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ABSTRACT

This paper presents a new computational framework for the
co-optimization and co-control of morphable surface structures
using topology optimization and circle-packing algorithms. The
proposed approach integrates the design of optimized compli-
ant components and the system-level control of the overall sur-
face morphology. By representing the surface shape using cir-
cle packing and leveraging conformal mapping, the framework
enables smooth deformation between 2D and 3D shapes while
maintaining local geometry and global morphology. The morph-
ing surface design problem is recast as designing circular com-
pliant actuators using level-set topology optimization with dis-
placements and stiffness objectives. The optimized component
designs are then mapped back onto the circle packing representa-
tion for coordinated control of the surface morphology. This inte-
grated approach ensures compatibility between local and global
geometries and enables efficient actuation of the morphable sur-
face. The effectiveness of the proposed framework is demon-
strated through numerical examples and physical prototypes,
showcasing its ability to design and control complex morphable
surfaces with applications in various fields. The co-optimization
and co-control capabilities of the framework are verified, high-

*Address all correspondence to this author.

lighting its potential for realizing advanced morphable struc-
tures with optimized geometries and coordinated actuation. This
integrated approach goes beyond conventional methods by con-
sidering both local component geometry and global system mor-
phology and enabling coordinated control of the morphable sur-

face. The general nature of our approach makes it applicable

to a wide range of problems involving the design and control of
morphable structures with complex, adaptive geometries.
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1 INTRODUCTION

Morphable structures capable of transforming into various
shapes on demand have garnered significant attention in recent
years due to their wide-ranging applications in fields such as soft
robotics [15] [7] [13], deployable structures in aerospace engi-
neering [4], and adaptive automotive systems [10]. The ability
to design structures that can morph predictably and controllably
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FIGURE 1. PROPERTIES OF CONFORMAL MAPPING (Compu-
tational conformal geometry [11])

between target geometries enables novel functionalities and en-
hances system versatility. However, the rational design and pre-
cise control of morphable structures pose significant challenges
due to the complex interplay between material properties, struc-
tural mechanics, and desired shape transformations.

Topology optimization has emerged as a powerful compu-
tational approach for designing structures with optimized ma-
terial distribution to achieve desired performance objectives [5]
[6]. By algorithmically determining the optimal layout of mate-
rial within a design domain, topology optimization enables the
creation of lightweight, high-performance, and multifunctional
structures [19] [17]. In the context of morphable structures,
topology optimization has been leveraged to design compliant
mechanisms and shape-morphing systems. However, existing
approaches often struggle to simultaneously maintain precise lo-
cal geometries and overall shape integrity during the morphing
process, limiting their applicability to more complex target ge-
ometries. [21] [16]

To address these challenges, we propose a novel framework
that synergistically integrates computational conformal geome-
try and topology optimization for the design of morphable sur-
face structures. Our approach leverages circle packing, a tech-
nique for discretely representing surfaces using tangent circles,
to model the target morphing behavior. Conformal mapping
is then employed to deform the circle-packed surface between
2D and 3D configurations while preserving angle measurements.
This conformality ensures that local geometries are maintained
even as the global shape undergoes large deformations. By re-
casting the morphable surface design problem as the design of
an interconnected network of circular compliant mechanisms, we
enable the application of topology optimization to generate phys-
ically realizable structures that can morph into the target geome-
tries.

The main contributions of this work are twofold:

First, we introduce a conformal geometry-driven approach
for modeling and controlling the morphing of surface structures
based on circle packing and discrete Ricci flow. This mathemat-
ical framework provides a principled way to describe and pre-
scribe target morphing behaviors while preserving geometric fi-
delity.

The introduction of circle packing offers several advan-
tages for the kinematic modeling of morphable surface struc-
tures. Firstly, circle packing enables an accurate approximation
of the surface’s local geometry, serving as a valuable tool for
shape modeling. Secondly, conformal mapping preserves surface
angles, thereby ensuring the overall shape integrity throughout
the morphing process. Additionally, Ricci flow refines the sur-
face shape and simulates its temporal evolution, facilitating the
creation of highly realistic and dynamic models of morphable
surface structures. This methodology proves particularly bene-
ficial for the physical realization of morphable structures using
topology optimization, where maintaining both local and overall
shape integrity during morphing is imperative for correct struc-
tural functionality.

