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Abstract—Electroencephalogram (EEG) research continues to
rely heavily on data silos used in isolated physical lab envi-
ronments. However, as a part of the digital transformation,
the EEG community has begun its exploration of the public
cloud to determine how it can be best utilized to increase
collaboration and accelerate research outcomes. The growing
number of online repositories for data and tools has provided ad-
ditional computational resources but the process of downloading
data and software along with the installation and configuration
requirements is cumbersome and prone to error. To break away
from this research paradigm, we present a novel application of
cloud technologies to provide reusable EEG data acquisition and
preprocessing software as a service (SaaS) that eliminates data
and software downloading prerequisites. We utilize the Amazon
Web Services (AWS) cloud platform and serverless technologies
to create a distributed, highly scalable and extensible solution
for EEG signal data preprocessing that is more conducive to
effective collaboration and data reproducibility with the potential
to expedite neurotechnology breakthroughs.

Index Terms—Electroencephalography, Pipeline, Serverless,
Microservices, Software Reuse, PREP, SaaS, AWS

I. INTRODUCTION

Electroencephalography (EEG) data has proven useful in
providing insight into various mental and physical health con-
ditions as well serving as the primary neuroactivity modality
for brain-computer interface (BCI) systems [1], [2]. However,
EEG data is very susceptible to signal loss or discontinuities as
well as contamination from electrical noise, electrode malfunc-
tion or misplacement, eye movements, teeth grinding, cardiac
activity, and other non-brain artifacts even when methods are
taken during research to reduce their occurrence [3], [4]. These
artifacts must be removed from the data while minimizing
neural signal loss so that it is suitable for subsequent feature
extraction and analysis for the various applications. The EEG
data cleansing process is very common because of this but still
requires considerable domain knowledge to perform this task
successfully [5], [6]. The use of more automation for EEG
signal data preprocessing and analysis in healthcare and other
domains has the potential to accelerate health assessments
and research outcomes, support reproducible results [7], and
reduce or eliminate bias in comparison to more manual data
collection and analysis techniques [8], [9].

There have been multiple software libraries, plugins, and
tools introduced to read and preprocess EEG data in a wide
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range of file formats in hopes to produce more consistent re-
sults within the EEG research domain. Such software solutions
include EEGLAB [10], Brain Vision Analyzer [11], and MNE
suite [12] in addition to other commercial, open source, and
custom tools written in programming languages like Python or
R. Researchers have also developed pipelines using these tools
to standardize processing. These software solutions are usually
shared in online repositories such as Github from which
users must download the source code, properly configure their
environment, and compile and/or install the software before
use. Some libraries may even require at least intermediate
level programming skills to actually utilize. Tools built on
top of software applications like MATLAB may simplify or
eliminate programmatic tasks associated with EEG signal data
processing and/or automatically generate code [13]. However,
the need to properly configure these tools with a wide variety
of parameterization options remains, resulting in a significant
learning curve, especially for individuals less-experienced in
the domain.

Cloud-based software as a service (SaaS) can eliminate
the need for users to download and install applications on
individual computers. With SaaS, users do not have to con-
cern themselves with this nor debugging potential application
and environmental technical issues. There has been some
efforts focused on the creation of cloud-based environments
to advance EEG research. Unfortunately, most of the cloud
platforms that we have come across either are no longer
deployed without any available code base to build upon or
the platform has not been made publicly available. Yet, with
the rapid evolution of cloud technologies, a more unified
research approach into the applications of cloud capabilities
for EEG data preprocessing and analysis is necessary for the
community to keep pace with cloud technology development,
encourage technology adoption, and increase collaboration.
Some of the most recent trends in cloud computing in-
clude significant increases in artificial intelligence (AI) and
serverless technologies [14], [15]. This raised the question,
how can the serverless technologies be applied to reduce the
inefficiencies and burden of the manual tasks associated EEG
data preprocessing?

