PHYSICAL REVIEW D 110, 112016 (2024)

Measurements of polarization and spin correlation and observation
of entanglement in top quark pairs using lepton + jets events
from proton-proton collisions at /s =13 TeV
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Measurements of the polarization and spin correlation in top quark pairs (#7) are presented using events
with a single electron or muon and jets in the final state. The measurements are based on proton-proton
collision data from the LHC at /s = 13 TeV collected by the CMS experiment, corresponding to an

integrated luminosity of 138 tb~!. All coefficients of the polarization vectors and the spin correlation
matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is
performed inclusively and in bins of additional observables, such as the mass of the 77 system and the top
quark scattering angle in the 77 rest frame. The measured polarization and spin correlation are in agreement
with the standard model. From the measured spin correlation, conclusions on the 7 spin entanglement are
drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for 77 states
at the production threshold and at high masses of the ¢7 system. Entanglement is observed for the first time
in events at high 77 mass, where a large fraction of the ¢7 decays are spacelike separated, with an expected
and observed significance of above 5 standard deviations.

DOI: 10.1103/PhysRevD.110.112016

I. INTRODUCTION

The top quark is the most massive known fundamental
particle with a lifetime of the order of 1072 s. This is shorter
than the quantum chromodynamics (QCD) hadronization
time scale 1/Aqcp ~ 107**s, and the spin decorrelation
timescale m,/Agcp & 107! s, where m, is the top quark
mass [1,2]. Consequently, the top quark usually decays
before hadronization, thus preserving its spin information in
the angular distribution of the decay products. This makes
top quark and antiquark (f7) pairs excellent candidates for
studying polarization and spin correlation.

We present measurements of the polarization and spin
correlation in ¢ pairs using proton-proton collisions at a
center-of-mass energy of 13 TeV at the CERN LHC. The
measurements are performed using data collected by the
CMS detector between 2016 and 2018, corresponding to an
integrated luminosity of 138 fb~!. Once produced, a top
quark decays via the weak interaction into a W boson and a
b quark. The W boson further decays into either two
quarks, which subsequently hadronize into jets, or a
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charged lepton and a neutrino. In this analysis, we focus
on the final state with two b jets, two jets from one W
boson, and an electron or muon paired with a neutrino from
the other W boson. This decay channel is referred to as the
e/u + jets channel. Events with tau leptons are treated as ¢7
background and not included in the e/u + jets category.

At the LHC 17 pairs are produced through gluon-gluon
(gg) fusion and quark-antiquark (¢g) annihilation. The top
quarks and antiquarks are unpolarized at leading order (LO).
However, their spins are expected to be strongly correlated
[3]. The complete spin correlation is encoded in a 3 x 3
matrix that depends on the #f production mechanism, the
invariant mass of the 77 system m(t7), and the scattering
angle of the top quark. Evidence for 77 spin correlation was
first reported by the DO experiment at the Tevatron in
Refs. [4,5]. The ATLAS and CMS experiments have
performed a number of top quark polarization and spin
correlation measurements using various observables and
datasets [6-15].

The top quark polarization and spin correlation meas-
urement is interesting in its own right as a test of the
standard model (SM) [16,17], but it also provides new
opportunities for testing quantum mechanics (QM) at high
energies using the decay products of unstable particles as
probes. This is not possible in experiments with stable
particles, such as electrons and photons. An important
prediction of QM is quantum entanglement, which has
been studied in connection with particle physics at high
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energies only in recent years [18-21]. The ATLAS and
CMS experiments reported the observation of entangle-
ment in the ¢7 system at the production threshold [14,15]
using events where both W bosons from the #7 pair decay
into leptons. In this paper we include measurements of
entanglement at the production threshold and at high m(7)
for 77 events in the e/u + jets channel. In [22] it was argued
that since collider experiments do not measure spins of the
produced particles directly, but rather infer the spin
directions statistically from the distribution of their decay
products, a local hidden variable theory can always be
found that explains the observation. Following [23] we
assume that the ¢f system is described by QM, and we
characterize the state as separable or entangled.

This paper is organized in the following way. First, we
outline the measurement strategy in Sec. II. We briefly
describe the CMS detector in Sec. III and then discuss the
signal and background modeling used for this analysis in
Sec. IV. The event selection and the 7 reconstruction are
described in Secs. V and VI, respectively, followed by a
discussion of the background estimation in Sec. VII and the
extraction of the polarization and spin correlation coeffi-
cients in Sec. VIII. Systematic uncertainties are detailed in
Sec. IX. Finally, the results are presented in Sec. X, and the
paper is summarized in Sec. XI. Tabulated results are
provided in the HEPData record for this analysis [24].

II. MEASUREMENT STRATEGY

We perform a measurement of the 7 polarization and
spin correlation in the helicity basis {n,r, k} following
Ref. [25]. This basis is defined by boosting the top quarks
and their decay products from the laboratory frame into the
1t rest frame. Afterward, based on the unit vectors in the top
quark direction k and the beam in the positive z-direction b,
the axes of the new coordinate system are given by

»)

. bx N
n= 7=

sin(0)’

where 6 is the scattering angle of the top quark, i.e.,
cos(f) = b - k. The Bose-Einstein symmetry of the gg
initial state [25] requires a redefinition of the n and r axes
(which are odd under Bose-Einstein symmetry) to allow
nonzero values of the polarization and spin correlation
coefficients involving an odd number of these axes. This is
done by multiplying the n and r directions by the sign of
cos(0), which is also odd under Bose-Einstein symmetry,
such that all axes are even under Bose-Einstein symmetry,

b — cos(0)k
sin(6)

=

(@)

{n,r,k} - {sgn(cos(0))n,sgn(cos(0))r,k}. (2)

Finally, the top quark and antiquark are boosted individu-
ally into their rest frames together with their corresponding
decay products.

In this basis, the unit vector,

QQ) = (sin(Bp(5)) cos(dp())-

$in(Gp(p)) Sin(@p(p)) €0s(Gpip))).  (3)
describes the direction of a decay product p(p) of the top

(anti)quark, where ¢ is the azimuthal and 6, the polar

angle of the decay product The differential cross section as
a function of the four variables ¢,;) and 0, has the form,

d*c
d¢p,dcos(6,)dgzdcos(6;)
+xP-Q+kP-Q—kkQ- (CQ)),

(4)
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with two three-dimensional polarization vectors P and P,
and one 3 x 3 spin correlation matrix C. This means that
Z,or depends linearly on 15 coefficients collectively referred
to as Q,, ={P,, P, P, Py,....,Cp, Cprr ..., Cii }. In this
analysis, we perform a measurement of all 15 coefficients,
which we subsequently refer to as the full matrix meas-
urement. There is one additional coefficient o, that
describes the overall normalization. The spin analyzing
power k represents how much information from the top
quark spin is transferred to its decay products. We use the
down-type quarks and the charged leptons in the W boson
decays. The magnitude of k for these decay products have
the maximum value of unity at LO. Including QCD
corrections, the magnitude of x for down-type quarks is
reduced to 0.966 [26]. However, we perform the measure-
ments using the LO values and leave the application of
different « values for reinterpretations. For simplicity, we
flip the sign of k for ¢ decays following the convention of
Ref. [3], instead of inverting the axes of the coordinate
system as in Refs. [15,25].

The top quark, being a spin-1/2 particle, can be
described as a two-state quantum system known as a
qubit. The minimal example of an entangled state consists
of two qubits, e.g., a #f pair, where the entanglement
can be characterized by their spin correlation. The Peres—
Horodecki criterion [27,28] can be used to determine if a
quantum state is separable. If the state is not separable, it is
considered entangled. In general, a quantum state is
described by a density matrix p, in this case a spin density
matrix whose coefficients are probed by Eq. (4). A
quantum state is said to be separable if p can be factorized
into individual states belonging to separate subspaces, i.e.,
p=>",q.0% ® pb, where p¢, pb are density matrices
describing the quantum states of the subsystems a and b
and the ¢, are the corresponding probabilities. If p is a
separable physical state, the state p™> = ", ¢,p%¢ ® (p5)T
resulting from taking the transpose for only subsystem b
should also be a physical state. It was demonstrated [27,28]
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that a sufficient condition for entanglement is that p’> has at
least one negative eigenvalue, meaning it is not a physical
state. This translates to a sufficient condition for entangle-
ment based on the diagonal elements of the spin correlation
matrix [18,29],

AE:Cwnn—f—|C1rr—'—c1kk|> L. (5)

Based on the measured values of the spin correlation matrix
we apply this criterion to evaluate the entanglement of the 77
system in different regions of phase space.

