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Sparse canonical correlation analysis (sCCA) has been a useful approach for

integrating different high-dimensional datasets by finding a subset of correlated

features that explain themost correlation in the data. In the context of microbiome

studies, investigators are always interested in knowing how the microbiome

interacts with the host at different molecular levels such as genome, methylol,

transcriptome, metabolome and proteome. sCCA provides a simple approach for

exploiting the correlation structure amongmultiple omics data and finding a set of

correlated omics features, which could contribute to understanding the host-

microbiome interaction. However, existing sCCA methods do not address

compositionality, and its application to microbiome data is thus not optimal.

This paper proposes a new sCCA framework for integrating microbiome data

with other high-dimensional omics data, accounting for the compositional nature

of microbiome sequencing data. It also allows integrating prior structure

information such as the grouping structure among bacterial taxa by imposing a

“soft” constraint on the coefficients through varying penalization strength. As a

result, the method provides significant improvement when the structure is

informative while maintaining robustness against a misspecified structure.

Through extensive simulation studies and real data analysis, we demonstrate the

superiority of the proposed framework over the state-of-the-art approaches.
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1 Introduction

The human microbiome is the collection of microorganisms and their genetic makeup

associated with the human body. It plays a critical role in human health and disease ranging

from gastrointestinal diseases to various cancers (Sepich-Poore et al., 2021). To gain more

mechanistic insights, multi-omics approaches have been increasingly employed in

microbiome studies to elucidate the intricate interplay between the environment, the

human microbiome and the host at different molecular levels (Hasin et al., 2017; Lloyd-

Price et al., 2019). Although many multi-omics datasets have been generated in the past few

years, it is unclear how to integrate them efficiently. One useful tool for multi-omics data

integration is to perform canonical correlation analysis (CCA). CCA, due to Hotelling

(1936), connects two sets of variables by finding a linear combination of variables that

maximally correlate. However, the standard CCA fails when the sample size is strictly less

than the number of variables as one can find meaningless solutions with correlations equal
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to one. Also, it does not perform variable selection and hence lacks

interpretability. To circumvent these problems, sparse CCA (sCCA)

has been proposed, aiming to find pairs of sparse canonical

directions by imposing sparsity penalty. The first sCCA

algorithm was presented by Parkhomenko et al. (2007), which,

however, lacks exact criterion and biconvexity. Witten et al.

(2009) applied the penalized matrix decomposition to cross-

product matrix and yielded a straightforward formulation for

sCCA. Some closely related methods include Parkhomenko et al.,

2009; Lê Cao et al., 2009. Hardoon and Shawe-Taylor (2011)

expressed the sCCA model as a primal-dual Rayleigh quotient,

which takes the primal representation and kernel representation

as the first view and second view, respectively. Chu et al. (2013)

reformed CCA into a trace maximization problem and computed

the sparse solution by the linearized Bregman method. To exploit

the potential structural information among features, various forms

of structure-adaptive sCCA have been proposed (Lin et al., 2013;

Chen et al., 2012; Mohammadi-Nejad et al., 2017). In particular,

Chen et al. (2013) proposed the structure-constrained sCCA

(ssCCA) to exploit the phylogenetic structure in microbiome data.

Advances in next-generation sequencing technologies have

enabled the direct sequencing of microbial DNA to determine

microbiome composition, using either targeted or shotgun

approaches (Wensel et al., 2022). The resulting microbiome data is

typically in the form of a count table that records the frequencies of

detected taxa in specific samples. However, due to the complexities

inherent in the sequencing process, the total count for a sample

reflects the sequencing effort rather than the actual microbial load at

the sampling site. Consequently, microbiome data are inherently

compositional, meaning that we only have information about the

relative abundances of taxa. This compositionality presents significant

challenges in the statistical analysis of microbiome data. A change in

the (absolute) abundance of one taxon can lead to apparent changes in

the relative abundances of all other taxa, complicating the

identification of the actual causal taxa (Yang and Chen, 2022). The

compositional nature also renders many standard multivariate

statistical models inappropriate or inapplicable (Aitchison, 1982).

Many efforts have been made to address the compositionality in

different contexts of microbiome data analysis. For example,

Friedman and Alm (2012) developed an iterative procedure named

SparCC that allows inference of correlations for compositional data by

assuming that the number of taxa is large and the true correlation

network is sparse. Lin et al. (2014) dealt with the variable selection in

regression with compositional covariates. Jiang et al. (2019) addressed

zero inflation and detected pairs of associated compositional and non-

compositional covariates using a Bayesian zero-inflated negative

binomial regression model. However, existing CCA methods

including ssCCA could not address the compositional effects,

potentially reducing its precision in recovering relevant taxa.

We propose a new sCCA framework for integrating microbiome

data with other high-dimensional omics data. The framework

specifically addresses the compositional nature of the microbiome

data. It also allows integrating prior structure information by

imposing a “soft” constraint on the coefficients through varying

penalization strength. As a result, the method provides significant

improvement when the structure is informative while maintaining

robustness against a misspecified structure. The developed tool aims

to be an important resource for investigators to understand the

interplay between the microbiome and host, decipher the molecular

mechanisms underlying microbiome-disease association, and

identify potential microbial targets for intervention.

This paper is organized as follows. Section 2 introduces the new

sCCA framework for integrating microbiome compositional data

with (non-)compositional high-dimensional data. Section 3 extends

the new framework to incorporate additional prior structural

information. In Section 4, we conduct numerical simulations to

demonstrate the effectiveness of our proposed methods. Section 5

applies the proposed methods in a real microbiome study to

investigate the association between gut bacteria and its metabolic

output. We conclude with a discussion in Section 6.

2 Compositional sCCA

2.1 Formulation

Let us consider two random vectors X � (X1, . . . , Xp)
⊤ and

Y � (Y1, . . . , Yq)
⊤, where X contains the composition of p taxa and

Y is a q-dimensional vector of non-compositional covariates. The

nature of the composition makes X lie in a (p − 1)-dimensional

positive simplex. To address the compositionality, Aitchison and

Bacon-Shone (1984) proposed applying the log-ratio transformation

to compositional covariates resulting in

Z/p � (log(X1/Xp), . . . , log(Xp−1/Xp)), where Xp is chosen as

the reference component. CCA for compositional data can be

formulated to find canonical coefficients a � (a1, . . . , aq)
⊤ and

b−p � (b1, . . . , bp−1)
⊤ so that the correlation between a⊤Y and

b⊤−pZ/p is maximized. Note that b⊤−pZ/p � ∑p−1
j�1 bj log(Xj/Xp) �∑p

j�1bj log(Xj) with bp � −∑p−1
j�1 bj. To avoid the choice of a

reference component, we can write the term b⊤−pZ/p in a

symmetric form by noticing that b⊤−pZ/p � b⊤Z, where Z �

(log(X1), . . . , log(Xp)) and b � (b1, . . . , bp) with

b ∈ Bp ≔ c � c1, . . . , cp( )⊤: ∑p
j�1

cj � 0
§̈© «¬­.

