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SUMMARY

We discover a connection between the Benjamini3Hochberg procedure and the e-Benjamini3

Hochberg procedure (Wang & Ramdas, 2022) with a suitably deûned set of e-values. This insight

extends to Storey9s procedure and generalized versions of the Benjamini3Hochberg procedure and

themodel-free multiple testing procedure of Barber & Candés (2015)with a general form of rejection

rules. We further summarize these ûndings in a uniûed form. These connections open up new pos-

sibilities for designing multiple testing procedures in various contexts by aggregating e-values from

different procedures or assembling e-values from different data subsets.

Some key words: Benjamini3Hochberg procedure; E-value; False discovery rate; Leave-one-out analysis;

Multiple testing.

1. Introduction

When working with high-dimensional data in modern scientiûc ûelds, the problem of multi-

ple testing often arises when we explore a vast number of hypotheses with the goal of detecting

signals while also controlling some error measures, such as the false discovery rate (FDR). The

Benjamini3Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely used

FDR-controlling procedure that rejects a hypothesis whenever its p-value is less than or equal to

an adaptive rejection threshold determined by the whole set of p-values. Barber & Candès (2015)

proposed a model-free FDR-controlling procedure that estimates the number of false rejections by

leveraging the symmetry of p-values or test statistics under the null and compares each p-value or

test statistic with an adaptive threshold.

More recently, there is a growing literature on utilizing e-values for statistical inference under dif-

ferent contexts; see, e.g., Shafer (2021), Vovk & Wang (2021), Xu et al. (2021), Dunn et al. (2023),

Ignatiadis et al. (2023), Grünwald et al. (2024) and Xu & Ramdas (2024). In particular, Wang &

Ramdas (2022) proposed a multiple testing procedure named the e-Benjamini3Hochberg procedure

by applying the Benjamini3Hochberg procedure to e-values, which was shown to control the FDR

even when the e-values exhibit arbitrary dependence.

In this work, we establish a connection between the Benjamini3Hochberg and e-Benjamini3

Hochberg procedures with a suitably deûned set of e-values, proving that they yield identical rejection

sets.We next extend this connection to Storey9s procedure and generalized versions of the Benjamini3

Hochberg and the Barber3Candès procedures, which can have a more general form for the rejection

rules. All these connections can be summarized in a uniûed form. Additionally, these connections
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provide an effective way of constructingmultiple testing procedures in different contexts. Speciûcally,

we propose two newmultiple testing procedures by aggregating e-values from different procedures or

the same procedure with different tuning quantities, and assembling e-values from different datasets.

2. Preliminaries

2.1. False discovery rate

Suppose that we are interested in testing n hypotheses (H1, . . . ,Hn) simultaneously. Let θ =

(θ1, . . . , θn) ∈ {0, 1}n indicate the underlying truth of each hypothesis, where θi = 0 if Hi is under

the null and θi = 1 otherwise. Denote by δ = (δ1, . . . , δn) ∈ {0, 1}n a decision rule for the n hypo-

theses, where we reject the ith hypothesis if and only if δi = 1. The FDR for the decision rule δ is

deûned as the expectation of the false discovery proportion (fdp), i.e.,

FDR(δ) = E[FDP(δ)], FDP(δ) =

∑n

i=1(1 − θi)δi

1 ∨
∑n

i=1 δi
,

where a ∨ b = max(a, b). The goal of an FDR-controlling procedure is to ensure that the FDR is

bounded from above by a prespeciûed number α ∈ (0, 1).

2.2. The Benjamini3Hochberg procedure

The Benjamini3Hochberg procedure (Benjamini & Hochberg, 1995) is perhaps the most widely

used FDR-controlling method. To describe the procedure, suppose that we observe a p-value pi for

each Hi. Sort the p-values in ascending order as p(1) 6 · · · 6 p(n), and let k̂ = max{i : p(i) 6 (αi)/n}.

The Benjamini3Hochberg procedure rejects all hypothesesH(i) with i 6 k̂, whereH(i) is the hypothesis

associatedwith p(i). This procedure is equivalent to rejecting allHi with pi 6 TBH, whereTBH is deûned

as

TBH = sup

{

0 < t 6 1:
nt

1 ∨R(t)
6 α

}

(1)

with R(t) =
∑n

i=1 1{pi 6 t} the number of rejections given threshold t, and 1{A} denoting the

indicator function associated with a set A.