In response and as an alternative to independent, time
intensive research to perform repetitive EEG data prepro-
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cessing tasks, we propose a more simplified and automated
method for EEG signal data processing that leverages the
accessibility, scalability, and distributed computing nature of
the public cloud. We develop an EEG preprocessing capability
as a microservice and deploy it using Amazon Web Services
(AWS) to provide reusable SaaS that reduces the time and
resources that researchers, especially those new to the domain,
spend installing, managing, and manipulating software and
software applications to replicate these common tasks. Unlike
other cloud-based efforts that relied heavily on the use of
virtual compute, storage, and networking infrastructure, or
infrastructure as a service (laaS), we developed this cloud
based application using microservices and serverless technolo-
gies. The serverless technologies used in this work support
quicker deployments while reducing operational overhead by
leaving provisioning, scaling, and management of the server
infrastructure to the cloud service provider.

II. RELATED WORK
A. Localized EEG Data Preprocessing

First released in 1997, the MATLAB based EEGLAB
toolbox has been well maintained and provides a significant
amount of EEG data preprocessing capabilities including high
band pass filtering, line noise removal, bad channel rejection,
interpolation of removed channels, and rereferencing [10].
Due to the numerous parameterization options that can be
especially confusing to those less familiar with the tool, EEG
data preprocessing pipelines have been developed that can
be run locally to streamline and standardized the usage of
EEGLAB and other like tools.

The standardized preprocessing pipeline (PREP) [16] is one
well-known solution based on EEGLAB that was designed for
large-scale EEG analysis. It was intended to eliminate as much
noise as possible while preserving the signal and retaining
the resulting dataset in an EEGLAB structure that can be
utilized by a variety of applications. The pipeline incorporates
the EEGLAB cleanline plugin to remove line noise as shown
in Figure 1 as well as the other functions. PREP has been
utilized for EEG data preprocessing in a number of research
applications, such as EEGNet [17], before any subsequent
machine learning or other analysis techniques are applied.

The Harvard Automated Processing Pipeline for EEG
(HAPPE) [18] is based on EEGLAB and capable of reading
64 and 128 channel resting-state EEG data from Electrical
Geodesics, Inc. (EGI) files. The code used to implement
HAPPE could be modified to also import other file types. The
pipeline uses both independent component analysis (ICA) with
automated component rejection as well as wavelet-enhanced
thresholding ICA (W-ICA) to improve the end results [18].
HAPPE also generates quality metrics in a post-processing
report unlike many other pipelines created before it [18].

Other pipelines implemented with EEGLAB include Au-
tomagic [19] and the Maryland analysis of developmental
EEG (MADE) [20], both of which cite improvements over
predecessor pipelines. There are also commercial solutions
that support EEG processing and analysis like the NeuroPype
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Fig. 1: Selected channel spectra before and after line noise
removal using PREP Pipeline [16]

platform [21]. At the same time, some pipeline developers
have steered away from the usage of MATLAB based tools
in order to build fully open source solutions. The MNE
software libraries for Python and C provide an open source
alternative for EEG data processing and analysis capabilities
[12]. A Python-based version of the earlier PREP pipeline,
pyprep, was built using the MNE Python library, which better
enables reuse and automation given that users do not have
to purchase any additional software licensing to incorporate
it [22]. Nevertheless, all of these localized EEG processing
solutions require users to download and install software or
incorporate libraries into custom application code. These ap-
proaches require users to not only have an understanding of
EEG signal data, but also be proficient in properly installing,
configuring, programming, and/or invoking function calls in
the proper sequence to perform a fundamental step in EEG
signal data analysis.

B. Cloud-Based EEG Data Preprocessing

Cloud services can provide powerful computing resources
that are globally accessible and scalable on demand, which
has driven an increase in its interest for EEG research and in
other domains [23]. Computing power and storage provided
on demand in the cloud also facilitates big data analytics,
which require efficient high performance processors to produce
timely results. There are some studies that document cloud
technology usage for EEG data processing and analysis.

Hosseini et al. [24] used AWS infrastructure to establish
a cloud-based solution for epileptic seizure prediction. The
application used RESTful web services to transfer data from
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a local environment to the cloud for processing and analysis
[24]. Amazon Elastic Compute Cloud (EC2) virtual servers
were incorporated into the solution to perform unsupervised
feature extraction and classification in that work [24].

