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ABSTRACT

Residential building energy retrofits are essential for enhancing environmental sustainability and reducing en-
ergy costs. The selection of retrofit measures is influenced by factors such as building systems, occupant
behavior, government policy, weather variability, and climate change, all of which can significantly impact
energy performance. Compared to retrofitting individual homes, evaluating and selecting optimal retrofit so-
lutions for an entire community is challenging due to diverse residential compositions and variability present.
Therefore, engineering robustness is crucial for ensuring consistent energy performance and resilience across
different conditions. In this context, robustness refers to the ability of a retrofit measure to maintain its func-
tionality and remain an optimal choice despite external disturbances or changes in inputs and conditions. This
study presents a framework for evaluating the robustness of multiple retrofit measures across various building
systems, occupant behaviors, and environmental scenarios at the community level. The framework comprises
five key steps: scenario model development, integration of the National Residential Efficiency Measures data-
base, energy performance simulation, cost-benefit aggregation, and retrofit solution selection. Each step en-
hances the framework’s robustness by incorporating the diversity of building characteristics, occupant behaviors,
environmental conditions, retrofit options, and evaluation criteria. The framework’s effectiveness is demon-
strated through a case study in southern Michigan in the United States, which includes 63 one-story single-family
houses, 121 two-story single-family houses, and 8 townhouses. The study identifies furnace retrofits as the most
robust solution for the entire community, consistently achieving source energy reductions of 4.7 %-8.0 % and
payback period of 10-20 years across various scenarios. These findings are consistent with previous research,
indicating the framework’s potential for broader applications in optimizing community-scale residential energy
retrofits.

1. Introduction

Compared to commercial buildings, residential buildings have a
greater potential of energy savings from building retrofit. Initially,

Buildings account for approximately 36 % of global final energy use
and 39 % of energy-related greenhouse gas emissions [1]. Building en-
ergy retrofits emerge as a critical strategy for reducing source energy
and protecting ecological environment [2]. In the United States, build-
ing energy retrofits have the potential to mitigate over 600 million
metric tons of COy annually and achieve over $1 trillion of energy
savings in ten years [3]. The global green building movement, advo-
cating for energy efficiency and low-carbon practices [4], further drives
the expansion of energy retrofits and contributes to sustainable and
resilient urban development.

commercial buildings were the primary focus of energy-efficient retrofit
research due to their significant potential for energy savings, regulatory
pressures, and economic incentives. Researchers have developed tool-
kits [5,6] and database [7] to support commercial building retrofits.
Simultaneously, the burden of energy costs on 138 million U.S. house-
holds, which allocate 8-14 % of their income to energy expenses [8],
underscores the importance of making housing more affordable through
energy retrofits, particularly for low-income families [9]. This has led to
the development of databases for energy retrofits in U.S. residential
buildings [10,11]. Residential building retrofit studies have prioritized
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historical [12] and disadvantaged [13] communities, emphasizing en-
ergy efficiency improvements in these areas. It is essential to explore the
energy-saving potential for retrofitting relatively new residential
buildings constructed in recent decades, as future climate changes could
affect their energy efficiency [14,15].

However, residential buildings exhibit a wide variety of architectural
styles, designs, and systems, introducing more uncertainties than com-
mercial buildings. This diversity, combined with varying occupancy
patterns and energy usage behaviors, increases the likelihood of unex-
pected energy performance variations. As a result, engineering robust-
ness is crucial for ensuring consistent energy performance and resilience
in residential buildings across different conditions. The focuses of cur-
rent retrofit measures are primarily on three areas: heating, ventilation,
and air conditioning (HVAC) upgrades, building envelope retrofits, and
appliance upgrades. Research in HVAC upgrades focuses on evaluating
system performance, including operational efficiency [16] and config-
uration [17], alongside advancing smart technologies for central plant
[18] and indoor environmental controls [19]. Research in building en-
velope retrofits emphasizes advanced materials—such as phase change
materials for exterior facades [20,21]—as well as engineering design
optimization [22,23]. Research in appliance upgrades highlights focuses
on smart control systems, including energy management based on sup-
ply-demand coordination [24] and occupant behavior [24,25], along-
side assessments of electrification potential [26,27]. Additionally,
integrated strategies combining these three retrofit areas have been
explored [28,29]. Despite significant research in energy retrofit mea-
sures for specific projects [30], the challenge remains in enhancing the
robustness of these strategies so they can be more effectively applied to
other projects [31]. Robustness, therefore in this context, refers to the
ability of a retrofit measure to sustain its functionality and selection
despite external disturbances or variability in inputs and conditions.
Factors such as building features [32-34], occupant behavior [32-34],
government policy [34], weather variability [33,35], and climate
change [35] all impact energy performance. Therefore, robust retrofit
solutions are necessary to address the unique challenges of residential
buildings, ensuring long-term functionality, efficiency, and occupant
comfort.

There is a critical need for evaluation methods that can assess the
performance of multiple retrofit measures across a large scale of build-
ing types in communities. Studies have proposed methods to evaluate
multiple measures on individual buildings—using a modeling or simu-
lation approach [36,37]. These approaches are time-consuming, data-
intensive, and difficult to scale across building clusters with varying
characteristics. On the other hand, some studies focus on assessing the
impact of a single retrofit measure applied to multiple building clusters
[38,39], without an ability to compare the effectiveness of multiple
measures. To address these limits, there is a need for evaluation methods
that can assess the effectiveness of diverse retrofit measures across
buildings with diverse characteristics.

This study proposes a framework for evaluating the robustness of
multiple retrofit measures across various building systems, occupant
behaviors, and environmental scenarios. Unlike existing research, which
has primarily focused on the performance of multiple retrofit measures
to individual building or single measure across different buildings, this
framework examines the application of multiple retrofit measures across
diverse contexts. The framework enables the identification of robust
retrofit solutions that maintain consistent performance and selection
under a range of operating conditions, including variety, unexpected
changes and uncertainties. The outcomes of this framework identify
high-efficiency retrofits that are broadly applicable across most build-
ings, enabling large-scale implementation of effective retrofit measures
across diverse building types and settings. It also highlights key factors
that significantly affect retrofit performance and selection. Buildings
exhibiting these influential factors can then be targeted with tailored,
optimized retrofit measures.
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2. Framework development

Fig. 1 displays the five-steps process of the proposed evaluation
framework which leverages the national database of National Residen-
tial Efficiency Measures (NREM) by the U.S. Department of Energy
(DOE). Unlike conventional evaluation methods, this framework in-
corporates the consideration of weather variability, climate change,
utility economics, and energy policies. The five steps in this framework
are: (1) development of scenario models, (2) integration of NREM
retrofit database, (3) energy performance simulations, (4) aggregation
of cost and benefits, and (5) selections of retrofit solutions.

