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historical [12] and disadvantaged [13] communities, emphasizing en
ergy efficiency improvements in these areas. It is essential to explore the 
energy-saving potential for retrofitting relatively new residential 
buildings constructed in recent decades, as future climate changes could 
affect their energy efficiency [14,15].

However, residential buildings exhibit a wide variety of architectural 
styles, designs, and systems, introducing more uncertainties than com
mercial buildings. This diversity, combined with varying occupancy 
patterns and energy usage behaviors, increases the likelihood of unex
pected energy performance variations. As a result, engineering robust
ness is crucial for ensuring consistent energy performance and resilience 
in residential buildings across different conditions. The focuses of cur
rent retrofit measures are primarily on three areas: heating, ventilation, 
and air conditioning (HVAC) upgrades, building envelope retrofits, and 
appliance upgrades. Research in HVAC upgrades focuses on evaluating 
system performance, including operational efficiency [16] and config
uration [17], alongside advancing smart technologies for central plant 
[18] and indoor environmental controls [19]. Research in building en
velope retrofits emphasizes advanced materials—such as phase change 
materials for exterior facades [20,21]—as well as engineering design 
optimization [22,23]. Research in appliance upgrades highlights focuses 
on smart control systems, including energy management based on sup
ply–demand coordination [24] and occupant behavior [24,25], along
side assessments of electrification potential [26,27]. Additionally, 
integrated strategies combining these three retrofit areas have been 
explored [28,29]. Despite significant research in energy retrofit mea
sures for specific projects [30], the challenge remains in enhancing the 
robustness of these strategies so they can be more effectively applied to 
other projects [31]. Robustness, therefore in this context, refers to the 
ability of a retrofit measure to sustain its functionality and selection 
despite external disturbances or variability in inputs and conditions. 
Factors such as building features [32–34], occupant behavior [32–34], 
government policy [34], weather variability [33,35], and climate 
change [35] all impact energy performance. Therefore, robust retrofit 
solutions are necessary to address the unique challenges of residential 
buildings, ensuring long-term functionality, efficiency, and occupant 
comfort.

There is a critical need for evaluation methods that can assess the 
performance of multiple retrofit measures across a large scale of build
ing types in communities. Studies have proposed methods to evaluate 
multiple measures on individual buildings—using a modeling or simu
lation approach [36,37]. These approaches are time-consuming, data- 
intensive, and difficult to scale across building clusters with varying 
characteristics. On the other hand, some studies focus on assessing the 
impact of a single retrofit measure applied to multiple building clusters 
[38,39], without an ability to compare the effectiveness of multiple 
measures. To address these limits, there is a need for evaluation methods 
that can assess the effectiveness of diverse retrofit measures across 
buildings with diverse characteristics.

This study proposes a framework for evaluating the robustness of 
multiple retrofit measures across various building systems, occupant 
behaviors, and environmental scenarios. Unlike existing research, which 
has primarily focused on the performance of multiple retrofit measures 
to individual building or single measure across different buildings, this 
framework examines the application of multiple retrofit measures across 
diverse contexts. The framework enables the identification of robust 
retrofit solutions that maintain consistent performance and selection 
under a range of operating conditions, including variety, unexpected 
changes and uncertainties. The outcomes of this framework identify 
high-efficiency retrofits that are broadly applicable across most build
ings, enabling large-scale implementation of effective retrofit measures 
across diverse building types and settings. It also highlights key factors 
that significantly affect retrofit performance and selection. Buildings 
exhibiting these influential factors can then be targeted with tailored, 
optimized retrofit measures.

2. Framework development

Fig. 1 displays the five-steps process of the proposed evaluation 
framework which leverages the national database of National Residen
tial Efficiency Measures (NREM) by the U.S. Department of Energy 
(DOE). Unlike conventional evaluation methods, this framework in
corporates the consideration of weather variability, climate change, 
utility economics, and energy policies. The five steps in this framework 
are: (1) development of scenario models, (2) integration of NREM 
retrofit database, (3) energy performance simulations, (4) aggregation 
of cost and benefits, and (5) selections of retrofit solutions.