Second, we establish a pipeline for integrating this confor-
mal geometric modeling with topology optimization to automat-
ically generate designs for morphable surface structures that can
be fabricated as single-piece compliant mechanisms. The cou-
pling of conformal geometry and topology optimization opens
up new possibilities for designing morphable structures with ex-
ceptional complexity and precision.

Through circle packing, we translate overall surface mor-
phing into localized changes in the radii of circle packs. This
allows us to reformulate the morphable surface design problem
as a circular actuator design problem. Consequently, the actu-
ators can expand and contract in edge length and height, corre-
sponding to changes in circle radius and curvature. Following
the optimization of a single-piece topology-optimized compliant
mechanism, we assemble the circular actuator by revolving the
compliant mechanism in a circular direction. Subsequently, the
circular actuator is mapped to a circle packing pattern after nu-
merical validation and experimentation, enabling adjustment of
circle pack radii to morph the surface shape. Modifying the radii
of the circle packing pattern through the proposed circular actu-
ators facilitates the portability and deformability of the surface
structure. We have provided several numerical results to support
the effectiveness of our methodology.

The rest of the paper is organized as follows: Section 2 intro-
duces the mathematical background on circle packing and con-
formal geometry that underpins our modeling approach. Sec-
tion 3 describes our pipeline for integrating conformal geometry
with topology optimization and presents the problem formula-
tion. Section 4 details our topology optimization method and
sensitivity analysis. Section 5 presents numerical examples and
physical prototypes that demonstrate the effectiveness of our ap-
proach. Finally, Section 6 discusses the implications of our work
and outlines future research directions.

2 CIRCLE PACKING THEORY
Circle packing is a powerful tool from computational geom-
etry that enables the representation of surfaces using a collection
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of circles with prescribed tangency relationships [20] [9]. By
leveraging the properties of circle packings, such as their abil-
ity to capture local geometric information and their shape invari-
ance under conformal transformations, we can develop effective
methods for modeling and controlling the morphing of surface
structures. In this section, we introduce the key mathematical
concepts and theories underlying circle packing-based surface
representation and manipulation.

2.1 Koebe-Andreev-Thurston Theorem

The Koebe-Andreev-Thurston Theorem (KAT Theorem)
[14] is the fundamental theorem in the circle packing theory. It
states that for a finite maximal planar graph G, there exists a
circle packing whose tangency graph is isomorphic to G and is
unique, up to Mdobius transformations and reflections in lines.

The KAT Theorem established a connection between the
topology and the geometric realization of a finite graph. Fur-
thermore, it is closely related to the conformal mapping between
planar domains. The Riemann mapping theorem, states that, for
any two topological disks in the plane, there is a conformal map
from one disk to the other. However, it is not easy to construct
an explicit conformal mapping between two given domains.

In 1985, Thurston proposed using circle packings to approx-
imate conformal mappings. He suggested filling a domain Q
with a hexagonal tessellation of circles, each of small radius r,
and forming a planar graph G from the intersection graph of
those circles. The KAT theorem guarantees a circle packing, with
the outermost circle as the unit circle, whose tangency graph is
isomorphic to G. The resulting discrete conformal mapping is the
piecewise linear mapping that preserves the combinatorial struc-
ture of G. As shown in Figure 2.1, we can get a sequence of those
discrete conformal mappings f,, sending the interior of a region
Q to the unit disk D. Thurston conjectured that as the radius
of the tessellation goes to zero, the discrete conformal mappings
fn will converge to the Riemann mapping. This conjecture was
confirmed by Rodin and Sullivan in 1987 [18].