As an alternative to the full matrix measurement, we
measure angular variables directly sensitive to Ag. The
trace of the spin correlation matrix Tr(C) can be probed
using the opening angle y between the two decay products
in the helicity basis, cos(y) = Q- Q. This observable is
sensitive to the entanglement in the spin-singlet state [18]
expected from gg fusion events at the ff production
threshold. The distribution of y is given by

do
—_— = 1 + Dkk
dCOS(){) 6[101’1‘[1( + KK COS(X))’
1
where D = —gTr(C). (6)

For gg fusion events at low m(t7), both C,, and Cy; are
positive [3], which simplifies the entanglement criterion to

Ag = —3D = Tr(C) > 1. (7)

The entanglement in a spin-triplet state, predicted in both
qq annihilation and gg fusion events with high m(#7) and

low |cos(f)], can be probed using a criterion based
on [3,30]

|

D = g (Cnn - Crr - Ckk)' (8)

The signs of C,, and Cj; become negative at transverse
momentum of the top quark p(¢) ~m, [3], so the
entanglement criterion based on D in the high-m(7)
region is

Ag =3D > 1. 9)

The extraction of D is performed using 7 = —Q,Q, +
Q,Q, + Q,Q,, analogous to y but with an inverted sign of
the n-component of one of the decay products.

III. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and

scintillator hadron calorimeter (HCAL), each composed
of a barrel and two end cap sections. Forward calorimeters
extend the pseudorapidity () coverage provided by the
barrel and end cap detectors. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid.

Events of interest are selected using a two-tiered trigger
system. The first level (L.1), composed of custom hardware
processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz
within a fixed latency of about 4 ps [31]. The second level,
known as the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction
software optimized for fast processing, and reduces the
event rate to around 1 kHz before data storage [32]. For this
measurement events are selected using single electron and
muon triggers for isolated leptons with minimum pr
requirements, depending on the year, of 24 and 27 GeV
for muons and 27 and 32 GeV for electrons.

The primary vertex is taken to be the vertex correspond-
ing to the hardest scattering in the event, evaluated using
tracking information alone, as described in Sec. 9.4.1 of
Ref. [33]. The particle-flow (PF) algorithm [34] aims to
reconstruct and identify each individual particle in an event,
with an optimized combination of information from various
elements of the CMS detector. The energy of photons is
obtained from the ECAL measurement. The energy of
electrons is determined from a combination of the electron
momentum at the primary interaction vertex as determined
by the tracker, the energy of the corresponding ECAL
cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron
track. The energy of muons is obtained from the curvature
of the corresponding track. The energy of charged hadrons
is determined from a combination of their momentum
measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for the response function
of the calorimeters to hadronic showers. Finally, the energy
of neutral hadrons is obtained from the corresponding
corrected ECAL and HCAL energies. A more detailed
description of the CMS detector, together with a definition
of the coordinate system used and the relevant kinematic
variables, can be found in Ref. [35].

IV. SIGNAL AND BACKGROUND MODELING

The matrix element (ME) event generator POWHEG V2
[36-38] is used to simulate 77 events with next-to-LO (NLO)
QCD accuracy. It is subsequently combined with the parton
shower (PS) simulation from PYTHIA 8.230 [39], using the
underlying event tune CP5 [40]. In addition, a sample of 7
production at next-to-NLO (NNLO) QCD is generated with
POWHEG MiNNLO [41] in combination with the CP5 PYTHIA
tune. This is used to estimate uncertainties in the contribu-
tion from higher-order QCD. Similarly, for the estimation
of electroweak corrections, we use the HATHOR 2.1-B3
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package [42]. The measured coefficients are compared to the
predictions obtained using POWHEG+Herwig 7.1 [43] with tune
CH3 [44] and MadGraphS_aMC@NLO2.6.1 [45] combining ME
calculations at NLO QCD including up to two
additional partons with the PYTHIA PS using the FXFX
algorithm [46]. In all #f simulations, the decays of the top
quarks including the spin correlation are evaluated at LO
precision.

The ¢f simulations are normalized to the inclusive cross
section value of 832:“‘8 pb [47] which is calculated with
NNLO precision including soft-gluon resummation at the
level of next-to-next-to-leading-logarithm. The renormali-
zation scale u, and factorization scale y; are taken to be
equal to the average transverse mass of the top quark and
antiquark,  myp = 0.5(\/m? + pr(t)*> + V/m? + pr(1)?),
where pt is the transverse momentum of the top quark
evaluated in the 77 rest frame, and m, = 172.5 GeV [48] is
used in all simulations, unless stated otherwise. The main
background processes in this analysis are single top quark
production, Drell-Yan (DY) and W boson production in
association with jets, and events composed uniquely of jets
produced through the strong interaction, referred to as
QCD multijet events. Single top quark production via ¢
channel and top quark production in association with a W
boson are generated using POWHEG+PYTHIA, while the
production via s channel is generated at NLO QCD using
MadGraph5_aMC@NLO+PYTHIA. The simulation of back-
ground from DY —+ jets and W + jets production is per-
formed at LO QCD using MadGraph5_aMC @NLO+PYTHIA with
the MLM PS matching [49,50] of up to four partons. The
QCD multijet processes are simulated at LO using PYTHIA.
The cross sections are taken from NNLO calculations for
W + jets and DY + jets events [51] and NLO calculations
for single top quark events [52,53]. The default para-
metrization of the parton distribution functions (PDFs) used
in all simulations is the NNLO version of NNPDF 3.1 [54].

The detector response is modeled using Geant4 [55].
Additional proton-proton interactions within the same
or nearby bunch crossings (pileup) are overlaid on each
simulated event. Simulated events are assigned event
weights based on the number of pileup interactions to
match the pileup distribution in data. The same recon-
struction algorithms that are applied to the data are used for
simulated events.

V. PHYSICS OBJECT RECONSTRUCTION

The measurements presented in this analysis depend on
the reconstruction and identification of electrons, muons,
jets, and the missing transverse momentum piFs* associated
with neutrinos.

Electrons [56] and muons [57] are selected if they are
isolated and compatible with originating from the primary
vertex. Moreover, they must have pt > 30 GeV and
|| < 2.4.1In the 2018 dataset, the minimum p- of electrons

was raised to 34 GeV because of the increased trigger
thresholds. Leptons are required to satisfy several quality
criteria including isolation and compatibility with the
primary vertex. The electron and muon reconstruction
and selection efficiencies are measured in the data using
the “tag-and-probe” technique [58]. Depending on pr and
n, the overall reconstruction and selection efficiency is
50%—-80% for electrons and 75%—-85% for muons.

Jets are clustered from PF candidates using the anti-ky jet
algorithm with a distance parameter of 0.4 implemented in
the Fastlet package [59,60]. Charged PF candidates origi-
nating from a pileup interaction vertex are excluded.
The total energy of the jets is corrected for energy
depositions from pileup. In addition, pp- and n-dependent
corrections are applied to account for detector response
effects [61]. If an isolated lepton with pr > 15 GeV within
AR = /(A¢)* + (An)? = 0.4 around a jet exists, the jet is
assumed to represent the isolated lepton and is discarded to
prevent counting the lepton momentum twice. The jets are
considered for analysis if they fulfill the kinematic require-
ments pp > 30 GeV and || < 2.4.

For the identification of b jets, the Deeplet algorithm
[62,63] is used. It is based on an artificial neural network
(NN) that provides a discriminant to distinguish between b
and other flavored jets. Jets are categorized based on three
thresholds of the discriminant and a jet belongs to the
category with the highest threshold that is smaller than that
jet’s discriminant value. The tight, medium, and loose
thresholds have, depending on the jet pr and #, efficiencies
of about 50%-70%, 70%—-82%, and 85%—-92%, respec-
tively, and rejection probabilities of about 97%, 85%, and
55% for c jets and about 99.5%, 98%, and 90% for non-
heavy-flavor jets.