Each step serves a specific purpose to enhance the framework’s 
robustness. Step 1 builds diverse scenario models to capture variations 
in building systems, occupant behaviors, and environmental conditions. 
Step 2 integrates a comprehensive database to provide a wide range of 
retrofit measures. Step 3 incorporates weather variability and climate 
trajectory to capture spatiotemporal variations. Step 4 ensures envi
ronmental and economic feasibility. Step 5 uses multi-criteria evalua
tion to assess the performance and choices of various retrofit measures 
across diverse scenarios, enabling the selection of robust measures. The 
followings detail each step.

In Step 1, data on building systems, occupant behaviors, and envi
ronmental conditions are collected from the target building scenarios. 
The most common parameter is selected to develop a baseline building 
energy model scenario that represents the majority. The second most 
common parameter is then used to create a control scenario, keeping 
other parameters consistent with the baseline. For example, in the 
building systems category, the most common number of floors (two 
floors) is used to develop the prototype building model in the baseline 
scenario, while the second most common number of floors (one floor) is 
used to create a control scenario.

The data sets for building energy modeling scenarios are stored in 
three formats: EnergyPlus input files (IDF), EnergyPlus weather files 
(EPW), and Microsoft Excel worksheets (XLSX). The IDF files contain 
data on building systems and occupant behaviors. The EPW files include 
data on the natural environment, while the XLSX files store information 
of utility rates and rebate.

In step 2, which is conducted in Python, information of residential 
retrofit measures is extracted from the NREM database (see Fig. 2 (a) for 
a sample code of the data extraction process). Technical data are related 
to retrofit measures for building envelope, HVAC systems, appliances, 
lighting, and water heating [40]. Table 1 provides detailed descriptions 
of the extracted technical data. This information is then used to modify 
IDF files used for energy simulations [22,41] (see Fig. 2 (b) for a sample 
code of the IDF modification process). Cost data of measures is extracted 
for financial analysis in the fourth step.

In Step 3, EnergyPlus simulations are executed using both the initial 
and modified IDF files in Python [22,41–43] (see Fig. 2 (c) for a sample 
code of the simulation execution process), exporting energy consump
tion data such as source energy, along with building geometry data, 
including living room wall area and roof area. EnergyPlus performs 
energy analysis by dynamically simulating heat and mass transfer within 
building components, calculating energy loads based on factors like 
weather, occupancy, and internal gains. It operates as a console-based 
program with high flexibility and configurability, making it easily 
adaptable for automated workflows in Python environments.

In Step 4, energy consumption data, building geometry data, and cost 
data are used to calculate evaluation indicators. The source energy 
reduction and payback year are then applied to rank the top three 
optimal retrofit options for each measure across different scenarios. 
Source energy reduction reflects the environmental impact of the 
building retrofits, while payback year assesses the financial return on 
investment. Using both indicators enables a comprehensive evaluation 
of the environmental and economic performance of the retrofit mea
sures, directly reflecting the priorities of key stakeholders: community 
managers focus on overall environmental impact, while homeowners 
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achieving reductions of 5.5 % to 7.7 % in other scenarios.
In HVAC upgrades, furnace upgrades are more effective than air 

conditioner improvements. Optimal air conditioner retrofits can save 
1.9 % to 4.3 % of source energy, with the lowest reduction in the 
“number of floors” (S2) and the highest in the “global warming” (S14). 
Optimal furnace retrofits can reduce source energy by up to 8.0 %, with 
the highest savings in the “floor area” (S1) and “energy efficiency” (S7), 
and the lowest at 4.7 % in the “appliance usage” (S8).

In appliance upgrades, only the clothes dryer measures achieve 
notable source energy reductions. Other measures reduce energy by less 
than 1.0 %. Clothes dryer upgrades can save up to 3.2 % in the “appli
ance usage” (S8). Upgrades to light bulbs and water heaters have limited 
impact, reducing energy by no more than 2.0 %.