2.2 Discrete Ricci Flow and Circle Packing

However, there is no natural analogy for the circle packings
on general curved surfaces. Ricci flow on surfaces was first in-
troduced by Hamilton in [12]. Chow and Luo discovered the
relations between the Ricci flow and the circle packings and es-
tablished the theoretical foundation for discrete Ricci flow in [8]
, where the existence and convergence of the discrete Ricci the
flow was established.

Consider M as a two-dimensional, connected, orientable
surface, and T is a simplicial triangulation of M.  Let
V(T),E(T),F(T) be the set of vertices, edges, and triangles of T
respectively. Furthermore, when M is equipped with a Rieman-
nian metric, 7 is called a geodesic triangulation if every edge in
T is a geodesic arc.

I

FIGURE 2. Discrete Conformal mappings

Given a triangulation 7', if an edge length [ € RISOT) satisfies

the triangle inequalities, we can construct a Euclidean polyhedral
surface (7,1) by isometrically gluing the Euclidean triangles with
the edge lengths defined by [ along the pairs of edges. Notice that
a Euclidean polyhedral surface exhibits a piecewise Euclidean
metric, for a vertex in V(T') could be a singular cone point and
the Gaussian curvature is constant 0 at any point not in V(7).

Given (7,1)g, let G}k be the inner angle at the vertex i in the
triangle Aijk. The discrete curvature K; at the vertex i € V(T) is
defined as

Ki=2m— ) 6} (1
JkEE:NijkeF

A piecewise Euclidean metric is globally flat if and only if
K; = 0 for every vertex i € V(T).

In practice, the objects we study are polyhedral surfaces.
Figure 3 shows how the polyhedral surfaces relate to circle pack-
ings.

Change infinitesimal circles to circles with finite radii, and
each circle is centered at a vertex like a cone, the radius is de-
noted as 7 at vertex v;, and an edge has two vertices, the two
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FIGURE 3. Circle Packing for a metric: Triangle [v{,v;,v3] has ver-
tices vy,vo,v3, and edges ejs,e23,e31. Three circles centered at vy,vy,
and v3, with radii r;,r, and r3 intersect one another, with intersection
angles of ®1,,P,3 and P31, which are the weights associated with the
edges. The edge lengths of the triangle are determined by r; and ®;; by
the cosine law.

FIGURE 4. Circle packing and cuvature: For a canonical tetrahe-
dron, the edges lengths are all / = 1.0, and the radius at each vertex is
r = 0.5. The curvature on each vertex equals to K; = . The weights on
all edges are ® = 0.

circles intersect each other with an intersection angle, the angle
is denoted as &;; for edge e;;, and called the weight.

Definition 1. A mesh with circle packing (M,I", @), where M is
the topological triangulation (connectivity), T = {y;,v; € V} are
the vertex radii, ® = {®;j,e;; € E} are the angles associated
with each edge. A discrete conformal mapping t©: (M,I",®) —
(M,T,®) only changes the vertex radii T, but preserves the in-
tersection angles ®.

In geometric modeling applications, meshes are typically
embedded in R3 with the metrics induced from the embedding.
We can find the optimal weight & with initial circle radii I', such
that the circle packing metric (M,®,T’) is as close as possible to
the Euclidean metric in the least square sense. Namely, we want

to determine (M, ®,I") by minimizing the following functional

; L — 12 2
min ) |k — 1] )

’ e,-jEE

where [;; is the edge length of ¢;; in R3.
Then we could utilize the discrete Ricci flow to yield a
virtual circle packing realizing the desired curvature.

Definition 2 (Discrete Ricci flow). The discrete Ricci flow is de-
fined as

ay _
— = (Ki—Ki)7,
g7l )% 3)

where K; is the desired discrete curvature.

The discrete Ricci flow is a powerful tool for manipulating
circle packings and transforming surface geometries. It operates
by adjusting the radii of the circles in a packing based on the
difference between their current and target curvatures. The Ricci
flow equation (Eq. 3) describes how the radius of each circle
evolves over time, with the goal of converging to a packing that
realizes the desired curvature distribution.