Each step serves a specific purpose to enhance the framework’s
robustness. Step 1 builds diverse scenario models to capture variations
in building systems, occupant behaviors, and environmental conditions.
Step 2 integrates a comprehensive database to provide a wide range of
retrofit measures. Step 3 incorporates weather variability and climate
trajectory to capture spatiotemporal variations. Step 4 ensures envi-
ronmental and economic feasibility. Step 5 uses multi-criteria evalua-
tion to assess the performance and choices of various retrofit measures
across diverse scenarios, enabling the selection of robust measures. The
followings detail each step.

In Step 1, data on building systems, occupant behaviors, and envi-
ronmental conditions are collected from the target building scenarios.
The most common parameter is selected to develop a baseline building
energy model scenario that represents the majority. The second most
common parameter is then used to create a control scenario, keeping
other parameters consistent with the baseline. For example, in the
building systems category, the most common number of floors (two
floors) is used to develop the prototype building model in the baseline
scenario, while the second most common number of floors (one floor) is
used to create a control scenario.

The data sets for building energy modeling scenarios are stored in
three formats: EnergyPlus input files (IDF), EnergyPlus weather files
(EPW), and Microsoft Excel worksheets (XLSX). The IDF files contain
data on building systems and occupant behaviors. The EPW files include
data on the natural environment, while the XLSX files store information
of utility rates and rebate.

In step 2, which is conducted in Python, information of residential
retrofit measures is extracted from the NREM database (see Fig. 2 (a) for
a sample code of the data extraction process). Technical data are related
to retrofit measures for building envelope, HVAC systems, appliances,
lighting, and water heating [40]. Table 1 provides detailed descriptions
of the extracted technical data. This information is then used to modify
IDF files used for energy simulations [22,41] (see Fig. 2 (b) for a sample
code of the IDF modification process). Cost data of measures is extracted
for financial analysis in the fourth step.

In Step 3, EnergyPlus simulations are executed using both the initial
and modified IDF files in Python [22,41-43] (see Fig. 2 (c) for a sample
code of the simulation execution process), exporting energy consump-
tion data such as source energy, along with building geometry data,
including living room wall area and roof area. EnergyPlus performs
energy analysis by dynamically simulating heat and mass transfer within
building components, calculating energy loads based on factors like
weather, occupancy, and internal gains. It operates as a console-based
program with high flexibility and configurability, making it easily
adaptable for automated workflows in Python environments.

In Step 4, energy consumption data, building geometry data, and cost
data are used to calculate evaluation indicators. The source energy
reduction and payback year are then applied to rank the top three
optimal retrofit options for each measure across different scenarios.
Source energy reduction reflects the environmental impact of the
building retrofits, while payback year assesses the financial return on
investment. Using both indicators enables a comprehensive evaluation
of the environmental and economic performance of the retrofit mea-
sures, directly reflecting the priorities of key stakeholders: community
managers focus on overall environmental impact, while homeowners
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Fig. 1. Framework to analyze performance and robustness of energy retrofit.

# Extract properties and average cost from XML file # Modify IDF file with new material properties
def extract_properties_and_average_cost_from_measure_id(xml_string, measure_id): def modify_idf_with_new_material(idf_file_path, properties, measure_id):
root = ET.fromstring(xml_string) IDF.setiddname("C:/EnergyPlusV23-1-8/Energy+.idd")
measure = root.find(f".//measure[@id="{measure_id}']") idf = IDF(idf_file_path)
if measure is None:
return {}, None # Add new material
properties = {} material = idf.newidfobject("MATERIAL")
average_cost = None material.Name = f"NewMaterial_ {measure_id}"
material.Roughness = "MediumRough"
# Extract properties material.Thickness = properties.get("Thickness")
component_after = measure.find(".//component[component_startfinish="after']") material.Conductivity = properties.get("Conductivity"”)
if component_after is not None: material.Density = properties.get("Density")
for property_ in component_after.findall("properties/property"”): material.Specific_Heat = properties.get("Specific Heat")
property_type_id = property_.find("property_type").attrib.get("id") material.Solar_Absorptance = properties.get("Solar Absorptivity")
property_value_element = property_.find("property_value")
if property_value_element is not None and property_value_element.text: # Replace wall exterior finish material with the new material
property_value = float(property_value_element.text) constructions = [obj for obj in idf.idfobjects["CONSTRUCTION"]]
if property_type_id == "74": extwall = next((c for ¢ in constructions if c.Name == "EXTWALL:LIVING"), None)
properties[“Solar Absorptivity"] = property_value extwall.Outside_Layer = material.Name
elif property_type_id == "144":
properties["Conductivity”] = property_value * ©.1441 # Save the modified IDF file
elif property_type_id == "145": modified_idf_path = f"C:/NREM/Modified/Se_{measure_id}.idf"
properties["Density”] = property_value * 16.018 idf.save(modified_idf_path)
elif property_type_id == "146": return modified_idf_path
properties["Specific Heat"] = property_value * 4186.8
elif property_type_id == "708": (b)

properties["Thickness"] = property_value * 8.8254

# Extract average cost
cost_element = measure.find(".//costs/cost/cost_average_value")
if cost_element is not None and cost_element.text:
average_cost = float(cost_element.text) * 10.764
return properties, average_cost
(a)

# Run an EnergyPlus simulation (a)Function for extracting wall exterior

def run_energyplus_simulation(idf_path, output_directory):

energyplus_executable = "C:/EnergyPlusV23-1-8/energyplus.exe" fInISh pI'OpertIeS and pI'ICIng from the

weather_file = "C:/NREM/Weather/Lansing_72539@_TMY3.epu"
os.makedirs(output_directory, exist_ok=True) NREM database

# Construct the command to run the simulation

comnand - [ (b)Function for replacing baseline wall

energyplus_executable,

"-w", weather_file, . . . .
e Firectory, exterior finish in IDF file.
"-r", # The -r flag runs the simulation

14f_path (c) Function for running EnergyPlus
simulations.