Therefore, the compositional CCA aims to find ~a and ~b such that

~a, ~b( ) � argmax
a∈Rq ,b∈Bp

Corr a⊤Y, b⊤Z( ) � argmax
a∈Rq ,b∈Bp

Cov a⊤Y, b⊤Z( )����������������
Var a⊤Y( )var b⊤Z( )√ .

When the dimensions p and q are high (as compared to the sample

size), regularization is required to encourage sparsity and to obtain a

unique solution to the optimization problem. We let

ΣYZ � Cov(Y,Z), ΣY � Cov(Y,Y) and ΣZ � Cov(Z,Z). Define

the weighted l1 norm based on a vector of non-negative weights

w � (w1, . . . , wp) for a vector b as ‖b‖1,w � ∑p
j�1wj|bj|. The

compositional sCCA problem can then be formulated as

max
a∈Rq ,b∈Rp

a⊤ΣYZb s.t. a⊤ΣYaf 1, ‖a‖1 fCa, b
⊤
ΣZbf 1,

‖b‖1,w fCb, b ∈ Bp. (1)

HereCa, Cb > 0 are some positive tuning parameters that control

the global shrinkage level. The weight wj allows different

penalization strengths according to the data or prior structure

information. We will elaborate it in Section 2.3.
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It has been shown that in high dimensions, treating the

covariance matrix as diagonal can yield good results. Following

the same strategy adopted by many of the existing high-dimensional

CCA algorithms (e.g., Witten et al., 2009), we substitute in the

identity matrix for ΣY and ΣZ in the CCA formulation (Equation 1).

Moreover, we write the (weighted) l1 constraints on a and b in the

Lagrangian form. Given a set of n samples {Xi,Yi}
n
i�1, let Σ̂YZ be the

sample cross-covariance between Y and Z. We formulate the feasible

CCA problem as

min
a∈Rq ,b∈Rp

− a⊤Σ̂YZb + λa‖a‖1

+ λb‖b‖1,w s.t. ‖a‖2 f 1, ‖b‖2 f 1, b ∈ Bp,

which can be solved by iteratively optimizing the objective function

with respect to one parameter while fixing the other parameter.

Specifically, we have the following two updating steps.

1. Update b: Fix a(t) and update b through

b t( )
← argmin

b∈Rp

− a t( )( )⊤Σ̂YZb + λb‖b‖1,w s.t. ‖b‖2 f 1, b ∈ Bp. (2)

2. Update a: Fix b(t) and update a through

a t+1( )
← argmin

a∈Rq

−a⊤Σ̂YZb
t( ) + λa‖a‖1 s.t. ‖a‖2 f 1. (3)

2.2 Algorithm

In this section, we discuss the updates in Equations 2, 3. Define

the operator

g h, λ,w( ) � argmin
b∈Bp

1

2
‖h − b‖22 + λ‖b‖1,w .

By exploring the Karush-Kuhn-Tuchker conditions, we obtain

the following result.

Proposition 2.1. Set �b � argminb∈Bp
− (a(t))⊤Σ̂YZb + λb‖b‖1,w .

The solution to (2) is given by

b t( ) �

�b, if ‖�b‖2 f 1,

g Σ̂
⊤

YZa
t( ), λb,w( )

‖g Σ̂
⊤

YZa
t( ), λb,w( )‖2, if ‖�b‖2 > 1.

§⎪⎪⎪̈⎪⎪⎪©
Remark 2.1. We employ the augmented Lagrangian method

(ALM) to solve the optimization problem in g(h, λ,w). Specifically,

the ALM involves the following two steps of iterations

b t+1( )
← argmin

b

1

2
‖h − b‖22 + λb‖b‖1,w +

μ1
2

1⊤b + d t( )( )2,
d t+1( )

← d t( ) + μ21
⊤b t+1( ),

where μ1, μ2 > 0 are the step sizes in dual gradient ascent, which are

set to be 1 in our numerical studies. The optimization problem in the

first step can be solved using coordinate descent in an inner loop by

iterating across the following p components

b t+1,r+1( )

j �
1

1 + μ1
S hj − μ1 ∑

i<j

b t+1,r+1( )

i + ∑
i>j

b t+1,r( )

i + d t( )⎛¿ À⎠, λbwj
⎛¿ À⎠,

where S(a, λ) � sign(a)(|a| − λ)+ denotes the soft-thresholding

operator and hj is the jth component of h.

Using similar arguments, we can show that the solution to (3) is

given by

a t+1( ) �

�a, if ‖�a‖2 f 1,

S Σ̂YZb
t( ), λa( )

S Σ̂YZb
t( ), λa( )����� �����

2

, if ‖�a‖2 > 1,

§⎪⎪⎪̈⎪⎪⎪©
where �a � argmina∈Rq − a⊤Σ̂YZb

(t) + λa‖a‖1 and

S(a, λ) � (S(a1, λ), . . . , S(ap, λ))
⊤. Set v � (v1, . . . , vq)

⊤ � Σ̂YZb
(t).

The objective function in the definition of �a becomes∑q
j�1(−ajvj + λa|aj|). We see that a(t+1)j � 0 if λa g vj, and |a(t+1)j | �

∞ if λa < vj. Therefore, we have

a t+1( ) �

0, if λa g ‖v‖∞,

S Σ̂YZb
t( ), λa( )

S Σ̂YZb
t( ), λa( )����� �����

2

, if λa < ‖v‖∞.

§⎪⎪⎪̈⎪⎪⎪©
As our goal is to find two directions a and b to maximize

Cov(a⊤Y, b⊤Z), we only consider the updates when the l2
constraints are binding, which leads to Algorithm 1 below.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂YZ.

2. Update b: Fix a(t) and update b through

b t( )
←

g Σ̂
⊤

YZa
t( ), λb,w( )

g Σ̂
⊤

YZa
t( ), λb,w( )����� �����

2

, (4)

where g(Σ̂
⊤

YZa
(t), λb,w) can be obtained through the

iterations described in Remark 2.1.

3. Update a: Fix b
(t) and update a through

a t+1( )
←

S Σ̂YZb
t( ), λa( )

S Σ̂YZb
t( ), λa( )����� �����

2

. (5)

4. Iterate Steps 2 and 3 until convergence.

Algorithm 1. Compositional sCCA: compositional data versus non-

compositional data.

2.3 Selecting tuning parameters

To select the regularization parameters λa and λb, we consider a

two-stage K-fold cross-validation (CV) method as motivated by

Chen et al. (2013). We partition all the samples into M folds, and

denote Yk � YIk and Zk � ZIk , where Ik are the indexes of samples in

the kth fold for k � 1, . . . , K. TheK-fold cross-validation criterion is

CV λa, λb( ) �
1

K
∑K
k�1

Corr â−k λa, λb( )
⊤Yk, b̂−k λa, λb( )

⊤Zk( ) (6)

where â−k(λa, λb) and b̂−k(λa, λb) are the solutions to the

compositional sCCA problem based on the samples
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(∪K
k�1Ik)\Ik with the tuning parameters (λa, λb). The parameter

selection based on the CV criterion can be influenced by

shrinkage problems arising from the sparsity penalty. To

avoid this bias, we adopt the coefficients estimated from a

two-stage approach when evaluating the CV criterion. In the

first stage, we implement Algorithm 1 with the given tuning

parameter pair (λa, λb) and exclude variables with zero

coefficients. In the second stage, we recalculate the coefficients

by applying Algorithm 1 with a tuning parameter pair (0,0). The

optimal tuning parameter pair is chosen as the one that

maximizes the CV value with these recalculated coefficients.

Our approach accounts for the compositional structure in the

second stage by restricting the coefficients of compositional data

to Bp. As will be shown below, the K-fold cross-

validation performs reasonably well with K � 5 in our

numerical studies.

2.4 Compositional data versus

compositional data

We briefly describe an extension to the case, where bothX and Y

are compositional. For example, we want to associate the

composition of the bacterial taxa with that of the fungi taxa. Let

Y � (Y1, . . . , Yq)
⊤ be the relative abundances of another set of

compositional features. In this case, we let U �

(log(Y1), . . . , log(Yq))
⊤ and define Σ̂UZ as the sample covariance

between U and Z. Following the derivation in Section 2.1, we

formulate the two-sided compositional sCCA problem as

min
a∈Rq ,b∈Rp

− a⊤Σ̂UZb + λa‖a‖1,w1

+ λb‖b‖1,w2
s.t. ‖a‖2 f 1, ‖b‖2 f 1, a ∈ Bq, b ∈ Bp,

where wj � (w1j, . . . , wpj) for j � 1, 2 are non-negative weights.

This problem can be solved by Algorithm 2 below. We use the two-

stage CV criterion to select the tuning parameters in the same way as

described in Section 2.3.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂UZ.

2. Update b: Fix a(t) and update b through

b t( )
←

g Σ̂
⊤

UZa
t( ), λb,w2( )

‖g Σ̂
⊤

UZa
t( ), λb,w2( )‖2. (7)

3. Update a: Fix b
(t) and update a through

a t+1( )
←

g Σ̂UZb
t( ), λa,w1( )

g Σ̂UZb
t( ), λa,w1( )����� �����

2

. (8)

4. Iterate Steps 2 and 3 until convergence.

Algorithm 2. Compositional sCCA: compositional data versus

compositional data.

3 Structure-adaptive
compositional sCCA

In this section, following the strategy proposed in Pramanik and

Zhang (2020), we aim to incorporate the prior structure information

robustly in the compositional sCCA procedure. The prior structure

information could be the grouping structure or the phylogenetic tree

structure among the taxa. The idea is to define a set of constraints

that encode the prior structure information and use the constraints

together with the data to estimate the weights w in an iterative

fashion. It is worth mentioning that our constraint is “soft” as

compared to the “hard” constraints used by traditional approaches

such as the group Lasso or fused Lasso. As a result, our method

provides significant improvement when an external structure is

informative while maintaining robustness against a

misspecified structure.

3.1 Structure-adaptive weights

Based on the setups described in Section 2.1, our procedure is to

translate the auxiliary information into different penalization

strengths through the weights w. Our framework is general

enough to incorporate different types of external structures. For

instance, co-expressed genes can be classified into the same group to

reflect their biological relationships. In our study, we focus on

leveraging the taxonomic grouping structure among taxa.

Taxonomically related taxa, such as multiple species within the

same genus, tend to share biological traits. Consequently, we

anticipate that these taxa will exhibit similar relationships with

omics features, leading to the expectation of comparable CCA

coefficients. We translate the grouping structure information into

different restrictions on the weights. Specifically, we divide the taxa

into different groups according to their taxonomy such as phylum,

family, and genus. We next consider the set of weights:

MGroup � {w ∈ 0, CU[ ]
p: wi � wj if i,

j ∈ Sd for i, j ∈ 1, 2, . . . , p{ } and d ∈ 1, 2, . . . , D{ }},
where D represents the number of groups and CU denotes an upper

bound on the weights.

3.2 Structure-adaptive compositional sCCA

Following Pramanik and Zhang (2020), we impose a penalty

term on the weights and propose an algorithm to jointly estimate

weights and parameters. Specifically, we define

h wj; γ( ) �
exp w

1−1
γ

j 1 −
1

γ
( ){ }, if 0< γ< 1,

wj, if γ � 1.

§⎪⎪̈⎪⎪©
We estimate (a, b) and w jointly by solving the

following problem
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min
a∈Rq ,b∈Rp ,w∈M

− a⊤Σ̂YZb + λa‖a‖1 + λb ∑p
j�1

wj|bj| − log h wj, γ( ){ }
s.t. ‖a‖2 f 1, ‖b‖2 f 1, b ∈ Bp.

The design of the function h is to reduce our method to the

classic (iterative) adaptive Lasso when there is no external

information. The readers are referred to Pramanik and Zhang

(2020) for more discussions on the motivation.