For retrofit measures with negligible energy savings, the top three 
options exhibit only slight differences in energy reduction. For measures 
with slight energy savings: the top three window retrofit options differ 
by up to 2.0 %, the top three wall sheathing retrofit options differ by less 
than 1.0 %, and the top three air conditioner retrofit options differ by up 
to 1.0 %. For measures with moderate energy savings: the top three wall 
wood stud retrofit options differ by up to 1.7 %, and top three furnace 
retrofit options by up to 1.1 %. For clothes dryer, cooking range, light 
bulb, and water heater retrofits, there is only one option available that 
achieves energy savings.

3.4. Results by payback year

Fig. 5 overviews the payback year by retrofit measures across 
different scenarios. The color bar on the right side of the heatmap 
transitions from light yellow to deep blue, correspondingly signifying 
the payback year from 0 to 100 years. The grey diagonal stripes indicate 
that the retrofit measure has a payback year exceeding a century. Other 
aspects of the payback year heatmap (Fig. 5) are identical to those of the 
source energy reduction heatmap (Fig. 4).

Overall, the results indicate that light bulb upgrading demonstrates 
optimal performance and robustness in payback year. Additionally, the 
retrofit measures for the clothes dryer, furnace, and wall wood stud also 
show acceptable performance with the payback year less than 20 years 
mostly. The retrofit selections remain consistent across all scenarios.

3.4.1. Robustness of retrofit measures by payback year
All factors except utility rates in Scenario 12 impact the top three 

options of building envelope retrofits. Housing type in Scenario 3 and 
energy efficiency in Scenario 7 affect the top three options of appliance 
upgrades. The top three options for wall wood stud retrofit, HVAC up
grade, and refrigerator upgrade are unaffected by building systems, 
occupant behavior, or environmental factors.

Several factors within the building system influence the payback 
year of various upgrades. Specifically, the number of floors (S2), housing 
type (S3), and energy efficiency (S7) slightly affect the financial return 
period for building envelope retrofits, HVAC upgrades, and appliance 
upgrades. Occupant behavior and environmental factors also play sig
nificant roles. For building envelope retrofits, the payback year is 
influenced by appliance usage (S8), rebate policy (S11), and utility rates 
(S12). For HVAC upgrades, the payback year is affected by appliance 
usage (S8), thermostat settings (S10), utility rates (S12), location (S13), 
and global warming (S14). Appliance usage (S8), window opening 
behavior (S9), and utility rates (S12) impact the payback year of 
appliance upgrades. Finally, appliance usage (S8) and utility rates (S12) 
influence the payback year of water heater replacements.

3.4.2. Performance of retrofit measures by payback year
In building envelope retrofit measures, retrofitting wall exterior 

finish, roof exterior finish, and roof insulation rarely pay back within a 
century in most scenarios. However, roof insulation pays back in 70 
years in the “number of floors” (S2) and in 58 years in the “utility rates” 
(S12). Retrofitting windows only proves financially viable in the 

“housing type” (S3), “orientation” (S4), and “utility rates” (S12), with a 
minimum payback of 88, 86, and 46 years, respectively. Optimal wall 
sheathing retrofit payback years vary by scenario. Paybacks of 40–50 
years in the “floor area” (S1), “orientation” (S4), “exterior finish” (S5), 
“thermostat settings” (S10), “location” (S13), and “global warming” 
(S14) are similar to the baseline (S0). The “housing type” (S3) and 
“appliance usage” (S8) increase payback to 60 years, while the “number 
of floors” (S2) exceeds a century. The “window-to-wall ratio” (S6) and 
“window opening behavior” (S9) have a payback of 34 years, whereas 
the “rebate policy” (S11) and “utility rates” (S12) lower it to 22 years. In 
most scenarios, optimal wall wood stud retrofits have 10–20 year s of 
payback. This is 23 years in the “housing type” (S3) and five years in the 
“rebate policy” (S11).