# Execute command and handle errors

try:
subprocess.run(command, check=True)

except subprocess.CalledProcessError as e:
print(f“EnergyPlus simulation failed: {e}")

(c)

Fig. 2. Sample Python codes.
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Table 1
Extracted technical data of objects in the NREM database.
Building Technical Data Application Description
System
Envelope R-value Wall, roof, and The measure of material’s
floor resistance to heat flow.

Solar Absorptivity Wall and roof The ratio of solar energy
absorbed by a surface to
the total solar energy
incident upon it.

Conductivity Wall and roof The rate at which heat
passes through a material.

Specific Heat Wall and roof The amount of heat per
unit mass required to raise
the temperature by one
degree Celsius.

Density Wall and roof The mass per unit volume
of a material.

Thickness Wall and roof The measure of how thick
a material is.

U-value Window The measure of the rate of
heat loss through a
material.

SHGC (Solar Heat Window The fraction of incoming

Gain Coefficient) solar radiation that passes
through a window.

HVAC SEER (Seasonal Air conditioner The measure of cooling

Energy Efficiency and heat pump efficiency over a seasonal

Ratio) average.

EER (Energy Air conditioner The measure of how

Efficiency Ratio) and heat pump efficiently a cooling
system will operate when
the outdoor temperature is
at a specific level.

HSPF (Heating Heat pump The metric for measuring

Seasonal the heating efficiency over

Performance a heating season.

Factor)

COP (Coefficient Heat pump The ratio of heating or

of Performance) cooling provided to
electrical energy
consumed.

AFUE (Annual Furnace, boiler, The percentage measure

Fuel Utilization and direct of heating efficiency.

Efficiency) heater

Fuel Type Furnace, boiler, The type of fuel used by a

and direct heating system.
heater
Appliance Rated Annual Refrigeratorand  The total energy

Consumption dishwasher consumption expected
from the appliance over a
year.

Energy Factor Clothes washer The ratio of the
appliance’s operational
efficiency to its energy
consumption under
standard usage conditions.

Machine Energy Clothes dryer The direct energy
consumption of the
appliance during its
operation.

Drying Energy Clothes dryer The energy consumption
during the drying process
in appliances.

Cooktop Energy Cooking range The measure of how

Factor efficiently a cooktop
converts energy into heat
for cooking under
standard usage conditions.

Fuel Type Clothes dryer The type of fuel used by

and cooking appliances.
range
Water Rated Energy Water heater The measure of the water
Heating Factor heater’s overall efficiency

based on the amount of
hot water produced per
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Table 1 (continued)

Building Technical Data Application Description
System
unit of fuel consumed over
a typical day.
Fuel Type Water heater The type of fuel used by
water heater.
Lighting Luminous Efficacy Light bulb The ratio of the emitted

luminous flux to the
power consumed.

prioritize personal investment returns. The source energy reduction and
payback year is calculated using Equations (1) and (2).

Einia'al - Ep

Rita = * % 100% o)

initial

where Ryota is source energy reduction, Eipiia) is initial source energy,
and Ep is post-retrofit source energy.

P Cinitiat @)
(Emitial,elec - post,elec) X Celec + (Einitial,fuel - Epost,fuel) X Cfuel

where P is payback year, Cipitial is initial investment cost, Einjtial elec 1S
initial annual electricity use, Epos elec is post-retrofit annual electricity
use, Celec is electricity bill, Ejnitial_fuel is initial annual fuel use, Epost fuel iS
post-retrofit annual fuel use, Cg, is fuel bill.

In Step 5, the values of source energy reduction and payback year for
various top three retrofit measures under different scenarios are used to
generate heatmaps for each evaluation indicator. Additionally, the top
three retrofit choices for each scenario are recorded, with crosses
marking differences from the baseline scenario. This cross-marked
heatmap provides a clear visualization of both the variation in retrofit
effectiveness and the shifts in retrofit choices across different scenarios.

3. Case study for framework demonstration

The case study was conducted at a residential neighborhood in
Lansing area, Michigan, located in Climate Zone 5, characterized by cold
winter and warm summer. The area comprises 63 one-story single-
family houses, 121 two-story single-family houses, and 8 townhouses,
each with four units. These houses were constructed between 2006 and
2023. Data from the International Residential Code (IRC), Google Maps,
BS&A Online, Zillow, and International Energy Conservation Code
(IECC) prototype building model were used to model three building
prototypes that represent the most prevalent characteristics within the
community. The geometric models were developed using 3D models
from Google Maps, geometric data from BS&A Online, and architectural
drawings from Zillow. The thermal models were built based on IRC re-
quirements for the corresponding construction years, along with mate-
rial data from Zillow and parameters from the IECC prototype building
model. The HVAC system configurations were identified based on the
system descriptions from BS&A Online and Zillow. These configurations
were then modeled based on the IECC prototype building models with
the same HVAC system configurations. Specific HVAC system parame-
ters were determined using HVAC sizing function in EnergyPlus. These
prototypes were built in OpenStudio (Fig. 3) and converted into IDF
format for simulations under different scenarios. EPW files were
downloaded from the EnergyPlus official website. Appliance energy
efficiency data was collected from the NREM database, and occupant
behaviors were referred to IECC prototype building model. Other data,
like rebate policies and future weather data, will be detailed in the
scenario descriptions. The electricity rate used in this case study is
$0.17/kWh, while the gas rate is $0.43/m?, based on local utility pro-
vider pricing. The site-to-source energy conversion factors, 3.167 for
electricity and 1.084 for natural gas, are default values in EnergyPlus.
These conversion factors are designed to represent the complete energy
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= International Residential Code
= Google Maps
= BS&A Online Database
= Zillow Database
.. = |ECC Prototype Building Model \
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Fig. 3. Workflow to build building prototypes.

cycle, accounting for generation, transmission, and distribution losses
associated with delivering energy from the source to the site.

