; < 1 can
be relaxed to Y1, S0 wy/n < 1.

PROPOSITION 6. Suppose that we have L sets of e-values {e': i € G, |G| = n;} from L different
datasets, where | J,Gi=1[nl, G, NG, = @ if L + b, el is associated with hypothesis H; and
Zieglm_[o E[eﬁ] < n. Let ¢ = W;,,-eﬁ be the weighted e-value, where w;; > 0 is the assembling weight.

If Z,L:] N Maxeg, Wi < n, the weighted e-values satisfy (5).

The condition Zteg,mHO Ele;] < n; ensures that the FDR is controlled within each G;. Proposi-

tion 6 suggests that the e-Benjamini—-Hochberg procedure applied to the weighted e-values controls
the overall FDR.

SUPPLEMENTARY MATERIAL

The Supplementary Material includes all proofs.
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