Next we introduce the algorithm to solve the above problem.We

focus on the update for w as the updates for a and b remain the same

as in Section 2.2. In particular, we update w through

w t+1( )
← argmin

w∈M

∑p
j�1

wj|b
t( )

j | − log h wj, γ( ){ }.
When M � MGroup, it is straightforward to verify that

w t+1( )
j �

CU if b t( )

j � 0 for all j ∈ Sd,

1

|Sd|
−1∑j∈Sd

|b t( )

j |
⎛¿ À⎠γ

otherwise.

§⎪⎪⎪⎪̈⎪⎪⎪⎪©
If we do not have any prior structural information on b that we can

take advantage of, we take M to be [0, CU]
p. In this case, we have

w t+1( )
j �

CU if b t( )

j � 0,

|b t( )

j |
−γ otherwise.

§̈©
Algorithm 3 summarizes the implementation details of the

structure adaptive Compositional sCCA. The selection of tuning

parameter pair (λa, λb, γ) follows a similar approach as described in

Section 2.3, with the difference of using (λa, λb, γ) in the first stage

and (0, 0, γ) in the second stage.

1. Initialize a(0) as the first left singular vector with

unit l2 norm from the singular value decomposition of

Σ̂YZ.

2. Update b: Fix a(t) and update b through

b t( )
←

g Σ̂
⊤

YZa
t( ), λb,w

t( )( )
‖g Σ̂

⊤

YZa
t( ), λb,w t( )( )‖2, (9)

where g(Σ̂
⊤

YZa
(t), λb,w

(t)) can be obtained through the

iterations described in Remark 2.1.

3. Update w: Fix b
(t) and update w through

w t+1( )
← argmin

w∈M

∑p
j�1

wj|b
t( )

j | − log h wj, γ( ){ }.
4. Update a: Fix b

(t) and update a through

a t+1( )
←

S Σ̂YZb
t( ), λa( )

S Σ̂YZb
t( ), λa( )����� �����

2

. (10)

5. Iterate Steps 2-4 until convergence.

Algorithm 3. Structure-Adaptive Compositional sCCA: compositional data

versus non-compositional data.

TABLE 1 Performance of sCCA for the association between compositional data and non-compositional data (σν � 4). Numbers in the parentheses represent
the corresponding standard deviations.

Setup p � q Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S1 100 sCCA 0.99 (0.03) 0.13 (0.13) 0.68 (0.16) 0.55 (0.19) 0.97 (0.11) 0.19 (0.14) 0.57 (0.15) 0.43 (0.18)

C-sCCA 0.99 (0.03) 0.12 (0.12) 0.69 (0.16) 0.55 (0.19) 0.99 (0.09) 0.11 (0.06) 0.68 (0.11) 0.54 (0.14)

AC-sCCA 0.98 (0.06) 0.07 (0.12) 0.79 (0.17) 0.70 (0.21) 0.92 (0.18) 0.05 (0.06) 0.78 (0.16) 0.74 (0.19)

SAC-sCCA 0.98 (0.05) 0.07 (0.11) 0.78 (0.16) 0.69 (0.21) 0.98 (0.13) 0.01 (0.03) 0.94 (0.13) 0.93 (0.14)

200 sCCA 0.98 (0.05) 0.06 (0.04) 0.70 (0.12) 0.54 (0.16) 0.74 (0.38) 0.06 (0.05) 0.55 (0.17) 0.61 (0.28)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.70 (0.12) 0.54 (0.16) 0.99 (0.04) 0.05 (0.04) 0.72 (0.16) 0.57 (0.22)

AC-sCCA 0.96 (0.06) 0.03 (0.03) 0.80 (0.12) 0.70 (0.18) 0.93 (0.13) 0.02 (0.02) 0.83 (0.12) 0.78 (0.16)

SAC-sCCA 0.96 (0.06) 0.03 (0.03) 0.80 (0.11) 0.71 (0.17) 1.00 (0.00) 0.00 (0.00) 0.99 (0.04) 0.97 (0.07)

S2 100 sCCA 0.99 (0.03) 0.13 (0.12) 0.67 (0.16) 0.54 (0.18) 0.99 (0.08) 0.11 (0.09) 0.62 (0.17) 0.46 (0.22)

C-sCCA 0.99 (0.03) 0.13 (0.12) 0.68 (0.16) 0.54 (0.19) 1.00 (0.00) 0.04 (0.05) 0.81 (0.14) 0.70 (0.21)

AC-sCCA 0.98 (0.05) 0.08 (0.12) 0.77 (0.17) 0.67 (0.21) 1.00 (0.02) 0.01 (0.03) 0.93 (0.12) 0.89 (0.18)

SAC-sCCA 0.98 (0.05) 0.08 (0.12) 0.78 (0.16) 0.68 (0.21) 1.00 (0.00) 0.01 (0.01) 0.95 (0.07) 0.91 (0.12)

200 sCCA 0.98 (0.04) 0.06 (0.04) 0.71 (0.14) 0.55 (0.19) 1.00 (0.00) 0.05 (0.04) 0.65 (0.15) 0.46 (0.19)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.71 (0.13) 0.56 (0.18) 1.00 (0.00) 0.02 (0.02) 0.84 (0.13) 0.72 (0.19)

AC-sCCA 0.97 (0.06) 0.03 (0.03) 0.82 (0.13) 0.72 (0.20) 0.99 (0.08) 0.00 (0.01) 0.95 (0.09) 0.91 (0.13)

SAC-sCCA 0.97 (0.06) 0.03 (0.03) 0.82 (0.13) 0.73 (0.20) 1.00 (0.00) 0.00 (0.00) 0.96 (0.06) 0.93 (0.10)
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4 Simulation studies

In this section, we evaluate the finite sample performance of the

proposed methods through numerical simulations.

4.1 Compositional data versus non-
compositional data

We first consider the CCA problem between compositional data

(i.e., microbiome data) and non-compositional data (e.g.,

metabolomics data) following a similar setting considered in

Chen et al. (2013). To capture the dependence between the two

sets of high-dimensional data, we use a latent variable model to

generate the compositional variables {Xi} (log scale) and non-

compositional variables {Yi} (original scale), where the

dependence between these two sets of variables is governed by a

latent variable ]. Specifically, we assume that

log Xi( ) � ]iωX + εX,i, Yi � ]iωY + εY,i,

where ]i ~ N(0, σ2
]
) and εX,i, εY,i follow N(0p, σ

2
ε Ip×p) and

N(0q, σ
2
ε Iq×q), respectively. The coefficients ωX ∈ R

p and ωY ∈ R
q

control the relative contributions of individual variables to the

overall association. The ratio σ]/σε determines the overall

association strength between log(X) and Y, with a larger value

indicating stronger association. For the dimensions, we set

(p, q) � (100, 100), (200, 200). We consider two setups for ωX .

