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Abstract

Recent advancements in graph representation learning have
shifted attention towards dynamic graphs, which exhibit
evolving topologies and features over time. The increased use
of such graphs creates a paramount need for generative mod-
els suitable for applications such as data augmentation, obfus-
cation, and anomaly detection. However, there are few gener-
ative techniques that handle continuously changing temporal
graph data; existing work largely relies on augmenting static
graphs with additional temporal information to model dy-
namic interactions between nodes. In this work, we propose a
fundamentally different approach: We instead directly model
interactions as a joint probability of an edge forming between
two nodes at a given time. This allows us to autoregressively
generate new synthetic dynamic graphs in a largely assump-
tion free, scalable, and inductive manner. We formalize this
approach as DG-Gen, a generative framework for continuous
time dynamic graphs, and demonstrate its effectiveness over
five datasets. Our experiments demonstrate that DG-Gen not
only generates higher fidelity graphs compared to traditional
methods but also significantly advances link prediction tasks.

1 Introduction

Recent research in graph representation learning focuses on
dynamic' graphs, or graphs which change over time (Barros
et al. 2021; Kazemi et al. 2020). Dynamic graphs are neces-
sary to model several interesting real world phenomena that
cannot be captured by static graphs alone, as the underlying
data distribution changes as a function of time. Examples
include social networks, citation graphs, and financial trans-
actions (Barros et al. 2021).

Several methods learn in the discriminative regime (Xu
et al. 2020; You, Du, and Leskovec 2022; Bastas et al. 2019;
Ma et al. 2020; Nguyen et al. 2018b; Kumar, Zhang, and
Leskovec 2019). These models support a variety of down-
stream tasks such as link prediction, node and graph classi-
fication, etc. While considerable progress has been made in
this discriminative paradigm, work in the generative regime
is nascent. Yet, generative models for temporal graphs are
essential for tasks such as data augmentation, obfuscation of
sensitive user data during dataset creation, and anomaly de-
tection (Guo and Zhao 2020; Oussidi and Elhassouny 2018).
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Problem Formulation. The goal of continuous time dy-
namic graph (CTDG) generation is to learn a distribution
over source graph(s) that are in a state of continuous evo-
lution. This learning process must ensure that the statistical
properties of graphs derived from this distribution closely re-
semble those of the source graphs. CTDGs are characterized
by a series of timestamped events, each involving a source
and destination node and an edge feature vector. The range
of possible events encompasses node additions and dele-
tions, edge interactions, and feature evolution. Section 2.1
provides a formal mathematical definition of CTDGs. The
challenge of useful CTDG generative modeling lies in learn-
ing a distribution to generate event sequences that both re-
flect and diverge from reference graphs — achieving statis-
tical similarity without exact duplication. This balance pre-
vents information leakage and guarantees the uniqueness of
the generated graphs, ensuring they are innovative reflec-
tions rather than replicas of the source data.

Limitations of Prior Approaches. We argue that current
generative models for CTDGs are too reliant on existing
static methods. Specifically, current approaches attempt to
model temporal graphs either as a single static graph with
temporal edges (Zhou et al. 2020; Gupta et al. 2022) or
as a set of static snapshots representing the graph at dis-
crete timestamps (Zeno, La Fond, and Neville 2021). Such
methods then apply existing generative models for static
graphs (e.g. Chen, Sun, and Han 2018; Wang et al. 2018b;
Popova et al. 2019; You et al. 2018) to generate sequences
of evolving static graphs. However, this reliance on aug-
menting static graphs with discrete time representations falls
short in addressing the intrinsic nature of temporal graphs:
continuous and non-uniform evolution. This misalignment
introduces the following challenges:

* Topological assumptions: Prior work makes strong in-
ductive assumptions about the source graph’s underlying
topology to fit it into a discrete series of static graphs.
This leads to poor modeling of many real world datasets,
where such assumptions may not hold.