The missing transverse momentum vector pIsS is
computed as the negative vector sum of the transverse
momenta of all the PF candidates in an event, and its
magnitude is denoted as pi** [64]. The p** is modified to
account for corrections to the energy scale of the recon-
structed jets in the event.

The data was recorded in the years 2016-2018. For each
year individual sets of simulations and correction factors
are used according to the actual data-taking conditions and
detector configurations. Because of significant changes in
the detector configuration affecting the tracking efficiency,
two separate sets of simulations and scale factors are used
for 2016 data. Therefore, four different data-taking periods
are analyzed.

VI. EVENT RECONSTRUCTION

The reconstruction of the ¢7 system is performed using an
artificial NN. The goal is the correct identification of
detector-level objects as decay products of the leptonically
(t,) and hadronically (#,,) decaying top quarks in e/u + jets
events. In the simulation, a quark or lepton at the generator
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level can be spatially matched to the corresponding
detector-level object. Of the possible candidates, we select
the highest pt object within AR = 0.2. If a one-to-one
assignment to a corresponding detector-level object is
possible for all of the particles in the generator-level 7
system, the event is labeled “reconstructable,” while all
other e/u + jets events are called “nonreconstructable.”

The input layer of the NN is a vector encoding
kinematical information about the detector-level objects
and b tagging category for jets. The first four elements of
the vector hold the four-momentum of the electron or muon
[p(€), py(€), p.(£), E(£)], followed by [pF™, pJ™].
Finally, for up to eight jets the four-momentum and their b
tagging category (py, py, p;, E, b cat.) are stored. The NN
is trained to assume the following order of the jets: the b jet
in the decay of 7., the b jet in the decay of ¢, the down-
type, and the up-type quark in the W boson decay. The
remaining jets are added in descending order of their pr. If
there are fewer than eight jets, the rest of the input vector is
filled with zeros. The b tagging information also helps to
identify c jets from W boson decays, since 40%—50% of the
c jets are loosely b tagged. The input layer is followed by
seven fully connected layers, each with 220 nodes and the
hyperbolic tangent as the activation function. The output
layer consists of a single node whose value is transformed
by a sigmoid function into the range [0, 1]. In total, the
network has about 300 000 parameters.

The NN is trained using about 20M simulated e/u + jets
events. Events with one selected electron or muon, no
additional isolated electron or muon with pr > 15 GeV,
and at least four jets are used. The NN is trained using a batch
size of 128 events and the ADAM algorithm [65] for the
minimization of the logistic loss function. For each eventin a
batch, the network is provided with all possible permuta-
tions for the four jets from the /7 decay using up to eight jets
per event, i.e., for 4 (5, 6, 7, 8) jets the training includes 24
(120, 360, 840, 1680) input vectors. Correct permutations
are trained to have a response of one, while all other
permutations should result in zero. The training sample
includes “nonreconstructable” events, i.e., those with no
correct permutation. During the training, the logistic loss
function is monitored with a validation sample. The losses
for the training and validation samples are compatible and no
indication of overtraining is observed. During the inference,
for each event, all possible permutations of assigning
detector-level jets to the corresponding ¢7 decay products
are successively provided as input to the NN and the
permutation resulting in the highest NN score Syy is used.

For the selected permutation, the neutrino four-
momentum p, is calculated using the W boson mass
constraint (p, + ps)* = mj,, where p is taken as the
pt of the neutrino. This constraint results in a quadratic
equation for the longitudinal component of the neutrino
momentum p_(v). In the 39.1% of events where this
equation yields no real solution, the x and y components

of pmiss are scaled separately to find a single solution
under the condition of a minimum modification of p&iss;
i.e., in the transverse plane we choose the point with the
smallest distance from pis for which a solution exists.
This modified pyss together with the calculated solution
for p_(v) form the neutrino momentum. If there are two
solutions of the quadratic equation, the invariant mass
m(tz)* = (p, + ps + pp,)* is calculated for both p,
and the solution with m(¢,) closer to m, is selected.
This procedure identifies the correct solution in 69.9%
of the events. To enhance the fraction of correctly
reconstructed events and reduce the background contribu-
tion, event selection requirements on the reconstructed
particle masses |m(z,) —172.5 GeV| < 50 GeV, |m(t,)—
172.5GeV|<50GeV, and |m(W})—80.4GeV|<30GeV
are imposed.

The distributions of Syy are shown in Fig. 1 for events in
categories where either both (20) or exactly one (1b) of the
jets identified as b jets from the ¢ decay are medium b
tagged. In these distributions, it can be seen that the data
and the prediction are in agreement within the uncertainty
bands. We reject all events with Sy < 0.1 due to the low
fraction of correctly reconstructed events and the large
contribution of background processes.

The 2b and 1b categories are further split based on the
value of Syy. In the 15 (2b) category events belong to the
Shigh category if Sy > 0.30 (0.36), while the remaining
events are placed in the Sy, category. These requirements
define the signal categories for the analysis and were
systematically optimized to minimize the uncertainties in
the expected spin polarization and correlation coefficients.

In the simulation, the fraction of reconstructable e/u +
jets events is 73% for 2b Spigy, 47% for 2b Sy, 64% for 1b
Shigh» and 38% for 1b S,,. The fractions of correctly
reconstructed events with respect to all signal and back-
ground events in the various categories are 46% for 2b
Shigh» 21% for 2b Sy, 37% for 1b Syign, and 15% for 1b
Siow- Figure 2 shows these fractions as functions of m(7)
together with the fraction of correctly reconstructed events
with respect to all reconstructable events.

VII. BACKGROUND ESTIMATION

The main background contributions of non-#7 events are
expected from QCD multijet, DY, W boson, and single top
quark production.

The shapes of the QCD multijet (multijet), and DY and
W boson (EW) background distributions are estimated
using a combined template of these backgrounds that is
obtained from a b-jet depleted control region (CR). The
simulation of these backgrounds suffers from large stat-
istical uncertainties due to their high cross sections but low
fraction of events that pass the selection. They contribute
fractions of about 6.6% (1b Sioy,), 2.4% (1D Spigh), 1.1%
(2D Siow), and 0.2% (2D Spgn); 1.€., the contribution in the
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FIG. 1. Distribution of Syy in the 26 (left) and 15 (right)

categories. The data (points) are compared to the prediction
(stacked histograms). The #7 contribution is split into the correctly
and incorrectly reconstructed, “nonreconstructable,” and non
e/p +jets events. The gray uncertainty band indicates the
combined statistical and systematic uncertainties in the predic-
tion, while the vertical bars on the points show the statistical
uncertainty of the data. The ratios of data to the predicted yields
are provided in the lower panels.

2b categories is negligible. The shape of the background
distribution is estimated by performing the NN
reconstruction for events without any jet fulfilling the
medium b tagging requirement. No selections on Syy
are applied, but the mass ranges of f,, t;,, and the W
boson are required as introduced in Sec. VI. These selection

1 CMS simulation (13 TeV)
0.9F =F20S,, E=20S,,
08f 7 1OShe T 10 S,
0.7F

Ncorrect/N reco

O‘I“‘l“‘l“‘l“‘l“‘l‘
400 600 800 1000 1200 1400
m(tt) [GeV]
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E E==2vS._ E=2S
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08F bShgn 1S,
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Eost o —— —
3 P i
L
0.3 ;
01F
0: 1 | |

L PR PR PR SRS N ST SR RN S SR S Y
400 600 800 1000 1200 1400
m(tf) [GeV]

FIG. 2. Reconstruction efficiency of the NN (left) and the
fraction of correctly reconstructed events (right) as a function of
m(rf) estimated from the simulation. The values are shown
separately for the 15 and 2b categories with the So,, and Spigy
selections. The event counts N o and N, refer to the number
of correctly reconstructed and “reconstructable” 7 events, re-
spectively. All reconstructed events regardless of the process are
labeled N,;. The uncertainty bands include all systematic
uncertainties as detailed in Sec. IX.

requirements define the CR. The expected contributions of
t1 and single top quark events are subtracted from the data
in the CR. The simulated kinematic distributions obtained
in the CR are generally in agreement with the simulated
distributions in the signal categories, as shown for the 15
signal category in Fig. 3.