Assumption 1. The null p-values are mutually independent, and are independent of the alternative

p-values.

We say that a p-value p is superuniform under the null if P0(p 6 t) 6 t for each t ∈ [0, 1],

where P0 denotes the probability measure under the null hypothesis. It is well known that, under

Assumption 1 and if the null p-values are superuniform, the Benjamini3Hochberg procedure at level

α controls the FDR at level αn0/n 6 α, where n0 is the number of hypotheses under the null (Ferreira

& Zwinderman, 2006).

2.3. Storey9s procedure

Storey9s procedure (Storey, 2002; Storey et al., 2004) improves theBenjamini3Hochberg procedure

by using the p-values to estimate the null proportion π0 := n0/n. Speciûcally, we deûne

πλ
0 :=

1 + n− R(λ)

(1 − λ)n
, (2)

where λ ∈ [0, 1) is ûxed. Storey9s procedure rejects all Hi with pi 6 TST, where TST is deûned as

TST = sup

{

0 < t 6 λ :
nπλ

0 t

1 ∨ R(t)
6 α

}

. (3)
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When πλ
0 < 1, Storey9s procedure makes more rejections than the Benjamini3Hochberg procedure.

If Assumption 1 holds and the null p-values are uniformly distributed on [0, 1], Storey9s procedure

has ûnite sample FDR control (Storey et al., 2004).

2.4. The Barber3Candès procedure

In a seminal paper by Barber & Candès (2015), the authors proposed a model-free multiple testing

procedure that exploits the symmetry of the null p-values or test statistics to estimate the number of

false rejections. More precisely, the Barber3Candès procedure speciûes a data-dependent threshold,

denoted TBC, which is determined as

TBC = sup

{

0 < t < 0.5 :
1 +

∑n

i=1 1{pi > 1 − t}

1 ∨R(t)
6 α

}

, (4)

and it rejects all Hi with pi 6 TBC. The Barber3Candès procedure has been shown to provide ûnite

sample FDR control under suitable assumptions (Barber & Candès, 2015).

2.5. E-values and the e-Benjamini3Hochberg procedure

A nonnegative random variable e is called an e-value if E[e] 6 1 under the null hypothesis.

Suppose that we observe n e-values e1, . . . , en corresponding to hypotheses H1, . . . ,Hn. The

α-level e-Benjamini3Hochberg procedure involves sorting the e-values in decreasing order as

e(1) > · · · > e(n) and rejecting the hypotheses associated with the k̂ largest e-values, where

k̂ := max{1 6 i 6 n : e(i) > n/(iα)}. Note thatP(1/ei 6 t) 6 t byMarkov9s inequality, which indicates

that 1/ei is superuniform. Thus, the e-Benjamini3Hochberg procedure is simply the Benjamini3

Hochberg procedure applied to the p-values {1/ei}
n
i=1. An advantage of the e-Benjamini3Hochberg

procedure is that it controls the FDR at level α even under unknown arbitrary dependence among

the e-values.

PROPOSITION 1 (Theorem 2 of Wang & Ramdas, 2022). Suppose that the nonnegative random

variables {ei} satisfy
∑

i∈H0

E[ei] 6 n, (5)

where H0 = {1 6 i 6 n : θi = 0}. Then, the α-level e-Benjamini3Hochberg procedure applied to {ei}

controls the FDR at level α, regardless of the dependence structure among {ei}.

In the multiple testing context, the requirement that E[e] 6 1 in the deûnition of e-values can be

relaxed. More precisely, we refer to {ei} as a set of e-values if they satisfy condition (5) throughout

the rest of the paper.

3. Connections between the procedures

3.1. Connections between the Benjamini3Hochberg and e-Benjamini3Hochberg procedures

We ûrst establish the equivalence between the Benjamini3Hochberg procedure and the corres-

ponding e-Benjamini3Hochberg procedure with a suitably deûned set of e-values. This equivalence

appears to be a new ûnding that has not been explicitly stated in the previous literature.