Lack of inductive modeling: Inductivity allows models
to transfer knowledge about the underlying graph to un-
seen nodes (Hamilton, Ying, and Leskovec 2017). Here,
this refers to the ability of a model to create new syn-
thetic nodes not seen during training. Most static repre-



sentations of dynamic graphs rely on mapping node IDs
and/or interaction timestamps directly to the generated
graphs and are thus limited to purely transductive mod-
eling. Such an approach not only raises concerns such as
node leakage from the source graph (Gupta et al. 2022),
but also inherently lacks the ability to model new nodes
and thus restricts the model’s utility in dynamic scenarios
where the introduction of novel nodes is common.

Poor Scalability to Large Time Horizons: Static rep-
resentations of temporal graphs often necessitate the ex-
plicit computation of graph adjacency matrices. As these
matrices grow in size, they can cause model divergence
and substantially increase memory requirements. Conse-
quently, most existing methods for graph generation are
constrained to learning on small source graphs.

Inability to Model Network Features: The approaches
used in prior work are not able to incorporate existing
edge features during training nor able to generate graphs
with such synthetic features.

Our Key Insight. In contrast to prior work that fundamen-
tally relies on augmenting static graph representations with
temporal data, we propose a novel method that directly mod-
els temporal graphs. We directly model the interactions (also
referred to as femporal edges) within a temporal graph, that
is, a sequence of 4-tuples with each element in the tuple rep-
resenting the source and destination nodes (along with any
associated features), timestamp, and edge features, respec-
tively. We define the occurrence of such a temporal edge as
a joint probability of these elements. This probability is then
factored into a product of conditional probabilities, each of
which represent an appropriate statistical distribution whose
parameters can be estimated using a deep probabilistic de-
coder (See Figure 1). This decoder can be paired with any
encoder that maps temporal interactions to dense node em-
bedding vectors. Once trained, this model directly generates
synthetic interactions in an autoregressive manner.

Our Solution. We formalize the above idea into DG-Gen?
(Dynamic Graph Generative Network), an encoder-decoder
framework for temporal graph generation. By directly mod-
eling the probability of temporal interactions, DG-Gen ad-
dresses the challenges noted above: By learning parameters
to invariant conditional probability distributions, we model
topological evolution in a largely assumption-free manner.
Additionally, our method models the probability of a single
(or small mini-batched) temporal interaction at a time and
consequently avoids encountering the data scalability (and
memory) challenges associated with previous methods. Fur-
ther, by learning to predict edge probabilities from a learned
temporal embedding, rather than a node ID, our model is
fully inductive by default and thus generates graphs with
unseen nodes and timestamps. Finally, our model generates
output edge features of arbitrary length.

Contributions. We present DG-Gen, a generic generative
framework for CTDGs which models temporal graph inter-
actions directly. Our framework combines an encoder mod-

2Source code available at https:/github.com/ryienh/DGGen
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ule that creates a temporal latent space embedding from raw
interaction data with a novel deep generative decoder. This
decoder learns a product of conditional probabilities which
together form the joint probability of a graph interaction.
Given the emerging state of research in this area, to our
knowledge, only one existing model baseline, TIGGER-I
(Gupta et al. 2022), is capable of inductive generation of CT-
DGs. We perform comprehensive experiments on a version
of DG-Gen which we show outperforms TIGGER-I on five
diverse temporal graph datasets in generating high-fidelity
and original synthetic data in an inductive manner.

To further validate our approach, we adapt it for the dis-
criminative task of link prediction. This adaptation is valu-
able for two reasons: (1) it demonstrates the versatility of
our autoregressive approach to model link prediction, and
(2) it highlights the effectiveness of DG-Gen’s learned em-
beddings, reinforcing the quality of our generative approach.

2 Background and Related Work

>
0‘? c§*° Céé}- éé}- Cf?

N S & & & ¢
Capability Q & S S <9
Topology agnostic X v v v v
Inductive X X X v v
Time scalable X X v X v
Supports features X X X X v

Table 1: Comparison of DG-Gen and existing generative
models temporal graphs for various capabilities.