3.1. Scenario development

The baseline scenario (SO) for this study uses the most common
house type: the two-story single-family house built in 2016. The model
house faces south with a footprint of 115.66 m? and a garage area of
59.46 m?, representing the median areas for the 121 two-story single-
family houses. The building’s total floor area is 287.52 m?, with a living
area of 228.06 m?, including the basement living area. All floors have a
height of 2.74 m. The window-to-wall ratio is 15 %. The exterior walls
are finished with light vinyl, and the roof is covered with light asphalt
shingles. The building envelope insulation meets the 2015 IRC minimum
requirements, and appliances comply with the Federal Standard 2010
requirements as recorded in the NREM database. The luminous efficacy
of lighting is 45 Im/W. The house is occupied by three residents who do
not open the window. The thermostat setpoint is set to 24 °C for cooling
and 22 °C for heating. The power levels and schedules of appliances and
lighting were referred to in the settings in IECC prototype building
models.

14 control scenarios were examined to explore the effects of three
major factors—building system, occupant behavior, and environ-
ment—on retrofit measures. Tested building system factors include floor
area, number of floors, housing type, orientation, exterior finish,
window-to-wall ratio, and energy efficiency. In the “floor area” scenario
(S1), the building footprint increases by 25 %, and the conditioned floor
area increases by 35 % compared to the baseline scenario (S0). In the
“number of floors” scenario (S2), the building is single-story with no
change in floor area. In the “housing type” scenario (S3), the building is
a four-family townhouse, with the footprint increasing by 157 % and the
conditioned floor area by 206 % compared to the baseline scenario (S0).
In the “orientation” scenario (S4), the building faces west. In the
“exterior finish” scenario (S5), the exterior walls are finished with dark
vinyl, and the roof is covered with dark asphalt shingles. In the “win-
dow-to-wall ratio” scenario (S6), the ratio is 10 %. In the “energy effi-
ciency” scenario (S7), the building envelope insulation meets the 2006
IRC minimum requirements, and appliances comply with the federal
standards from 2001 to 2010 as recorded in the NREM database.

Tested occupant behavior factors include appliance usage, window
opening behavior, and thermostat settings. In the “appliance usage”
scenario (S8), the use of the dishwasher, clothes washer, and clothes

dryer doubles, and hot water usage also doubles. In the “window
opening behavior” scenario (S9), windows are opened to 1/3 of their
total area. In the “thermostat settings” scenario (S10), the cooling set-
point is 26 °C, and the heating setpoint is 20 °C.

Environment factors refer to political and natural environment fac-
tors, including rebate policies, utility rates, location, and global warm-
ing. In the “policy” scenario (S11), a rebate policy, encompassing Home
Efficiency Rebates (Section 50121) and Home Electrification and
Appliance Rebates (Section 50122) of the Inflation Reduction Act (IRA)
[44], is implemented. This policy provides rebates for energy-saving
measures that meet efficiency requirements. In the “utility rates” sce-
nario (S12), utility rates increase 5 % per year. In the “location” scenario
(S13), the site is moved to Des Moines, Iowa, which is in the same
climate zone as the baseline scenario (S0) but has higher summer tem-
peratures and more solar radiation year-round. In the “global warming”
scenario (S14), CNRM-ESM2-1 Future Typical Meteorological Year
(fTMY) weather file for Des Moines from 2040 to 2059 [45] is used.
Because future climate data for Lansing is unavailable, Des Moines’
future climate data is used instead. The “global warming” scenario (S14)
is compared to the “location” scenario (S13) rather than the baseline
scenario (S0). Table 2 presents the parameters of the baseline scenario
(S0) and modified parameters for the 14 control scenarios.

3.2. Retrofit measures and evaluations

The tested retrofit measures involve the retrofitting for building
envelope, HVAC, appliance, lighting, and water heating. Building en-
velope measures include retrofitting wall exterior finish, roof exterior
finish, roof insulation, windows, wall sheathing, and wall wood studs.
HVAC measures involve upgrading the air conditioner, furnace, and
installing heat pump. Appliance measures include upgrading refriger-
ator, dishwasher, clothes washer, clothes dryer, and cooking range.
Lighting measures involve upgrading light bulbs. Water heating mea-
sures include upgrading to a more energy-efficient water heater or one
that utilizes a different energy source.

Two evaluation indicators were selected in this study. Source energy
reduction percentage is used to evaluate the environmental benefits of
retrofit, while payback year is used to assess the cost-effectiveness of
retrofit measure by considering the investment and site energy cost
savings.
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Table 2

Baseline and modified parameters for different scenarios.

Category Parameter Baseline value Modified value
Building Footprint [m?] 115.66 $1:144.58
System $3:297.28
Conditioned Floor 234.58 S1: 316.68
Area [m?] $3: 717.21
Number of Floors 2 S2:1
Housing Type Two-story Single S2: One-story
Family House Single Family
House
S3: Four-unit
Townhome
Orientation South S4: West
Exterior Finish Wall Light Vinyl/ S5: Wall Dark
Roof Light Asphalt  Vinyl/Roof Dark
Shingles Asphalt Shingles
Window-to-wall 15 % S6: 10 %
Ratio
Vintage 2016 S7: 2006
Window U-value 1.82 S7:1.99
[W/(m*K)]
Door U-value [W/ 2.84 -
(m*K)]
Floor R-value [m>K/ 5.28 -
W]
Ceiling R-value 8.63 S7: 6.69
[m?.K/W]
Basement Wall R- 2.64 S7:1.76
value [m%K/W]
Wall R-value [m*K/  3.52 S7:3.35
W]
Air Conditioner COP 3 S7:3
Furnace AFUE 80 % S7:78 %
Refrigerator 0.45 -
Energy Factor [m®/
kWh]
Dishwasher Rated 324 S7: 474
Annual Consumption
[kWh]
Clothes Washer 3.57 x 1072 §7:1.44 x 102
Modified Energy
Factor [m®/kWh-
cycle]
Clothes dryer 3.81/0.23 -
Drying Energy
[kWh/load] /
Machine Energy
[kWh/load]
Water Heater Rated 0.82 -
Energy Factor
Lighting [Im/W] 45 S7: 15
Occupant Appliance Usage Power level and S8: Double the
Behaviors schedule based on power level
IECC prototype
model
Window Opening No S9: Yes
Behavior
Thermostat Settings Cooling 24°C / $10: Cooling 26°C
Heating 22°C /
Heating 20°C
Environment Rebate Policy No S11: Yes
Utility Rate No change every S12: Increase 5 %
year per year
Weather Variability Lansing, MI $13: Des Moines,
1A
Climate Change Lansing S13: Des Moines
1973-2005 1973-2005
Historical Weather Historical