To see the connection between the Benjamini3Hochberg and e-Benjamini3Hochberg procedures,

we deûne the e-value associated with Hi to be

ei =
1

TBH

1{pi 6 TBH}, (6)

where TBH is given in (1). The e-value deûned in (6) coincides with the e-value deûned in equation (1)

of Banerjee et al. (2023) when the decision rule therein is speciûed using the Benjamini3Hochberg

procedure. Let [n] = {1, 2, . . . , n} for any positive integer n. Under Assumption 1 and if the null

p-values are superuniform, by Lemmas 334 of Storey et al. (2004), it is straightforward to show that
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∑

i∈H0
E[ei] = n0, which implies that the e-values deûned by (6) satisfy (5). The detailed derivation

is provided in the Supplementary Material. Thus, by Proposition 1, the corresponding e-Benjamini3

Hochberg procedure controls the FDR at the desired level. Moreover, we claim that the e-Benjamini3

Hochberg procedure based on the e-values deûned in (6) is equivalent to the Benjamini3Hochberg

procedure in the sense that they produce the same set of rejections; see Theorem 2 below for a precise

statement.

3.2. Connections between the Storey and e-Benjamini3Hochberg procedures

Deûne the e-value associated with Hi to be

ei =
1

πλ
0TST

1{pi 6 TST}, (7)

where πλ
0 is deûned in (2) and TST is given in (3). We have the following result.

THEOREM 1. Suppose that Assumption 1 holds and that the null p-values follow the uniform distri-

bution on [0, 1]. Then, the e-values deûned in (7) satisfy (5). Additionally, let SST be the set of rejections

obtained through Storey9s procedure at the FDR level α, and let SeBH represent the set of rejections

obtained from the e-Benjamini3Hochberg procedure at the same FDR level α, with the e-values deûned

in (7). Then we have SST = SeBH.

3.3. Connections between the Barber3Candès and e-Benjamini3Hochberg procedures

As noted in the recent work of Ren & Barber (2024), the Barber3Candès procedure is equivalent

to the e-Benjamini3Hochberg procedure based on the e-values

ei =
n1{pi 6 TBC}

1 +
∑n

j=1 1{pj > 1 − TBC}
,

where TBC is the threshold deûned in (4).

4. The flexible Benjamini3Hochberg and Barber3Candès procedures

4.1. The ûexible Benjamini3Hochberg procedure

We generalize the Benjamini3Hochberg procedure to allow the rejection rule to take the form

ϕi(pi) 6 t, where ϕi is a strictly increasing function and can differ for each i. This generalization

enables the testing procedure to utilize cross-sectional information among the p-values and external

structural information for each hypothesis, which often results in a higher multiple testing power. Let

Fi = ϕ−1
i represent the inverse function of ϕi, g be some strictly increasing function and g−1 be the

inverse function of g. Consider the rejection threshold given by

TFBH = sup

{

0 < t 6 1:
ng(t)

1 ∨R(t)
6 α

}

, (8)

where R(t) =
∑n

i=1 1{ϕi(pi) 6 t}. The ûexible Benjamini3Hochberg procedure rejects Hi whenever

ϕi(pi) 6 TFBH. Similar to the Benjamini3Hochberg procedure, the ûexible Benjamini3Hochberg pro-

cedure can be equivalently implemented in the following way. We sort qi = ϕi(pi) in ascending order,

i.e., q(1) 6 · · · 6 q(n), and ûnd the largest k, represented as k̂, for which q(k) 6 g−1(αk/n). We reject

H(i) for all i 6 k̂. The following proposition states that the ûexible Benjamini3Hochberg procedure

ensures FDR control at a certain level.

PROPOSITION 2. Suppose that Assumption 1 holds and that the null p-values are superuniform. The

ûexible Benjamini3Hochberg procedure controls the FDR at level Cα, where

C =
∑

i∈H0

sup
t∈Cα

Fi(t)

ng(t)
, Cα = {0 < t 6 1: g(t) 6 α}. (9)
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Additionally, if g(t) = n−1
∑n

i=1 Fi(t) and Fi(t) = cih(t), where ci is some positive constant and h is a

strictly increasing function of t, then the ûexible Benjamini3Hochberg procedure controls the FDR at

level α.