2.1 Dynamic Graph Representations

Early work on dynamic graph representation learning fo-
cused on learning embeddings for discrete-time dynamic
graphs (DTDGs), or time sequences of static graphs. For-
mally, we can define a DTDG as a sequence G
{GM, G| ..., G}, of equally spaced static graph snap-
shots, wherein each graph G(*) consists of adjacency matrix
A® node feature matrix N(*), and edge feature matrix F(*).
Such graph representations are useful for applications where
data is captured at regularly spaced time intervals, such as
sensors or monitoring systems (Kazemi 2022).
Continuous-time dynamic graphs (CTDGs) generalize
DTDGs as timed event sequences encompassing node and
edge additions, deletions, and node and edge feature evo-
lution (Kazemi 2022). This paper concentrates on CTDGs,
because of their applicability to real-world datasets (e.g., so-
cial networks, transportation systems).a Unlike DTDGs, CT-
DGs offer a more practical representation for continuous-
time data, as converting a CTDG to a DTDG can result in
substantial information loss of events occurring at higher
temporal resolutions than the snapshots (Kazemi 2022).
Given a set of nodes V {1,...,n}, we repre-
sent a CTDG as a sequence of events over time, § =
{z(t1), z(t2), ..., x(t;)} where each event z(¢;) occurring
at timestamp ¢; with ¢ € {1,...,7} represents a node or



edge event (that is, creation, deletion, feature transforma-
tion). Specifically, each event is characterized by the fol-
lowing attributes: x(¢;) = (src, dst, t;, €spe.ast(t;)), where
src,dst € V are the source and destination nodes of the in-
teraction and are represented by a unique scalar valued node
ID € {1,...,n}, and e4c 45 (t;) is a directed edge between
source node src and destination node dst at time ¢; and is
represented by its feature vector.

2.2 Discriminative Models for CTDGs

Representation learning for CTDGs is a rapidly growing
area. Early methods, as in Bastas et al. 2019 and Nguyen
et al. 2018a, integrate the temporal aspects into a static graph
representation as temporal edges. Then, random walk meth-
ods (e.g. Grover and Leskovec 2016; Perozzi, Al-Rfou, and
Skiena 2014) learn representations. Other approaches (Ku-
mar, Zhang, and Leskovec 2019; Trivedi et al. 2017; Ma
et al. 2020) use recurrent neural networks (RNNs) (Rumel-
hart, Hinton, and Williams 1985) to incorporate temporal
information. Additional work, such as Bonner et al. 2018
and Xiong et al. 2019, combines random walks with auto-
encoders (Ballard 1987) and generative adversarial networks
(Goodfellow et al. 2020), to create embeddings that capture
long-term temporal dependencies.

Perhaps one of the most significant advances in repre-
sentation learning for CTDGs is TGN (Rossi et al. 2020),
which proposes a generic framework for inductive learning
dynamic graphs. TGN uses a memory module of seen nodes
and edges to iteratively update unseen nodes and interac-
tions (edges). Rossi et al. 2020 shows that many other CTDG
representation learning approaches such as DyRep (Trivedi
et al. 2019), Jodie (Kumar, Zhang, and Leskovec 2019), and
TGAT (Xu et al. 2020) are specific instances of this frame-
work. However, other recent works — e.g., CAWN (Wang
et al. 2021) demonstrate comparable results applying
static methods to CTDGs. For completeness, we compare
our method’s performance in the discriminative regime (link
prediction), to such methods as well.

2.3 Generative Models for Dynamic Graph Data

Generative models for dynamic graphs learn the evolving
probability distribution of graph data over time. Given an in-
put graph G*°"¢, the goal is to produce a model that learns
p(G*°"®) such that sampling from this distribution generates
a novel synthetic graph G¥™" that is statistically similar to
Ggsovree, Evaluation of these models typically involves com-
paring the synthetic graphs to the source graphs in terms of
classical graph properties (e.g., mean degree, betweenness
centrality (Kunegis 2013)), assessed across various snap-
shots G = {G;,, ...G:, }, regardless of DTDG/CTDG distinc-
tion. Originality is measured by the degree of edge overlap
between G and Y™™ Our work adheres to these evalu-
ation standards, as detailed in Section 4.