File

Weather File
S14: Des Moines
2040-2059
Futural Weather
File
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3.3. Results by source energy reduction

Fig. 4 overviews the source energy reductions by retrofit measures
across different scenarios. The horizontal axis indicates scenarios where
S0 serves as the reference for evaluating S1-13 and S13 serves as the
reference for S14. The vertical axis indicates the retrofit subjects with a
sequence number assigned to rank the source energy reduction. For
example, “Wall sheathing 17 represents the specific wall sheathing
retrofit measure with the greatest source energy reduction; “Window 3”
represents the window retrofit measure with the third most optimal
source energy reduction. Most retrofit measures display the top three
options, but some measures yield fewer savings than the three, thus only
providing the rank for the available options. The color bar on the right
side of the heatmap transitions from light yellow to deep blue, corre-
spondingly signifying the source energy reduction percentage from 0 %
to 10 %. The grey diagonal stripes indicate that the retrofit measure
applied in the scenario is not able to reduce source energy. Crosses
within certain cells indicate that the retrofit measures corresponding to
those cells are different from those in the baseline SO scenario. For
example, the cross in the cell corresponding to “window 1" retrofit
measures under “number of floors” (S2) scenario means that the optimal
window retrofit measure in this scenario differs from the baseline sce-
nario (S0).

Overall, the results indicate that furnace retrofit has outstanding
performance and robustness. The performance only slightly decreases in
“appliance usage” (S8) and “global warming” (S14), but it still surpasses
other retrofit measures. There is no significant difference in performance
among the top three furnace retrofit measures, and the retrofit selection
remains consistent across different scenarios.

3.3.1. Robustness of retrofit measures by source energy reduction

For building envelope retrofits, the top three measures for wall
exterior finish and roof exterior finish have very limited and similar
energy savings. Their rankings, based on source energy reduction ca-
pacity, are easily influenced by building system, occupant behavior, and
environmental factors. Additionally, the top three window retrofit
choices are highly susceptible to various factors: in building systems, all
factors except floor area (S1) affect the top three choices. Among
occupant behavior factors, both appliance usage (S8) and window
opening behavior (S9) influence the top three window retrofit options.
In environmental factors, global warming (S14) impacts the selection of
the top three window retrofits. Other retrofit measures’ top three
choices remain unaffected by changes in building system, occupant
behavior, and environmental factors.

In building systems, the number of floors (S2) and window-to-wall
ratio (S6) significantly influence the energy reduction performance of
building envelope retrofits. Housing type (S3) and energy efficiency (S7)
notably impact the performance of retrofits across building envelope,
HVAC, and appliances. Among occupant behavior factors, appliance
usage (S8) and window opening behavior (S9) significantly affect energy
reduction in building envelope, HVAC, and appliance retrofits. Envi-
ronmental factors such as location and global warming notably influ-
ence the energy reduction performance of HVAC upgrades.

3.3.2. Performance of retrofit measures by source energy reduction

In building envelope retrofits, the impact of upgrading wall exterior
finish, roof exterior finish, and roof insulation on source energy is
negligible, with a maximum reduction of 1.5 % across all scenarios.
Optimal window retrofits can achieve reductions of 1.6 % to 4.6 %, with
the smallest reduction in the “number of floors™ (S2) and the largest in
the “orientation” (S4). Wall sheathing upgrades can lower source energy
by 0.5 % to 3.9 %, with the minimal reduction in the “number of floors”
(S2) and the maximum in the “window-to-wall ratio” (S6). Among
building envelope measures, wall wood stud retrofits are the most effi-
cient, reducing source energy by 3.0 % to 4.0 % in the “housing type”
(S3), “appliance usage” (S8), and “window opening behavior” (S9), and
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achieving reductions of 5.5 % to 7.7 % in other scenarios.

In HVAC upgrades, furnace upgrades are more effective than air
conditioner improvements. Optimal air conditioner retrofits can save
1.9 % to 4.3 % of source energy, with the lowest reduction in the
“number of floors” (52) and the highest in the “global warming” (S14).
Optimal furnace retrofits can reduce source energy by up to 8.0 %, with
the highest savings in the “floor area” (S1) and “energy efficiency” (S7),
and the lowest at 4.7 % in the “appliance usage” (S8).

In appliance upgrades, only the clothes dryer measures achieve
notable source energy reductions. Other measures reduce energy by less
than 1.0 %. Clothes dryer upgrades can save up to 3.2 % in the “appli-
ance usage” (S8). Upgrades to light bulbs and water heaters have limited
impact, reducing energy by no more than 2.0 %.

For retrofit measures with negligible energy savings, the top three
options exhibit only slight differences in energy reduction. For measures
with slight energy savings: the top three window retrofit options differ
by up to 2.0 %, the top three wall sheathing retrofit options differ by less
than 1.0 %, and the top three air conditioner retrofit options differ by up
to 1.0 %. For measures with moderate energy savings: the top three wall
wood stud retrofit options differ by up to 1.7 %, and top three furnace
retrofit options by up to 1.1 %. For clothes dryer, cooking range, light
bulb, and water heater retrofits, there is only one option available that
achieves energy savings.

3.4. Results by payback year

Fig. 5 overviews the payback year by retrofit measures across
different scenarios. The color bar on the right side of the heatmap
transitions from light yellow to deep blue, correspondingly signifying
the payback year from 0 to 100 years. The grey diagonal stripes indicate
that the retrofit measure has a payback year exceeding a century. Other
aspects of the payback year heatmap (Fig. 5) are identical to those of the
source energy reduction heatmap (Fig. 4).