2.3 Deformation for Surfaces via Circle Packings

As discussed in the last section, given an initial circle pack-
ing and the desired curvature for the target metric. We can
achieve the target metric through the discrete Ricci flow.

Then Alexandrov convex polyhedron theorem [2], ensures
that if the desired curvature at each vertex is positive and the
initial circle packing lies on the plane, it is possible to linearly
interpolate the curvature to determine the curvature at intermedi-
ate steps. Furthermore, the circle packings for those intermediate
steps could also be achieved through the discrete Ricci flow. This
enables us to outline a deformation process from the initial shape
to the target shape via circle packing.

For non-convex target shapes, no theoretical guarantee en-
sures that the shape at intermediate steps could be embedded in
R3. However, satisfactory results can still be achieved provided
the initial and target shapes are small.

3 DESIGN OF MORPHABLE SURFACES STRUCTURE
3.1 Idea of Morphable Surfaces Structure

The morphable surface structure undergoes deformation
from a flat panel to a half sphere, causing simultaneous changes
in the radii of individual circles. Circle-packing algorithms yield
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accurate and precise data for each circle during this transforma-
tion. Leveraging this radius data, we aim to devise a mecha-
nism capable of morphing in accordance with the data and ad-
justing the radii accordingly. It has been observed that the radius
changes induced by singular circular units alone are insufficient
to achieve the overall transformation from a flat panel to a half
sphere. Consequently, there is a growing requirement for the sig-
nificance of curvature changes brought about by individual cir-
cles in this process.

== =
FIGURE 5. EXPANSION IN RADIUS.

Achieving radius changes in a single circular actuator is con-
ceptually straightforward. Illustrated in Figure 5, the fundamen-
tal concept involves an expansion and pulley mechanism capable
of altering its size while preserving its circular form. This prin-
ciple finds application in machine gearing adjustments, where
dynamic modulation of the pulley radius facilitates changes in
gear ratio. The expansion and pulley actuator smoothly adjusts
the radius by harnessing motive power, which can be supplied by
a motor or similar device.

FIGURE 6. SINGLE/DOUBLE EXPANSION AND PULLY MECH-
ANISM.

Achieving curvature changes in a single circular actuator
presents a significant challenge, as it involves bending the mech-
anism to approximate the target curvature. Our innovative ap-
proach to not only achieving curvature alterations but also radius
changes involves incorporating an additional layer into the mech-
anism. As depicted in Figure 6, the upper layer of the mech-
anism expands over a greater distance compared to the lower
layer, resulting in a disparity in length between the two layers.
This length difference generates curvature when the mechanism
comes into contact with another surface. Building upon this con-
cept, we have developed a novel mechanism termed the double

expansion and pulley mechanism, as illustrated in Figure 7.

— ) m—

FIGURE 7. EXPANSION IN RADIUS AND CURVATURE.

The double expansion and pulley mechanism in Figure 7
consists of two concentric circular layers connected by a series of
radial spokes. Each layer is composed of a flexible material that
can expand or contract in response to an applied force. The outer
layer has a slightly larger radius than the inner layer, allowing for
differential expansion. The radial spokes ensure that the layers
maintain their circular shape during expansion and contraction.

To actuate the mechanism, a set of pulleys and cables are
employed. The cables are attached to the outer edge of each layer
and routed through the pulleys, which are mounted on a fixed
frame surrounding the mechanism. By selectively pulling on the
cables, the outer layer can be made to expand more than the inner
layer, causing the mechanism to bend and assume a curved shape.
The curvature of the mechanism can be controlled by adjusting
the relative expansion of the two layers. At the same time, the
overall radius of the mechanism can be changed by expanding or
contracting both layers simultaneously.

FIGURE 8. THE KEY IDEA OF DOUBLE LAYER MECHANISM
EFFECTS THE OVERALL STRUCTURE CURVATURE.