S1 ωX � 0.85
10

× (1, 1, 1, 1, 1, 1, 1, 1, 1 − 9, 0p−10)
⊤;

S2 ωX � 0.85
6

× (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0p−10)
⊤;

where 1⊤pωX � 0 for both setups. The constraints imply that the

association between X and Y is mediated through the log ratios for

X. We focus on the group structure (i.e., M � Mgroup) and assume

that the p taxa form 20 groups, with the group size equal to 5 for

p � 100 and equal to 10 for p � 200. For example, in Setup S2 with

p � 100, the grouping is defined as

ωX �
0.85

6
× ⎛¿ 1, 1, 1, 0, 0︸����︷︷����︸

Group 1

, 1, 1,−5, 0, 0︸����︷︷����︸
Group 2

, 0p−10︸��︷︷��︸
Groups 3−20

À⎠⊤

FIGURE 1

TPR, FPR, MCC, and Precision of sCCA for the association between compositional data and non-compositional data across association strength.

Here, the range of σ] is {1, 2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with

open purple triangles: SAC-sCCA.
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The first two groups contain both zero and nonzero entries

reflecting the fact that the external structure information is

imperfect and noisy. We set ωY � 0.85 × (0.08, 0.084,

0.089, . . . , 0.12, 0⊤q−10)
⊤. Next, we fix σε � 1 and vary σ] within

{1, 2, . . . , 8} to control the strength of the canonical correlation.

We report the true positive rate (TPR), false positive rate (FPR),

Matthew’s correlation coefficient (MCC), and Precision to measure

the performance of different methods. Here,

TPR �
TP

TP + FN
, FPR �

FP

FP + TN
,

MCC �
TP × TN − FP × FN�����������������������������������

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )
√ ,

Precision �
TP

FP + TP
,

where TP, FP, TN, and FN represent the true positives, false

positives, true negatives, and false negatives, respectively. The

TPR, FPR, MCC, and Precision are computed by averaging over

100 simulation replicates. Denote the estimated canonical

coefficients by â and b̂. Their estimation targets are ωX/‖ωX‖2

and ωY/‖ωY‖2, respectively, where this normalization is to ensure

comparability. The estimation accuracy is evaluated using the root

mean square error (RMSE).

FIGURE 2

RMSE of sCCA for the association between compositional data and non-compositional data across association strength. Here, the range of σ] is

{1,2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles:

SAC-sCCA.

TABLE 2 Performance of sCCA for the association between compositional data and non-compositional data (σν � 4, p � 100, q � 200). Numbers in the
parentheses represent the corresponding standard deviations.

Setup Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S1 sCCA 0.98 (0.04) 0.05 (0.05) 0.74 (0.15) 0.61 (0.22) 0.92 (0.21) 0.16 (0.11) 0.58 (0.15) 0.48 (0.22)

C-sCCA 0.99 (0.04) 0.05 (0.05) 0.75 (0.15) 0.61 (0.22) 0.98 (0.09) 0.10 (0.05) 0.70 (0.10) 0.56 (0.13)

AC-sCCA 0.97 (0.06) 0.02 (0.03) 0.85 (0.12) 0.77 (0.19) 0.93 (0.16) 0.04 (0.04) 0.80 (0.15) 0.75 (0.18)

SAC-sCCA 0.97 (0.06) 0.02 (0.03) 0.85 (0.12) 0.78 (0.19) 0.98 (0.13) 0.01 (0.02) 0.95 (0.12) 0.94 (0.12)

S2 sCCA 0.98 (0.04) 0.05 (0.04) 0.73 (0.13) 0.58 (0.18) 0.99 (0.08) 0.11 (0.08) 0.63 (0.17) 0.47 (0.22)

C-sCCA 0.98 (0.04) 0.05 (0.04) 0.73 (0.13) 0.58 (0.18) 1.00 (0.00) 0.04 (0.04) 0.82 (0.15) 0.71 (0.23)

AC-sCCA 0.97 (0.06) 0.02 (0.02) 0.84 (0.11) 0.75 (0.18) 1.00 (0.00) 0.01 (0.02) 0.95 (0.09) 0.92 (0.14)

SAC-sCCA 0.97 (0.06) 0.02 (0.02) 0.84 (0.12) 0.75 (0.19) 1.00 (0.00) 0.01 (0.01) 0.96 (0.07) 0.93 (0.11)
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We compare the performance of the following four methods.

1. sCCA: sCCA without considering the compositional effect;

2. C-sCCA: compositional sCCA;

3. AC-sCCA: adaptive compositional sCCA, i.e., M � [0, CU]
p.

4. SAC-sCCA: structure adaptive compositional sCCA,

i.e., M � MGroup.

For AC-sCCA and SAC-sCCA, we also apply adaptive weights

on a with M � [0, CU]
p in implementation. The value of CU is set

to 105.

Table 1 summarizes the results for the above four methods when

fixing σ] � 4. For both Setups S1 and S2, C-sCCA outperforms sCCA

in terms of all four measures, especially in reducing the false positive

rates and increasing the precision in identifying relevant

compositional components, demonstrating the advantage of taking

into account the compositional constraint. Compared to the first two

methods, AC-sCCA and SAC-sCCA further reduce the FPR and thus

lead to higher MCC in estimating a and b. For identifying b in Setup

S1, SAC-sCCA outperforms the other three methods by exhibiting

higher TPR, nearly zero FPR, and thus higher MCC because of

incorporating grouping information. Figure 1 is in general

consistent with these findings. As association strength increases,

the TPR, MCC, and Precision of C-sCCA, AC-sCCA, and SAC-

sCCA increase, whereas their FPRs show a declining trend. When

σ] g 3, the precision and FPR in estimating b of sCCA becomes worse

as association strength increases, which means sCCA identifies more

true variables at the cost of including more false variables. Figure 2

presents the RMSE in estimating the canonical coefficients, which

decreases as the association strength σ] increases. By accounting for

the compositional effect, the C-sCCA, AC-sCCA, and SAC-sCCA

outperform sCCA, with SAC-sCCA providing the most accurate

estimation. This demonstrates that methods accounting for the

compositional nature yield more accurate estimations than those

that do not, and considering structural information can further

enhance performance.