A year later, the BrainBase cloud-based research platform
was established to support EEG data management [25]. It
is built using AWS and incorporates the use of Amazon
EC2 virtual servers, a PostgreSQL database, Amazon Simple
Storage Solution (S3), and Amazon Simple Queue Service
(SQS) to handle file processing. The initial version also
provided clinical file parsing capabilities and a protocol library.
However, further details of its implementation and processing
capabilities have not been made available to the public.

Rushambwa et al. [26] developed a system to perform
EEG signal data processing and analysis for epileptic seizure
detection. The system completes EEG data acquisition and
processing in a local environment before transferring it to
a private channel in ThingSpeak.com, an Internet of things
(IoT) analytics platform service for aggregating, visualizing,
and analyzing live data streams in a cloud environment [26].
Once in the cloud, feature extraction and analysis is performed
to classify data sets as epileptic or non-epileptic.

However, in just the few years, the use of serverless tech-
nologies has significantly increased in industry [15]. Initially,
serverless technologies centered largely around the use of
function as a service (FaaS) like AWS Lambda and Google
Cloud Functions, which can run code written in multiple
programming languages in response to events. Microservices
were viewed as an architecture different from the serverless
paradigm [27], [28]. However, FaaS often has execution time
limitations to prevent run-away functions, making them not
appropriate for longer running services and/or more complex
applications. The introduction of serverless container options
like Amazon Fargate enabled the auto-scaling of microservices
and expanded the list of available serverless technologies [29].

[II. METHODOLOGY

We selected AWS as the platform on which to deploy our
EEG data retrieval and preprocessing software capabilities to
produce a highly scalable system. Rather than requiring users
to download data and subsequently upload it into another
application as often performed during EEG research, the
microservices developed in this work retrieve selected data
files directly from cloud-based data storage repositories as later
described. The Python-based Flask micro web framework is
used to create the web applications deployed to AWS. It is
a lightweight, scalable option known to be easier to use in
comparison to other frameworks. All software development
was performed on a laptop running Windows 11 with Python,
Visual Studio (VS) Code, Docker Desktop, and AWS Com-
mand Line Interface (CLI) installed.

As seen in Figure 2, we use several serverless services
including Amazon Fargate, Lambda, and DynamoDB, which
are further described in the subsections that follow. Serverless
technologies eliminate the need for infrastructure management
tasks like capacity provisioning and patching.
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A. Data Sources and Management

EEG signal data is retrieved from Amazon S3 buckets,
which is Amazon’s blob storage solution. There are two
sources of raw data in this initial work. Raw data obtained
from a prior study [30] was uploaded to an internal S3 bucket
to make it available for use. In addition to this, OpenNeuro
provides access to raw EEG data files via its website, its
Python library, and an open access Amazon S3 bucket [31].
We programmatically obtain data [32] from the OpenNeuro
S3 bucket to demonstrate a consistent method of retrieving
raw EEG data between internal and external sources. The
OpenNeuro datasets are stored in accordance with the Brain
Imaging Data Structure (BIDS) standard for file storage and
sharing [31]. While our implementation does not currently
enforce strict adherence to the BIDS format, it does expect
that a directory for each study is stored in the root of the S3
bucket, with each containing separate sub-directories for every
subject in the study. A third S3 bucket was created to store
files resulting from completed EEG data preprocessing tasks.

An Amazon DynamoDB NoSQL database is used as a part
of the overall solution. A key-value database table, FilePro-
cessingTask, was created for storing and tracking the status
of preprocessing tasks submitted. A user was created through
the AWS Identity and Access Management (IAM) service with
the AmazonDynamoDBFullAccess AWS managed permission
policy as well a custom policy to permit the creation of
database access keys. The access keys were assigned to the
user to support programmatic interactions. DynamoDB stream
service was enabled on FileProcessingTask table through the
AWS Management Console. This stream is used to trigger file
processing as later described.

Each task in the FileProcessingTask table can currently have
one of four statuses assigned to them:

o Pending: Assigned to new EEG file preprocessing task.

o Preprocessing: The task was received by the EEG Pre-

processing service.