The double expansion and pulley mechanism offers several
advantages over alternative designs. First, by using flexible mate-
rials and a simple actuation scheme, the mechanism can achieve
smooth and controllable curvature changes without the need for
complex hinges or joints. Second, the use of concentric layers
allows for independent control of radius and curvature, enabling
a wide range of target shapes to be realized. Finally, the mecha-
nism can be easily scaled up or down to suit different application
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requirements, from small-scale soft robotic components to large-
scale adaptive structures.

In the context of morphable surface design, the double ex-
pansion and pulley mechanism serve as a key building block for
realizing the target curvature distributions prescribed by the cir-
cle packing-based surface representation. By integrating multi-
ple instances of this mechanism into a larger structure and co-
ordinating their actuation, complex surface geometries can be
achieved. The precise control afforded by the mechanism enables
the realization of smooth, continuous shape transformations, as
required for many morphable surface applications.

FIGURE 9. CIRCLE PACKING SURFACES FROM FLAT TO
HALF SPHERE. (a) initial flat plane with uniform circle radii, (b) in-
termediate state during Ricci flow with partially adjusted radii, and (c)
final deformed semi-spherical surface with target curvatures realized.

3.2 Rigid Body Mechanism v.s. Compliant Mecha-
nism

The rigid body mechanism boasts versatile engineering ap-
plications and finds widespread use in manufacturing, robotics,
automotive, aerospace, mechanical engineering, and other fields.
Its ability to efficiently transmit force and motion between com-
ponents without undergoing deformation makes it highly desir-
able. Interconnecting parts via joints facilitate relative motion
between them.

While the expansion and pulley mechanism effectively meet
design requirements for expanding radii and morphing curvature
with stability and precision, larger systems comprising numerous
parts may pose increased risks such as buckling and failure.

In contrast, compliant mechanisms offer notable advantages
including flexibility, adaptability, lightweight construction, sim-
plified design, and ease of manufacturing. Fabricating compli-
ant mechanisms via 3D printing enables single-piece construc-
tion, enhancing convenience and reducing assembly complexity.
Employing lightweight single-circular mechanisms may enhance
overall system stability.

4 SHAPE AND TOPOLOGY OPTIMIZATION OF COM-
PLIANT MECHANISM
4.1 Conventional Level Set Method
Topology optimization, a shape optimization method, em-
ploys algorithmic models to optimize material distribution within
a predefined design domain, considering specified objective
functions, constraints, and boundary conditions. In recent years,
topology optimization has garnered increasing popularity and at-
tention within engineering design circles. Its scope has expanded
significantly to address a wide array of challenges involving mul-
tiphysics coupling, spanning electromagnetics, thermodynamics,
acoustics, solid mechanics, and fluid mechanics, among others.

Boundary

FIGURE 10. A SCHEMATIC OF THE LEVEL SET REPRESEN-
TATION.

The level set method, devised by S. Osher and J.A. Sethian,
employs a high-dimensional function to implicitly represent the
2-D contour. Pioneered by Sethian and Wiegmann [1] and fur-
ther refined by Wang [22] [23] and Allaire [3], this method has
emerged as a promising approach for shape and topology opti-
mization. It ensures a clear boundary between phases without a
grey region, significantly enhancing precision and optimization
accuracy. In this framework, the structural boundary is implic-
itly represented as the 2-D contour of a level set function with one
higher dimension. Implicitly embedded within the level set func-
tion ®(x,¢). Depending on the sign of the level set function, the
design domain can be partitioned into three distinct regions, rep-
resenting the material, the interface, and the void, respectively,
as follows:

o(x,1) >0, xXEQ, Material
{ P(x,t)=0, x€dQ, Boundary %)
D(x,1)

t)<0, xeD/Q, Void

where D denotes the design domain. The evolution of the
boundary dynamics is governed by the Hamilton-Jacobi equa-
tion:
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dP(x,1)

5 |V®(x,t)| =0, (5)

The normal velocity field V,, can be determined through
shape sensitivity analysis. Solving the Hamilton-Jacobi equa-
tion outlined above enables the updating of the normal velocity
field, which subsequently governs the evolution of the structural
boundary.