As systematic uncertainties in the background template
shapes, we evaluate shape differences between the CR and the
signal categories. The definition of the CR is inclusive in Syy.
This choice has the advantage of maximizing the number of
events in the CR while minimizing the contribution from #7
events. We obtain alternative shapes from additional control
regions, where the Sy, or Sy, requirement of the corre-
sponding signal category is also imposed. While it is expected
that these distributions are more similar to the real back-
ground, they suffer from a small sample of events and large ¢
contributions. Therefore, they are only used to evaluate the
uncertainty in the background templates.
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components. The estimated background template (Tgkg) shown
as black markers corresponds to the data distribution in the CR
after subtracting the predicted /7 and single top quark contribu-
tions. Variations of the Ty are obtained applying the additional
Snn selection for the 15 Sy, category (orange line) and by taking
into account the mismatch of the normalization in the CR when
subtracting the 7 and single top quark contributions (blue line).
All distributions are normalized to the event yields predicted by
the MCgsg. The gray uncertainty band shows the statistical
uncertainties in the MCggr. The middle panels show the relative
effects of the Tgk variations. The lower panels show the ratio of
the MCCR and the TBKG to the MCSR'

In the CR, there is an excess of about 20% in data. This
excess is within the uncertainty in the simulated event
yield. However, to take into account a possible under-
estimation of 7 production in the CR, an additional
systematic uncertainty in the shape is obtained by scaling
the amount of subtracted 77 and single top quark events
by the ratio of the total observed and simulated event yields
in the CR, shown as the dashed light blue lines in Fig. 3.

The predicted ratio of the multijet and EW event yield
(multijet + EW) in each signal category to the correspond-
ing CR is applied to normalize the background templates.
This normalization factor has a large statistical uncertainty
due to the limited number of simulated events in the signal
categories. In addition, the observed differences between
the predicted and observed event yields in the CR are
considered as a systematic uncertainty in the normalization
of the background. As a result, the normalization uncer-
tainties can be as large as 50%, depending on the category.

The obtained background predictions with their shape and
normalization uncertainties are included in the fits of spin
polarization and correlation coefficients, as described in
Sec. VIII. The normalization uncertainties are treated as
uncorrelated among all categories, because of their large
statistical component from the simulation. The shape uncer-
tainties are considered as uncorrelated among the categories
to account for differences in their selection. In addition, the
uncertainties are assumed uncorrelated among the data-taking
periods, because of the differences in the b tagging perfor-
mances and selections. It has been verified that the results of
the analysis are not sensitive to these assumptions.

The contribution of single top quark production is about
4.0% (1D Syo), 2.2% (1b Spigh), 2.4% (2b S)oy), and 1.4%
(2b Shign)- Templates according to their SM expectation are
taken from the simulation. We evaluate the relevant
uncertainties in these templates (as described in Sec. IX):
ME and PS scales, jet resolution and energy scales, and b
tagging and lepton efficiencies. The ME scale uncertainties
are treated independently from the corresponding variations
of the 77 simulation.

In Figs. 4-9, the distributions of several observables in
all signal categories are shown with the multijet + EW
background estimation taken from the CR. The uncertainty
bands include statistical uncertainties and all systematic
uncertainties detailed in Sec. IX and are in general
dominated by uncertainties in the jet energy scale, the b
tagging efficiencies, PS modeling, and ME scales, with the
latter contributing the largest uncertainty in the overall
normalization.

VIII. EXTRACTION OF POLARIZATION AND
SPIN CORRELATION COEFFICIENTS

Following the formalism introduced in Eq. (4), the
differential cross section X, can be written as a linear
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combination of functions X,,, which depend on the angles
&p(p) and Gy5) of the decay products of the top quark and
antiquark,

15
Tt =Zo+ Y O (10)

m=1

The spin analyzing powers k and the cross section o, are
absorbed in the definitions of the functions X,,.

The values of the coefficients Q,, can be extracted by
fitting X, with Eq. (10). This approach is used at the

generator level to obtain the QMC—the polarization and
spin correlation of the partonic top quarks as predicted by
each of the ¢f simulations and their uncertainty variations.
These fits are performed in bins of the additional observ-
ables m(7) vs |cos(0)| and pr(t) vs |cos(6)|. A binning in
m(1F) of {300,400, 600,800, 13000} GeV with the first
m(t7) bin including a few underflow events, and in py(z) of
{0, 100, 200, 300, 6500} GeV is used. In both cases the
bins are further divided into |cos(6)| bins with the boun-
daries {0,0.4,0.7,1}. As a result we obtain the average
values of the QM€ in each of these bins. The knowledge of

112016-8



MEASUREMENTS OF POLARIZATION AND SPIN CORRELATION ...

PHYS. REV. D 110, 112016 (2024)

138 b (13 TeV)

— 10° L CMS 1bs,, I Data [l t correct
i ¢ [ ttincorrect [ tt nonreco.
% 10° [ it non e/u+jets ~ Single t
O, I Multijet+EW Uncertainty
= 3
g 10
=
£ 10
m
@ 10
5
Lﬁ 1

1.4
slo 1.2
8 Qe t

%08 o i
0.6 i
0 100 200 300 400 500 600 700 800 900 1000
p.(t) [GeV]
138 b (13 TeV)

— <[ CMS 2, I Data -tf correct
Y 10 [ tt incorrect [ tt nonreco.
% I tt non e/u+jets © Single t
o, 10 I Multiiet+EW Uncertainty
S
S 10
=
c
& 10
.
%)
b= 10
[
>
L 1

1.4
slg 1.2
8 e 1 ¥eeecececccece,®, 0 o 3 3 3 ‘} i

l: ¢ !
0.6

0 100 200 300 400 500 600 700 800 900 1000
p(t) [GeV]

138 b (13 TeV)

. CMS 1bS,,, ! Data [l t correct
i 10 o [ ttincorrect [ tt nonreco.
% I it non e/u+jets ~ Single t
o, 10° I Multijet+EW Uncertainty
<
5 >
s 10
£
m 10
~
2 1
[0
>
w10

1.4
slo 1.2
S& 1

o 08 ®etec00,00 . 0 oo ;
0.6
0 100 200 300 400 500 600 700 800 900 1000
P, (1 [GeV]
138 b (13 TeV)

. 10°=cCMs %S, P Data Il ti correct
- [ ttincorrect [ tt nonreco.
% 104 I tt non e/u+jets © Single t
O, I Multijet+EW Uncertainty
< 3
5 10
=
c 10
[ai]
@ 10
<
[
Lﬁ 1

1.4
©lg 1.2
SO s I
Al 08 Cteeesciennccenn, , L 4 4§ t

0.6

0 100 200 300 400 500 600 700 800 900 1000
p(t) [GeV]
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the QMC facilitates the analytical calculation of ZMC as a
function of ¢, and 6,5 in each bin of the additional
observables.

For the measurement of the Q,,, we are interested in
templates 7', that can be fit to the data and describe only
the effect of the corresponding coefficient. At the generator
level, these templates are LY, where L is the integrated
luminosity. Accordingly, the T,, are the corresponding
distributions of events at the detector level in the signal
categories. The binnings at the generator and the detector
levels are the same. The T, include all 77 events selected at

the detector level, meaning that they describe polarization
and spin correlation effects of e/u + jets and 77 background
events, also referred as 77 non e¢/u + jets. To avoid the full
simulation of ¢7 samples for each Q,, we use a reweighting
technique to evaluate the T,. For this, each event is
assigned a weight equal to %,,/ZMC, which are evaluated
for each event based on the generator-level values of 0,
&p(p)> and the bin determined by the additional observables
m(t7) vs |[cos(@)| or py(r) vs |cos(@)|. In this bin we know
the average value of the OMC  as determined from the fits of
the X, at the generator level. The generator-level X, and
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the T, for the 2b Sy, category at the detector level are
shown in Fig. 10. Here, the x axis shows the bin number of
the unrolled four-dimensional distribution of ¢, cos(6;),
¢, and cos(6,,), listed from the outermost to the innermost
variable, where cos(Gp(I—,)) uses two bins: {—1,0, 1}, and
¢p(p) is divided into four bins: {-n,-7/2,0,7/2, %},
resulting in a total number of 64 bins.

