

# A note on *e*-values and multiple testing

BY GUANXUN LI

*Department of Statistics, Beijing Normal University at Zhuhai,  
18 Jinfeng Road, Zhuhai, Guangdong 519087, China  
guanxun@bnu.edu.cn*

AND XIANYANG ZHANG<sup>id</sup>

*Department of Statistics, Texas A&M University,  
400 Bizzell Street, College Station, Texas 77843, U.S.A.  
zhangxiyang@stat.tamu.edu*

## SUMMARY

We discover a connection between the Benjamini–Hochberg procedure and the *e*-Benjamini–Hochberg procedure (Wang & Ramdas, 2022) with a suitably defined set of *e*-values. This insight extends to Storey’s procedure and generalized versions of the Benjamini–Hochberg procedure and the model-free multiple testing procedure of Barber & Candès (2015) with a general form of rejection rules. We further summarize these findings in a unified form. These connections open up new possibilities for designing multiple testing procedures in various contexts by aggregating *e*-values from different procedures or assembling *e*-values from different data subsets.

*Some key words:* Benjamini–Hochberg procedure; *E*-value; False discovery rate; Leave-one-out analysis; Multiple testing.

## 1. INTRODUCTION

When working with high-dimensional data in modern scientific fields, the problem of multiple testing often arises when we explore a vast number of hypotheses with the goal of detecting signals while also controlling some error measures, such as the false discovery rate (FDR). The Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely used FDR-controlling procedure that rejects a hypothesis whenever its *p*-value is less than or equal to an adaptive rejection threshold determined by the whole set of *p*-values. Barber & Candès (2015) proposed a model-free FDR-controlling procedure that estimates the number of false rejections by leveraging the symmetry of *p*-values or test statistics under the null and compares each *p*-value or test statistic with an adaptive threshold.

More recently, there is a growing literature on utilizing *e*-values for statistical inference under different contexts; see, e.g., Shafer (2021), Vovk & Wang (2021), Xu et al. (2021), Dunn et al. (2023), Ignatiadis et al. (2023), Grünwald et al. (2024) and Xu & Ramdas (2024). In particular, Wang & Ramdas (2022) proposed a multiple testing procedure named the *e*-Benjamini–Hochberg procedure by applying the Benjamini–Hochberg procedure to *e*-values, which was shown to control the FDR even when the *e*-values exhibit arbitrary dependence.

In this work, we establish a connection between the Benjamini–Hochberg and *e*-Benjamini–Hochberg procedures with a suitably defined set of *e*-values, proving that they yield identical rejection sets. We next extend this connection to Storey’s procedure and generalized versions of the Benjamini–Hochberg and the Barber–Candès procedures, which can have a more general form for the rejection rules. All these connections can be summarized in a unified form. Additionally, these connections

provide an effective way of constructing multiple testing procedures in different contexts. Specifically, we propose two new multiple testing procedures by aggregating  $e$ -values from different procedures or the same procedure with different tuning quantities, and assembling  $e$ -values from different datasets.

## 2. PRELIMINARIES

### 2.1. False discovery rate

Suppose that we are interested in testing  $n$  hypotheses  $(H_1, \dots, H_n)$  simultaneously. Let  $\theta = (\theta_1, \dots, \theta_n) \in \{0, 1\}^n$  indicate the underlying truth of each hypothesis, where  $\theta_i = 0$  if  $H_i$  is under the null and  $\theta_i = 1$  otherwise. Denote by  $\delta = (\delta_1, \dots, \delta_n) \in \{0, 1\}^n$  a decision rule for the  $n$  hypotheses, where we reject the  $i$ th hypothesis if and only if  $\delta_i = 1$ . The FDR for the decision rule  $\delta$  is defined as the expectation of the false discovery proportion (FDP), i.e.,

$$\text{FDR}(\delta) = \mathbb{E}[\text{FDP}(\delta)], \quad \text{FDP}(\delta) = \frac{\sum_{i=1}^n (1 - \theta_i) \delta_i}{1 \vee \sum_{i=1}^n \delta_i},$$

where  $a \vee b = \max(a, b)$ . The goal of an FDR-controlling procedure is to ensure that the FDR is bounded from above by a prespecified number  $\alpha \in (0, 1)$ .

