
Towards LLM-Assisted Vulnerability Detection and
Repair for Open-Source 5G UE Implementations

Rupam Patir†∗, Qiqing Huang†∗, Keyan Guo†, Wanda Guo‡, Guofei Gu‡, Haipeng Cai†, Hongxin Hu†
†University at Buffalo,

‡Texas A&M University,
Email: †{rupampat, qiqinghu, keyanguo, haipengc, hongxinh}@buffalo.edu

‡{wdguo, guofei}@tamu.edu

Abstract—The rapid evolution of software systems in 5G
networks has heightened the need for robust security measures.
Traditional code analysis methods often fail to detect vulnerabil-
ities specific to 5G, particularly vulnerabilities stemming from
complex protocol interactions. In this work, we explore the
potential of LLM-assisted techniques in vulnerability detection
and repair in open-source 5G implementations. We introduce a
novel framework leveraging Chain-of-Thought (CoT) prompting
in two phases: first, vulnerability detection based on 5G Vulner-
ability Properties (VPs); second, vulnerability repair guided by
5G Secure Coding Practices (SCPs). We conducted a case study
on an open-source 5G User Equipment (UE) implementation that
illustrates how our framework leverages vulnerability properties
and SCPs to identify and remediate vulnerabilities. Our testing
results indicate successful detection and repair, demonstrating
the practicality and effectiveness of our approach. While chal-
lenges persist, including the identification of 5G-specific security
properties and SCPs and the complexity of their integration,
this study provides a foundation for advancing automated LLM-
assisted solutions to strengthen the security of open-source 5G
systems.

I. INTRODUCITON

Fifth Generation (5G) networks have emerged as a corner-
stone of modern communication, promising ultra-high band-
width, low latency, and massive connectivity for diverse appli-
cation scenarios [1]. However, the increased complexity of 5G
systems—spanning different layers of protocols and incorpo-
rating real-time, heterogeneous components—introduces new
security challenges that traditional software security method-
ologies [2]–[4] fail to address.

Ensuring the security and reliability of 5G software com-
ponents, particularly in User Equipment (UE), demands ad-
vanced, context-aware analysis techniques. In general, 5G
vulnerabilities can be divided into design flaws and imple-
mentation flaws [5]. On the design side, formal analyses
have revealed a wide range of LTE/5G design weaknesses
[6]–[9], yet these findings do not necessarily translate into
secure implementations. For implementation flaws, most ex-
isting work relies on black-box approaches—such as fuzzing,
over-the-air probing, and negative testing—to identify 5G

∗ Equal contribution.

implementation vulnerabilities [5], [10]–[22]. Although these
techniques can effectively uncover functional anomalies, they
rarely leverage open-source 5G UE projects (e.g., Open5GS
[23], srsRAN [24], and OpenAirInterface (OAI) [25]) for com-
prehensive, code-level secuirty. Meanwhile, pattern-based code
analysis tools (e.g., CodeQL [4]) can detect common security
risks—such as buffer overflows and SQL injections—but often
struggle to pinpoint 5G-specific or semantic-level flaws, lead-
ing to false negatives [26], [27]. Furthermore, the complex
control flows inherent in open-source 5G UE software can
inflate the number of false positives [28], and manual patching
of these issues remains labor-intensive and prone to human
error [26], [27], [29]. As a result, delivering secure, large-scale
open-source 5G UE implementations requires more robust,
context-aware analysis methods.

Recent advancements in Large Language Models (LLMs)
have demonstrated strong reasoning capabilities [30] and a
deep understanding of 3GPP standards and 5G protocols [31]–
[33]. Additionally, LLMs have shown remarkable performance
in vulnerability detection and automated patch generation for
traditional software [34]–[39]. However, their application in
identifying and repairing vulnerabilities in open-source 5G
implementations remains largely unexplored. To bridge this
gap, we investigate the following key research questions: (1)
How can LLMs be effectively leveraged to detect complex
vulnerabilities in open-source 5G UE implementations? and
(2) How can LLMs facilitate or automate the repair of those
vulnerabilities for open-source 5G UE implementations?

In this work, we present the first exploration of integrating
LLMs into 5G software security workflows. Specifically, we
introduce an LLM-assisted vulnerability detection approach
that leverages 5G vulnerability properties and Chain-of-
Thought (CoT) prompting [40] to identify 5G-specific vulner-
abilities, such as missing validation of security-critical fields
and protocol compliance issues. Building on this, we also
propose a vulnerability repair process that combines 5G Secure
Coding Practices (SCPs) with generic SCPs, enabling LLMs
to generate effective fixes for the detected vulnerabilities. To
evaluate our approach, we conduct a case study1 on an open-
source 5G UE implementation, demonstrating its effectiveness

1Our demo video is available at https://github.com/qiqingh/LLM assisted
vulnerability detection repair.

Workshop on Security and Privacy of Next-Generation Networks
(FutureG) 2025
24 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-7-3
https://dx.doi.org/10.14722/futureg.2025.23021
www.ndss-symposium.org

https://github.com/qiqingh/LLM_assisted_vulnerability_detection_repair
https://github.com/qiqingh/LLM_assisted_vulnerability_detection_repair

5G UE
Code

5G
Vulnerability

Properties

Vulnerable
Code

5G Secure
Coding Practices Repaired 5G

UE Code

CoT Prompt

Human
Expert

Traditional Secure
Coding Practices

LLM LLM

SCP Source

5G

LLM-Assisted Vulnerability RepairLLM-Assisted Vulnerability Detection

CoT Prompt

Fig. 1. Overview of Approach.

through a comparative analysis of vulnerability identification
and repair before and after applying our methodology.