« Completed: All steps in the pipeline have been completed.

o Error: A critical failure occurred preventing completion.

B. User Interface

The User Interface (UI) was created primarily using the
Flask micro web framework, WTForms, and Bootstrap web
design front-end framework. Amazon Elastic Beanstalk was
used to deploy it to the cloud. The UI is composed of three
main pages: a home/introductory page, a page used to submit
file processing requests, and a page for viewing the status
of requests and downloading the resulting files. All three of
these pages are accessible from the menu at the top of each
page. The Process File page permits users to select the data
source, the internal S3 bucket or OpenNeuro, and subsequently
select a study then one or more subjects from the study to
be processed. Additional user parameter options include the
montage, which is the arrangement of EEG channels used
during the recordings, and signal filtering settings.

When a file processing request is submitted, a record
is immediately added to the FileProcessingTask DynamoDB
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Fig. 2: Serverless EEG Data Preprocessor Framework

table with a unique identifier created for the request. The
Amazon SDK for Python, Boto3, is used to perform basic
create, retrieve, update, and delete (CRUD) operations on
DynamoDB tables. Amazon API Gateway could be used to
handle the authentication of requests and database updates but
was not included in this simplified implementation. The user
is immediately notified that the request has been successfully
captured in the database and can submit additional requests or
navigate to other pages while waiting for the file processing
to complete. With none of their local computing resources
impacted by the cloud-based data processing, users could also
continue with other localized work.

Amazon Lambda, which provides FaaS, is used here to
handle events as they are captured on the DynamoDB stream.
The Lambda function will determine if an event on the
DynamoDB stream is a new record insert signifying a new
file processing task. If so, the Lambda function will send the
file processing task to the application load balancer (ALB)
of the EEG Data Preprocessing Service, as later described,
to initiate the EEG data preprocessing. The status of the task
is updated to Preprocessing in DynamoDB upon successful
initiation.

C. EEG Data Preprocessing Capability

An event-driven microservice was created using Python to
provide the signal data preprocessing capability. The service
expects an HTTP PUT request with a JSON body containing
the task identifier, selected S3 bucket, study identifier, subject
identifier(s), and other parameters entered by the user. The
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application retrieves the selected file(s) from its source S3
bucket using Boto3. MNE is used to read data from various
EEG file formats, perform downsampling as needed, and
generate visualizations [12]. The pyprep library is used to
clean the EEG signal. Pyprep simplifies the process of filtering,
removing line noise, bad channel rejection, and interpolation
as shown in Figure 3 [22]. Some initial feature data is also
generated using MNE, numpy and scipy libraries.

Fig. 3: Code snippet for PREP pipeline execution

prep PrepPipeline (raw_copy,
prep.fit ()

# raw_eeg contains processed data if fit() invoked
return prep.raw_eeg

prep_params, montage)

While other output formats could be supported, the appli-
cation currently produces its clean output data file in CSV
format. The output file, time and frequency based feature data,
and time-domain and power spectral density (PSD) plots are
added to a zip file and saved in the eeg-clean-data S3
bucket. Object creations in the S3 bucket automatically trigger
another Lambda function that is responsible for updating the
status of the file processing task to Completed in DynamoDB.
Once marked as completed, users can download the zip file
from S3 using icons on the View Task page of the UL

D. Service Container Orchestration

All of the microservice’s dependencies were saved to a
requirements.txt file and a Dockerfile was added
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Fig. 4: A PSD plot generated by the EEG Data Preprocessing
service

to the program directory to support the creation of a Docker
container image. The Python official Docker image is used,
instead of building an image from a Linux distribution, since
it already has all the tools and packages needed to run a Python
application. Commands to build the Docker image, tag it, and
push it to a private Amazon Elastic Container Registry (ECR)
repository were executed in a VS Code terminal window.
Amazon Elastic Container Service (ECS) is an AWS con-
tainer orchestration service used here to create a serverless
solution. A new ECS cluster managed by AWS Fargate was
created. A new Fargate task definition was then created that
referenced the URI of the Docker image previously pushed to
the ECR repository. In this task definition for the containers,
2 virtual CPU (vCPU) and 4 GB of memory was reserved. An
ALB was also created to distribute incoming application traffic
across multiple containers. The inbound traffic rules for the
security group assigned to the ALB were modified to permit
traffic on the HTTP port. The task definition and load balancer
were used to configure and deploy a new service in the ECS
cluster. The service was configured to have a minimum of 3
containers running with autoscaling up to a maximum of 8.