### 2.2. The Benjamini–Hochberg procedure

The Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely used FDR-controlling method. To describe the procedure, suppose that we observe a  $p$ -value  $p_i$  for each  $H_i$ . Sort the  $p$ -values in ascending order as  $p_{(1)} \leq \dots \leq p_{(n)}$ , and let  $\hat{k} = \max\{i: p_{(i)} \leq (\alpha i)/n\}$ . The Benjamini–Hochberg procedure rejects all hypotheses  $H_{(i)}$  with  $i \leq \hat{k}$ , where  $H_{(i)}$  is the hypothesis associated with  $p_{(i)}$ . This procedure is equivalent to rejecting all  $H_i$  with  $p_i \leq T_{\text{BH}}$ , where  $T_{\text{BH}}$  is defined as

$$T_{\text{BH}} = \sup \left\{ 0 < t \leq 1: \frac{nt}{1 \vee R(t)} \leq \alpha \right\} \quad (1)$$

with  $R(t) = \sum_{i=1}^n \mathbb{1}\{p_i \leq t\}$  the number of rejections given threshold  $t$ , and  $\mathbb{1}\{A\}$  denoting the indicator function associated with a set  $A$ .

*Assumption 1.* The null  $p$ -values are mutually independent, and are independent of the alternative  $p$ -values.

We say that a  $p$ -value  $p$  is superuniform under the null if  $P_0(p \leq t) \leq t$  for each  $t \in [0, 1]$ , where  $P_0$  denotes the probability measure under the null hypothesis. It is well known that, under Assumption 1 and if the null  $p$ -values are superuniform, the Benjamini–Hochberg procedure at level  $\alpha$  controls the FDR at level  $\alpha n_0/n \leq \alpha$ , where  $n_0$  is the number of hypotheses under the null (Ferreira & Zwinderman, 2006).

### 2.3. Storey's procedure

Storey's procedure (Storey, 2002; Storey et al., 2004) improves the Benjamini–Hochberg procedure by using the  $p$ -values to estimate the null proportion  $\pi_0 := n_0/n$ . Specifically, we define

$$\pi_0^\lambda := \frac{1 + n - R(\lambda)}{(1 - \lambda)n}, \quad (2)$$

where  $\lambda \in [0, 1]$  is fixed. Storey's procedure rejects all  $H_i$  with  $p_i \leq T_{\text{ST}}$ , where  $T_{\text{ST}}$  is defined as

$$T_{\text{ST}} = \sup \left\{ 0 < t \leq \lambda: \frac{n\pi_0^\lambda t}{1 \vee R(t)} \leq \alpha \right\}. \quad (3)$$

When  $\pi_0^\lambda < 1$ , Storey's procedure makes more rejections than the Benjamini–Hochberg procedure. If Assumption 1 holds and the null  $p$ -values are uniformly distributed on  $[0, 1]$ , Storey's procedure has finite sample FDR control (Storey et al., 2004).

#### 2.4. The Barber–Candès procedure

In a seminal paper by Barber & Candès (2015), the authors proposed a model-free multiple testing procedure that exploits the symmetry of the null  $p$ -values or test statistics to estimate the number of false rejections. More precisely, the Barber–Candès procedure specifies a data-dependent threshold, denoted  $T_{\text{BC}}$ , which is determined as

$$T_{\text{BC}} = \sup \left\{ 0 < t < 0.5 : \frac{1 + \sum_{i=1}^n \mathbb{1}\{p_i \geq 1-t\}}{1 \vee R(t)} \leq \alpha \right\}, \quad (4)$$

and it rejects all  $H_i$  with  $p_i \leq T_{\text{BC}}$ . The Barber–Candès procedure has been shown to provide finite sample FDR control under suitable assumptions (Barber & Candès, 2015).

#### 2.5. $E$ -values and the $e$ -Benjamini–Hochberg procedure

A nonnegative random variable  $e$  is called an  $e$ -value if  $\mathbb{E}[e] \leq 1$  under the null hypothesis. Suppose that we observe  $n$   $e$ -values  $e_1, \dots, e_n$  corresponding to hypotheses  $H_1, \dots, H_n$ . The  $\alpha$ -level  $e$ -Benjamini–Hochberg procedure involves sorting the  $e$ -values in decreasing order as  $e_{(1)} \geq \dots \geq e_{(n)}$  and rejecting the hypotheses associated with the  $\hat{k}$  largest  $e$ -values, where  $\hat{k} := \max\{1 \leq i \leq n : e_{(i)} \geq n/(i\alpha)\}$ . Note that  $P(1/e_i \leq t) \leq t$  by Markov's inequality, which indicates that  $1/e_i$  is superuniform. Thus, the  $e$ -Benjamini–Hochberg procedure is simply the Benjamini–Hochberg procedure applied to the  $p$ -values  $\{1/e_i\}_{i=1}^n$ . An advantage of the  $e$ -Benjamini–Hochberg procedure is that it controls the FDR at level  $\alpha$  even under unknown arbitrary dependence among the  $e$ -values.