4.2 Problem Formulation

The objective of the topology optimization problem for the
single-piece compliant actuator is twofold: (1) kinematic per-
formance: minimizing the discrepancy between the target and
actual deformation of the actuator and (2) load-carrying capa-
bility: maximizing the structural stiffness while maintaining a
prescribed volume fraction. The problem can be mathematically
formulated as follows:

Minimize: J= o, (/ Sij(")EijkISkl(u)dQ>
Q

—&-a)z(/gk|u—uo|‘xd§2> , ©
o=2

Subjectto: a(u,v) =1(v), VveU
V(Q)=V".

where u is the state variable (displacement) in the admissible
displacement space; € is the design variable which is the shape
of the material region in the design domain; D represents the de-
sign domain; &; is the strain tensor; E;j; is the elasticity tensor;
ug is the target displacement; k is a weighting factor; @; and
@, are weighting coefficients for the stiffness and displacement
objectives, respectively; a(u,v) and I(v) are the energy bilinear
form and the load linear form, respectively; U is the space of
admissible displacements; V* is the prescribed volume fraction.

The first term in the objective functional J represents the
structural stiffness, while the second term measures the discrep-
ancy between the actual and target displacements using an L%-
norm. The parameter « is set to 2, resulting in a quadratic penalty
for deviations from the target displacement.

The constraint a(u,v) = I(v) ensures that the displacement
field satisfies the governing equations of linear elasticity. The
volume constraint V(Q) = [, H(¢)dQ = V*. limits the amount
of material that can be used in the design. k is a region indicator,
which equals 1 inside a specific region and 0 outside [3].

FIGURE 11. A SCHEMATIC OF GENERAL BOUNDARY CON-
DITION.

4.3 Shape Sensitivity Analysis

The topology optimization problem for the single-piece soft
actuator can be formulated as a PDE-constrained optimization
problem. To solve this problem, the Lagrange multipliers
method is utilized to transform the PDE-constrained problem
into an unconstrained optimization problem. This is achieved by
defining the Lagrangian functional L as follows, which integrates
the objective function and governing equation with a Lagrange
multiplier A.

L=J+A(a(u,v)—1(v)), @)

where J is the objective functional, a(u,v) represents the weak
form of the governing equations, and /(v)) is the load functional.

4.3.1 Adjoint Equation Derivation: To derive
the adjoint equation, we take the variation of the Lagrangian
functional L with respect to the state variable u and the Lagrange
multiplier A:

Setting 6L = 0 leads to the adjoint equation:

oJ

50 ®)

a(',v) =

where v is the adjoint variable and «' is the test function.
As for this problem, the total derivative of the objective func-
tion and governing equation is as follows:

DL DJ  Da(u,v) DI(v)

DD D D

€))

Copyright © 2024 by ASME



The material time derivative of the objective function is formu- Here, the total derivative can be rewritten as:

lated as :
DL
o= =20, (/Q 3i‘j(u/)Eijk18kl(u)dQ>

DL ]  dJ e |
oo Taa +wz</gkuuo| dQ) ./Qk(u—uo).udg
aJ .
5 =20 </Q &j(u )Eijkle‘kl(u)dg> + (/Qsij(u)Eijklgkl(u)Vnds>
1
2 2 , y
+wz(/gklu—uo| dQ) -/Qk(u—u())-u dQ (10) +“2’2(/ ku—uo|2dg> / o Vads g3
aJ
g =@ </Q£1j(u)Eijkzek1(u)Vnds> +/ & (W )E;ju€n (v dQ+/ & () Exjuen(v) dQ
1
. L
+w2(/ klu—uo|2dQ) / k(u—ug)* -V, ds +/8,, E;ji€u(v V,,ds—/g Vd
2 \Je 0