In general, the Q,, are not constant within a bin. At the
generator level, the functions X,, do not depend on the
kinematic properties of the top quarks, so they factorize and
the average values of the (Q,, are fitted in each bin.

However, at the detector level, the 7,, do change as a
function of the top quark and antiquark kinematic proper-
ties due to selection requirements and detector effects.
Therefore, it is important to perform the measurements in
sufficiently small bins such that either the Q,, or the T, are
approximately constant within each bin. If the 7', vary
significantly within a fitted bin, the measured Q,, could be
biased if the values of the coefficients change within a bin
in a different way than in the SM simulation. The binnings
in m(f7) vs |cos(@)| and pr(z) vs |cos(@)| were selected to
minimize the bias due to nonconstant 7', templates within
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the bins. The way the templates are constructed ensures that
a template fit to the SM prediction extracts the correct Q,,;
i.e., the bias is minimized for SM-like data.

The same reweighting procedure is used for the D and D
measurements, but decomposing the distribution of cos(y)
and cos(¥) into constant and linear terms as given by Eq. (6).
In these cases we use ten equally sized bins in cos(y), and
cos(y) for all measurements. A finer binning in m(7) of
{300, 400, 500, 600, 700, 800, 900, 1000, 13000} GeV and
pr(1) of {0, 50, 100, 150, 200, 250, 300, 400, 6500} GeV is
selected for the D and D measurements.

We perform a maximum likelihood fit combining the
information of the four selections (2b Syign, 26 Sigw, 10
Shigh» 1D Siow) 1n the four data-taking periods, for a total of
16 categories. The statistical model describes the total
number of events in each bin,

Nij’n’(an’ {an}’ {Vk}) - Sij’n’(anv {an}’ {Vk})
+ Bijw ({vi}), (11)

with 7 denoting the category and j’ referring to a bin in the
one-dimensional concatenated detector-level distribution of
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uncertainty band indicates the combined statistical and systematic uncertainties in the prediction. The vertical bars on the points show
the statistical uncertainty of the data. Ratios to the predicted yields are provided in the lower panels.

¢pp) and 6O,;). The index n' (n) refers to a bin of
the m(¢7) vs |cos(@)| or pp(z) vs |cos(0)| distribution at
the detector (generator) level. The normalization parame-
ters a,, and the Q,,, (or D,, D,) are defined separately for
each bin n and are free parameters in the fit. The S;;,, and
B,y are the tf and background contributions, respectively,
and both can depend on the nuisance parameters {v}
modeling the variation of the expected event yields
due to systematic uncertainties. The 7 contribution takes
the form,

Sij’n’(an’ {an}’ {Uk}) = Zan

n

15
£ OnTmelnd)). (12
m=1

(T,.On,-/n«{uk})

where T,,;, are the detector-level distributions (tem-
plates) obtained by reweighting the ¢f simulation to the
individual components proportional to the Q,,, and the
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templates T,y correspond to the constant terms. Finally,
the function,

- 210g(L(an’ {an}’ {yk}))
= _2Z[dij’n’ log(Nij/n’(an’ {an}’ {’/k}))

- Nij’n’(an’ {an}’ {yk})]
—2log(G({w})). (13)

is minimized with respect to the value of the parameters a,,,
Q> and vy Here, d;j,y are the observed event yields and
G({v;}) describes the Gaussian constraints of the ;.
Goodness of fit tests indicate good agreement between
the data and the fitted model with p-values [66] of 0.80-
0.95 for all fits. We tested that the Gaussian approximation
can be used to describe the distributions of the uncertainties
in the measured parameters. This allows us to use Gaussian
error propagation when evaluating quantities derived from
the measured parameters.
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FIG. 10. Examples of unrolled four-dimensional distributions LX,, and T',, as functions of ¢, and 6, for the individual coefficients
of the polarization vectors and the spin correlation matrix for events with 400 < m(77) < 600 GeV and |cos(0)| < 0.4. The LZ,, (red
lines) are the distributions at the generator level in the full phase space, and the T, (blue lines) are the distributions in the 2b Sy,
category for the 2018 data. For the purpose of illustration, the events are required to be reconstructed and generated in the same m(¢7) vs

|cos(0)| bin. The detector-level distributions are enhanced by a factor of 40 to improve their visibility.
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FIG. 11
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Pre- and post-fit distributions comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms) for the full

matrix measurement in bins of m(¢7) vs [cos(6)] in the 2b Sy, category. The x axis shows the bins of the unrolled four-dimensional
distribution of ¢5, cos(65), ¢, and cos(6,), listed from the outermost to the innermost variable in each of the m(7) vs [cos(#)| bins. The
boundaries of the |cos(6)| and m(z7) bins are labeled and indicated by dashed and solid lines, respectively. For the illustration of
resolution effects, /7 events generated in two selected m(t7) vs |cos(6)| bins are shown in different shades of red. All other ¢7

contributions are shown in pink. A model without any polarization and spin correlation is shown as a blue line. The gray uncertainty

band indicates the combined statistical and systematic uncertainties in the prediction. The vertical bars on the points show the statistical
uncertainty. Ratios to the predicted yields are provided in the lower panels.
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FIG. 12. Pre- and post-fit distributions comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms) for the full
matrix measurement in bins of m(tf) vs [cos(6)| in the 2b Sy, category. The x axis shows the bins of the unrolled 4-dimensional
distribution of ¢3, cos(6), ¢, and cos(6,), listed from the outermost to the innermost variable in each of the m () vs [cos(#)| bins. The
boundaries of the |cos(6)| and m(¢7) bins are labeled and indicated by dashed and solid lines, respectively. For the illustration of
resolution effects, 77 events generated in two selected m(t7) vs |cos()| bins are shown in different shades of red. All other 77
contributions are shown in pink. A model without any polarization and spin correlation is shown as a blue line. The gray uncertainty
band indicates the combined statistical and systematic uncertainties in the prediction. The vertical bars on the points show the statistical

uncertainty. Ratios to the predicted yields are provided in the lower panels.
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FIG. 13.

Pre- and post-fit distributions of cos(y) comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms)

for the D measurement in bins of m(#7) vs |cos(8)| in the 2b Sy, category. The boundaries of the [cos(6)| and m(#7) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, 77 events generated in two selected m(t7) vs
|cos(8)] bins are shown in different shades of red. All other 7 contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined statistical and systematic uncertainties in the
prediction. The vertical bars on the points show the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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FIG. 14. Pre- and post-fit distributions of cos(y) comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms)
for the D measurement in bins of m(¢7) vs [cos(6)| in the 2b Sy, category. The boundaries of the [cos(6)| and m(¢7) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, 77 events generated in two selected m(t7) vs
|cos(6)| bins are shown in different shades of red. All other #7 contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined statistical and systematic uncertainties in the
prediction. The vertical bars on the points show the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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FIG. 15. Pre- and post-fit distributions of cos(¥) comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms)
for the D measurement in bins of m(7) vs |cos(6)| in the 2b Sy, category. The boundaries of the [cos(6)| and m(17) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, 77 events generated in two selected m(t7) vs
|cos(8)] bins are shown in different shades of red. All other 7 contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined statistical and systematic uncertainties in the
prediction. The vertical bars on the points show the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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FIG. 16. Pre- and post-fit distributions of cos() comparing the data (points) to the POWHEG+PYTHIA simulation (stacked histograms)
for the D measurement in bins of m(#7) vs [cos(6)| in the 2b Sy, category. The boundaries of the [cos(6)| and m(r7) bins are labeled and
indicated by dashed and solid lines, respectively. For the illustration of resolution effects, 7 events generated in two selected m(f7) vs
|cos(8)] bins are shown in different shades of red. All other #7 contributions are shown in pink. A model without any polarization and
spin correlation is shown as a blue line. The gray uncertainty band indicates the combined statistical and systematic uncertainties in the
prediction. The vertical bars on the points show the statistical uncertainty. Ratios to the predicted yields are provided in the lower panels.
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In Figs. 11 and 12, the pre- and post-fit distributions are
shown for the full matrix measurement in the 25 Sy
category. The prefit model uses the POWHEG+PYTHIA pre-
dictions. In addition, a model without any polarization and
spin correlation is shown as a blue line to demonstrate those
effects. The 2b Sy, category is shown here as an example
since it is the category with the largest effects from
polarization and spin correlation. The agreement between
the data and the model is very similar in the other categories.