II. APPROACH

This section outlines our framework for enhancing 5G UE
security. As depicted in Figure 1, the framework includes
two phases: it first identifies 5G-specific vulnerabilities using
curated 5G Vulnerability Properties, then applies 5G-specific
and generic SCPs for repair in the next phase.

A. LLM-Assisted Vulnerability Detection

The goal of this stage is to identify vulnerabilities specific
to 5G UE implementations. The complexity of 5G systems, in-
cluding protocol behaviors and multi-layer interactions, often
exceeds the capabilities of general-purpose code analysis. To
address this, we leverage 5G vulnerability properties (VPs),
derived from security testing results, which include findings
from prior LTE/5G security research [11] [5] [21] [20] and
empirical evaluations of UE implementations. These properties
encapsulate common security weaknesses found in open-
source 5G software and are defined through a structured
verification process. Each property is analyzed across three
key dimensions: (1) Exploitable Input, determining whether a
vulnerability can be triggered via a 5G remote message (e.g.,
NAS/RRC/PHY); (2) Security Impact, assessing potential
threats such as DoS, authentication bypass, or data leakage;
and (3) Practical Exploitability, evaluating the real-world fea-
sibility of an attack. Table I shows several examples of VPs.

To fully leverage these defined properties, we employ CoT
prompting [40], which enhances the LLM’s ability to sys-
tematically reason through complex tasks like vulnerability
detection [41]–[43]. CoT prompting improves accuracy by
guiding the model through structured reasoning steps, ensuring
a nuanced understanding of code behaviors in 5G systems. To
integrate the properties into CoT reasoning, we structure the
CoT prompt (detailed in Appendix A) to systematically guide
the LLM in analyzing a code snippet and identifying whether
it exhibits a VP.

The process begins with a clear definition of the VP
under consideration. The LLM is first instructed to review
the property’s characteristics and security implications. It
then performs a semantic analysis of the code, examining
execution pathways, data dependencies, and how different
components interact. This ensures the LLM develops a com-
prehensive understanding of the code structure and behavior

before proceeding to the detection step. Finally, the LLM
identifies specific lines of code that exhibit the vulnerability
and provides structured explanations detailing why they are
problematic. These findings are reported in a standardized
format, highlighting each vulnerable line and explaining its
security impact.

By embedding VPs into CoT reasoning, we ensure the
LLM systematically evaluates them through explicit, struc-
tured steps. This integration allows for a precise and context-
aware vulnerability detection process, improving the reliability
of identifying security weaknesses in 5G UE implementations.

B. LLM-Assisted Vulnerability Repair

The repair stage builds upon the vulnerabilities identified
during the detection phase, aiming to address these issues
through actionable SCPs. SCPs are a set of proven guidelines
that developers use to write secure and robust code, addressing
critical areas such as input validation, error handling, and
memory safety. LLMs are trained on vast amounts of code
data, including numerous examples of these practices. This
enables LLMs to apply these practices when repairing code,
and prior methods have effectively leveraged SCPs to repair
vulnerabilities in traditional software [44], [45]. The SCPs
are sourced from trusted sources such as OWASP [46], Mi-
crosoft [47], and CERT [48], which provide comprehensive
and reliable secure coding standards. SCPs are highly relevant
for 5G implementations, as the underlying code is written in
C.

However, since the logic of these implementations is 5G-
specific, there is a need for SCPs that are tailored to the
unique environment of 5G. To address this gap, we propose
a combined approach that utilizes both general SCPs and 5G-
specific SCPs in the repair process.

5G Secure Coding Practices are guidelines designed to
address vulnerabilities unique to 5G UE implementations.
These practices extend general SCPs by targeting the specific
challenges of 5G UE environments, such as ensuring proper
input validation, maintaining protocol integrity, and validating
resource allocation parameters. We curate this list of SCPs via
human expert knowledge corresponding to the vulnerabilities
properties identified in Section II-A. A sample list of 5G-
specific and general SCPs is provided in Table II.

Prior work has demonstrated that LLMs can be leveraged
to repair traditional software vulnerabilities [49], [50]. CoT
prompts can enhance this process by guiding LLMs through

2

TABLE I
5G VULNERABILITY PROPERTY EXAMPLES

Category ID Vulnerability Property (VP) Exploitable Input Security Impact Practical Exploitability

Input Validation Issues VP1 Lack of ASN.1 input validation
allowing malformed messages.

NAS Attach
RRC Setup

DoS
UE crash

Fake base station sends malformed
RRC/NAS messages

VP2 Missing validation of security-critical protocol fields
allowing security bypass.

NAS Security Mode
RRC Reconfig

Bypassing authentication
Misconfigurations

Fake base station sends manipulated NAS
Security Mode Command or RRC Reconfiguration

Memory & Resource Issues VP3 Insufficient validation in resource allocation
leading to resource exhaustion.

RRC Connection
NAS Service Request

DoS
Excessive resource usage

Compromised UE or botnet UE
triggers excessive RRC/NAS signaling

VP4 Lack of boundary checks in buffer management
causing memory corruption.

PDCP PDU
NAS Downlink

UE crash
Memory corruption

Malformed NAS/RRC packets trigger memory
corruption in UE baseband

Protocol Compliance Issues VP5 Failure to enforce integrity protection
allowing message forgery or replay attacks.

NAS Registration
RRC Security Mode

Identity spoofing,
Downgrade attacks
Replay attacks

MITM attack injects unprotected NAS messages

VP6 Accepting undefined or reserved protocol parameters
leading to unexpected behavior.

RRC Capability
NAS Security Mode

Unexpected protocol behavior
Security bypass

Unexpected behavior triggered by incorrect
RRC/NAS parameter handling

TABLE II
5G AND GENERAL SECURE CODING PRACTICES

Category Type Secure Coding Practices

Input
Validation

5G-
specific

Perform validation on all ASN.1 messages to
detect malformed packets before processing.