— [ fv dFN—/ g-vV,ds
Ty JoQ

a(f-
*/ [ (5 V) Lk (fv)Valds
The material time derivative of the energy form and the load Q "
form can be expressed as:
Solve Adjoint Equation,
Da(u,v) da(u,v) da(u,v) ) (/ / )
LI ? ? ()] &i(uw)E; i € (u)dQ
Di o1 + 20 o tj( ) j (u)
8a(u v) -1
/8”( w)Eijugia (v) 42 + (/ ku—uode) / k(u—ug)-uw'de (14
11 Q
& g dQ
+/ 1j (W) Eijuea(v) + / &;(u')Ejju € (v)dQ
da(u,v)

50 :/Qgij(u)Eijlekl(V)VndS

: | .
Let Do = (o k|u —up|?dQ) 2, then we can write the above
equation as

Where v is the adjoint displacement,

/SZE;j(u’)Eijkzgkz(V)dQZ

—a)zDo-/Qk(u—uo) -u'dQ (15)
DZD(:) = 82(:) + 881(;;) -2 (/Q Sij(u')EijkISkz(u)dQ>
:/g-v’dQJr/ fv/dTy

Jo Jry
(12)
_’_/a g.vVnds Slnce
a(f‘ ) ! ! /

+/99[ on +(fv)Valds /QEij(” )Eijkzﬁkl(u)dQ:/Qg'u dQJr/FNf'u dI'v  (16)
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/Qeij(u/)Eijklekl(V)dQ:
*0)2D0~/k(u7u0)~u’d£2—2a)1/g-u'd£2
Q o

72(1)1/ f~u’dFN
t (17)
/Q&j(u')EijuSkl(V)dQZ

/ (—aDo - k(s — o) — 2001 g) - ' dQ+
Q

/ (—20)1 f) ~u/dl"N
JTn

The strong form of the adjoint solution is as follows:

—V.0o(v) = —mnDy-k(u —up) —2mw1g,0n Q,
v=0,onIp, (18)
G(V) -n= -2, ~f,01’1 'y,

4.3.2 Construction of Design Velocity: Once the
adjoint equation is solved, the design velocity V,, can be calcu-
lated using the following expressions. In this work, the body
force g is not considered in the problem:

(0]} (/ £,~j(u)Ei~,»k1£kl(u)V,,ds>
aQ

1
+ 2 (/ k|u—u0|2dQ)
2 \Ja

2
+ / &j(W)E;jii€q(v)Vads
o0

/ k(e —ug)? -V, ds (19)
aIQ

With the steepest descent method, the normal design veloc-
ity can be constructed as

Vot = — & j(u)E;jir € (u)

[0}
Vyp = —7D0k(u —u)? (20)

Vi3 = —&j(u)E;jx & (v)

The total design velocity V,, is then obtained by summing
these three components:

w
V,= —w18[j(u)Eijk18kl(”) - 7D0k<u _u0)2 21

— &;j(u)E;ju€u(v)

This design velocity is used to evolve the structural boundary and
optimize the topology of the compliant actuator.

5 NUMERICAL EXAMPLES
5.1 Topology Optimization of Single-piece compliant
actuator

This example is to find the optimum design of the single-
piece compliant actuator, as figure 10 shows, the boundary con-
ditions of the single-piece actuator are the Input force at the top
left, roller constraints at the left edge, and fixed constraints at
the bottom left. Two blue squares indicate the kinematic region,
and the two red squares indicate the target position the kinematic
region tries to approach. The target position is determined by
the circle packing algorithms. Based on the data generated, we
can find the corresponding radii and the curvature target of every
single circular actuator can be found from the overall radii. The
window factor k is zero except in the blue zone where it is equal
to 1. The force applied is 3 Newton. The material used in this
example is a dummy material with Young’s modulus E = 1000
Pa, the Poisson’s ratio is given by 0.3, and the density is 1. The
weighting factor of this topology optimization problem is wj =
0.0042, wy = 0.9958.

Force Input

U

[Target Position

th
|

Roller Design Domain \“ \

Constraints \f. \‘-

|
|
| */
. r— d

i . P
Fixed Constraints Kinematic Region

FIGURE 12. BOUNDARY CONDITIONS OF THE SINGLE-
PIECE ACTUATOR

The entire design domain is discretized into a grid of 100 x
50 grids. Both constituent materials are constrained to occupy 30
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percent of the total volume. Figure 11 depicts the convergence
curve of the optimization process and the history of design evolu-
tion. The optimization process involves a total of 2000 iterations.