**PROPOSITION 1** (THEOREM 2 OF WANG & RAMDAS, 2022). *Suppose that the nonnegative random variables  $\{e_i\}$  satisfy*

$$\sum_{i \in \mathcal{H}_0} \mathbb{E}[e_i] \leq n, \quad (5)$$

where  $\mathcal{H}_0 = \{1 \leq i \leq n : \theta_i = 0\}$ . Then, the  $\alpha$ -level  $e$ -Benjamini–Hochberg procedure applied to  $\{e_i\}$  controls the FDR at level  $\alpha$ , regardless of the dependence structure among  $\{e_i\}$ .

In the multiple testing context, the requirement that  $\mathbb{E}[e] \leq 1$  in the definition of  $e$ -values can be relaxed. More precisely, we refer to  $\{e_i\}$  as a set of  $e$ -values if they satisfy condition (5) throughout the rest of the paper.

### 3. CONNECTIONS BETWEEN THE PROCEDURES

#### 3.1. Connections between the Benjamini–Hochberg and $e$ -Benjamini–Hochberg procedures

We first establish the equivalence between the Benjamini–Hochberg procedure and the corresponding  $e$ -Benjamini–Hochberg procedure with a suitably defined set of  $e$ -values. This equivalence appears to be a new finding that has not been explicitly stated in the previous literature.

To see the connection between the Benjamini–Hochberg and  $e$ -Benjamini–Hochberg procedures, we define the  $e$ -value associated with  $H_i$  to be

$$e_i = \frac{1}{T_{\text{BH}}} \mathbb{1}\{p_i \leq T_{\text{BH}}\}, \quad (6)$$

where  $T_{\text{BH}}$  is given in (1). The  $e$ -value defined in (6) coincides with the  $e$ -value defined in equation (1) of Banerjee et al. (2023) when the decision rule therein is specified using the Benjamini–Hochberg procedure. Let  $[n] = \{1, 2, \dots, n\}$  for any positive integer  $n$ . Under Assumption 1 and if the null  $p$ -values are superuniform, by Lemmas 3–4 of Storey et al. (2004), it is straightforward to show that

$\sum_{i \in \mathcal{H}_0} \mathbb{E}[e_i] = n_0$ , which implies that the  $e$ -values defined by (6) satisfy (5). The detailed derivation is provided in the [Supplementary Material](#). Thus, by Proposition 1, the corresponding  $e$ -Benjamini–Hochberg procedure controls the FDR at the desired level. Moreover, we claim that the  $e$ -Benjamini–Hochberg procedure based on the  $e$ -values defined in (6) is equivalent to the Benjamini–Hochberg procedure in the sense that they produce the same set of rejections; see Theorem 2 below for a precise statement.

### 3.2. Connections between the Storey and $e$ -Benjamini–Hochberg procedures

Define the  $e$ -value associated with  $H_i$  to be

$$e_i = \frac{1}{\pi_0^\lambda T_{\text{ST}}} \mathbb{1}\{p_i \leq T_{\text{ST}}\}, \quad (7)$$

where  $\pi_0^\lambda$  is defined in (2) and  $T_{\text{ST}}$  is given in (3). We have the following result.

**THEOREM 1.** *Suppose that Assumption 1 holds and that the null  $p$ -values follow the uniform distribution on  $[0, 1]$ . Then, the  $e$ -values defined in (7) satisfy (5). Additionally, let  $\mathcal{S}_{\text{ST}}$  be the set of rejections obtained through Storey's procedure at the FDR level  $\alpha$ , and let  $\mathcal{S}_{\text{eBH}}$  represent the set of rejections obtained from the  $e$ -Benjamini–Hochberg procedure at the same FDR level  $\alpha$ , with the  $e$ -values defined in (7). Then we have  $\mathcal{S}_{\text{ST}} = \mathcal{S}_{\text{eBH}}$ .*

### 3.3. Connections between the Barber–Candès and $e$ -Benjamini–Hochberg procedures

As noted in the recent work of [Ren & Barber \(2024\)](#), the Barber–Candès procedure is equivalent to the  $e$ -Benjamini–Hochberg procedure based on the  $e$ -values

$$e_i = \frac{n \mathbb{1}\{p_i \leq T_{\text{BC}}\}}{1 + \sum_{j=1}^n \mathbb{1}\{p_j \geq 1 - T_{\text{BC}}\}},$$

where  $T_{\text{BC}}$  is the threshold defined in (4).