Proposition 2 broadens and enhances Theorem 7.1 of Peña et al. (2011) in two ways. First,

a careful inspection reveals that Theorem 7.1 of Peña et al. (2011) is a speciûc instance of

Proposition 2 with a particular choice of Fi(t) = ηi(t) and g(t) = (1/n)
∑n

i=1 ηi(t), where

{η1(t), . . . , ηn(t)} is the multiple decision size vector deûned in Peña et al. (2011). Second, as

a consequence of Proposition 2, the ûexible Benjamini3Hochberg procedure controls the FDR

at level α when C =
∑

i∈H0
supt∈Cα

{Fi(t)/ng(t)} 6 1, which is weaker than the condition

n0 supi∈H0
supt∈Cα

{Fi(t)/nng(t)} 6 1 required in Theorem 7.1 of Peña et al. (2011).

The following example illustrates that the ûexible Benjamini3Hochberg procedure aligns with the

weighted Benjamini3Hochberg procedure for particular choices of g and ϕi.

Example 1. Let g(t) = t and ϕi(p) = p/ωi, where ωi denotes the weight for the ith hypothesis

with ωi > 0 and
∑n

i=1 ωi = n. The ûexible Benjamini3Hochberg procedure associated with this

choice of ϕi and g corresponds to the weighted Benjamini3Hochberg procedure ûrst introduced by

Genovese et al. (2006). In this case, the rejection threshold can be expressed as TFBH = sup{0 < t 6

1: nt/{1∨ R(t)} 6 α}, where R(t) =
∑n

i=1 1{pi/ωi 6 t}.

4.2. Connections between the ûexible and e-Benjamini3Hochberg procedures

Analogous to the Benjamini3Hochberg procedure, we show that the ûexible Benjamini3Hochberg

procedure is equivalent to the e-Benjamini3Hochberg procedure applied to the e-values

ei =
1{ϕi(pi) 6 TFBH}

g(TFBH)
, (10)

where TFBH is deûned in (8). By the leave-one-out argument, we prove the following result.

PROPOSITION 3. Under the assumptions in Proposition 2, the e-Benjamini3Hochberg procedure with

e-values deûned in (10) controls the FDR at level Cα, where C is deûned in (9).

Additionally, we can prove that the e-Benjamini3Hochberg procedure and the ûexible Benjamini3

Hochberg procedure deliver the same set of rejections.

THEOREM 2. Let SFBH be the set of rejections obtained through the ûexible Benjamini3Hochberg

procedure at the FDR level α, and let SeBH represent the set of rejections obtained from the

e-Benjamini3Hochberg procedure at the same FDR level α, with the e-values deûned in (10). Then we

have SFBH = SeBH.

The e-value for the Benjamini3Hochberg procedure is a special case of (10) with ϕi(t) = t and

g(t) = t. Consequently, the e-Benjamini3Hochberg procedure based on (6) yields the same rejection

set as the Benjamini3Hochberg procedure.

4.3. The ûexible Barber3Candès procedure

In this section, we generalize the Barber3Candès procedure with the rejection rule given by

ϕi(pi) 6 t. Similar ideas have been pursued in the literature for structure-adaptive multiple testing

(Lei & Fithian, 2018; Zhang & Chen, 2022). We assume that the null p-value satisûes the condition

P(pi 6 a) 6 P(pi > 1 − a) = P(1 − pi 6 a) for all 0 6 a 6 0.5. (11)

Condition (11) is weaker than the mirror conservativeness in Lei & Fithian (2018), and it can be

shown that superuniformity implies (11). Indeed, P(1 − pi 6 a) > 1 − P(pi 6 1 − a) > 1 −