5G-
specific

Enforce rigorous validation of security-critical
protocol fields to prevent security bypass or
message forgery.

Memory and
Resource
Management

General Implement strict resource allocation validation
to prevent resource exhaustion attacks.

General Apply boundary checks on buffers and memory
operations to prevent corruption.

Protocol
Compliance

5G-
specific

Require integrity checks and cryptographic val-
idation for messages to prevent forgery and
replay attacks.

5G-
specific

Reject undefined or reserved protocol parame-
ters to avoid unexpected behavior.

reasoning. To leverage this, we constructed a CoT prompt,
detailed in Appendix A, that directs the LLM in applying
SCPs. This prompt takes a vulnerability, the original code
snippet, and the list of SCPs as inputs, and systematically leads
the LLM through the repair process. It starts by analyzing the
vulnerability and understanding its root cause. Then, the LLM
examines the data and control flows related to the vulnerability
and pinpoints where the issue arises. The LLM then applies the
appropriate SCPs to mitigate the vulnerability, incorporating
both 5G-specific and general SCPs as needed. The output of
the repair process is a corrected code snippet that resolves the
detected vulnerability.

III. CASE STUDY

This case study demonstrates how Vulnerability Prop-
erty 1 (VP1) listed in Table I arises in OpenAir-
Interface (OAI) [25]. Specifically, we focus on the
nr_generate_pucch0 function in OAI. Using Chat-
GPT [51], we identified a potential flaw, verified its ex-
ploitability, and proposed a fix. We further validated both the
vulnerability and our patch using 5Ghoul [52] by injecting
malicious RRC messages, confirming that the vulnerability
existed and was successfully mitigated after our repair. Details
are provided in Appendix B.

A. Vulnerability Detection

Our approach systematically evaluates each Vulnerability
Property (VP) to ensure a structured and thorough analysis of

security flaws in 5G UE implementations. While the frame-
work is designed to assess all defined VPs, this case study
focuses on VP1: Lack of ASN.1 Validation. Exhibiting this
property can lead to unintended execution behaviors, including
denial-of-service (DoS) conditions, memory corruption, and
out-of-bounds memory access.

Following the CoT-based vulnerability detection
methodology outlined in Section II-A, the LLM first
reviews VP1, recognizing its characteristics and security
risks, including buffer overflows and unauthorized memory
access. Once the vulnerability property is understood,
the LLM proceeds with a semantic analysis of the code,
where it examines execution pathways, data dependencies,
and interactions between components. This analysis helps
identify scenarios where incorrect computations could
lead to security risks. Finally, the LLM analyzes the
nr_generate_pucch0 function to assess whether
it exhibits characteristics associated with VP1. During
this analysis, the expression txdataF[0][(l2*
frame_parms->ofdm_symbol_size)+re_offset]
is flagged as exhibiting the VP. The LLM reasons that
l2 and re_offset originate from fields within ASN.1
packets, highlighting their dependence on protocol message
processing. It also recognizes the indexing operation within
txdataF, determining that it relies on these ASN.1
influenced values, thereby establishing a direct link between
ASN.1 packet handling and memory access. The LLM finds
that these values are not validated before use, meaning that
if they are set incorrectly, they could lead to out-of-bounds
memory access, buffer overflows, or unintended memory
writes. To validate these findings, we manually analyzed
the code to confirm the LLM’s reasoning. Additionally,
we modified the ASN.1 packet that influences these values
and constructed an exploit. As illustrated at the top of
Figure 2, the exploit successfully triggered a system crash,
confirming the identified vulnerability. The full details of
this verification process and the corresponding exploit are
provided in Appendix B.

B. Vulnerability Repair

In the repair phase, the LLM was tasked with repairing
the code via the methodology described in Section II-B. By
leveraging the list of SCPs tailored for 5G systems, the LLM
generated a comprehensive patch to resolve the issue. The
patch introduced guard checks to ensure that key parameters
remained within valid ranges, preventing potential memory

3

Repaired Code

Testing Result: UE Process Crashed

Testing Result: UE Process Did Not Crash

+ #define TXDATAF_MAX_INDEX 4096 // Example value based on a standard OFDM symbol size
uint32_t re_offset = 0;
uint8_t l2;
for (int l = 0; l < pucch_pdu -> nr_of_symbols; l++) {
 l2 = l + pucch_pdu -> start_symbol_index;
+ if (l2 >= frame_parms -> symbols_per_slot) {
+ printf("Error: Calculated l2 exceeds symbols per slot\n");
+ return; // Invalid index, exit safely
+ }
 re_offset = (12 * prb_offset[l]) + frame_parms -> first_carrier_offset;
 if (re_offset >= frame_parms -> ofdm_symbol_size)
 re_offset -= frame_parms -> ofdm_symbol_size;
 for (int n = 0; n < 12; n++) {
+ // Validate calculated index before use
+ uint32_t tx_index = (l2 * frame_parms -> ofdm_symbol_size) + re_offset;
+ if (tx_index >= TXDATAF_MAX_INDEX) {
+ printf("Error: Calculated tx_index exceeds buffer size\n");
+ return; // Prevent out-of-bounds memory access
+ }
 ((int16_t *) & txdataF[0][(l2 * frame_parms -> ofdm_symbol_size) + re_offset])[0]

= (int16_t)(((int32_t)(amp) * x_n_re[l][n]) >> 15);