Finally, we examine the scenario where p � 100 and q � 200 to

assess the performance of our method on unbalanced datasets. As

presented in Table 2, the four methods exhibit similar performance

to that observed in the case where p � q. The results indicate that

our method successfully handles unbalanced dimensions.

4.2 Compositional data versus

compositional data

In this section, we study the performance of the proposed

compositional sCCA for the association between two

compositional datasets, for example, bacterial taxa abundance vs

fungi taxa abundance. We modify the setting in Section 4.1 by

considering the following models

log Xi( ) � ]iωX + εX,i, log Yi( ) � ]iωY + εY,i,

where ]i ~ N(0, σ2
]
) and εX,i, εY,i follow N(0p, σ

2
ε Ip×p) and

N(0q, σ
2
ε Iq×q), respectively. We again consider two setups for ωX

and ωY.

TABLE 3 Performance of sCCA for the association between two compositional datasets (σν � 4). Numbers in the parentheses represent the corresponding
standard deviations.

Setup p � q Method â b̂

TPR FPR MCC Precision TPR FPR MCC Precision

S3 100 sCCA 1.00 (0.02) 0.19 (0.12) 0.57 (0.13) 0.41 (0.13) 0.99 (0.09) 0.18 (0.09) 0.57 (0.11) 0.41 (0.13)

C-sCCA 0.99 (0.02) 0.10 (0.06) 0.71 (0.11) 0.56 (0.15) 1.00 (0.01) 0.11 (0.08) 0.70 (0.13) 0.56 (0.17)

AC-sCCA 0.99 (0.03) 0.03 (0.03) 0.87 (0.10) 0.80 (0.15) 1.00 (0.01) 0.03 (0.03) 0.88 (0.10) 0.80 (0.15)

SAC-sCCA 1.00 (0.01) 0.01 (0.02) 0.96 (0.07) 0.94 (0.11) 1.00 (0.00) 0.01 (0.03) 0.97 (0.08) 0.96 (0.12)

200 sCCA 0.97 (0.14) 0.09 (0.05) 0.59 (0.11) 0.41 (0.17) 0.92 (0.25) 0.08 (0.06) 0.58 (0.13) 0.46 (0.21)

C-sCCA 0.99 (0.03) 0.05 (0.02) 0.69 (0.07) 0.52 (0.09) 1.00 (0.00) 0.06 (0.03) 0.69 (0.10) 0.52 (0.13)

AC-sCCA 0.97 (0.05) 0.02 (0.02) 0.86 (0.10) 0.79 (0.15) 0.99 (0.03) 0.02 (0.01) 0.88 (0.09) 0.80 (0.15)

SAC-sCCA 1.00 (0.01) 0.00 (0.00) 0.98 (0.04) 0.97 (0.07) 1.00 (0.00) 0.00 (0.01) 0.98 (0.06) 0.97 (0.09)

S4 100 sCCA 1.00 (0.00) 0.10 (0.07) 0.63 (0.14) 0.45 (0.17) 1.00 (0.00) 0.10 (0.07) 0.64 (0.14) 0.46 (0.17)

C-sCCA 1.00 (0.00) 0.03 (0.03) 0.86 (0.12) 0.77 (0.19) 1.00 (0.00) 0.03 (0.06) 0.85 (0.16) 0.77 (0.23)

AC-sCCA 1.00 (0.00) 0.00 (0.01) 0.97 (0.06) 0.94 (0.10) 1.00 (0.00) 0.01 (0.01) 0.96 (0.08) 0.94 (0.12)

SAC-sCCA 1.00 (0.00) 0.01 (0.01) 0.93 (0.08) 0.89 (0.13) 1.00 (0.00) 0.01 (0.01) 0.95 (0.07) 0.92 (0.11)

200 sCCA 1.00 (0.00) 0.05 (0.04) 0.66 (0.14) 0.47 (0.19) 1.00 (0.00) 0.05 (0.04) 0.66 (0.16) 0.48 (0.21)

C-sCCA 1.00 (0.00) 0.02 (0.03) 0.86 (0.15) 0.76 (0.22) 1.00 (0.00) 0.01 (0.01) 0.87 (0.12) 0.78 (0.20)

AC-sCCA 1.00 (0.00) 0.00 (0.00) 0.98 (0.05) 0.96 (0.09) 1.00 (0.00) 0.00 (0.00) 0.97 (0.05) 0.95 (0.09)

SAC-sCCA 1.00 (0.00) 0.00 (0.01) 0.96 (0.07) 0.94 (0.11) 1.00 (0.00) 0.00 (0.00) 0.97 (0.05) 0.95 (0.10)
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S3 ωX � 0.85
10

× (1⊤9 ,−9, 0p−10)
⊤ and

ωY � 0.85 × (0.08, 0.085, 0.09, . . . , 0.12,−0.9, 0⊤q−10)
⊤;

S4 ωX � 0.85
6

× (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0p−10)
⊤ and

ωY �
0.85

6
× (1, 1, 1, 0, 0, 1, 1,−5, 0, 0, 0q−10)

⊤;

where 1⊤pωX � 0 and 1⊤qωY � 0 for both setups. We group ωX

and ωY using the same strategy applied to ωX in Section 4.1. The

other setups are the same as those in Section 4.1. Table 3 summarizes

the empirical results. For Setups S3 and S4, C-sCCA often results in

higher TPR, higher Precision, lower FPR and therefore higher MCC

in estimating both a and b compared to sCCA, emphasizing the

necessity of including compositional constraints again. For Setup S3,

SAC-sCCA significantly outperforms the other methods in terms of

higher TPR and MCC. Our structure-adaptive approach is robust

against a misspecified structure (Setup S4) as the performance of

SAC-sCCA is comparable to that of AC-sCCA. Figures 3, 4 show

patterns similar to Figures 1, 2.

5 Real application

We applied sCCA, C-sCCA, AC-sCCA and SAC-sCCA to

examine the association between gut bacterial composition and

gut metabolism in a colorectal adenoma study conducted at the

Mayo Clinic. The study utilized both gut microbiome and gut

metabolomics data from 241 fecal samples selected from a frozen

stool archive. The fecal samples were collected following a standard

protocol and metabolomics profiling was conducted by Metabolon,

Inc. (Durham, NC, United States) using a UPLCMS/MS platform, as

detailed in Kim et al. (2020). Metabolic sub-pathway abundances

were calculated by averaging the scaled abundances of metabolites

within each sub-pathway, which are grouped into super-pathways.