Generating DTDGs. Early work in temporal graph gener-
ation focuses on DTDGs, learning spatio-temporal embed-
dings of the graph snapshots and then adapting generative
methods for static graphs. These include approaches based
on random-walks (Bojchevski et al. 2018; Zhang 2019),
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variational autoencoders (VAEs) (Mahdavi, Khoshraftar,
and An 2020; Zhang et al. 2021b), and generative ad-
verserial networks (GANs) (Lei et al. 2019; Wang et al.
2018a, 2020; Zhang et al. 2021a). While such methods show
promise in generating graphs in the DTDG regime, they
are unable to model continuous graph evolution due to the
temporal resolution loss inherent to representing continuous
graphs as snapshots (Rossi et al. 2020; Guo and Zhao 2020).

Generating CTDGs. Investigations into generative mod-
els that learn from continously evolving graphs — repre-
sented as CTDGs — remain notably scarce, but we identify
three distinct methodologies that can be applied to CTDG
datasets. Each, however, significantly relies on representa-
tions akin to either DTDGs or static graphs which introduces
substantial limitations as described below. Table 1 summa-
rizes each of these approaches’ ability to address the four
challenges discussed in Section 1.

TagGen (Zhou et al. 2020) models a CTDG by transform-
ing it into an equivalent static representation: a single static
graph with temporal edges. Such an approach presents mul-
tiple challenges. First, temporal timestamps are modeled as
discrete random variables, inhibiting the ability to generate
interactions with unseen timestamps. Similarly, graph gen-
eration is reliant on a mapping from source graph node IDs,
which renders both inductive modeling and feature model-
ing impossible. This leads to a critical issue where the gen-
erated graphs do not just statistically resemble the source
graph; they predominantly consist of direct replications of
the original data. As reported by Gupta et al. 2022, up to
80% of the generated graph’s edges overlap with the source
graph. This suggests that observed statistical resemblance
is a consequence of duplicating the original dataset, under-
mining the goal of generating new graphs. Finally, this sin-
gle static representation causes memory and performance is-
sues for graphs with a larger temporal horizon, as an adja-
cency matrix of this static graph must be explicitly repre-
sented and inverted: In practice, this method is limited to
graphs of the order of 200 timestamps (Gupta et al. 2022).
Conversely, real-world datasets such as the one used in our
experiments are on the order of hundreds of thousands to
millions of timestamps (See Appendix A for more details).?

Dymond (Zeno, La Fond, and Neville 2021) introduces a
generative model based on 3-node motifs, employing an ap-
proach that treats motif types as having a constant arrival
rate. The model learns parameters to accurately represent
this rate for each motif type. While new motifs are sampled
at discrete intervals, akin to DTDG generation, their associ-
ated timestamps are derived from a learned continuous inter-
event distribution. This methodology effectively produces
a CTDG, but it presupposes that motifs appear at constant
rates and, once formed, remain static throughout time. Con-
sequently, unlike TagGen, empirical results are distinct but
often markedly deviate from the statistical properties of the
source graph. Moreover, the reliance on generating graphs
over discrete intervals inherently restricts the method to only
mapping node IDs observed during training, thereby pre-

3The full version of this paper, including all appendices, can be
found at https://arxiv.org/abs/2412.15582.



venting feature modeling or inductive graph generation. This
approach also explicitly models graph snapshot adjacency
matrices. Thus, Gupta et al. 2022 finds that this approach is
likewise limited to graphs of the order of 200 timestamps.

Recently, Gupta et al. 2022 introduced TIGGER, a CTDG
generative method that addresses prior issues by decompos-
ing graphs into temporal random walks, modeled through a
recurrent neural network. These walks are then autoregres-
sively sampled and merged to create synthetic graphs. Com-
pared to Dymond, it makes fewer topological assumptions
and scales better than other transductive methods.

However, such an approach faces challenges, particularly
in its inductive variant, TIGGER-I. Node embeddings are
derived by first converting the input graph into a static
form—akin to TagGen—so that a static method (in this case
GraphSAGE (Hamilton, Ying, and Leskovec 2017)) can be
applied. Then a static graph generator (Arjovsky, Chintala,
and Bottou 2017) is trained. This dependence on static graph
methodologies reintroduces the scalability issues discussed
above and thus limits TIGGER-I’s ability to model large
time horizons. The authors acknowledge the issue, conclud-
ing that due to reliance on these static methods, the induc-
tive version of their model is “challenging to train on large
graphs” (Gupta et al. 2022) and thus limit their inductive
evaluation to graphs on the order of hundreds of timestamps.
Additionally, both TIGGER and TIGGER-I model walks as
node-time sequences, rendering them incapable of incorpo-
rating node or edge features during training and generation.