UE Program Crashed After
Receiving Malformed Message

UE Program Did Not
Crash After
Receiving

Malformed Message

 uint32_t re_offset = 0;
 uint8_t l2;

 for (int l = 0; l < pucch_pdu -> nr_of_symbols; l++) {
 l2 = l + pucch_pdu -> start_symbol_index;
 re_offset = (12 * prb_offset[l]) + frame_parms -> first_carrier_offset;
 if (re_offset >= frame_parms -> ofdm_symbol_size)
 re_offset -= frame_parms -> ofdm_symbol_size;
 for (int n = 0; n < 12; n++) {
 ((int16_t *) & txdataF[0][(l2 * frame_parms -> ofdm_symbol_size) + re_offset])[0]

= (int16_t)(((int32_t)(amp) * x_n_re[l][n]) >> 15);

Vulnerable Code

Code Repairs

Unchanged Code

Fig. 2. Case Study Testing Results Illustrating the Successful Prevention of UE Program Crashes Through the LLM-Assisted Detection and Repair Process.

corruption or unintended behavior. For instance, bounds were
established for variables like l2 and tx_index, and val-
idations were implemented to prevent out-of-range calcula-
tions. The LLM further demonstrated contextual understanding
by deducing appropriate ASN.1 schema related boundaries
for these variables and incorporating global constants where
needed. The effectiveness of the repair was evaluated by re-
testing the patched code against the same exploit. Unlike
the vulnerable version, the patched code successfully handled
the malformed input without crashing, confirming that the
repair was effective. This outcome highlights the robustness
of the LLM-assisted repair process in mitigating real-world
vulnerabilities. Figure 2 showcases the original vulnerable
code, the code repair generated, and screenshots from the
testing environment, illustrating how the patch addresses the
identified issue.

IV. LIMITATIONS AND FUTURE DIRECTIONS

In this work, we present the first study of an LLM-assisted
approach for vulnerability detection and remediation in open-
source 5G UE implementations, highlighting the potential of
leveraging LLMs to enhance 5G security. While challenges
such as hallucinations in LLMs [53] and scalability issues in
code analysis [54] exist and should be addressed, we also
recognize the following key limitations that warrant further
investigation in future work:
Identification of 5G-Specific Vulnerability Properties and
SCPs: Our current approach requires manual identification
of 5G Vulnerability Properties and SCPs, relying on expert
knowledge. This labor-intensive process risks missing emerg-
ing vulnerabilities. In the future, we will develop an automated
system to derive these security requirements by analyzing data

from 3GPP standards, large-scale 5G code repositories, and
historical vulnerability disclosures. Combining this with SCPs,
we plan to build an evolving library of 5G-specific checks and
mitigations, minimizing manual effort and improving LLM-
driven vulnerability detection and repair.
Utilization of 5G Vulnerability Properties and SCPs: While
our current framework utilizes CoT prompting to apply 5G
Vulnerability Properties and SCPs in vulnerability detection
and repair, the complexity of managing and efficiently utilizing
these properties and SCPs increases as the system evolves. To
address this, future work will focus on developing advanced
methods for utilizing properties and SCPs. One approach in-
volves leveraging the interrelationships among properties and
SCPs to dynamically prioritize the most contextually relevant
ones, thereby reducing computational overhead and enhancing
efficiency. Additionally, we will investigate structuring prop-
erties and SCPs hierarchically, applying critical or high-level
concepts first, followed by progressively detailed elements to
streamline their application and enhance scalability.
Evaluation Across the 5G Ecosystem: Our methodology was
demonstrated primarily through a single case study. While this
case study highlights the feasibility and effectiveness of our
framework, it lacks a comprehensive evaluation across other
components, such as 5G base stations or 5G core networks.
Consequently, the generalizability of the proposed framework
has yet to be established. To address this, future work will
expand the evaluation of LLM-assisted vulnerability detection
across the broader 5G ecosystem. By testing the methodology
in different segments of the 5G architecture, our objective is
to enhance our understanding of its applicability and identify
opportunities to improve the detection and mitigation of vul-
nerabilities across the entire 5G infrastructure.

4

REFERENCES

[1] T. Trainer, “Applications of 5g network,”
2023. [Online]. Available: https://www.telecomtrainer.com/
explain-technically-in-detail-applications-of-5g-network/

[2] Y. Yu, Y. Xu, K. Huang, and J. Liu, “Tapfixer: Automatic detection
and repair of home automation vulnerabilities based on negated-property
reasoning,” in 33rd USENIX Security Symposium (USENIX Security 24).
USENIX Association, 2024, pp. 4945–4962.

[3] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing
for javascript jit compiler vulnerabilities.” in NDSS, 2023.

[4] G. S. Lab, “Codeql: Code analysis and security tool,” https://codeql.
github.com/, 2025, accessed: 2025-01-06.

[5] C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “{DoLTEst}:
In-depth downlink negative testing framework for {LTE} devices,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1325–1342.

[6] S. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “Lteinspector:
A systematic approach for adversarial testing of 4g lte,” in Network and
Distributed Systems Security (NDSS) Symposium 2018, 2018.

[7] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5greasoner: A property-directed security and privacy analysis frame-
work for 5g cellular network protocol,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 669–684.

[8] I. Karim, S. R. Hussain, and E. Bertino, “Prochecker: An automated
security and privacy analysis framework for 4g lte protocol implemen-
tations,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2021, pp. 773–785.

[9] M. Akon, T. Yang, Y. Dong, and S. R. Hussain, “Formal analysis
of access control mechanism of 5g core network,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 666–680.

[10] D. Rupprecht, K. Jansen, and C. Pöpper, “Putting {LTE} security func-
tions to the test: A framework to evaluate implementation correctness,”
in 10th USENIX Workshop on Offensive Technologies (WOOT 16), 2016.

[11] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the untouchables:
Dynamic security analysis of the lte control plane,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 1153–1168.

[12] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “Lte security
disabled: misconfiguration in commercial networks,” in Proceedings of
the 12th conference on security and privacy in wireless and mobile
networks, 2019, pp. 261–266.