Bacterial DNA extraction and 16S rRNA gene sequencing were

described in Hale et al. (2017). Specifically, the sequencing library

was prepared at the University of Minnesota Genomics Center, and

sequencing was performed using the Illumina MiSeq system at the

Mayo Clinic Medical Genome Facility. These sequences were

processed through the IM-TORNADO bioinformatics pipeline,

clustering them into OTUs based on a 97% identity threshold.

We focused the analysis on the overall association between the

bacterial genera and metabolic sub-pathways. We followed Chen

FIGURE 3

TPR, FPR, MCC, and Precision of sCCA for the association between two compositional datasets across signal strength. Here, the range of σ] is

{1,2, . . . ,8}. Line with solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles:

SAC-sCCA.
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et al. (2013) to pre-process data. We excluded genera that were

present in less than 1/4 samples and kept 63 relatively common

genera, each belonging to a specific phylum. This approach ensures a

balance between retaining sufficient taxa for meaningful analysis

while filtering out rare genera that could introduce noise. Zeros were

replaced with 0.5 in microbiome data to facilitate working on the log

scale. Our final dataset is summarized as a metabolic sub-pathway

abundance matrix Y241×91 and a bacterial genus abundance matrix

X241×63. The group information, specified as super-pathway and

phylum, respectively, is incorporated into our analysis. We applied

logarithmic transformation to both matrices: for metabolic data, to

normalize the distribution, and for genus abundance, to account for

the compositional structure. Finally, we performed standardization

to ensure that all variables have zero mean and unit variance.

We performed a two-stage five-fold CVdescribed in Section 2.3 to

identify the optimal tuning parameters across a range of models, from

the most dense to the most sparse. To mitigate randomness, we

conducted 100 replications of sample partitions. We selected the

tuning parameter pair for each replication and recorded the

corresponding CV values of four methods. As shown in Figure 5,

sCCA has the lowest CV correlations, followed by C-sCCA and AC-

sCCA, both of which yield comparable CV correlations, while SAC-

sCCA achieves slightly higher CV correlations by incorporating

grouping information. Therefore, by accounting for the

compositional structure, we achieved a stronger association

between the two datasets. The final parameters were determined

by maximizing the CV values averaged across the 100 replications,

with CV values of 0.6076 for sCCA, 0.6578 for C-sCCA, 0.6581 for

AC-sCCA, and 0.6584 for SAC-sCCA.

Figure 6 shows the heatmap of pairwise spearman correlations

between metabolic sub-pathways and genera selected by any of the

four methods. The signs of the estimated coefficients align with the

pairwise correlations. The selected metabolic sub-pathways belong

to four super-pathways: Carbohydrate, Lipid, Cofactors and

Vitamins, and Amino Acid. Hierarchical clustering analysis, using

the complete linkage and Euclidean distance, was applied to cluster

the bacterial genera. The coefficients estimated by C-sCCA, AC-

sCCA, and SAC-sCCA for bacteria within the third cluster were

mostly positive while the other two clusters showed an opposite

trend. Interestingly, Fatty Acid, Diacarboxylate (FA-DC), identified

FIGURE 4

RMSE of sCCA for the association between two compositional datasets across association strength. Here, the range of σ] is {1, 2, . . . ,8}. Line with

solid blue squares: sCCA; line with open red squares: C-sCCA; line with green crosses: AC-sCCA; line with open purple triangles: SAC-sCCA.

FIGURE 5

Boxplot of 5-fold cross-validated correlations for sCCA, C-sCCA,

AC-sCCA, and SAC-sCCA across 100 replications, with tuning

parameters determined by sample partition in each replication.
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by C-sCCA, AC-sCCA, and SAC-sCCA but not by sCCA, was

overall negatively correlated with bacterial genera in the third

cluster, and positively correlated with those in the first/second

clusters. Dicarboxylic acids can be produced by various bacteria

through different metabolic pathways (Yu et al., 2018). For example,

species in the genus Clostridium, which showed a strong correlation

with FA-DC in our data, can produce succinic acid and other

dicarboxylic acids as fermentation products (Koendjbiharie et al.,

2018). As a comparison, other detected metabolic sub-pathways

exhibited both negative and positive correlations with bacterial

genera in the third cluster, and overall negative correlations with

those in the first/second clusters.

Despite achieving higher cross-validated correlations, the three

methods that accounted for compositional structure failed to induce

a sparse structure for the bacterial genera. Although this may be the

biological truth, as gut metabolic capabilities are contributed by a large

number of bacteria collectively (Cox et al., 2022), to gain more insights

into the benefits of using the compositional constraint, we reconsidered

C-sCCA by fixing the final parameter for metabolic sub-pathways and

varying the parameter for bacterial genera to achieve the same cross-

validated correlation as sCCA. Figure 7 shows the average cross-

validated correlation of C-sCCA for each parameter pair. We

selected the tuning parameter of bacterial genera as 0.4 so that the

averaged CV value of C-sCCA is almost the same as that of sCCA.

Figure 8 presents the heatmap of pairwise Spearman correlations

between the metabolic sub-pathways and genera selected by any of

sCCA and C-sCCA with newly determined tuning parameter pair.

C-sCCA identifies 8 metabolism sub-pathways and 17 bacterial genera,

while sCCA selects a broader set of 13 metabolic sub-pathways and

35 bacterial genera. By incorporating the compositional structure,

C-sCCA achieves the comparable averaged CV value with a more

focused selection of metabolic sub-pathways and bacterial genera.

Among the eight metabolic sub-pathways identified by C-sCCA,

five belong to the Lipid super-pathway, two are part of the Amino Acid

super-pathway, and only one, the Advanced Glycation End-product, is

associated with the Carbohydrate super-pathway. For the bacterial

FIGURE 6

Heatmap of Spearman correlations between the bacterial genera andmetabolic sub-pathways selected by either sCCA, C-sCCA, AC-sCCA, or SAC-

sCCA. The color indicates the association direction, with red for positive correlations and blue for negative, varying in shade by strength. The bars at the

top represent the average relative abundances of these genera on a log 10 scale, with orange indicating higher values and green indicating lower values.