(1 − a) = a > P(pi 6 a). Assume that ϕi is an increasing and continuous function, and deûne
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Fi(x) = sup{0 6 p 6 1: ϕi(p) 6 x}. We claim that P{ϕi(pi) 6 b} = P{pi 6 Fi(b)}. To see this,

consider two cases. If ϕi(pi) 6 b, by the deûnition of Fi(b), we have pi 6 Fi(b). On the other hand,

if pi 6 Fi(b) then ϕi(pi) 6 ϕi{Fi(b)} = limp↑Fi(b) ϕi(p) 6 b, where we use the fact that ϕi is increasing

to get the two inequalities, and the equality is due to the continuity of ϕi. Therefore, the above claim

together with (11) implies that

P{ϕi(pi) 6 b} = P{pi 6 Fi(b)} 6 P{1 − pi 6 Fi(b)} = P{ϕi(1 − pi) 6 b}

for all ϕi(0) 6 b 6 ϕi(0.5). Hence, we have

∑

i∈H0
1{ϕi(pi) 6 t}

1 ∨
∑n

i=1 1{ϕi(pi) 6 t}
.

∑

i∈H0
1{ϕi(1 − pi) 6 t}

1 ∨
∑n

i=1 1{ϕi(pi) 6 t}
6

1 +
∑n

i=1 1{ϕi(1 − pi) 6 t}

1 ∨
∑n

i=1 1{ϕi(pi) 6 t}
,

where.means less than or equal to asymptotically and the last term can be viewed as a conservative

estimate of the fdp. Motivated by this observation, we deûne the threshold for the ûexible Barber3

Candès procedure as

TFBC = sup

{

0 < t 6 Tup :
1 +

∑n

i=1 1{ϕi(1 − pi) 6 t}

1 ∨
∑n

i=1 1{ϕi(pi) 6 t}
6 α

}

, (12)

which is the largest cut-off such that the fdp estimate is bounded above by α, where Tup satisûes

Tup < mini ϕi(0.5). The ûexible Barber3Candès procedure rejects Hi whenever ϕi(pi) 6 TFBC.

PROPOSITION 4. Suppose that Assumption 1 holds and that the null p-values satisfy (11). Assuming

that ϕi is a monotonic increasing and continuous function for all i, then the ûexible Barber3Candès

procedure ensures FDR control at level α.

Remark 1. Compared to the ûexible Benjamini3Hochberg procedure, the ûexible Barber3Candès

approach affordsus greater ûexibility in selecting ϕi, as it no longer requires ϕi to be strictly increasing,

and its generalized inverse function does not have to fulûll the condition in Proposition 2 to achieve

FDR control.

Example 2. Suppose that the p-value pi is generated independently from the two-group mixture

model: πif0 + (1 − πi)f1,i, where πi ∈ (0, 1) is the mixing proportion and f0 and f1,i denote the

p-value distributions under the null and alternative, respectively. The local FDR is deûned as

Lfdri(p) = πif0(p)/{πif0(p)+ (1−πi)f1,i(p)}, which is the posterior probability that the ith hypothesis

is under the null given the observed p-value being p. The monotone likelihood ratio assumption (Sun

& Cai, 2007) states that f1,i(p)/f0(p) is decreasing in p. Under this assumption, ϕi(p) = Lfdri(p) is

monotonically increasing in p and thus fulûlls the requirement in Proposition 4. Additionally, it has

been shown in the literature that the rejection rule ϕi(pi) = Lfdri(pi) 6 t is optimal in the sense of

maximizing the expected number of true positives among the decision rules that control the marginal

FDR at level α; see, e.g., Sun & Cai (2007), Lei & Fithian (2018) and Cao et al. (2022).

4.4. Connections between the ûexible Barber3Candès and e-Benjamini3Hochberg procedures

We show that the ûexible Barber3Candès procedure is equivalent to the e-Benjamini3Hochberg

procedure with the e-values

ei =
n1{ϕi(pi) 6 TFBC}

1 +
∑n

j=1 1{ϕj(1 − pj) 6 TFBC}
, (13)

where TFBC is deûned in (12). By equation (B.1) in the Supplementary Material, we have
∑

i∈H0
E[ei] 6 n, which implies that the corresponding e-Benjamini3Hochberg procedure controls the
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Table 1. The selections of m(t) and Ri(t) for different methods

Method m(t) Ri(t)

BH nt 1{pi 6 t}

FBH ng(t) 1{ϕi(pi) 6 t}

ST nπλ
0 t 1{pi 6 t}

BC 1 +
∑n

i=1 1{pi > 1 − t} 1{pi 6 t}

FBC 1 +
∑n

i=1 1{ϕi(1 − pi) 6 t} 1{ϕi(pi) 6 t}

BH, the Benjamini3Hochberg procedure; FBH, the ûexible Benjamini3Hochberg procedure; ST, Storey9s proce-

dure; BC, the Barber3Candès procedure; FBC, the ûexible Barber3Candès procedure.