In HVAC upgrades, the payback years for optimal air conditioner 
improvements vary by scenarios. In the “floor area” (S1), “orientation” 
(S4), “exterior finish” (S5), “window opening behavior” (S9), and 
“rebate policy” (S11), paybacks are around 50–60 years, similar to the 
baseline (S0). In the “number of floors” (S2), “housing type” (S6), and 
“thermostat settings” (S10), they extend to 60–70 years. Conversely, in 
the “housing type” (S3) and “appliance usage” (S8), paybacks shorten to 
40–50 years, and in the “energy efficiency” (S7), “location” (S13), and 
“global warming” (S14), they reduce further to 30–40 years. The 
shortest payback is 27 years in the “utility rates” (S12). Furnace 
improvement in all scenarios has 10–20 year s of payback.

In appliance upgrades, payback years vary significantly across sce
narios. Typically, optimal upgrades for refrigerators, dishwashers, and 
clothes dryers have payback years of 46–50 years, 74–79 years, and 11 
years, respectively. In most scenarios, the payback for clothes washers 
and cooking ranges exceeds a century. In the “number of floors” (S2) and 
“energy efficiency” (S7), paybacks for refrigerators and dishwashers 
shorten to 36 and 66 years. In the “housing type” (S3), the payback for 
dishwashers extends to 88 years, while paybacks for clothes washers, 
clothes dryers, and cooking ranges shorten to 28, 4, and 43 years. In the 
“energy efficiency” (S7), paybacks reduce to 32 years for refrigerators, 
32 years for dishwashers, and 16 years for clothes washers. In the 
“appliance usage” (S8), paybacks shorten to 22 years for refrigerators, 
36 years for dishwashers, 44 years for clothes washers, four years for 
clothes dryers, and 74 years for cooking ranges. The “window opening 
behavior” (S9) extends paybacks to 65 years for refrigerators and 91 
years for dishwashers. Under the “utility rates” (S12), paybacks shorten 
to 25 years for refrigerators, 32 years for dishwashers, 39 years for 
clothes washers, nine years for clothes dryers, and 45 years for cooking 
ranges.

Replacing light bulbs offers a payback of less than two years across 
all scenarios. Water heater retrofits generally have a 74-year payback, 
except for 37 years in the “appliance usage” (S8) and 32 years in the 
“utility rates” (S12).

The top three retrofit measures show significant differences in 
payback year. Wall sheathing, refrigerator, and dishwasher retrofits 
have a gap of up to 13 years, while air conditioner retrofits exhibit the 
largest gap of up to 17 years. Wall wood stud retrofits have a smaller gap 
of up to five years. Furnace retrofits have the smallest gap in one year. 
Clothes washer retrofits have a gap of up to two years. These variances 
emphasize the need to carefully choose retrofit options for optimal 
economic and energy-saving outcomes.

3.5. Summary of case findings

Table 3 shows the number of identical top three measures selected 
across S0–S14 using different indicators. The top three choices for air 
conditioner, furnace, and refrigerator remain consistent across different 
indicators. For dishwasher upgrades, the top three choices vary by in
dicator only in the “energy efficiency” (S7), while remaining uniform 
across indicators in all other scenarios. For clothes dryer, cooking range, 
light bulb, and water heater retrofits, when keeping other parameters 
constant (e.g., maintaining the same capacity for clothes dryers and the 
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same fuel type for cooking ranges), there is typically only one upgrade 
option available, with no alternative choices. For building envelope 
retrofit measures, the top three choices differ by indicator within the 
same scenarios.

For source energy reduction, wall wood stud and furnace retrofits 
outperform others, with furnace retrofits showing smaller differences 
across the top three options and greater consistency across scenarios. For 
payback year, light bulb upgrades show optimal performance and 
robustness, while clothes dryer, furnace, and wall wood stud retrofits 
also perform well, with satisfactory payback periods and consistent re
sults across scenarios. Additionally, the top three choices for air condi
tioner, furnace, and refrigerator remain consistent across different 
indicators. The furnace retrofit stands out as the most effective and 
robust measure, simultaneously achieving exceptional source energy 
reduction, an acceptable payback year, and stable performance with 
consistent selection across various scenarios.

4. Discussions

4.1. Implications for framework application

This framework utilizes retrofit data from the NREM database, while 
other research often relies on retrofit measures derived from various 
local retrofit projects, market analyses, government laws, and building 
codes [46,47]. The advantage of using NREM data lies in its integration 
of multiple DOE databases into a unified, national resource. This inte
gration provides a consistently updated and expanded repository of 
performance parameters and costs for residential retrofit technologies, 
ensuring a comprehensive, standardized dataset that enhances the 
reproducibility and scalability of research findings.