Inductive versus Transductive Graph Generation. In-
ductive graph generation differs from transductive graph
generation in both its approach and applicability. Transduc-
tive models learn from a fixed set of nodes and edges, limit-
ing their ability to generalize to new, unseen elements during
inference. This restricts their use in dynamic environments
where the underlying source graph continuously evolves.

In contrast, inductive graph generation allows the model
to generate new nodes and edges by learning patterns in
the underlying graph topology. This is advantageous in real-
world applications where graphs frequently change. Induc-
tive models are more flexible and generalizable, making
them better suited for adapting to new data (Hamilton, Ying,
and Leskovec 2017).

Our work focuses on the inductive setting for continuous
time dynamic graph generation. To the best of our knowl-
edge, TIGGER-I is the sole generative CTDG method sup-
porting inductive modeling and thus serves as our evaluation
baseline in Section 4. It is important to note that direct com-
parisons between inductive and transductive settings may be
misleading, as the two approaches operate under fundamen-
tally different assumptions and objectives.

Advancing CTDG Generation. In the following section,
we propose a novel generative CTDG method based on di-
rect event probability modeling. Contrary to previous ap-
proaches, our method eschews reliance on static graphs or
snapshots. This results in a model adept at inductively and
scalably generating synthetic graphs, while also handling
node and edge features of any size.
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Figure 1: Overview of DG-Gen’s architecture and internal
modules, described in Section 3.
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3 The Dynamic Graph Generative Network

DG-Gen (Dynamic Graph Generative Network) is a gen-
erative framework for Continuous-Time Dynamic Graphs
(CTDGs) that computes temporal edge probabilities, en-
abling autoregressive edge sampling. DG-Gen is based on
an encoder-decoder architecture (see Figure 1).

The encoder is a flexible component of our framework,
capable of utilizing any existing method that maps raw inter-
action data to node embeddings. In our experiments, we em-
ploy the Temporal Graph Network (TGN) (Rossi et al. 2020)
as the encoder due to its proven efficacy in capturing tempo-
ral dynamics. The decoder—a deep probabilistic model for
tabular data, and a novel contribution of this paper—uses
said embeddings to model the interactions.

3.1 Encoder

The Encoder processes raw temporal interaction data to gen-
erate temporal embeddings for each node in the input graph.
A temporal embedding is a dense vector representation of
a node’s state at a specific point in time, informed by the
node’s current and past interactions, as well as the states
of its temporal neighbors. We specifically use TGN (Rossi
et al. 2020), which is composed of two main modules: the
memory module and the embedding module. The memory
module updates each node’s memory — a dense vector stor-
ing relevant information about the node’s past interactions.
It aggregates the node’s interactions from the previous tem-
poral batch, combines them with the current memory, and
produces an updated memory. The embedding module, a
transformer-based (Shi et al. 2020) convolution model, in-
tegrates the memories of a node’s temporal neighborhood
along with edge features and temporal encodings to gener-
ate the final temporal embedding.

3.2 Decoder

Interaction Probability Factorization. The DG-Gen
Decoder (Figure 1) uses the temporal embeddings produced
by the Encoder to create a probabilistic model of the raw
interactions. As described in Section 2.1, a raw interaction
(or temporal edge) of a CTDG is specified by the following
attributes: the source node ID (src), the destination node
ID (dst), the time of the interaction (t), and the edge
feature vector (e) of size n. A key aspect of DG-Gen is the
factorization of the joint probability of a raw interaction:
p(sre,dst, t,e) = p(src)p(dst|src)p(t, e|dst, src), where
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Figure 2: Top panels: Histograms of one randomly selected edge feature distribution per dataset of the real data (blue) and
of the synthetic data generated by DG-Gen (orange). Bottom panels: Jensen-Shannon distances between the 2-dimensional
histograms (real and synthetic) of the joint distributions of feature pairs.

this joint probability is expressed as the product of three dis-
tinct terms: the probability of a node to be a source, p(src),
the conditional probability of a node to be a destination of
an interaction with a given source node, p(dst|src), and the
conditional probability p(t,e|dst, src) that an interaction
between a given source and destination node happens at time
t and has edge features e = {ey, ..., e, }. The probability
of the time and edge features given the source and destina-
tion nodes can be further decomposed as p(t, e|dst, src)

p(tldst, src)p(er|t, dst, sre)...p(enlen—1, ..., €1, t, dst, src).