[13] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec: Comparative
analysis of baseband software and cellular specifications for l3 proto-
cols.” in NDSS, 2021.

[14] H. Wang, B. Cui, W. Yang, J. Cui, L. Su, and L. Sun, “An automated
vulnerability detection method for the 5g rrc protocol based on fuzzing,”
in 2022 4th International Conference on Advances in Computer Tech-
nology, Information Science and Communications (CTISC), 2022, pp.
1–7.

[15] M. E. Garbelini, Z. Shang, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“Towards automated fuzzing of 4g/5g protocol implementations over
the air,” in GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 86–92.

[16] G. Hernandez, M. Muench, D. Maier, A. Milburn, S. Park,
T. Scharnowski, T. Tucker, P. Traynor, and K. Butler, “Firmwire: Trans-
parent dynamic analysis for cellular baseband firmware,” in Network
and Distributed Systems Security Symposium (NDSS) 2022, 2022.

[17] S. Nie, Y. Zhang, T. Wan, H. Duan, and S. Li, “Measuring the
deployment of 5g security enhancement,” in Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2022, pp. 169–174.

[18] D. Klischies, M. Schloegel, T. Scharnowski, M. Bogodukhov, D. Rup-
precht, and V. Moonsamy, “Instructions unclear: Undefined behaviour in
cellular network specifications,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 3475–3492.

[19] G. K. Gegenhuber, W. Mayer, E. Weippl, and A. Dabrowski,
“{MobileAtlas}: Geographically decoupled measurements in cellular
networks for security and privacy research,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 3493–3510.

[20] E. Bitsikas, S. Khandker, A. Salous, A. Ranganathan, R. Piqueras Jover,
and C. Pöpper, “Ue security reloaded: Developing a 5g standalone
user-side security testing framework,” in Proceedings of the 16th ACM

Conference on Security and Privacy in Wireless and Mobile Networks,
2023, pp. 121–132.

[21] S. Khandker, M. Guerra, E. Bitsikas, R. P. Jover, A. Ranganathan,
and C. Pöpper, “Astra-5g: Automated over-the-air security testing and
research architecture for 5g sa devices,” in Proceedings of the 17th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2024, pp. 89–100.

[22] F. Dolente, R. G. Garroppo, and M. Pagano, “A vulnerability assess-
ment of open-source implementations of fifth-generation core network
functions,” Future Internet, vol. 16, no. 1, p. 1, 2023.

[23] O. Project, “Open5gs: Open source implementation of 5g core and epc,”
2025, accessed: 2025-01-10. [Online]. Available: https://open5gs.org/

[24] S. Project, “srsran: Open source 4g and 5g software radio suite,” 2025,
accessed: 2025-01-10. [Online]. Available: https://www.srsran.com/

[25] O. G. Wireless. (2023) Openairinterface 5g wireless implementation.
[Online]. Available: https://gitlab.eurecom.fr/oai/openairinterface5g

[26] J. Wang, M. Huang, Y. Nie, and J. Li, “Static analysis of source code
vulnerability using machine learning techniques: A survey,” in 2021
4th International Conference on Artificial Intelligence and Big Data
(ICAIBD). IEEE, 2021, pp. 76–86.

[27] Z. Xu, “Source code and binary level vulnerability detection and
hot patching,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 1397–1399.

[28] X. Xu, Q. Zheng, Z. Yan, M. Fan, A. Jia, Z. Zhou, H. Wang, and
T. Liu, “Patchdiscovery: Patch presence test for identifying binary vul-
nerabilities based on key basic blocks,” IEEE Transactions on Software
Engineering, vol. 49, no. 12, pp. 5279–5294, 2023.

[29] Y. Hu, Y. Zhang, and D. Gu, “Automatically patching vulnerabilities of
binary programs via code transfer from correct versions,” IEEE Access,
vol. 7, pp. 28 170–28 184, 2019.

[30] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[31] H. Zou, Q. Zhao, Y. Tian, L. Bariah, F. Bader, T. Lestable, and
M. Debbah, “Telecomgpt: A framework to build telecom-specfic large
language models,” arXiv preprint arXiv:2407.09424, 2024.

[32] R. Nikbakht, M. Benzaghta, and G. Geraci, “Tspec-llm: An open-source
dataset for llm understanding of 3gpp specifications,” arXiv preprint
arXiv:2406.01768, 2024.

[33] Y. Cheng, L. K. Shar, T. Zhang, S. Yang, C. Dong, D. Lo, S. Lv, Z. Shi,
and L. Sun, “Llm-enhanced static analysis for precise identification of
vulnerable oss versions,” arXiv preprint arXiv:2408.07321, 2024.

[34] R. Meng, M. Mirchev, M. Böhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
2024.

[35] M. D. Purba, A. Ghosh, B. J. Radford, and B. Chu, “Software vul-
nerability detection using large language models,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering Workshops
(ISSREW). IEEE, 2023, pp. 112–119.

[36] S. Yan, S. Wang, Y. Duan, H. Hong, K. Lee, D. Kim, and Y. Hong,
“An llm-assisted easy-to-trigger backdoor attack on code completion
models: Injecting disguised vulnerabilities against strong detection,”
arXiv preprint arXiv:2406.06822, 2024.

[37] S. Wang, X. Wang, K. Sun, S. Jajodia, H. Wang, and Q. Li, “Graphspd:
Graph-based security patch detection with enriched code semantics,” in
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp.
2409–2426.

[38] J. Wang, L. Yu, and X. Luo, “Llmif: Augmented large language model
for fuzzing iot devices,” in 2024 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2024, pp. 196–196.