## 4. THE FLEXIBLE BENJAMINI–HOCHBERG AND BARBER–CANDÈS PROCEDURES

### 4.1. The flexible Benjamini–Hochberg procedure

We generalize the Benjamini–Hochberg procedure to allow the rejection rule to take the form  $\varphi_i(p_i) \leq t$ , where  $\varphi_i$  is a strictly increasing function and can differ for each  $i$ . This generalization enables the testing procedure to utilize cross-sectional information among the  $p$ -values and external structural information for each hypothesis, which often results in a higher multiple testing power. Let  $F_i = \varphi_i^{-1}$  represent the inverse function of  $\varphi_i$ ,  $g$  be some strictly increasing function and  $g^{-1}$  be the inverse function of  $g$ . Consider the rejection threshold given by

$$T_{\text{FBH}} = \sup \left\{ 0 < t \leq 1 : \frac{ng(t)}{1 \vee R(t)} \leq \alpha \right\}, \quad (8)$$

where  $R(t) = \sum_{i=1}^n \mathbb{1}\{\varphi_i(p_i) \leq t\}$ . The flexible Benjamini–Hochberg procedure rejects  $H_i$  whenever  $\varphi_i(p_i) \leq T_{\text{FBH}}$ . Similar to the Benjamini–Hochberg procedure, the flexible Benjamini–Hochberg procedure can be equivalently implemented in the following way. We sort  $q_i = \varphi_i(p_i)$  in ascending order, i.e.,  $q_{(1)} \leq \dots \leq q_{(n)}$ , and find the largest  $k$ , represented as  $\hat{k}$ , for which  $q_{(k)} \leq g^{-1}(\alpha k/n)$ . We reject  $H_{(i)}$  for all  $i \leq \hat{k}$ . The following proposition states that the flexible Benjamini–Hochberg procedure ensures FDR control at a certain level.

**PROPOSITION 2.** *Suppose that Assumption 1 holds and that the null  $p$ -values are superuniform. The flexible Benjamini–Hochberg procedure controls the FDR at level  $C\alpha$ , where*

$$C = \sum_{i \in \mathcal{H}_0} \sup_{t \in \mathcal{C}_\alpha} \frac{F_i(t)}{ng(t)}, \quad \mathcal{C}_\alpha = \{0 < t \leq 1 : g(t) \leq \alpha\}. \quad (9)$$

Additionally, if  $g(t) = n^{-1} \sum_{i=1}^n F_i(t)$  and  $F_i(t) = c_i h(t)$ , where  $c_i$  is some positive constant and  $h$  is a strictly increasing function of  $t$ , then the flexible Benjamini–Hochberg procedure controls the FDR at level  $\alpha$ .

Proposition 2 broadens and enhances Theorem 7.1 of Peña et al. (2011) in two ways. First, a careful inspection reveals that Theorem 7.1 of Peña et al. (2011) is a specific instance of Proposition 2 with a particular choice of  $F_i(t) = \eta_i(t)$  and  $g(t) = (1/n) \sum_{i=1}^n \eta_i(t)$ , where  $\{\eta_1(t), \dots, \eta_n(t)\}$  is the multiple decision size vector defined in Peña et al. (2011). Second, as a consequence of Proposition 2, the flexible Benjamini–Hochberg procedure controls the FDR at level  $\alpha$  when  $C = \sum_{i \in \mathcal{H}_0} \sup_{t \in C_\alpha} \{F_i(t)/ng(t)\} \leq 1$ , which is weaker than the condition  $n_0 \sup_{i \in \mathcal{H}_0} \sup_{t \in C_\alpha} \{F_i(t)/nng(t)\} \leq 1$  required in Theorem 7.1 of Peña et al. (2011).

The following example illustrates that the flexible Benjamini–Hochberg procedure aligns with the weighted Benjamini–Hochberg procedure for particular choices of  $g$  and  $\varphi_i$ .

*Example 1.* Let  $g(t) = t$  and  $\varphi_i(p) = p/\omega_i$ , where  $\omega_i$  denotes the weight for the  $i$ th hypothesis with  $\omega_i > 0$  and  $\sum_{i=1}^n \omega_i = n$ . The flexible Benjamini–Hochberg procedure associated with this choice of  $\varphi_i$  and  $g$  corresponds to the weighted Benjamini–Hochberg procedure first introduced by Genovese et al. (2006). In this case, the rejection threshold can be expressed as  $T_{\text{FBH}} = \sup\{0 < t \leq 1 : nt/\{1 \vee R(t)\} \leq \alpha\}$ , where  $R(t) = \sum_{i=1}^n \mathbb{1}\{p_i/\omega_i \leq t\}$ .