This factorization allows for a structured, modular ap-
proach to modeling complex temporal interactions, distin-
guishing DG-Gen from previous methods that rely on aug-
menting static graphs with temporal data.

Decoder Overview. The above probabilities are defined
using appropriate statistical distributions whose parameters
are estimated using neural networks: p(src) is a Categorical
distribution over the possible source nodes, where the prob-
ability of each node is estimated from the temporal embed-
dings using the Reshape Module (defined below) followed
by a Softmax function. Similarly, p(dst|src) is a Categor-
ical distribution over the possible destination nodes given
a source node, where the probability of each node is es-
timated from the temporal embeddings combined with the
embedding of the (known) source node using the Product
Module (defined below) followed by a Softmax function.
p(t|dst, src) is an Exponential distribution for the inter-
event time, that is, the time difference between the current
interaction (between the specified source and destination
nodes) and the previous interaction. The actual (absolute)
time is then obtained by adding the inter-event time to the
absolute time of the previous interaction, i.e. performing a
cumulative sum of the chronologically ordered inter-event
times. The parameter of the Exponential distribution is ob-
tained as the first output of the Time+MSG Module (defined
below), a sequence model that is initialized combining the
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source’s and destination’s node embeddings via the Merge
Module (defined below). p(e;|t, dst, src) is a Categorical
or Gaussian Mixture Model (GMM) distribution for the -
th edge feature, depending on whether e; is a categorical or
numerical variable, respectively. The distribution parameters
(logits or means, standard deviations and mixture weights)
are obtained as the i-th output of the Time+MSG Module.
The following describe the above-mentioned Modules.

Reshape Module. This module takes a node embedding
vector zg,. as input and returns a scalar representing the
node’s score. In our experiments, it is defined as a linear
transformation followed by a ReLU nonlinearity and another
linear transformation to produce a one-dimensional output:
Reshape(z) = Wy - ReLU (W, - 2)

Product Module. This module takes two node em-
bedding vectors as input—=zs,. and z4s;—and returns a
scalar representing the interaction score between them. In
our experiments the score is obtained performing a lin-
ear transformation of the two input embeddings, adding
the resulting vectors, applying an element-wise ReLU non-
linearity, and performing a final linear transformation to
a one-dimensional output: Product(zs,c,z4st) = Wy -
ReLU(Wsrc “Zgre T stt . stt)

Merge Module. This module takes two embedding vec-
tors, Zs,. and zgg, as input and returns a combined vec-
tor, which is used as input to the Time+MSG Module. Our
experiments obtained it by performing a linear transforma-
tion of the two input embeddings, applying an element-wise
ReLU nonlinearity, adding the resulting vectors and apply-
ing another nonlinearity followed by a final linear transfor-
mation to obtain the vector hg: Merge(zgrc, 2ast) = Wy -
ReLU(ReLU (W gy * Zigre) + ReLU (W g5t - Z4st))

Time+MSG Module. This sequence model takes the out-
put of the Merge Module, hg, and produces n + 1 outputs,
where the ¢-th output corresponds to the parameters of the
distribution describing the i-th edge feature e; (for 2 > 0) or



the time ¢ (for ¢ = 0). For ¢ = 0 the output is passed through
a linear layer to obtain a one-dimensional scalar which is
converted to a positive value using a Softplus function, rep-
resenting the inter-event time. For 7 > 0, the output is con-
verted to a one-dimensional score if the edge feature e; is
a categorical variable described by a Categorical (Multino-
mial) distribution. Otherwise e; is a numerical variable, so it
is converted to 3 - m numbers corresponding to the mean,
standard deviation and weight of the m components of a
Gaussian Mixture Model. Our experiments use a GRU (Cho
et al. 2014) recurrent neural network and the Merge Mod-
ule’s output hy is the initial hidden state of the network.