Recent research exploring optimal building retrofit solutions has 
considered occupant factors, such as optimizing retrofit plans to mini
mize thermal discomfort [48] and evaluating the performance of retrofit 
measures under stochastic human behavior [49]. These studies have 
typically used occupant factors as one of the criteria for selecting 
optimal retrofit measures or as a parameter in building energy modeling. 
Our study delves more specifically into how occupant behavior in
fluences the selection and performance of optimal retrofit measures, 
highlighting the importance of incorporating behavioral patterns into 
the decision-making process for building retrofits.

Recent research has shown that global warming impacts the selec
tion of optimal building envelope retrofit measures [50], aligning with 
the conclusions of this case study. Additionally, Ascione et al. indicate 
that climate change has a slighter effect on total energy and financial 
indicators than expected due to a balance between its positive impact on 
heating demand and negative impact on cooling demand [49]. In this 
study, comparisons between “location” (S13) and “global warming” 

(S14) reveal that with global warming, air conditioner retrofits become 
more efficient, while furnace retrofits become less efficient. This is 
because increased cooling demand makes air conditioner retrofits more 
effective in reducing energy consumption, whereas decreased heating 
demand makes furnace retrofits less effective. Other retrofit measures 
remain largely unchanged in efficiency, as the overall energy demand 
remains stable, keeping their energy reduction contributions consistent.

When comparing the selection and performance of various retrofit 
measures across different scenarios, using a modified heatmap effec
tively showcases the selection variability and performance difference of 
each measure across different scenarios. Additionally, it clearly illus
trates the influence of each factor within a scenario on the performance 
of different retrofit measures. This method facilitates a nuanced insight 
of the performance and robustness of retrofit measures, assessing their 
broad applicability across diverse scenarios.

This framework has limitations due to the absence of renewable 
energy retrofit data, such as installing photovoltaic (PV) panels, in the 
NREM database. As a result, the assessment of energy conservation and 
investment potential for retrofit measures may be understated. For 
instance, the environmental and economic benefits of heat pumps could 
be underestimated if the electricity used is generated from fossil fuels.

4.2. Implications for energy retrofit practices

4.2.1. Retrofit robustness
When evaluating the source energy reduction performance and 

payback year of energy retrofits, housing type, energy efficiency, and 
appliance usage emerge as the most influential factors. These three pa
rameters can be used as primary criteria for categorizing buildings in 
large-scale retrofit assessments. Housing type affects the thermal dy
namics and energy usage patterns of a building, impacting the effec
tiveness of retrofits across various categories such as building envelope, 
HVAC, appliances, lighting, and water heating. Similarly, the vintage of 
a building reflects its inherent energy efficiency, with older buildings 
typically having poorer insulation and outdated systems that benefit 
more from upgrades. Appliance usage affects the overall energy de
mand, thereby influencing the relative impact of different retrofit 
measures. For example, in buildings with high appliance usage, the 
energy savings from appliance upgrades are more significant, making 
these upgrades more cost-effective compared to other measures such as 
building envelope and HVAC retrofits. Conversely, in buildings with low 
appliance usage, the potential for energy savings from appliance up
grades is smaller, and other measures like improving insulation or 
upgrading HVAC systems may offer more substantial benefits. There
fore, considering housing type, vintage, and appliance usage is crucial 
for accurately assessing the potential source energy reductions and 
financial viability of different retrofit measures.

The optimal choices for building envelope retrofit measures are more 
susceptible to change across different scenarios compared to HVAC, 
appliance, lighting, water heating retrofits. Building system factors 
significantly impact a building’s thermal performance then shifting the 
optimal solutions of building envelope retrofit. For example, building 
orientation influences the solar radiation transferred through windows. 
To maintain indoor thermal comfort, solar radiation should stay within 
certain levels. Different orientations require different windows with 
corresponding Solar Heat Gain Coefficient (SHGC) values to achieve the 
same comfort level. Thus, the window choices differ when building 
orientation changes. Additionally, building system factors directly in
fluence building envelope retrofit costs. For example, a larger window- 
to-wall ratio increases window area, requiring more investment and 
affecting the payback year of window retrofits.