Abbreviations: AGE (Advanced Glycation End-product), EC (Endocannabinoid), FA-DC (Fatty Acid, Dicarboxylate), HPM (Hemoglobin and Porphyrin

Metabolism), HM (Histidine Metabolism), MCST (Methionine, Cysteine, SAM and Taurine Metabolism), MM (Mevalonate Metabolism), PLM (Phospholipid

Metabolism), PAM (PolyamineMetabolism), PUFA-n3&n6 (Polyunsaturated Fatty Acid, n3 and n6), PBAM (Primary Bile AcidMetabolism), SBAM (Secondary

Bile Acid Metabolism), Steroid (Steroid), UCAPM (Urea cycle; Arginine and Proline Metabolism).

FIGURE 7

Averaged cross-validated correlations across 100 replications.

The blue horizontal line represents the CV value of sCCA with its

optimal threshold. The red points denotes the CV values of C-sCCA

with varying tuning parameters for gut bacterial genera.
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genera, a comparison between C-sCCA results and the association

analysis of bacterial genera and metabolic sub-pathways by Kim et al.

(2020) reveals interesting patterns. The bacterial genera identified by

C-sCCA are grouped into three clusters. The first two clusters

predominantly show a negative association with the selected sub-

pathways. In the first cluster, Oscillospira, Clostridium,

Ruminococcus, Adlercreutzia, and Dehalobacterium are consistently

selected by C-sCCA and were also reported in the findings of Kim

et al. (2020). In the second cluster, Odoribacter is detected by C-sCCA

but was not identified by Kim et al. (2020). In the third cluster,

Bacteroides, Eggerthella, and Butyrivibrio stand out with the largest

C-sCCA coefficients, showing strong positive correlations with the

selected metabolic sub-pathways. In Kim et al. (2020), the genera

were classified into two clusters, with the second cluster consisting

of Bacteroides, Epulopiscium, and Butyrivibrio. Our hierarchical tree

further reveals that Epulopiscium and Eggerthella exhibit very similar

patterns, as they are grouped together.

6 Discussion

In this study, we developed a compositional sparse canonical

correlation analysis (C-sCCA) framework for association analysis

between microbiome data and other high-dimensional datasets,

accounting for the compositional nature of microbiome sequencing

data. We introduced two variants of the C-sCCA method: one for

compositional vs non-compositional data, and another for

compositional vs compositional data. Our results show that by

incorporating the compositional constraint, we achieved improved

selection of relevant taxa, enhancing both power and precision.

Additionally, we extended our framework to incorporate prior

structural information, such as the grouping of bacterial taxa, among

the compositional components. Application of C-sCCA to real

microbiome data demonstrated that it produced results that were

biologically more interpretable.

There are several potential extensions to our work. While we

primarily focused on the grouping structure of bacterial taxa, we could

also exploit the hierarchical grouping structure (phylum to genus) and

the phylognetic relationship by devising appropriate constraints on

the weights w. For the hierarchical structure, we can derive a set of

covariates each representing a hierarchical level, which can then be

used to impose specific structures on the weights. Suppose for the jth

taxa, we have a corresponding covariate ξj. To incorporate such

covariate information, we define the set of weights as

MCovariate � w ∈ 0, CU[ ]
p: wj � f ξj; θ( ) for θ ∈ Θ, j ∈ 1, 2, . . . , p{ }{ },

where f(·; θ) is a prespecified class of functions parameterized by θ.

We can also use the phylogenetic tree information by imposing a

smoothness constraint, which depends on the pairwise patristic

FIGURE 8

Heatmap of Spearman correlations between the bacterial genera and metabolic sub-pathways selected by either sCCA or C-sCCA. The CV values

averaged across 100 replications are approximately 0.61 for both methods with the chosen tuning parameters. Other details are the same as in Figure 6.
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distances among the taxa. Suppose dij is the patristic distance

between the taxa i and j, we can consider the set

MSmooth � w ∈ 0, CU[ ]
p: ∑

1fi<jfp

κ dij( )|wi − wj|f ϵ
§̈© «¬­,

for some decreasing function κ(·) of the distance and tuning

parameter ϵ> 0.

We can also extend our approach to learn sub-spaces from

multiple views, i.e., when we have multiple groups of measurements,

X(i) ∈ R
pi , for i � 1, . . . , m on matching samples. This situation

naturally arises in multi-omics studies, where methylomic,

transcriptomic, metabolomic, and microbiome data are collected

from a single group of individuals. A number of approaches for

generalizing CCA to multiple views have been proposed in the

literature, and some of these extensions are summarized in

Kettenring (1971). We could adapt these multi-view methods to

incorporate the compositional constraint.

There are several limitations to our framework. First, we did not

simultaneously address the zero inflation commonly observed in

microbiome data. We used a simple zero replacement strategy before

running the C-sCCA. Although this strategy has been commonly used in

microbiome data analysis at log scale (Zhou et al., 2022; Lin and

Peddada, 2020), better methods can be developed such as replacing

the log scale transformation by modified centered log-ratio transform

designed for addressing zero inflation (Yoon et al., 2019), imposing

another multinomial layer to account for sampling variability associated

with the sequencing process (Chen and Li, 2013), or using more

informative imputation methods such as mbDenoise (Zeng et al.,

2022) and mbImpute (Jiang et al., 2021). Second, although our

framework can select subsets of features that explain the largest

correlation between the datasets, their detailed relationships can not

be learned simultaneously. Developing methods that combine feature-

level selection with the construction of feature-feature correlation

networks is a promising area for future research. Third, we can

enhance robustness to outliers through several strategies, including

outlier detection and removal during data preprocessing, replacing

empirical covariance estimators with robust estimators (Luo et al.,

2024), and investigating the optimal choice of penalty functions

(Chalise and Fridley, 2012), such as Huber loss, Tukey loss, or L0
penalty (Lindenbaum et al., 2022). Fourth, while our work focuses on

linear associations, future extensions of our composite sCCA framework

could capture nonlinear relationships by integrating with kernel CCA

(Akaho, 2001; Fukumizu et al., 2007), deep CCA (Andrew et al., 2013),

or nonparametric CCA (Lancaster, 1958; Michaeli et al., 2016). Lastly,

our framework assumes that the association is mediated through the

ratios of the compositional components since only ratios are meaningful

for compositional data. However, when the association is at the level of

absolute abundance - where the total microbial load also matters - our

method may not work well. This limitation is more inherent to the

constraints of current sequencing technologies than to the method itself.
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