3.3 Training

DG-Gen is trained using the Adam optimizer (Kingma and
Ba 2014) to minimize the observed interaction data’s neg-
ative log-likelihood, which can be computed as the sum of
the log-likelihoods of the conditional probabilities parame-
terized by the Decoder modules: loss = — ) [log p(src;)+
log p(dst;|sre;) + log p(t;, e;|dst;, sre;)] where sre;, dst;,
t;, e; are source, destination, time and features of interaction
x;. To accelerate training for large graphs, a random subset
of nodes (usually of the order of two times the batch size
or larger) is sampled when computing the scores of sources
and destinations. Additionally, to improve numerical stabil-
ity during training of the Time+MSG Module, a Gaussian
random noise with zero mean and small standard deviation
(~ 0.1) is added to the numerical variables to mitigate the
potential instability caused by discontinuous distributions,
e.g., for the Wikipedia dataset’s edge features (see Figure 2).
The standard deviation of this stabilizing noise is iteratively
reduced to small values (~ 0.001) during training to gradu-
ally recover the original shapes of the feature distributions.

3.4 Inference

Generation. DG-Gen generates synthetic dynamic graphs
by sampling interactions and their attributes from the distri-
bution p(src,dst,t,e) = p(src)p(dst|src)p(t, e|dst, src).
First, a batch of source nodes is sampled from p(src) based
on current embeddings; second, a destination is sampled for
each source using p(dst|src); third, the embeddings of each
source-destination pair are combined to instantiate the pa-
rameters and sample from the distributions of the (¢, e) vari-
ables. Initially, DG-Gen starts with an empty graph and all
nodes have empty memory. After generating a batch of syn-
thetic interactions, memories and neighbor lists are updated
and new node embeddings are computed.

Link Prediction. DG-Gen learns the factored joint prob-
ability p(sre, dst,t,e) = p(src)p(dst|src)p(t, e|dst, src).
The conditional probability p(dst|src) directly corresponds
to the established discriminative task of link prediction,
where the goal is to predict the likelihood of an edge (link)
forming between a given source node and a destination node.
Thus, DG-Gen can perform link prediction without further
training or fine-tuning. In addition to generative analysis, our
experiments in Section 4 compare the performance of DG-
Gen to several state-of-the-art baselines for link prediction,
further validating the quality of our approach.
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Dataset Model CC MD NC PLE WC
Wikipedia DG-Gen (no mem.) 0.723 0.013 1 0.191 1
DG-Gen (no noise) 0.701 0.005 2 0.185 0
TIGGER-I 0.992 0.007 2 0.311 0
DG-Gen 0.656 0.004 1 0.099 0
Bikeshare DG-Gen (no mem.) 0.305 0.170 14 9.983 4
DG-Gen (no noise) 0.297 0.200 15 10.206 3
TIGGER-I 0.857 0.280 21 10.378 15
DG-Gen 0.298 0.125 12 9.929 3
MOOC DG-Gen (no mem.) 0.486 0.611 2 5.328 3
DG-Gen (no noise) 0.449 0425 1 4.714 3
TIGGER-I 0.500 0.444 2 6.692 5
DG-Gen 0.430 0416 1 4.607 3
Reddit DG-Gen (no mem.) 0.133 0.043 5 9.976 1
DG-Gen (no noise) 0.089 0.037 5 8.248 2
TIGGER-I 0.242 0.059 5 10.120 1
DG-Gen 0.066 0.033 4 5771 1
LastEM DG-Gen (no mem.) 0.760 0.034 1 2.076 2
TIGGER-I 0.849 0.063 4 6290 18
DG-Gen 0.681 0.027 1 1.282 1

Table 2: Median absolute error of metrics between real and
synthetic data, quantifying the distance between real and
generated properties. Best model is bolded (lower is better).