Occupant behavior and environmental factors can significantly 
impact the optimal choices for building envelope retrofits. For example, 
frequent use of appliances increases internal heat gains, which can 
diminish the benefits of higher-grade insulation. Investing in higher 
levels of insulation might be less prioritized because retaining more heat 

Table 3 
Number of identical retrofit measures selected across the 15 scenarios using 
different indicators.

Category Retrofit object Number

Envelope Wall exterior finish 1
Roof exterior finish 0
Roof insulation 0
Window 2
Wall sheathing 0
Wall wood stud 0

HVAC Air conditioner 15
Furnace 15

Appliance Refrigerator 15
Dishwasher 14
Clothes washer 0
Clothes dryer 15
Cooking range 15

Lighting Light bulb 15
Water heating Water heater 15
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could lead to overheating. Instead, it may be more cost-effective to focus 
on moderate insulation levels that balance heat retention and dissipa
tion. Similarly, in hot climates, excessive insulation can trap unwanted 
heat, leading to overheating, so less insulation might be more appro
priate. Thus, the optimal choice of insulation varies depending on the 
environmental conditions.

4.2.2. Retrofit performance
The modifications to the wall and roof exterior finishes, as well as the 

upgrades to roof insulation, do not significantly reduce source energy. 
These investments are not cost-effective. In the prototype building, the 
attic is unconditioned. The unconditioned attic limits the impact of 
improved roof insulation on the overall thermal performance of the 
building. The wall exterior finish is light vinyl, and the roof finish is light 
asphalt shingles. The lack of noticeable source energy reduction may be 
due to the light materials used, which already have reflective properties 
that minimize heat absorption. Consequently, these retrofits offer mar
ginal improvement over the existing setup, making the investment 
challenging to rationalize.

Window retrofits reduce source energy in most cases, particularly in 
scenarios with shared walls or specific building orientations. In build
ings with shared walls, heat loss is reduced, amplifying the impact of 
window retrofits and accelerating payback. In west-facing buildings, the 
greater solar heat gain compared to south-facing ones enhances the ef
ficiency of window retrofits and shortens the payback year.

Improving the insulation of wall wood studs reduces more source 
energy and results in a shorter payback year compared to enhancing 
wall sheathing insulation. Both measures benefit from rebate policies 
and increased utility rates, which can shorten their payback years. The 
source energy reduction performance and investment payback year of 
both measures are significantly influenced by various factors, including 
building system, occupant behavior, and environmental conditions. The 
building system influences how heat circulates and escapes, thereby 
affecting the impact of wall insulation improvements. For instance, a 
building with a high window-to-wall ratio may experience significant 
heat loss through the windows. While improved wall insulation can help 
reduce this loss, it may not be as effective as in a scenario with a low 
window-to-wall ratio. Occupant behavior, such as window opening 
behavior, directly impacts the effectiveness of wall insulation retrofits. 
Frequently opening windows during cold months allows warm indoor 
air to escape, increasing heat loss. Similarly, opening windows during 
warm months lets hot outdoor air in, increasing heat gain. These be
haviors counteract the thermal barrier provided by wall insulation, 
thereby reducing its overall benefits in maintaining a stable indoor 
temperature and decreasing energy consumption. Environmental factors 
like different regional weather and global warming play a crucial role as 
well. For example, in colder weather, buildings benefit more from 
improved wall insulation, as it retains indoor heat more effectively than 
in warmer weather.

HVAC systems show effective results and investment returns across 
all scenarios. Furnace upgrades outperform air conditioner improve
ments due to the community’s location in Climate Zone 5, where pro
longed and cold winters create a greater demand for heating than 
cooling. Additionally, none of the heat pump measures, including air 
source heat pumps, ground source heat pumps, and mini-split heat 
pumps, achieve significant source energy reduction and investment 
returns. This is due to the lack of renewable energy retrofit measures in 
the database. Heat pumps use electricity for cooling and heating, more 
electricity consumes more source energy. Coupled with the high cost of 
heat pumps, even with rebate policies, there is no investment return for 
heat pump systems without renewable energy integration.