[39] K. Tamberg and H. Bahsi, “Harnessing large language models for
software vulnerability detection: A comprehensive benchmarking study,”
arXiv preprint arXiv:2405.15614, 2024.

[40] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits
reasoning in large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2201.11903

[41] Y. Nong, M. Aldeen, L. Cheng, H. Hu, F. Chen, and H. Cai,
“Chain-of-thought prompting of large language models for discovering
and fixing software vulnerabilities,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.17230

5

https://www.telecomtrainer.com/explain-technically-in-detail-applications-of-5g-network/
https://www.telecomtrainer.com/explain-technically-in-detail-applications-of-5g-network/
https://codeql.github.com/
https://codeql.github.com/
https://open5gs.org/
https://www.srsran.com/
https://gitlab.eurecom.fr/oai/openairinterface5g
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.17230

[42] D. Noever, “Can large language models find and fix vulnerable
software?” 2023. [Online]. Available: https://arxiv.org/abs/2308.10345

[43] Anonymous, “To err is machine: Vulnerability detection challenges
LLM reasoning,” in Submitted to The Thirteenth International
Conference on Learning Representations, 2024, under review. [Online].
Available: https://openreview.net/forum?id=Q0mp2yBvb4

[44] J. Res, I. Homoliak, M. Perešı́ni, A. Smrčka, K. Malinka, and
P. Hanacek, “Enhancing security of ai-based code synthesis with github
copilot via cheap and efficient prompt-engineering,” 2024. [Online].
Available: https://arxiv.org/abs/2403.12671

[45] Y. Fu, E. Baker, Y. Ding, and Y. Chen, “Constrained decoding
for secure code generation,” 2024. [Online]. Available: https:
//arxiv.org/abs/2405.00218

[46] OWASP Foundation, “Owasp secure coding practices,” n.d.,
accessed: 2024-08-04. [Online]. Available: https://owasp.org/
www-project-secure-coding-practices-quick-reference-guide/stable-en/
02-checklist/05-checklist

[47] Microsoft, “Secure coding guidelines,” 2022, accessed: 2024-08-04.
[Online]. Available: https://learn.microsoft.com/en-us/dotnet/standard/
security/secure-coding-guidelines

[48] CERT, “Cert secure coding standards,” n.d., accessed: 2024-08-
04. [Online]. Available: https://wiki.sei.cmu.edu/confluence/display/
seccode/SEI+CERT+Coding+Standards

[49] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt,
“Examining zero-shot vulnerability repair with large language models,”
2022. [Online]. Available: https://arxiv.org/abs/2112.02125

[50] U. Kulsum, H. Zhu, B. Xu, and M. d’Amorim, “A case study
of llm for automated vulnerability repair: Assessing impact of
reasoning and patch validation feedback,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.15690

[51] OpenAI, “Chatgpt: Optimizing language models for dialogue,” 2023,
accessed: 2025-01-10. [Online]. Available: https://openai.com/chatgpt

[52] A. Group, “5ghoul: Exploring 5g security vulnerabilities,” https://
asset-group.github.io/disclosures/5ghoul/, 2025, accessed: 2025-01-08.

[53] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[54] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

APPENDIX A
CHAIN-OF-THOUGHT PROMPT TEMPLATES FOR

VULNERABILITY DETECTION AND REPAIR

{Code Snippet}

You are tasked with analyzing the code snippet
above for vulnerabilities related to 5G systems.
The specific 5G Vulnerability Property to focus on
is:

{5G Security Vulnerability}

Follow these instructions to ensure a thorough and
systematic analysis:

1. Review the definition of the 5G Vulnerability
Property, understanding its characteristics and
security implications.

2. Conduct a semantic analysis of the code,
examining execution pathways, data dependencies,
and interactions between components. Assess whether
security mechanisms regulate data propagation and
execution logic.

3. Identify specific lines of code that exhibit the
vulnerability. For each line, explain why it is
vulnerable by describing what the code is doing (or
failing to do) and how it relates to the
vulnerability property.

4. Provide your findings in the following format:

Line of Code: [The Code that is found to be
vulnerable]
Explanation: [Explanation in one or two lines]

Ensure your analysis is comprehensive and that you
review the entire code snippet. Do not attempt to
fix the code. Focus solely on identifying and
explaining the vulnerabilities.

Listing 1. Chain-of-Thought Prompt for Vulnerability Detection.

You are tasked with repairing the provided code
above against the following vulnerability in 5G
protocol message processing.

{Detected Vulnerable Lines of Code}
{Explanation of Vulnerability}

Follow these steps:

1. Analyze the Vulnerability: Examine the provided
code snippet and identify the root cause of the
issue.

2. Analyze Data and Control Flows: Trace the data
and control flows from the identified lines of code
to understand how input propagates, any checks or
transformations applied, and where the
vulnerability occurs.

3. Apply Secure Coding Practices: {SCP}

4. Plan the Patch: Outline the approach to patching
the vulnerability, detailing specific fixes and
their justification.

5. Implement the Fix: Write the repaired code,
including comments to explain each change and
whether it aligns with 5G-specific requirements or
traditional practices.

6. Justify Constants: If constants are added,
provide comments explaining their purpose, chosen
values, and possible alternatives.

Format of Output:

Plan to Patch: [Write the plan for fixing the
vulnerability]
Repaired Code: [Include the repaired code snippet,
with detailed inline comments]
Constants: [List all constants, with comments in
code explaining their configuration and
alternatives]

Listing 2. Chain-of-Thought Prompt for Vulnerability Repair.