#### 4.2. Connections between the flexible and $e$ -Benjamini–Hochberg procedures

Analogous to the Benjamini–Hochberg procedure, we show that the flexible Benjamini–Hochberg procedure is equivalent to the  $e$ -Benjamini–Hochberg procedure applied to the  $e$ -values

$$e_i = \frac{\mathbb{1}\{\varphi_i(p_i) \leq T_{\text{FBH}}\}}{g(T_{\text{FBH}})}, \quad (10)$$

where  $T_{\text{FBH}}$  is defined in (8). By the leave-one-out argument, we prove the following result.

**PROPOSITION 3.** *Under the assumptions in Proposition 2, the  $e$ -Benjamini–Hochberg procedure with  $e$ -values defined in (10) controls the FDR at level  $C\alpha$ , where  $C$  is defined in (9).*

Additionally, we can prove that the  $e$ -Benjamini–Hochberg procedure and the flexible Benjamini–Hochberg procedure deliver the same set of rejections.

**THEOREM 2.** *Let  $\mathcal{S}_{\text{FBH}}$  be the set of rejections obtained through the flexible Benjamini–Hochberg procedure at the FDR level  $\alpha$ , and let  $\mathcal{S}_{\text{eBH}}$  represent the set of rejections obtained from the  $e$ -Benjamini–Hochberg procedure at the same FDR level  $\alpha$ , with the  $e$ -values defined in (10). Then we have  $\mathcal{S}_{\text{FBH}} = \mathcal{S}_{\text{eBH}}$ .*

The  $e$ -value for the Benjamini–Hochberg procedure is a special case of (10) with  $\varphi_i(t) = t$  and  $g(t) = t$ . Consequently, the  $e$ -Benjamini–Hochberg procedure based on (6) yields the same rejection set as the Benjamini–Hochberg procedure.

#### 4.3. The flexible Barber–Candès procedure

In this section, we generalize the Barber–Candès procedure with the rejection rule given by  $\varphi_i(p_i) \leq t$ . Similar ideas have been pursued in the literature for structure-adaptive multiple testing (Lei & Fithian, 2018; Zhang & Chen, 2022). We assume that the null  $p$ -value satisfies the condition

$$P(p_i \leq a) \leq P(p_i \geq 1 - a) = P(1 - p_i \leq a) \quad \text{for all } 0 \leq a \leq 0.5. \quad (11)$$

Condition (11) is weaker than the mirror conservativeness in Lei & Fithian (2018), and it can be shown that superuniformity implies (11). Indeed,  $P(1 - p_i \leq a) \geq 1 - P(p_i \leq 1 - a) \geq 1 - (1 - a) = a \geq P(p_i \leq a)$ . Assume that  $\varphi_i$  is an increasing and continuous function, and define

$F_i(x) = \sup\{0 \leq p \leq 1: \varphi_i(p) \leq x\}$ . We claim that  $P\{\varphi_i(p_i) \leq b\} = P\{p_i \leq F_i(b)\}$ . To see this, consider two cases. If  $\varphi_i(p_i) \leq b$ , by the definition of  $F_i(b)$ , we have  $p_i \leq F_i(b)$ . On the other hand, if  $p_i \leq F_i(b)$  then  $\varphi_i(p_i) \leq \varphi_i\{F_i(b)\} = \lim_{p \uparrow F_i(b)} \varphi_i(p) \leq b$ , where we use the fact that  $\varphi_i$  is increasing to get the two inequalities, and the equality is due to the continuity of  $\varphi_i$ . Therefore, the above claim together with (11) implies that

$$P\{\varphi_i(p_i) \leq b\} = P\{p_i \leq F_i(b)\} \leq P\{1 - p_i \leq F_i(b)\} = P\{\varphi_i(1 - p_i) \leq b\}$$

for all  $\varphi_i(0) \leq b \leq \varphi_i(0.5)$ . Hence, we have

$$\frac{\sum_{i \in \mathcal{H}_0} \mathbb{1}\{\varphi_i(p_i) \leq t\}}{1 \vee \sum_{i=1}^n \mathbb{1}\{\varphi_i(p_i) \leq t\}} \lesssim \frac{\sum_{i \in \mathcal{H}_0} \mathbb{1}\{\varphi_i(1 - p_i) \leq t\}}{1 \vee \sum_{i=1}^n \mathbb{1}\{\varphi_i(p_i) \leq t\}} \leq \frac{1 + \sum_{i=1}^n \mathbb{1}\{\varphi_i(1 - p_i) \leq t\}}{1 \vee \sum_{i=1}^n \mathbb{1}\{\varphi_i(p_i) \leq t\}},$$