Objective = 13.2644, VR = 0.30577
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FIGURE 13. THE TOPOLOGY OPTIMIZATION HISTORY PLOT.

Following 2000 iterations of evolution, the optimization out-
come is depicted in Figure 12. Material regions are represented
in blue, while void regions are displayed in white. In this numer-
ical example, finite element analysis is carried out to verify the
optimization results, with boundary conditions applied to the op-
timized outcome. The verification results are illustrated in Figure
13. A downward force of 3 Newton is applied at the top left, and
the kinematic region converges toward the target position. The
final volume ratio is 30 percent.

The single-piece soft actuator successfully meets the de-
sign criteria following verification. Utilizing symmetry, the
single-circular actuator is constructed from the circular pattern
of single-piece actuators. Six single-piece actuators are assem-
bled to form one circular actuator. Figure 14 depicts the single
circular actuator and its verification, which is conducted via finite
element analysis. A force is applied to the top of the circular ac-
tuator, resulting in the bending and expansion of the entire struc-
ture according to the designed curvature and radius. In future
physical experiments, the force could be generated by a motor or
similar device.

5.2 System Analysis of The Entire Circular Packing
System

The complete morphable surface structure comprises 24 sin-

gle circular actuators, with each single circular actuator con-

structed from 6 single-piece actuators. Once assembled, as de-
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FIGURE 14. FINAL RESULT OF THE TOPOLOGY-OPTIMIZED
COMPLIANT ACTUATOR.

FIGURE 15. NUMERICAL VALIDATION OF THE MORPHING
BEHAVIOR OF THE COMPLIANT ACTUATOR DESIGNED USING
TOPOLOGY OPTIMIZATION.

picted in Figure 16, the curvature and radius of the entire struc-
ture are validated against the graph in Figure 15, generated
through circle packing algorithms. The verification of the single-
piece actuator was conducted using finite element analysis, and
similarly, the single circular actuator assembled from the single-
piece actuators underwent verification via finite element analysis.
Once the verification of the single circular actuator is completed,
it can be integrated into the overall morphable surface structure.
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FIGURE 16. NUMERICAL VERIFICATION OF THE BEHAVIOR
of A CIRCULAR COMPLAINT ACTUATOR ASSEMBLY.

6 DISCUSSIONS AND CONCLUSIONS

This paper presents a new approach for achieving co-
optimization and co-design morphable structures utilizing circle-
packing theory and topology optimization to design individual
single-piece structures. The main contributions of this work lie
in the development of a computational framework that integrates
topology optimization and circle-packing algorithms for the co-
optimization and co-control of morphable surface structures and
the demonstration of its effectiveness through a benchmark nu-
merical example. This integrated approach goes beyond conven-
tional methods by considering both local component geometry
and global system morphology and enabling coordinated control
of the morphable surface.

The morphing behavior of the single circular actuator is
driven by a downward input force applied at the center. While
we simplify the problem at the current stage by assuming linear
elasticity, it is acknowledged that the soft material exhibits non-
linear elasticity. As for the single circular actuator integrated into
the overall structure, assembly involves reconfiguring them from
a flat panel to a half sphere. Future efforts will focus on achieving
fully automated simulation, enabling seamless morphing from a
flat panel to a half sphere without manual intervention. Addi-
tionally, experiments and physical validations will be conducted
to validate the proposed approach.
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FIGURE 17. TRANSFORMATION OF A FLAT SURFACE INTO
A COMPLEX 3D GEOMETRY THROUGH CIRCLE PACKING-
BASED MORPHABLE DESIGN.
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FIGURE 18. SIMULATION OF THE PhYSICAL BEHAVIORS of
THE CIRCLE-PACKING MORPHABLE SURFACES STRUCTURE.
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