APPENDIX B
ADDITIONAL DETAILS FOR CASE STUDY

Testing Environment The testing environment was designed
to validate the identified vulnerability in a controlled yet
realistic setting. It consisted of a base station (gNB) and a UE,
both implemented using the open-source software provided
by the OpenAirInterface (OAI) project [25]. To facilitate the
testing process, we utilized the exploit interface provided
by the 5Ghoul platform [52]. This interface enabled us to
intercept downlink packets transmitted from the gNB to the
UE, manually locate the offset position of the k2 field within
the packet payload, and apply targeted mutations to the k2

6

https://arxiv.org/abs/2308.10345
https://openreview.net/forum?id=Q0mp2yBvb4
https://arxiv.org/abs/2403.12671
https://arxiv.org/abs/2405.00218
https://arxiv.org/abs/2405.00218
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist
https://learn.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines
https://learn.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2405.15690
https://openai.com/chatgpt
https://asset-group.github.io/disclosures/5ghoul/
https://asset-group.github.io/disclosures/5ghoul/

field before forwarding the modified packets to the UE. This
approach allowed for precise manipulation of packet content
while maintaining the natural flow of 5G network operations.
By leveraging the flexibility of the 5Ghoul exploit interface,
we ensured that the environment supported reproducible and
targeted testing of the OAI UE implementation without inter-
ference from external factors.
Vulnerability Analysis: We manually analyzed the correct-
ness of their reasoning. The l2 value is directly affected by the
start_symbol_index, a key parameter influenced by the
ASN input. The start_symbol_index is calculated based
on the k2 field in the pusch-TimeDomainAllocation
structure, detailed in Listing 3. Specifically, k2 determines the
offset used to calculate start_symbol_index. Therefore,
a targeted mutation of k2 was carried out. This mutation trig-
gered a cascading effect: start_symbol_index changed,
which led to l2 changing, and ultimately caused the array
indexing in txdataF to become misaligned. As a result,
unintended memory locations were accessed, leading to out-
of-bounds access.
Verification Process To verify the presence of the identified
vulnerability and assess the effectiveness of the repair, a
structured testing and validation process was carried out.
First, the k2 field in the downlink packet, transmitted from
the gNB to the UE, was mutated to generate targeted test
cases. The mutation was crafted to manipulate the memory
alignment in the UE software, leading to a program crash
when this vulnerability was exploited as shown in Figure 2.
After confirming the vulnerability, the affected code segment
was repaired, and the entire OAI UE program was recompiled
accordingly. To validate the success of the repair, the same
mutated test case was retransmitted to the UE. No crashes
occurred, confirming the patch’s effectiveness and highlighting
LLM-assisted vulnerability detection and repair.Through LLM
analysis, we identified the vulnerability in the UE’s code
and used this insight to guide the repairing process. This
demonstrated the practical value of LLM-assisted approaches.
PUSCH-ConfigCommon ::= SEQUENCE {

timeDomainAllocationList PUSCH-
TimeDomainResourceAllocationList,
hoppingId INTEGER (0..1023) OPTIONAL,
...

}

PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE
(SIZE (1..maxNrofTimeDomainResourceAllocations))
OF PUSCH-TimeDomainResourceAllocation

PUSCH-TimeDomainResourceAllocation ::= SEQUENCE {
k2 INTEGER (0..31) OPTIONAL,
mappingType ENUMERATED {typeA, typeB},
startSymbolAndLength BIT STRING (SIZE (14))

}

Listing 3. pusch-ConfigCommon ASN.1 Schema

5G Vulnerability Property:
Fails to validate ASN.1 encoded inputs to prevent
malformed packets and protocol violations in 5G.

Findings:

Line of Code:
for (int l=0; l<pucch_pdu->nr_of_symbols; l++) {
Explanation:
`pucch_pdu->nr_of_symbols` is directly used without
validating whether its value falls within an
acceptable range. Malformed or tampered ASN.1
encoded inputs could set `nr_of_symbols` to invalid
values, leading to out-of-bounds access during the
loop.

Line of Code:
l2=l+pucch_pdu->start_symbol_index;
Explanation:
`pucch_pdu->start_symbol_index` is used without
validation. If this field is manipulated in the ASN
.1 encoded input, it could result in `l2` pointing
to an invalid symbol index, potentially leading to
incorrect resource element (RE) mapping or buffer
overflows.

Line of Code:
re_offset = (12*prb_offset[l]) + frame_parms->
first_carrier_offset;
Explanation:
The variable `prb_offset[l]` is used without bounds
checking. If the ASN.1 encoded input indirectly
influences `prb_offset`, an invalid value could
cause incorrect or out-of-bounds offsets, leading
to memory corruption or unintended behavior.

Line of Code:
if (re_offset>= frame_parms->ofdm_symbol_size)
re_offset-=frame_parms->ofdm_symbol_size;
Explanation:
This code attempts to handle out-of-bounds `
re_offset` values but does not prevent them from
being set initially. This could allow malformed ASN
.1 inputs to bypass proper validation and result in
undefined behavior in subsequent operations.

Line of Code:
((int16_t *)&txdataF[0][(l2*frame_parms->
ofdm_symbol_size) + re_offset])[0] = (int16_t)(((
int32_t)(amp) * x_n_re[l][n])>>15);
((int16_t *)&txdataF[0][(l2*frame_parms->
ofdm_symbol_size) + re_offset])[1] = (int16_t)(((
int32_t)(amp) * x_n_im[l][n])>>15);
Explanation:
The array indexing `txdataF[0][(l2*frame_parms->
ofdm_symbol_size) + re_offset]` depends on `l2` and
`re_offset`, both of which are indirectly

influenced by the ASN.1 encoded inputs. Malformed
inputs could cause buffer overflows, memory
corruption, or writing to unintended memory
locations.

Summary of Vulnerabilities:
- Lack of Input Validation:
Fields such as `nr_of_symbols`, `
start_symbol_index`, and `prb_offset` are used
without verifying their validity or range.