The same strategy is used to extract D,, (D,,) directly. In
this case, j’ represents a bin of cos(y) (cos(7)). The pre- and
post-fit distributions in the 2b Sy, category of the D and D
measurements in bins of m(¢7) vs |cos(0)]| are presented in
Figs. 13-16, respectively. The post-fit model describes the
data well and no significant deviations are observed in any of
the m(7) vs |cos(0)| or pr(r) vs |cos(8)]| bins.

A possible bias in the measured Q,,, (D,, D,) was
estimated by performing fits on simulations with variations
of the coefficients of up to 0.3, which exceeds the maximum
observed difference between the expected and measured
values. We found that any bias turns out to be negligible
compared to the other uncertainties in the measurements. We
also performed the fit using the POWHEG+HERWIG and
MADGRAPHS5_aMC@NLO+PYTHIA simulations as pseudo-data
and found that we can extract the correct values of the
coefficients.

IX. SYSTEMATIC UNCERTAINTIES

Several theoretical and experimental systematic uncer-
tainties affect the predicted event yields and are taken into
account for the extraction of the Q,, (D,, D,). Their
templates are obtained from alternative or reweighted
simulations corresponding to variations in a specific
uncertainty source, usually by 1 standard deviation. We
take into account the following theoretical uncertainties:

(1) The effect of higher-order contributions to the ME
calculation is estimated by varying the renormaliza-
tion p, and factorization yu; scales up and down by a
factor of 2. Distributions for these variations are
obtained using event weights in the POWHEG+PYTHIA
simulation. The variations of u, and u; are para-
metrized in the fit by two independent nuisance
parameters. The ME scales of ¢7 and single top quark
production are treated separately.

(ii) The difference in the pr(t) spectrum between the
POWHEG+PYTHIA NLO and the NNLO calculations,
obtained with POWHEG MiNNLO+PYTHIA exceeds
what is expected based on the u, and p; variations.
Therefore, an additional uncertainty is introduced,
whose +1 standard deviation variation corresponds
to the reweighting of the NLO to the NNLO
simulation using a NN-based method [67,68]. The
NN-based approach is used to reduce the statistical
fluctuations in this uncertainty.

(iii)

@iv)

)

(vi)

(vii)

(viii)

(ix)

x)
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First order virtual electroweak corrections are calcu-
lated with HATHOR and applied to LO 7 events
obtained with MadGraph5_aMC@NLO+PYTHIA. The ra-
tio to the LO simulation without electroweak cor-
rections is determined as a function of m(#7) and
|cos(0)|. These ratios are used as event weights to
correct the POWHEG simulation. The differences
between the electroweak corrected and the default
POWHEG simulation are taken into account as
uncertainty.

The 100 Hessian variations of the NNPDF3.1 set
plus the variation of strong coupling ag are taken
into account as PDF uncertainties. For each of these
variations a nuisance parameter is added. The dis-
tributions are obtained using the corresponding
event weights. The PDF variations are correlated
for ¢7 and single top quark production.

The uncertainties in the initial- and final-state parton
showers are estimated by varying the scales for the
different splittings g — ¢g, 9 — 99, ¢ — qg, and
b — bg by a factor of 2, resulting in a total of eight
independent variations. The corresponding distribu-
tions are obtained using event weights. The parton
shower scale variations are correlated for 77 and
single top quark production.

The scale that separates the phase space of the first
QCD emission into soft and hard parts is controlled
by the hg,m, parameter for POWHEG simulations. The
values used for the CP5 tune are 1.38f8.'§‘12mt.
Separate samples produced with the different values
of hgymp are used to obtain the corresponding
distributions. To reduce the impact from statistical
fluctuations we employ the NN based approach [67]
to determine the weights applied to the central
simulation based on the kinematic properties of
top quarks determined at the generator level.

To estimate the effect of the uncertainty in m,, a
variation of 0.5 GeV [48] is taken into account. For
the evaluation of the expected event yields, we use
the m, -dependent #7 production cross sections of
843 (820) pb for m, = 172.0 (173.0) GeV [69].
The uncertainties in the underlying event modeling
are estimated using separate samples that represent
an envelope of the uncertainties in the PYTHIA CP5
tune [40].

The fraction of leptonically decaying » hadrons is
changed according to the known uncertainty in the
branching fraction using event-based reweighting [1].
The uncertainty in the color reconnection is assessed
using an alternative model where the reconnection of
colored particles from resonant decays is activated in
PYTHIA, while this is deactivated in the default tune.
Other variations use the gluon move and the QCD-
inspired models [70,71]. The differences between
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these three and the default samples are added as
symmetric uncertainties.

quark width. It is produced in gg fusion and
decays as 5, — WbWhb. This is calculated using

(xi) At the ¢f production threshold, theoretical calcula-
tions based on nonrelativistic QCD [72] predict ¢f
bound states and other effects not included in the
POWHEG+PYTHIA simulation. To estimate their ef-
fects on the measurement, we mimic the theoretical
calculation by adding a pseudoscalar particle 7, with
a mass of 343 GeV and a width of twice the top

MadGraph5_aMC@NLO+PYTHIA and normalized using

the cross section of 6.43 pb from Ref. [73]. The

difference observed using this model is used to

estimate the uncertainty due to bound-state effects.
All theoretical uncertainties affect all data-taking periods in
the same way and the corresponding nuisance parameters
are fully correlated between them.
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FIG. 17. Results of the inclusive full matrix measurement obtained by combining the bins of the m(#7) vs |cos(8)| (upper) and p1(7) vs
|cos(0)| (lower) measurements. The measurements (markers) are shown with the statistical uncertainty (inner error bars) and total
uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+Herwig, MadGraph5S_aMC @NLO+PYTHIA and
MiNNLO+pYTHIA. In the right panels, results are presented with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA
prediction is displayed with ME scale and PDF uncertainties. The values of Ag are displayed for each measurement.
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FIG. 18. Results of the inclusive D and D measurement obtained by combining the bins of the n(#7) vs |cos(8)| and pr(f) vs |cos(8)]
measurements. The measurements (markers) are shown with the statistical uncertainty (inner error bars) and total uncertainty (outer error
bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG+Herwig, MadGraph5_aMC@NLO+PYTHIA and MiNNLO+pPYTHIA. In the
right panel, results are presented with the POWHEG+PYTHIA predictions subtracted. The POWHEG+PYTHIA prediction is displayed with
ME scale and PDF uncertainties.

We take into account the following experimental
uncertainties:

®

(i)

(iii)

(iv)

The integrated luminosities for the 2016, 2017, and
2018 data-taking years have 1.2%-2.5% individual
uncertainties [74—76], while the overall uncertainty
for the 2016-2018 period is 1.6%.

The prediction of the number of pileup interactions in
simulation is assuming a total inelastic proton-proton
cross section of 69.2 mb [77]. Changes in the
simulated pileup multiplicity are estimated by varying
the total inelastic cross section by +4.6%. Templates
with enhanced and reduced pileup are obtained by
applying event weights. This uncertainty is treated as
fully correlated between the data-taking periods.
The jet energy scale uncertainties are split into 19
different sources [61]. The combined uncertainties
are pr- and p-dependent, with a magnitude that
varies between 0.3% and 1.8% for the relevant jets.
In addition, variations are applied depending on the
true generated type to b jets, c¢ jets, uds jets, and
gluon jets. The correlations among the years are
evaluated for each source. The differences in the
distributions are obtained by rescaling the jet mo-
menta in the simulation.