Appliance upgrades have minimal source energy reduction effects. 
However, in townhomes, with high appliance usage, or when utility bills 
increase annually, these upgrades can still offer an acceptable return on 
investment.

In the lighting system, replacing light bulbs with energy-efficient 

ones has limited source energy reduction effects. However, the cost is 
recovered within two years in all scenarios, making it a worthwhile 
retrofit measure.

Water heating systems have limited source energy reduction per
formance and long payback years. Like HVAC systems, due to the lack of 
renewable energy measures, using heat pumps alone for domestic hot 
water results in higher source energy and investment with no return.

4.2.3. Indicator selection
When assessing energy retrofits that show obvious energy conser

vation benefits, such as those implemented on windows, wall sheathing, 
wall wood studs, air conditioners, furnaces, and light bulbs, the optimal 
choices may vary depending on the evaluation indicator, like source 
energy reduction and payback year.

For building envelope retrofits, although material costs per unit do 
not vary greatly, the total investment can range from a few thousand to 
tens of thousands of dollars when considering the entire building. Both 
energy saving effect and investment costs significantly affect the 
payback year, making it difficult to achieve the same results when 
selecting optimal measures based on source energy reduction and 
payback year.

For air conditioner and furnace upgrades, the top three options 
remain the same for both indicators. Each 0.29 increase in the Seasonal 
Energy Efficiency Ratio (SEER) of a central air conditioner adds only 
$100 to the investment. Similarly, each 0.25 increase in the Annual Fuel 
Utilization Efficiency (AFUE) of a natural gas furnace adds less than 
$200. These small investment increments mean that the primary factor 
affecting the payback year is energy savings, not investment cost. 
Therefore, for HVAC equipment, the top three choices are consistent 
across different evaluation indicators.

The limited number of appliance upgrade options typically results in 
the same top three choices regardless of the evaluation indicator used. 
These top three options offer similar energy savings and have compa
rable payback year, with the energy savings generally being modest and 
the payback year lengthy. Therefore, the differences among the top 
three choices are minimal, making it practical to focus on other features, 
such as refrigerator capacity or washing machine water usage, rather 
than solely on energy efficiency and economic metrics.

5. Conclusion

This study proposes a framework for identifying optimal and robust 
energy retrofit solutions at the community level. The framework consists 
of five key steps: scenario model development, integration of the NREM 
retrofit database, energy performance simulations, cost-benefit aggre
gation, and selection of retrofit solutions. Each step enhances the 
framework’s robustness by incorporating the diversity of building fea
tures, occupant behaviors, environmental conditions, retrofit measures, 
and evaluation methods. A case study in southern Michigan of the 
United States, demonstrates the framework’s effectiveness, revealing 
that furnace retrofits stand out as the most effective and robust measure, 
simultaneously achieving 4.7 %–8.0 % source energy reduction, 10–20 
years payback period, and stable performance with consistent selection 
across various scenarios. The framework proves effective as the case 
study conclusions are reasonable and align with other research findings, 
indicating its potential for broader application in evaluating and opti
mizing community-scale residential building energy retrofits.

Despite its strengths, this framework has some limitations. First, the 
absence of renewable energy retrofit data, such as PV installations in the 
NREM database, may understate the benefits of measures like heat 
pumps. Additionally, using payback year as a metric does not account 
for the time value of money; employing discounted payback period or 
net present value would allow for a more accurate assessment of long- 
term financial viability. Finally, comparing multiple separate in
dicators could make the results less straightforward.

Future work could expand the framework by incorporating 

L. Shu et al.                                                                                                                                                                                                                                      Energy & Buildings 327 (2025) 115077 

10 



renewable energy options and developing a composite metric that in
tegrates environmental impact, economic viability, and robustness into 
a single score, offering a clearer and more comprehensive assessment of 
retrofit performance.
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