- Out-of-Bounds Access:
Variables like `l2`, `re_offset`, and array
indices derived from them are prone to out-of-
bounds access due to inadequate input validation.

- Missing Error Handling:
The code lacks mechanisms to detect and
gracefully handle malformed ASN.1 encoded inputs.

Listing 4. Complete LLM Output for Vulnerability Detection

7

The vulnerability stems from improper validation of
fields in `pucch_pdu` and related calculations,
which are influenced by ASN.1-encoded messages.
Specifically:
1. Missing Boundary Checks:

Fields like `nr_of_symbols`, `
start_symbol_index`, and `prb_offset` are used
without verifying their validity, potentially
leading to out-of-bounds access.

2. No Handling of Malformed Messages:
Invalid or tampered ASN.1 packets are not
detected or safely discarded, risking system
instability.

3. Improper Memory Operations:
Indexing operations involving `re_offset` and `
txdataF` lack safeguards against invalid
calculations.

To fix the vulnerability:
- Add strict range checks for all `pucch_pdu`
fields before their use.
- Validate calculated offsets (`re_offset`) against
defined boundaries.
- Use recovery mechanisms to handle invalid
protocol messages gracefully, ensuring the system
remains stable.
- Incorporate predefined global constants
representing valid ranges to enforce compliance
with 5G standards.

Repaired Code:

void nr_generate_pucch0(PHY_VARS_NR_UE *ue,
int32_t **txdataF,
NR_DL_FRAME_PARMS *
frame_parms,
int16_t amp,
int nr_slot_tx,
fapi_nr_ul_config_pucch_pdu
*pucch_pdu) {

// Define valid ranges (see Constants section for
justification)
if (pucch_pdu->nr_of_symbols <= 0 || pucch_pdu->
nr_of_symbols > MAX_NR_OF_SYMBOLS) {

printf("Error: Invalid number of symbols in
pucch_pdu\n");
return; // Discard invalid message

}
if (pucch_pdu->start_symbol_index < 0 ||
pucch_pdu->start_symbol_index >= frame_parms->
symbols_per_slot) {

printf("Error: Invalid start_symbol_index in
pucch_pdu\n");
return; // Discard invalid message

}
uint32_t re_offset = 0;
uint8_t l2;
for (int l = 0; l < pucch_pdu->nr_of_symbols; l
++) {

l2 = l + pucch_pdu->start_symbol_index;
if (l2 >= frame_parms->symbols_per_slot) {

printf("Error: Calculated l2 exceeds symbols
per slot\n");
return; // Invalid index, exit safely

}
// Validate prb_offset value
if (prb_offset[l] < 0 || prb_offset[l] >=
MAX_PRB_OFFSET) {

printf("Error: Invalid PRB offset for symbol
%d\n", l);
return; // Discard invalid message

}
re_offset = (12 * prb_offset[l]) + frame_parms

->first_carrier_offset;
if (re_offset >= frame_parms->ofdm_symbol_size)

re_offset -= frame_parms->ofdm_symbol_size;
for (int n = 0; n < 12; n++) {

// Validate calculated index before use
uint32_t tx_index = (l2 * frame_parms->
ofdm_symbol_size) + re_offset;
if (tx_index >= TXDATAF_MAX_INDEX) {

printf("Error: Calculated tx_index exceeds
buffer size\n");
return; // Prevent out-of-bounds memory
access

}
((int16_t *)&txdataF[0][tx_index])[0] = (
int16_t)(((int32_t)(amp) * x_n_re[l][n]) >>
15);
((int16_t *)&txdataF[0][tx_index])[1] = (
int16_t)(((int32_t)(amp) * x_n_im[l][n]) >>
15);
re_offset++;
if (re_offset >= frame_parms->
ofdm_symbol_size)

re_offset -= frame_parms->ofdm_symbol_size;
}

}
}

Constants:

// Maximum number of symbols allowed in pucch_pdu (
based on 5G standard constraints)
#define MAX_NR_OF_SYMBOLS 14 // Typical maximum for
PUCCH in a single slot

// Maximum PRB offset value (assuming a system with
100 MHz bandwidth and 273 PRBs)
#define MAX_PRB_OFFSET 273

// Maximum index for txdataF buffer (determined by
OFDM symbol size and implementation limits)
#define TXDATAF_MAX_INDEX 4096 // Example value
based on a standard OFDM symbol size

// Explanation of constants:
// - `MAX_NR_OF_SYMBOLS`: The value 14 ensures
compliance with TS 38.211, which defines the
maximum symbols in a slot.
// - `MAX_PRB_OFFSET`: This is based on the maximum
number of Physical Resource Blocks (PRBs) in the
system bandwidth.
// - `TXDATAF_MAX_INDEX`: Calculated based on
implementation-defined limits for the `txdataF`
buffer. Ensure this matches the hardware
configuration.
Justification of Fix:
- Strict Boundary Checks:

All critical fields (e.g., `nr_of_symbols`, `
start_symbol_index`, `prb_offset`) are
validated against predefined limits.

- Compliance with Standards:
Constants are derived from 5G specifications (e
.g., TS 38.211).

- Recovery Mechanisms:
The function exits gracefully when invalid
input is detected, ensuring no undefined
behavior occurs.

- Memory Safety:
Validation prevents out-of-bounds memory
operations, adhering to secure coding
principles.

Listing 5. Complete LLM Output for Vulnerability Repair

8

	Introduciton
	Approach
	LLM-Assisted Vulnerability Detection
	LLM-Assisted Vulnerability Repair

	Case Study
	Vulnerability Detection
	Vulnerability Repair

	Limitations and Future Directions
	References
	Appendix A: Chain-of-Thought Prompt Templates for Vulnerability Detection and Repair
	Appendix B: Additional Details for Case Study