Separate uncertainties for the jet energy resolution
are taken into account for jets in the end cap and
barrel regions by varying the resolution corrections
within their uncertainties. These uncertainties are
uncorrelated among the years.

)

(vi)

(vii)
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The dominant uncertainty in the p™** is due to the
jet energy calibration. Therefore, the p™is* is also
recalculated whenever the jet momenta are rescaled.
An additional contribution to the uncertainty due to
particles that do not belong to the selected jets is
estimated [64]. This uncertainty is uncorrelated
among years.

Uncertainties in  the electron and muon
reconstruction and trigger efficiencies are deter-
mined [58]. For each flavor a statistical and sys-
tematic uncertainty in the derived scale factors are
taken into account, where the statistical component
is uncorrelated and the systematic component is
correlated among the years. In addition, an overall
normalization uncertainty of 0.5% is used to account
for the differences in DY and 7 events.

Since the analysis uses three b tagging categories as
input to the NN, we allow for separate variations of
the uncertainties in the scale factors for the tight,
medium, and loose b tagging selections [62,78]. The
variations are performed by recalculating an event
probability using all jets and their true type. The
uncertainties in the correction factors for b and c jets
are split into several sources such as statistical,
jet energy correction, and pileup uncertainties. The
statistical uncertainty is uncorrelated among the years,
while the rest is treated as correlated. The uncertain-
ties in the correction factors for the light jet flavors are
split into a correlated and an uncorrelated component.
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FIG. 19. Results of the full matrix measurement in bins of m(f7). The measurements (markers) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+Herwig, MadGraph5_aMC@NLO+PYTHIA and MiNNLO+pPYTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ay are

displayed for each measurement.

(viii) During the data-taking, a gradual shift in the timing
of the inputs of the ECAL L1 trigger in the region
|| > 2.0 and of the muon trigger caused a specific
trigger inefficiency. Correction factors as functions
of pt, n, and time are computed from data and
applied to the simulation. The statistical uncertain-
ties in these correction factors are taken into account.

(ix) The uncertainties in the background estimations are
detailed in Sec. VII.

For each bin, an additional nuisance parameter is
added [79] whose variation corresponds to the statistical
uncertainty in the central templates. It is known that
statistical fluctuations are also important for the systematic
variations. In particular, if the variations are evaluated
based on statistically independent simulations, the statis-
tical effects can easily reach or even exceed the magnitude
of the systematic effect. Therefore, it is often helpful to
require a certain smoothness of the relative systematic
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FIG. 20. Results of the full matrix measurement in bins of m(f7). The measurements (markers) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+Herwig, MadGraph5_aMC@NLO+PYTHIA and MiNNLO+pPYTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ay are

displayed for each measurement.

effects. This reduces unphysical constraints of the related
nuisance parameters. A 6(3)—dimensiqnal smoothing [80]
is applied for the full matrix (D and D) measurements.

X. RESULTS

From the fits to the data we obtain the values of
Qun (D, D,) in bins of m(f7) vs |cos(0)| or pr(t) vs
|cos(0)]. In the following, we concentrate on regions of the

phase space that are of special interest, e.g., where a higher
level of entanglement is expected. Most of the presented
results are obtained from the combination of several m(77)
vs |cos(@)| or pr(t) vs |cos(@)| bins.

With the #f event yields of the post-fit model at the
generator level Y,, and the normalization factors a,, we
obtain the total fitted event yields K,, = Y, a,,.. The result in
a combined bin ¢ is then obtained by averaging the
measurements from bins {n} using
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FIG. 21. Results of the full matrix measurement in bins of pr(f). The measurements (markers) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG
+Herwig, MadGraph5_aMC@NLO+PYTHIA and MiNNLO+pyTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ag are

displayed for each measurement.

N 1

ng - = K, Qn- (14)
ZrLEgKn ;;

The uncertainties in ng are calculated using error propa-
gation taking into account the uncertainties and their
correlations in the event yields and the Q,,, as obtained
from the fit. The combined normalization factors are
obtained based on the K, sum,

¢, —ﬁan, (15)

where Y, are the #7 yields of the pre-fit model at the
generator level.

Following Refs. [9,25], we use the new observables
C;jfr =C,, £ Cpp, C;S{ = Cy £ Cps and ka = Cur £ Crp»
where for the calculation the covariances are taken into
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FIG. 22. Results of the full matrix measurement in bins of pr(f). The measurements (markers) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA, POWHEG
+Herwig, MadGraph5S_aMC@NLO+PYTHIA and MiNNLO+pyTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ay are

displayed for each measurement.

account. These are either even or odd under parity (P) and
charge-parity (CP) transformations.

The inclusive full matrix measurements based on the
m(t) vs |cos(@)| and pr(z) vs |cos(@)] fits are obtained
from the combination of all bins in the additional observ-
ables and are shown in Fig. 17. The displayed values of Ag
are calculated following Eq. (5).

As expected, both binnings lead to consistent results,
where the pp(7) vs |cos(6)| binning has a higher expected

and observed precision. For the inclusive coefficients, the
values predicted by POWHEG+PYTHIA, POWHEG+Herwig,
MadGraph5_aMC@NLO+PYTHIA, and MiNNLO+pyTHIA are Sim-
ilar. The measured coefficients are in agreement with the
predictions and consistent with the previous measurement
in the 7 dilepton channel [9]. The measured polarizations
are all compatible with zero. Only the diagonal elements of
C differ from zero with the exception of Cﬁc, which is the
only even coefficient under P and CP transformation. In
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FIG. 23. Results of the D and D measurements in bins of m(#7) and pr(¢). The measurements (markers) are shown with the statistical
uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+Herwig, MadGraph5_aMC @NLO+PYTHIA and MiNNLO+pyTHIA. In the lower panel results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties.

Fig. 18 the results of the inclusive D and D measurements
obtained with the m(z7) vs |cos(@)| and pr(z) vs |cos(6)]
binnings are shown.

Entangled quantum states are expected at the threshold
of 17 production and also at high m(¢7) and p(¢) in events
with low |cos(0)| [21]. Therefore, taking advantage of the
binning in the additional observables, we can obtain the
spin correlation coefficients and thus test the entanglement
criterion in several m(t7) and pr(f) regions and its
dependence on |cos(8)|. Figures 19-22 provide the results
of the full matrix measurements including the Ag values in

bins of m(t7) and p(¢); i.e., we combine the |cos(0)| bins
in each of these regions. While POWHEG+Herwig predicts a
slightly smaller spin correlation than the other simulations,
the measured coefficients are compatible with all predic-
tions. With these measurements, the differences in the spin
correlation for various kinematic regions become clearly
visible. In particular, for the measurement in pr(z), we
observe the signs of C,, and Cy; changing from positive to
negative with increasing pr(f), indicating the transition
from the spin-singlet to the spin-triplet as the domi-
nant state.
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FIG. 24. Contribution of individual uncertainty sources or groups of uncertainties in the measured Ag, D, and D in bins of m(f7).

At the tf production threshold, the most significant
results for entanglement using the full matrix measure-
ment, based on the criterion Ag > 1, are obtained for
m(t7) < 400 GeV and for pr(t) < 100 GeV. We evaluate
the significance of the deviation from the separable state
hypothesis with Ap =1 based on the uncertainties
in the measured values of Ag. However, the observed
significance for entanglement does not exceed 2 standard
deviations.

The D and D measurements are presented in bins of (%)
and pp(f) in Fig. 23. The finer py(¢) binning in the D
measurement allows studying events with pr(z) < 50 GeV,
where a significance for entanglement of 3.5 (4.4) standard
deviations is observed (expected). A similar analysis per-
formed in the dilepton channel [ 15] has higher sensitivity for

entanglement at the 7 production threshold. Overall
POWHEG+Herwig predicts slightly higher values of D in the
threshold region, but the measured coefficients remain
compatible with all predictions.