where  $\lesssim$  means less than or equal to asymptotically and the last term can be viewed as a conservative estimate of the FDP. Motivated by this observation, we define the threshold for the flexible Barber–Candès procedure as

$$T_{\text{FBC}} = \sup \left\{ 0 < t \leq T_{\text{up}} : \frac{1 + \sum_{i=1}^n \mathbb{1}\{\varphi_i(1 - p_i) \leq t\}}{1 \vee \sum_{i=1}^n \mathbb{1}\{\varphi_i(p_i) \leq t\}} \leq \alpha \right\}, \quad (12)$$

which is the largest cut-off such that the FDP estimate is bounded above by  $\alpha$ , where  $T_{\text{up}}$  satisfies  $T_{\text{up}} < \min_i \varphi_i(0.5)$ . The flexible Barber–Candès procedure rejects  $H_i$  whenever  $\varphi_i(p_i) \leq T_{\text{FBC}}$ .

**PROPOSITION 4.** *Suppose that Assumption 1 holds and that the null p-values satisfy (11). Assuming that  $\varphi_i$  is a monotonic increasing and continuous function for all  $i$ , then the flexible Barber–Candès procedure ensures FDR control at level  $\alpha$ .*

*Remark 1.* Compared to the flexible Benjamini–Hochberg procedure, the flexible Barber–Candès approach affords us greater flexibility in selecting  $\varphi_i$ , as it no longer requires  $\varphi_i$  to be strictly increasing, and its generalized inverse function does not have to fulfill the condition in Proposition 2 to achieve FDR control.

*Example 2.* Suppose that the p-value  $p_i$  is generated independently from the two-group mixture model:  $\pi_i f_0 + (1 - \pi_i) f_{1,i}$ , where  $\pi_i \in (0, 1)$  is the mixing proportion and  $f_0$  and  $f_{1,i}$  denote the p-value distributions under the null and alternative, respectively. The local FDR is defined as  $\text{Lfdr}_i(p) = \pi_i f_0(p) / \{\pi_i f_0(p) + (1 - \pi_i) f_{1,i}(p)\}$ , which is the posterior probability that the  $i$ th hypothesis is under the null given the observed p-value being  $p$ . The monotone likelihood ratio assumption (Sun & Cai, 2007) states that  $f_{1,i}(p)/f_0(p)$  is decreasing in  $p$ . Under this assumption,  $\varphi_i(p) = \text{Lfdr}_i(p)$  is monotonically increasing in  $p$  and thus fulfills the requirement in Proposition 4. Additionally, it has been shown in the literature that the rejection rule  $\varphi_i(p_i) = \text{Lfdr}_i(p_i) \leq t$  is optimal in the sense of maximizing the expected number of true positives among the decision rules that control the marginal FDR at level  $\alpha$ ; see, e.g., Sun & Cai (2007), Lei & Fithian (2018) and Cao et al. (2022).

#### 4.4. Connections between the flexible Barber–Candès and e-Benjamini–Hochberg procedures

We show that the flexible Barber–Candès procedure is equivalent to the e-Benjamini–Hochberg procedure with the  $e$ -values

$$e_i = \frac{n \mathbb{1}\{\varphi_i(p_i) \leq T_{\text{FBC}}\}}{1 + \sum_{j=1}^n \mathbb{1}\{\varphi_j(1 - p_j) \leq T_{\text{FBC}}\}}, \quad (13)$$

where  $T_{\text{FBC}}$  is defined in (12). By equation (B.1) in the [Supplementary Material](#), we have  $\sum_{i \in \mathcal{H}_0} \mathbb{E}[e_i] \leq n$ , which implies that the corresponding e-Benjamini–Hochberg procedure controls the

Table 1. The selections of  $m(t)$  and  $R_i(t)$  for different methods

| Method | $m(t)$                                                     | $R_i(t)$                              |
|--------|------------------------------------------------------------|---------------------------------------|
| BH     | $nt$                                                       | $\mathbb{1}\{p_i \leq t\}$            |
| FBH    | $ng(t)$                                                    | $\mathbb{1}\{\varphi_i(p_i) \leq t\}$ |
| ST     | $n\pi_0^\wedge t$                                          | $\mathbb{1}\{p_i \leq t\}$            |
| BC     | $1 + \sum_{i=1}^n \mathbb{1}\{p_i \geq 1 - t\}$            | $\mathbb{1}\{p_i \leq t\}$            |
| FBC    | $1 + \sum_{i=1}^n \mathbb{1}\{\varphi_i(1 - p_i) \leq t\}$ | $\mathbb{1}\{\varphi_i(p_i) \leq t\}$ |

BH, the Benjamini–Hochberg procedure; FBH, the flexible Benjamini–Hochberg procedure; ST, Storey’s procedure; BC, the Barber–Candès procedure; FBC, the flexible Barber–Candès procedure.