FDR at the desired level. Furthermore, the following theorem shows that the e-Benjamini3Hochberg

procedure with the e-values deûned above is equivalent to the ûexible Barber3Candès procedure.

THEOREM 3. LetSFBC be the set of rejections obtained through the ûexible Barber3Candès procedure

at theFDR level α, and let SeBH represent the set of rejections obtained from the e-Benjamini3Hochberg

procedure at the same FDR level α, with the e-values deûned in (13). Then we have SFBC = SeBH.

4.5. A uniûed viewpoint

The connection between the aforementioned procedures and the e-Benjamini3Hochberg pro-

cedure can be uniûed in the following way. Suppose that we reject the ith hypothesis if Ri(T) = 1

with

T = sup

{

t ∈ D :
m(t)

1 ∨
∑n

j=1Rj(t)
6 α

}

.

HereD denotes the domain of the threshold,m(t) is an estimate of the number of false discoveries and
∑n

j=1 Rj(t) is the total number of rejections, with Rj(t) indicating whether or not the jth hypothesis

should be rejected at threshold t. The corresponding e-Benjamini3Hochberg procedure is deûned

based on the e-values ei = nRi(T)/m(T) for 1 6 i 6 n. The selections of m(t) and Ri(t) for different

methods are summarized in Table 1.

5. Aggregating and assembling e-values

We have shown that the Benjamini3Hochberg and Barber3Candès procedures and their gener-

alized versions are all equivalent to the e-Benjamini3Hochberg procedure based on speciûc forms

of e-values. This equivalence opens up new possibilities for designing multiple testing procedures

by aggregating/combining e-values from different procedures, or the same procedure with different

tuning quantities, or assembling e-values from various subsets of the data. We present the following

results for combining and assembling e-values, which have not been explicitly stated in the existing

literature. We refer the reader to the Supplementary Material for a more detailed illustration. The

result in Proposition 5 below is under the case where we have L sets of e-values from L procedures,

while the result in Proposition 6 below is under the case where we have L sets of e-values obtained

from L different datasets.

PROPOSITION 5. Suppose that we have L sets of e-values {eli : i ∈ [n]}Ll=1 from L different procedures,

where {eli}
L
l=1 are the L e-values associated with Hi and

∑

i∈H0
E[eli] 6 n. Let ei =

∑L

l=1 wl,ie
l
i be the

weighted e-value, where wl,i > 0 is the aggregating weight. If
∑L

l=1 maxi wl,i 6 1, the weighted e-values

satisfy (5).

The condition
∑

i∈H0
E[eli] 6 n for all l ensures that each procedure controls the FDR. Propo-

sition 5 suggests that the e-Benjamini3Hochberg procedure applied to the weighted e-values still
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controls the FDR. Moreover, when E[eli] 6 1 for all i and l, the condition
∑L

l=1 maxi wl,i 6 1 can

be relaxed to
∑L

l=1

∑n

i=1 wl,i/n 6 1.

PROPOSITION 6. Suppose that we have L sets of e-values {eli : i ∈ Gl, |Gl| = nl} from L different

datasets, where
⋃

l Gl = [n], Gl1 ∩ Gl2 = ∅ if l1 |= l2, e
l
i is associated with hypothesis Hi and

∑

i∈Gl∩H0
E[eli] 6 nl. Let ei = wl,ie

l
i be the weighted e-value, where wl,i > 0 is the assembling weight.

If
∑L

l=1 nl maxi∈Gl wl,i 6 n, the weighted e-values satisfy (5).

The condition
∑

i∈Gl∩H0
E[ei] 6 nl ensures that the FDR is controlled within each Gl . Proposi-

tion 6 suggests that the e-Benjamini3Hochberg procedure applied to the weighted e-values controls

the overall FDR.

Supplementary material

The Supplementary Material includes all proofs.
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