Overall, the results indicate that light bulb upgrading demonstrates
optimal performance and robustness in payback year. Additionally, the
retrofit measures for the clothes dryer, furnace, and wall wood stud also
show acceptable performance with the payback year less than 20 years
mostly. The retrofit selections remain consistent across all scenarios.

3.4.1. Robustness of retrofit measures by payback year

All factors except utility rates in Scenario 12 impact the top three
options of building envelope retrofits. Housing type in Scenario 3 and
energy efficiency in Scenario 7 affect the top three options of appliance
upgrades. The top three options for wall wood stud retrofit, HVAC up-
grade, and refrigerator upgrade are unaffected by building systems,
occupant behavior, or environmental factors.

Several factors within the building system influence the payback
year of various upgrades. Specifically, the number of floors (52), housing
type (S3), and energy efficiency (S7) slightly affect the financial return
period for building envelope retrofits, HVAC upgrades, and appliance
upgrades. Occupant behavior and environmental factors also play sig-
nificant roles. For building envelope retrofits, the payback year is
influenced by appliance usage (S8), rebate policy (S11), and utility rates
(S12). For HVAC upgrades, the payback year is affected by appliance
usage (S8), thermostat settings (S10), utility rates (S12), location (S13),
and global warming (S14). Appliance usage (S8), window opening
behavior (S9), and utility rates (S12) impact the payback year of
appliance upgrades. Finally, appliance usage (S8) and utility rates (S12)
influence the payback year of water heater replacements.

3.4.2. Performance of retrofit measures by payback year

In building envelope retrofit measures, retrofitting wall exterior
finish, roof exterior finish, and roof insulation rarely pay back within a
century in most scenarios. However, roof insulation pays back in 70
years in the “number of floors” (S2) and in 58 years in the “utility rates”
(S12). Retrofitting windows only proves financially viable in the
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“housing type” (S3), “orientation” (S4), and “utility rates” (S12), with a
minimum payback of 88, 86, and 46 years, respectively. Optimal wall
sheathing retrofit payback years vary by scenario. Paybacks of 40-50
years in the “floor area” (S1), “orientation” (S4), “exterior finish” (S5),
“thermostat settings” (S10), “location” (S13), and “global warming”
(S14) are similar to the baseline (S0). The “housing type” (S3) and
“appliance usage” (S8) increase payback to 60 years, while the “number
of floors” (S2) exceeds a century. The “window-to-wall ratio” (S6) and
“window opening behavior” (S9) have a payback of 34 years, whereas
the “rebate policy” (S11) and “utility rates” (S12) lower it to 22 years. In
most scenarios, optimal wall wood stud retrofits have 10-20 year s of
payback. This is 23 years in the “housing type” (S3) and five years in the
“rebate policy” (S11).

In HVAC upgrades, the payback years for optimal air conditioner
improvements vary by scenarios. In the “floor area” (S1), “orientation”
(S4), “exterior finish” (S5), “window opening behavior” (S9), and
“rebate policy” (S11), paybacks are around 50-60 years, similar to the
baseline (SO). In the “number of floors” (S2), “housing type” (S6), and
“thermostat settings” (S10), they extend to 60-70 years. Conversely, in
the “housing type” (S3) and “appliance usage” (S8), paybacks shorten to
40-50 years, and in the “energy efficiency” (S7), “location” (S13), and
“global warming” (S14), they reduce further to 30-40 years. The
shortest payback is 27 years in the “utility rates” (S12). Furnace
improvement in all scenarios has 10-20 year s of payback.

In appliance upgrades, payback years vary significantly across sce-
narios. Typically, optimal upgrades for refrigerators, dishwashers, and
clothes dryers have payback years of 46-50 years, 74-79 years, and 11
years, respectively. In most scenarios, the payback for clothes washers
and cooking ranges exceeds a century. In the “number of floors” (S2) and
“energy efficiency” (S7), paybacks for refrigerators and dishwashers
shorten to 36 and 66 years. In the “housing type” (S3), the payback for
dishwashers extends to 88 years, while paybacks for clothes washers,
clothes dryers, and cooking ranges shorten to 28, 4, and 43 years. In the
“energy efficiency” (S7), paybacks reduce to 32 years for refrigerators,
32 years for dishwashers, and 16 years for clothes washers. In the
“appliance usage” (S8), paybacks shorten to 22 years for refrigerators,
36 years for dishwashers, 44 years for clothes washers, four years for
clothes dryers, and 74 years for cooking ranges. The “window opening
behavior” (S9) extends paybacks to 65 years for refrigerators and 91
years for dishwashers. Under the “utility rates” (S12), paybacks shorten
to 25 years for refrigerators, 32 years for dishwashers, 39 years for
clothes washers, nine years for clothes dryers, and 45 years for cooking
ranges.

Replacing light bulbs offers a payback of less than two years across
all scenarios. Water heater retrofits generally have a 74-year payback,
except for 37 years in the “appliance usage” (S8) and 32 years in the
“utility rates” (S12).

The top three retrofit measures show significant differences in
payback year. Wall sheathing, refrigerator, and dishwasher retrofits
have a gap of up to 13 years, while air conditioner retrofits exhibit the
largest gap of up to 17 years. Wall wood stud retrofits have a smaller gap
of up to five years. Furnace retrofits have the smallest gap in one year.
Clothes washer retrofits have a gap of up to two years. These variances
emphasize the need to carefully choose retrofit options for optimal
economic and energy-saving outcomes.

3.5. Summary of case findings

Table 3 shows the number of identical top three measures selected
across S0-S14 using different indicators. The top three choices for air
conditioner, furnace, and refrigerator remain consistent across different
indicators. For dishwasher upgrades, the top three choices vary by in-
dicator only in the “energy efficiency” (S7), while remaining uniform
across indicators in all other scenarios. For clothes dryer, cooking range,
light bulb, and water heater retrofits, when keeping other parameters
constant (e.g., maintaining the same capacity for clothes dryers and the
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Table 3
Number of identical retrofit measures selected across the 15 scenarios using
different indicators.

Category Retrofit object Number
Envelope Wall exterior finish 1
Roof exterior finish 0
Roof insulation 0
Window 2
Wall sheathing 0
Wall wood stud 0
HVAC Air conditioner 15
Furnace 15
Appliance Refrigerator 15
Dishwasher 14
Clothes washer 0
Clothes dryer 15
Cooking range 15
Lighting Light bulb 15
Water heating Water heater 15

same fuel type for cooking ranges), there is typically only one upgrade
option available, with no alternative choices. For building envelope
retrofit measures, the top three choices differ by indicator within the
same scenarios.