FDR at the desired level. Furthermore, the following theorem shows that the  $e$ -Benjamini–Hochberg procedure with the  $e$ -values defined above is equivalent to the flexible Barber–Candès procedure.

**THEOREM 3.** *Let  $\mathcal{S}_{\text{FBC}}$  be the set of rejections obtained through the flexible Barber–Candès procedure at the FDR level  $\alpha$ , and let  $\mathcal{S}_{\text{eBH}}$  represent the set of rejections obtained from the  $e$ -Benjamini–Hochberg procedure at the same FDR level  $\alpha$ , with the  $e$ -values defined in (13). Then we have  $\mathcal{S}_{\text{FBC}} = \mathcal{S}_{\text{eBH}}$ .*

#### 4.5. A unified viewpoint

The connection between the aforementioned procedures and the  $e$ -Benjamini–Hochberg procedure can be unified in the following way. Suppose that we reject the  $i$ th hypothesis if  $R_i(T) = 1$  with

$$T = \sup \left\{ t \in \mathcal{D}: \frac{m(t)}{1 \vee \sum_{j=1}^n R_j(t)} \leq \alpha \right\}.$$

Here  $\mathcal{D}$  denotes the domain of the threshold,  $m(t)$  is an estimate of the number of false discoveries and  $\sum_{j=1}^n R_j(t)$  is the total number of rejections, with  $R_j(t)$  indicating whether or not the  $j$ th hypothesis should be rejected at threshold  $t$ . The corresponding  $e$ -Benjamini–Hochberg procedure is defined based on the  $e$ -values  $e_i = nR_i(T)/m(T)$  for  $1 \leq i \leq n$ . The selections of  $m(t)$  and  $R_i(t)$  for different methods are summarized in Table 1.

## 5. AGGREGATING AND ASSEMBLING $e$ -VALUES

We have shown that the Benjamini–Hochberg and Barber–Candès procedures and their generalized versions are all equivalent to the  $e$ -Benjamini–Hochberg procedure based on specific forms of  $e$ -values. This equivalence opens up new possibilities for designing multiple testing procedures by aggregating/combining  $e$ -values from different procedures, or the same procedure with different tuning quantities, or assembling  $e$ -values from various subsets of the data. We present the following results for combining and assembling  $e$ -values, which have not been explicitly stated in the existing literature. We refer the reader to the [Supplementary Material](#) for a more detailed illustration. The result in Proposition 5 below is under the case where we have  $L$  sets of  $e$ -values from  $L$  procedures, while the result in Proposition 6 below is under the case where we have  $L$  sets of  $e$ -values obtained from  $L$  different datasets.

**PROPOSITION 5.** *Suppose that we have  $L$  sets of  $e$ -values  $\{e_i^l: i \in [n]\}_{l=1}^L$  from  $L$  different procedures, where  $\{e_i^l\}_{l=1}^L$  are the  $L$   $e$ -values associated with  $H_i$  and  $\sum_{i \in \mathcal{H}_0} \mathbb{E}[e_i^l] \leq n$ . Let  $e_i = \sum_{l=1}^L w_{l,i} e_i^l$  be the weighted  $e$ -value, where  $w_{l,i} \geq 0$  is the aggregating weight. If  $\sum_{l=1}^L \max_i w_{l,i} \leq 1$ , the weighted  $e$ -values satisfy (5).*

The condition  $\sum_{i \in \mathcal{H}_0} \mathbb{E}[e_i^l] \leq n$  for all  $l$  ensures that each procedure controls the FDR. Proposition 5 suggests that the  $e$ -Benjamini–Hochberg procedure applied to the weighted  $e$ -values still

controls the FDR. Moreover, when  $\mathbb{E}[e_i^l] \leq 1$  for all  $i$  and  $l$ , the condition  $\sum_{l=1}^L \max_i w_{l,i} \leq 1$  can be relaxed to  $\sum_{l=1}^L \sum_{i=1}^n w_{l,i}/n \leq 1$ .