IV. RESULTS AND DISCUSSION

Amazon CloudWatch collects performance and operational
data in the form of logs and metrics from ECS, DynamoDB,
and Lambda in this application. To evaluate performance, we
examined CPU utilization and memory utilization metrics for
the EEG Data Processing service while executing several tasks.
We also examined the total processing time for each task. In
this case, each task will equate to processing files for one
subject from a study selected from the OpenNeuro database
[32].

Metrics were initially collected after processing the 30 MB
data file for one subject from the selected study. The study
used a sampling rate of 500 Hz with 10uV/mm resolution
[32]. The end-to-end processing was completed within 55
seconds and the service had an average CPU utilization of
2.31% with a maximum CPU utilization of 63.44% as seen
in the first spike in Figure 5. We then processed five data
files simultaneously. The application took 128 seconds to
complete all five tasks as configured. However, CPU utilization
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spiked to 99% during the execution and remained there for
several minutes. Changing the task definition to reserve 4
vCPU and 8 GB of memory of each container lowered total
execution time to 103 seconds for the five tasks. We expect
that additional performance tuning of the microservices and
cloud environment could further improve results.

Although autoscaling was turned on and CPU utilization
spiked, CPU utilization was low on average. Therefore, the av-
erage CPU utilization threshold had to be lowered significantly
before it would trigger the creation of additional containers
using that metric. Also, due to the amount of processing time
required and/or the amount of time it takes to launch a new
container, there appeared to be data loss between the Lambda
function and the service when the number of tasks processed
simultaneously was increased to 10. To initially combat this
issue, the batch size and batch window was increased for
the Lambda function that sends data to ECS. However, long
running batches could cause the Lambda function to reach its
timeout threshold.

CPU utilization

Percent

2315 2330 00:00

@ cPuUtilization Minimum @ CPUUtilization Maximum @ CPUUtilization Average

Fig. 5: EEG Data Preprocessing Service CPU Resource Uti-
lization

As a result of the observations, the framework was modified
so that the Lambda function sends new tasks to an SQS queue
instead of directly to ECS, thereby eliminating the data loss
previously encountered. The code comprising the worker con-
tainer images was modified to long poll the queue for new file
processing tasks to complete. Step autoscaling, based on the
number of visible tasks in the queue, replaced the CPU based
autoscaling. While the EEG preprocessing service containers
were initially configured to long poll the queue constantly,
current system usage remains low in this developmental stage.
Therefore, cloud service costs are reduced by having these
workers stop polling the queue if no tasks are found after
a several attempts until they are triggered to resume polling
again by the Lambda function.

V. CONCLUSION AND FUTURE OUTLOOK

In this work, a serverless EEG data retrieval and preprocess-
ing framework was developed and examined. Through it, we
eliminated data download requirements via direct interfaces
with public cloud data repositories. We demonstrated the use
of AWS ECS on AWS Fargate and Lambda functions to
produce a scalable EEG data preprocessing capability. The
initial design using the ALB worked well with a small number
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of tasks. However, we found using SQS with polling better
handled higher numbers of long running tasks. We showed
how increases in computing power in terms of vCPU and
memory reduced processing time but could also increase
costs. Additionally, we demonstrated how autoscaling can be
configured to handle workload increases by creating more
worker containers in response to changes in CPU utilization,
memory utilization, or even custom metrics like queue size.

We continue to develop enhancements to this framework to
include to security improvements, additional error handling,
further decoupling of services as well as additional user
parameter options for algorithm performance optimization.
We also plan to incorporate additional services into the ECS
cluster to expand the system’s EEG analysis capabilities.
Further evaluation of the resulting system in terms of system
performance and usability through an approved user study will
be completed in the near future.
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