For source energy reduction, wall wood stud and furnace retrofits
outperform others, with furnace retrofits showing smaller differences
across the top three options and greater consistency across scenarios. For
payback year, light bulb upgrades show optimal performance and
robustness, while clothes dryer, furnace, and wall wood stud retrofits
also perform well, with satisfactory payback periods and consistent re-
sults across scenarios. Additionally, the top three choices for air condi-
tioner, furnace, and refrigerator remain consistent across different
indicators. The furnace retrofit stands out as the most effective and
robust measure, simultaneously achieving exceptional source energy
reduction, an acceptable payback year, and stable performance with
consistent selection across various scenarios.

4. Discussions
4.1. Implications for framework application

This framework utilizes retrofit data from the NREM database, while
other research often relies on retrofit measures derived from various
local retrofit projects, market analyses, government laws, and building
codes [46,47]. The advantage of using NREM data lies in its integration
of multiple DOE databases into a unified, national resource. This inte-
gration provides a consistently updated and expanded repository of
performance parameters and costs for residential retrofit technologies,
ensuring a comprehensive, standardized dataset that enhances the
reproducibility and scalability of research findings.

Recent research exploring optimal building retrofit solutions has
considered occupant factors, such as optimizing retrofit plans to mini-
mize thermal discomfort [48] and evaluating the performance of retrofit
measures under stochastic human behavior [49]. These studies have
typically used occupant factors as one of the criteria for selecting
optimal retrofit measures or as a parameter in building energy modeling.
Our study delves more specifically into how occupant behavior in-
fluences the selection and performance of optimal retrofit measures,
highlighting the importance of incorporating behavioral patterns into
the decision-making process for building retrofits.

Recent research has shown that global warming impacts the selec-
tion of optimal building envelope retrofit measures [50], aligning with
the conclusions of this case study. Additionally, Ascione et al. indicate
that climate change has a slighter effect on total energy and financial
indicators than expected due to a balance between its positive impact on
heating demand and negative impact on cooling demand [49]. In this
study, comparisons between “location” (S13) and “global warming”
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(S14) reveal that with global warming, air conditioner retrofits become
more efficient, while furnace retrofits become less efficient. This is
because increased cooling demand makes air conditioner retrofits more
effective in reducing energy consumption, whereas decreased heating
demand makes furnace retrofits less effective. Other retrofit measures
remain largely unchanged in efficiency, as the overall energy demand
remains stable, keeping their energy reduction contributions consistent.

When comparing the selection and performance of various retrofit
measures across different scenarios, using a modified heatmap effec-
tively showcases the selection variability and performance difference of
each measure across different scenarios. Additionally, it clearly illus-
trates the influence of each factor within a scenario on the performance
of different retrofit measures. This method facilitates a nuanced insight
of the performance and robustness of retrofit measures, assessing their
broad applicability across diverse scenarios.

This framework has limitations due to the absence of renewable
energy retrofit data, such as installing photovoltaic (PV) panels, in the
NREM database. As a result, the assessment of energy conservation and
investment potential for retrofit measures may be understated. For
instance, the environmental and economic benefits of heat pumps could
be underestimated if the electricity used is generated from fossil fuels.

4.2. Implications for energy retrofit practices

4.2.1. Retrofit robustness

When evaluating the source energy reduction performance and
payback year of energy retrofits, housing type, energy efficiency, and
appliance usage emerge as the most influential factors. These three pa-
rameters can be used as primary criteria for categorizing buildings in
large-scale retrofit assessments. Housing type affects the thermal dy-
namics and energy usage patterns of a building, impacting the effec-
tiveness of retrofits across various categories such as building envelope,
HVAG, appliances, lighting, and water heating. Similarly, the vintage of
a building reflects its inherent energy efficiency, with older buildings
typically having poorer insulation and outdated systems that benefit
more from upgrades. Appliance usage affects the overall energy de-
mand, thereby influencing the relative impact of different retrofit
measures. For example, in buildings with high appliance usage, the
energy savings from appliance upgrades are more significant, making
these upgrades more cost-effective compared to other measures such as
building envelope and HVAC retrofits. Conversely, in buildings with low
appliance usage, the potential for energy savings from appliance up-
grades is smaller, and other measures like improving insulation or
upgrading HVAC systems may offer more substantial benefits. There-
fore, considering housing type, vintage, and appliance usage is crucial
for accurately assessing the potential source energy reductions and
financial viability of different retrofit measures.

The optimal choices for building envelope retrofit measures are more
susceptible to change across different scenarios compared to HVAC,
appliance, lighting, water heating retrofits. Building system factors
significantly impact a building’s thermal performance then shifting the
optimal solutions of building envelope retrofit. For example, building
orientation influences the solar radiation transferred through windows.
To maintain indoor thermal comfort, solar radiation should stay within
certain levels. Different orientations require different windows with
corresponding Solar Heat Gain Coefficient (SHGC) values to achieve the
same comfort level. Thus, the window choices differ when building
orientation changes. Additionally, building system factors directly in-
fluence building envelope retrofit costs. For example, a larger window-
to-wall ratio increases window area, requiring more investment and
affecting the payback year of window retrofits.

Occupant behavior and environmental factors can significantly
impact the optimal choices for building envelope retrofits. For example,
frequent use of appliances increases internal heat gains, which can
diminish the benefits of higher-grade insulation. Investing in higher
levels of insulation might be less prioritized because retaining more heat
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could lead to overheating. Instead, it may be more cost-effective to focus
on moderate insulation levels that balance heat retention and dissipa-
tion. Similarly, in hot climates, excessive insulation can trap unwanted
heat, leading to overheating, so less insulation might be more appro-
priate. Thus, the optimal choice of insulation varies depending on the
environmental conditions.