**PROPOSITION 6.** Suppose that we have  $L$  sets of  $e$ -values  $\{e_i^l : i \in \mathcal{G}_l, |\mathcal{G}_l| = n_l\}$  from  $L$  different datasets, where  $\bigcup_l \mathcal{G}_l = [n]$ ,  $\mathcal{G}_{l_1} \cap \mathcal{G}_{l_2} = \emptyset$  if  $l_1 \neq l_2$ ,  $e_i^l$  is associated with hypothesis  $H_i$  and  $\sum_{i \in \mathcal{G}_l \cap \mathcal{H}_0} \mathbb{E}[e_i^l] \leq n_l$ . Let  $e_i = w_{l,i} e_i^l$  be the weighted  $e$ -value, where  $w_{l,i} \geq 0$  is the assembling weight. If  $\sum_{l=1}^L n_l \max_{i \in \mathcal{G}_l} w_{l,i} \leq n$ , the weighted  $e$ -values satisfy (5).

The condition  $\sum_{i \in \mathcal{G}_l \cap \mathcal{H}_0} \mathbb{E}[e_i] \leq n_l$  ensures that the FDR is controlled within each  $\mathcal{G}_l$ . Proposition 6 suggests that the  $e$ -Benjamini–Hochberg procedure applied to the weighted  $e$ -values controls the overall FDR.

#### SUPPLEMENTARY MATERIAL

The [Supplementary Material](#) includes all proofs.

#### REFERENCES

BANERJEE, T., GANG, B. & HE, J. (2023). Harnessing the collective wisdom: fusion learning using decision sequences from diverse sources. *arXiv*: 2308.11026v1.

BARBER, R. F. & CANDÈS, E. J. (2015). Controlling the false discovery rate via knockoffs. *Ann. Statist.* **43**, 2055–85.

BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Statist. Soc. B* **57**, 289–300.

CAO, H., CHEN, J. & ZHANG, X. (2022). Optimal false discovery rate control for large scale multiple testing with auxiliary information. *Ann. Statist.* **50**, 807–57.

DUNN, R., RAMDAS, A., BALAKRISHNAN, S. & WASSERMAN, L. (2023). Gaussian universal likelihood ratio testing. *Biometrika* **110**, 319–37.

FERREIRA, J. & ZWINDERMAN, A. (2006). On the Benjamini–Hochberg method. *Ann. Statist.* **34**, 1827–49.

GENOVESE, C. R., ROEDER, K. & WASSERMAN, L. (2006). False discovery control with  $p$ -value weighting. *Biometrika* **93**, 509–24.

GRÜNWALD, P., DE HEIDE, R. & KOOLEN, W. (2024). Safe testing. *J. R. Statist. Soc. B*, doi: 10.1093/rssb/qkae011.

IGNATIADIS, N., WANG, R. & RAMDAS, A. (2023).  $E$ -values as unnormalized weights in multiple testing. *Biometrika* **111**, 417–39.

LEI, L. & FITHIAN, W. (2018). Adapt: an interactive procedure for multiple testing with side information. *J. R. Statist. Soc. B* **80**, 649–79.

PEÑA, E. A., HABIGER, J. D. & WU, W. (2011). Power-enhanced multiple decision functions controlling family-wise error and false discovery rates. *Ann. Statist.* **39**, 556–83.

REN, Z. & BARBER, R. F. (2024). Derandomised knockoffs: leveraging  $e$ -values for false discovery rate control. *J. R. Statist. Soc. B* **86**, 122–54.

SHAFER, G. (2021). Testing by betting: a strategy for statistical and scientific communication. *J. R. Statist. Soc. A* **184**, 407–31.

STOREY, J. D. (2002). A direct approach to false discovery rates. *J. R. Statist. Soc. B* **64**, 479–98.

STOREY, J. D., TAYLOR, J. E. & SIEGMUND, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *J. R. Statist. Soc. B* **66**, 187–205.

SUN, W. & CAI, T. T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. *J. Am. Statist. Assoc.* **102**, 901–12.

VOVK, V. & WANG, R. (2021).  $E$ -values: calibration, combination and applications. *Ann. Statist.* **49**, 1736–54.

WANG, R. & RAMDAS, A. (2022). False discovery rate control with  $e$ -values. *J. R. Statist. Soc. B* **84**, 822–52.

XU, Z. & RAMDAS, A. (2024). More powerful multiple testing under dependence via randomization. *arXiv*: 2305.11126v3.

XU, Z., WANG, R. & RAMDAS, A. (2021). A unified framework for bandit multiple testing. In *Proc. 35th Int. Conf. Neural Info. Proces. Syst.*, pp. 16833–45. Red Hook, NY: Curran Associates.

ZHANG, X. & CHEN, J. (2022). Covariate adaptive false discovery rate control with applications to omics-wide multiple testing. *J. Am. Statist. Assoc.* **117**, 411–27.

[Received on 19 December 2023. Editorial decision on 30 September 2024]