Figure 24 shows the contributions of various uncertainty
sources to the uncertainties in the measured Ag, D, and D
in bins of m (7). In general, the uncertainties in the results
are dominated by the statistical contribution, with the
exception of the D measurement, where systematic effects
are more important at low m(¢7). The uncertainty in the b
tagging calibration is the dominant source, but depending
on the bin, theoretical uncertainties can be of similar sizes,
in particular ME and PS scales.

We further study the results in the region |cos(0)| < 0.4.
These are shown in bins of m(f7) in Figs. 25 and 26
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FIG. 25. Results of the full matrix measurement in bins of m(¢7) for |cos(6)| < 0.4. The measurements (markers) are shown with the

statistical uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+Herwig, MadGraph5_aMC @NLO+PYTHIA and MiNNLO+pyTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ag are

displayed for each measurement.

for the full matrix and in Fig. 27 for the D measure-
ment. The most significant observation (expectation) of
entanglement is obtained for m(77) > 800 GeV and
|cos(0)] < 0.4, with 6.7 (5.6) standard deviations for
the full matrix measurement and 6.1 (5.5) standard
deviations for the D measurement. The D measurement
does not have any sensitivity for entanglement in this
region, since the diagonal elements of the C matrix do not
all have the same sign.

Figure 28 summarizes the observed (expected) signifi-
cance of the measured entanglement variables. In the upper
panels of Fig. 28, the measured results for D (left) near the /7
production threshold and for D (right) at high m(¢7) and low
|cos(0)| are shown. For the full matrix measurement (lower),
the Ag results with the highest expected significance are
shown for the threshold and high-m(#7) kinematic regions.

Previous measurements of the 7 entanglement by
ATLAS [14] and CMS [15] were performed only at the
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FIG. 26. Results of the full matrix measurement in bins of m(#7) for |cos(0)| < 0.4. The measurements (markers) are shown with the
statistical uncertainty (inner error bars) and total uncertainty (outer error bars) and compared to the predictions of POWHEG+PYTHIA,
POWHEG+Herwig, MadGraph5_aMC@NLO+PYTHIA and MiNNLO+pPYTHIA. In the right panels, results are presented with the POWHEG+PYTHIA
predictions subtracted. The POWHEG+PYTHIA prediction is displayed with ME scale and PDF uncertainties. The values of Ay are

displayed for each measurement.

threshold of #7 production, where the relative velocity of the
top quarks is low. In this analysis, we additionally measure
the entanglement at high m(s7), where, in most of the
selected events, the top quark and antiquark decays are
spacelike separated because of their high relative velocity.
Using the decay products, the spin correlation is measured
when the top quarks decay. From simulations we know that

for m(r7) > 800 GeV the fraction of spacelike separated
decays is about 90% [81]. An observation of entanglement
could be explained by an unobserved exchange of classical
information between the decaying top quarks. Therefore, we
introduce a more stringent criterion for entanglement that
cannot be explained by such an exchange of information at
v < ¢ alone (“critical entanglement”). For this, the timelike
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FIG. 27. Results of the D measurements in bins of m(f7)
for |cos(@)| < 0.4. The measurements (markers) are shown
with the statistical uncertainty (inner error bars) and total
uncertainty (outer error bars) and compared to the predictions
of POWHEG+PYTHIA, POWHEG+Herwig, MadGraph5_aMC@NLO+
PYTHIA and MiNNLO+pYTHIA. In the lower panel results are
presented with the POWHEG+PYTHIA predictions subtracted.
The POWHEG+PYTHIA prediction is displayed with ME scale
and PDF uncertainties.

separated decays are assumed to contribute with the
maximum possible value for entanglement of Ag .« = 3.
while the spacelike separated decays should at least fulfill
the condition Ag., = 1. Therefore, the lower boundary of
critical entanglement Ag.; can be defined for a given
fraction f of spacelike separated decays as follows:

AEcrit = fAEsep + (1 - f)AE max - (16)

As was shown in Ref. [82], using top quark decays in the
definition of f results in the most stringent criterion Ag .-
The most sensitive measurements in the threshold and high-
m(7) kinematic regions are summarized in Fig. 29 together
with the value for Ag;; for each case, and the significance
with respect to critical entanglement and separable states.
The first bin pr(f) < 50 GeV was obtained using the D
measurement, and the second bin for m(r7) > 800 GeV
and |cos(0)| < 0.4 was obtained using the full matrix
measurement. In the second bin, the spacelike fraction is
f = 90%, which corresponds to a Ag; = 1.2. The mea-
sured (expected) value exceeds this limit by 5.4 (4.1)
standard deviations as shown by the blue vertical
arrow.
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FIG. 28. Entanglement results for the D measurement in the

threshold region (upper), D measurement in the high-m(¢7)
region (upper), and the full matrix measurement in
different m(7) regions (lower). The measurements (points) are
shown with the statistical uncertainty (inner error bars) and
total uncertainty (outer error bars) and compared to the predic-
tions of POWHEG+PYTHIA, POWHEG+PYTHIA+/];, POWHEG+Herwig,
MadGraph5_aMC@NLO+PYTHIA, and MiNNLO+PYTHIA. The POWHEG
+PYTHIA prediction is displayed with the ME scale and PDF
uncertainties, while for all other predictions only the central
values are indicated. The observed (expected) significance of the
deviation from the boundary of separable states (green region) is
quoted in standard deviations (o).
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FIG. 29. The observed levels of entanglement characterized by
Ag are shown in the threshold region using the D measurement
(first bin), and in the high-m(¢7) region using the full matrix
measurement (second bin). The measurements (points) are shown
with the statistical uncertainty (inner error bars) and total
uncertainty (outer error bars) and compared to the predictions
of POWHEG+PYTHIA, POWHEG+PYTHIA+1,. The POWHEG+PYTHIA
prediction is displayed with the ME scale and PDF uncertainties.
The horizontal blue lines correspond to the maximum level of
entanglement Ag . that can be explained by the exchange of
information between ¢ and ¢ at the speed of light. The significance
in standard deviations (o) by which the measurement exceeds
Ag i and unity is quoted in blue and light green, respectively,
and indicated by the corresponding arrows.

To validate the Gaussian approximation used in calcu-
lating these significances, we perform profile likelihood fits
for fixed values of Ag in the bin with m(z7) > 800 GeV and
|cos(0)| < 0.4. For this test, the parameter transformation
C,, = Ag — |C,, + Cy| is applied to make Ag a parameter

of L. The significances are calculated as \/—2Alog(L),
where Alog(L) is the difference between the profiled

likelihood values for a fixed value of Ag and the global
maximum. In Fig. 30, the scan of —2A log(L) is shown as a
function of Ag. The extracted significances for Az = 1 and
1.2 are in close agreement with those obtained with the
approximate method.

XI. SUMMARY

The polarization and spin correlation in top quark pair
(1) production are measured in events with an electron or a
muon plus jets in the final state. The entanglement between
the spins of the top quark and antiquark is determined from
the measured spin correlation by applying the Peres-
Horodecki criterion. The measurements are based on
proton-proton collision data at /s = 13 TeV collected
by the CMS experiment at the LHC, corresponding to
an integrated luminosity of 138 fb~!. The decay products
of the top quarks are identified using an artificial neural
network. The coefficients of the polarization vectors and
the spin correlation matrix are extracted simultaneously
from the angular distributions of ¢7 decay products using a
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FIG. 30. Results of the profile likelihood scans. The quantity
—2Alog(L) is shown as function of Ag in the bin with m(7) >
800 GeV and [cos(f)| < 0.4 for data (black line) and the
POWHEG+PYTHIA simulation (red line). The observed and ex-
pected significances in standard deviations (o) for Ag exceeding
unity and Ag; are quoted.

binned likelihood fit. This is done both inclusively and in
various regions of the phase space. The observed polari-
zation and spin correlation are in agreement with the
standard model expectations. The standard model predicts
entangled {7 states at the production threshold and at high
masses of the 77 system. Entanglement is observed in events
with high 77 mass, with an observed (expected) significance
of 6.7 (5.6) standard deviations, while in events with low
transverse momentum of the top quark a significance of 3.5
(4.4) standard deviations is observed (expected). This is the
first observation of entanglement at high 7 mass where in
about 90% of the observed ff events the decays of the top
quark and antiquark are spacelike separated.
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