4.2.2. Retrofit performance

The modifications to the wall and roof exterior finishes, as well as the
upgrades to roof insulation, do not significantly reduce source energy.
These investments are not cost-effective. In the prototype building, the
attic is unconditioned. The unconditioned attic limits the impact of
improved roof insulation on the overall thermal performance of the
building. The wall exterior finish is light vinyl, and the roof finish is light
asphalt shingles. The lack of noticeable source energy reduction may be
due to the light materials used, which already have reflective properties
that minimize heat absorption. Consequently, these retrofits offer mar-
ginal improvement over the existing setup, making the investment
challenging to rationalize.

Window retrofits reduce source energy in most cases, particularly in
scenarios with shared walls or specific building orientations. In build-
ings with shared walls, heat loss is reduced, amplifying the impact of
window retrofits and accelerating payback. In west-facing buildings, the
greater solar heat gain compared to south-facing ones enhances the ef-
ficiency of window retrofits and shortens the payback year.

Improving the insulation of wall wood studs reduces more source
energy and results in a shorter payback year compared to enhancing
wall sheathing insulation. Both measures benefit from rebate policies
and increased utility rates, which can shorten their payback years. The
source energy reduction performance and investment payback year of
both measures are significantly influenced by various factors, including
building system, occupant behavior, and environmental conditions. The
building system influences how heat circulates and escapes, thereby
affecting the impact of wall insulation improvements. For instance, a
building with a high window-to-wall ratio may experience significant
heat loss through the windows. While improved wall insulation can help
reduce this loss, it may not be as effective as in a scenario with a low
window-to-wall ratio. Occupant behavior, such as window opening
behavior, directly impacts the effectiveness of wall insulation retrofits.
Frequently opening windows during cold months allows warm indoor
air to escape, increasing heat loss. Similarly, opening windows during
warm months lets hot outdoor air in, increasing heat gain. These be-
haviors counteract the thermal barrier provided by wall insulation,
thereby reducing its overall benefits in maintaining a stable indoor
temperature and decreasing energy consumption. Environmental factors
like different regional weather and global warming play a crucial role as
well. For example, in colder weather, buildings benefit more from
improved wall insulation, as it retains indoor heat more effectively than
in warmer weather.

HVAC systems show effective results and investment returns across
all scenarios. Furnace upgrades outperform air conditioner improve-
ments due to the community’s location in Climate Zone 5, where pro-
longed and cold winters create a greater demand for heating than
cooling. Additionally, none of the heat pump measures, including air
source heat pumps, ground source heat pumps, and mini-split heat
pumps, achieve significant source energy reduction and investment
returns. This is due to the lack of renewable energy retrofit measures in
the database. Heat pumps use electricity for cooling and heating, more
electricity consumes more source energy. Coupled with the high cost of
heat pumps, even with rebate policies, there is no investment return for
heat pump systems without renewable energy integration.

Appliance upgrades have minimal source energy reduction effects.
However, in townhomes, with high appliance usage, or when utility bills
increase annually, these upgrades can still offer an acceptable return on
investment.

In the lighting system, replacing light bulbs with energy-efficient
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ones has limited source energy reduction effects. However, the cost is
recovered within two years in all scenarios, making it a worthwhile
retrofit measure.

Water heating systems have limited source energy reduction per-
formance and long payback years. Like HVAC systems, due to the lack of
renewable energy measures, using heat pumps alone for domestic hot
water results in higher source energy and investment with no return.

4.2.3. Indicator selection

When assessing energy retrofits that show obvious energy conser-
vation benefits, such as those implemented on windows, wall sheathing,
wall wood studs, air conditioners, furnaces, and light bulbs, the optimal
choices may vary depending on the evaluation indicator, like source
energy reduction and payback year.

For building envelope retrofits, although material costs per unit do
not vary greatly, the total investment can range from a few thousand to
tens of thousands of dollars when considering the entire building. Both
energy saving effect and investment costs significantly affect the
payback year, making it difficult to achieve the same results when
selecting optimal measures based on source energy reduction and
payback year.

For air conditioner and furnace upgrades, the top three options
remain the same for both indicators. Each 0.29 increase in the Seasonal
Energy Efficiency Ratio (SEER) of a central air conditioner adds only
$100 to the investment. Similarly, each 0.25 increase in the Annual Fuel
Utilization Efficiency (AFUE) of a natural gas furnace adds less than
$200. These small investment increments mean that the primary factor
affecting the payback year is energy savings, not investment cost.
Therefore, for HVAC equipment, the top three choices are consistent
across different evaluation indicators.

The limited number of appliance upgrade options typically results in
the same top three choices regardless of the evaluation indicator used.
These top three options offer similar energy savings and have compa-
rable payback year, with the energy savings generally being modest and
the payback year lengthy. Therefore, the differences among the top
three choices are minimal, making it practical to focus on other features,
such as refrigerator capacity or washing machine water usage, rather
than solely on energy efficiency and economic metrics.

5. Conclusion

This study proposes a framework for identifying optimal and robust
energy retrofit solutions at the community level. The framework consists
of five key steps: scenario model development, integration of the NREM
retrofit database, energy performance simulations, cost-benefit aggre-
gation, and selection of retrofit solutions. Each step enhances the
framework’s robustness by incorporating the diversity of building fea-
tures, occupant behaviors, environmental conditions, retrofit measures,
and evaluation methods. A case study in southern Michigan of the
United States, demonstrates the framework’s effectiveness, revealing
that furnace retrofits stand out as the most effective and robust measure,
simultaneously achieving 4.7 %-8.0 % source energy reduction, 10-20
years payback period, and stable performance with consistent selection
across various scenarios. The framework proves effective as the case
study conclusions are reasonable and align with other research findings,
indicating its potential for broader application in evaluating and opti-
mizing community-scale residential building energy retrofits.

Despite its strengths, this framework has some limitations. First, the
absence of renewable energy retrofit data, such as PV installations in the
NREM database, may understate the benefits of measures like heat
pumps. Additionally, using payback year as a metric does not account
for the time value of money; employing discounted payback period or
net present value would allow for a more accurate assessment of long-
term financial viability. Finally, comparing multiple separate in-
dicators could make the results less straightforward.

Future work could expand the framework by incorporating
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renewable energy options and developing a composite metric that in-
tegrates environmental impact, economic viability, and robustness into
a single score, offering a clearer and more comprehensive assessment of
retrofit performance.
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