4 Experiments

Datasets and Experimental Setup. We evaluate our model
using five CTDG datasets: Reddit, Wikipedia, MOOC,
LastFM (Kumar, Zhang, and Leskovec 2019) and Capital
Bikeshare. The first four are established datasets in dynamic
graph learning while Bikeshare is a novel dataset (see Ap-
pendix A for more information). Our experimental setup is
split into two major parts. We first evaluate DG-Gen on the
inductive temporal graph generation task. The goal is to pro-
duce synthetic graphs that statistically align with real dy-
namic graphs seen during training. We assess these synthetic
graphs using various statistical metrics, focusing on edge
features and graph topology. Subsequently, we demonstrate
how DG-Gen effectively learns representations for discrim-
inative tasks by directly applying its learned probabilities to
link prediction. Further details about reproducibility and ex-
perimental details are in Appendices B and C, respectively.
Evaluation Metrics. To evaluate synthetic graph quality,
we adopt the standard approaches discussed in Section 2.3
that ensure statistical similarity and originality of the gen-
erated graph. First, DG-Gen produces features that preserve
the statistical properties of the source graph. We evaluate this
ability by calculating distribution histograms for all interac-
tion features and joint distribution histograms for all pairs of
features. We report the mean of the Jensen-Shannon distance
of these histograms as it is a standard measure of similarity
between probability distributions (Lin 1991). Second, syn-
thetic graphs must retain the topological characteristics of
the source graph. Following the generative baseline estab-
lished by TIGGER-I, we partition each CTDG into discrete-
time snapshots and assess the median absolute error across
various graph statistics: closeness centrality (CC), mean de-
gree (MD), number of components (NC), power law expo-
nent of degree distribution (PLE), and wedge count (WC).



J-S dist. Single feature Feature pair

Wikipedia 0.208 + 0.154  0.340 + 0.230
Bikeshare 0.107 £0.103  0.218 4+ 0.059
MOOC 0.108 £ 0.087  0.197 £+ 0.052
Reddit 0.191 £0.093  0.330 £0.111

Table 3: Mean and standard deviation of Jensen-Shannon
distances between real and DG-Gen synthetic feature dis-
tributions, covering both single features and feature pairs.

Discussion of CTDG discretization can be found Appendix
D. Finally, synthetic graphs should be original, that is, not
simply copy the original source graph. Gupta et al. 2022
quantifies this idea by evaluating the fraction of overlap-
ping edges between the source and synthetic graphs, that is

|gsourcengsynthetic| .
Teouree] . We empirically find both DG-Gen and

TIGGER-I exhibit no edge overlap; thus, we exclude this
metric from our results.

For the link prediction task, we report Average Precision
(AP) as our main evaluation metric. Following Poursafaei
et al. 2022, we use inductive sampling for a more robust
assessment of model performance on unseen edges. Addi-
tional results, including AUROC for inductive sampling and
AP and AUROC for standard sampling, are in Appendix E.

Baselines. To the best of our knowledge, TIGGER-1 is the
only method for inductive CTDG generation, so we com-
pare DG-Gen’s generated graph topology to TIGGER-I (see
Appendix F for TIGGER-I training details). However, as
TIGGER-I cannot generate synthetic edge features, we com-
pare DG-Gen'’s synthetic edge features to those of the orig-
inal source graph. We hope these results serve as a baseline
for future methods generating CTDG edge features. For the
inductive link prediction task, we benchmark against sev-
eral models discussed in Section 2.2: Jodie, DyRep, TGAT,
TGN, and CAWN. Existing results from Poursafaei et al.
2022 are used for all but the novel Bikeshare dataset, where
we train TGN and CAWN (see Appendix E).

4.1 Results

Graph Generation. A trained DG-Gen model can gener-
ate a synthetic temporal graph with statistical properties
similar the real temporal graph seen during training. To
demonstrate, we generate a synthetic graph with the same
number of interactions as the test partition for each of the
five datasets. We first evaluate DG-Gen’s ability to pro-
duce realistic edge features over time. Figure 2 shows an
example feature histogram per dataset, excluding LastFM,
which lacks edge features. Additionally, the figure shows
Jensen-Shannon distances between real and synthetic 2D
histograms of joint feature distributions. The mean values
of all distances are summarised in Table 3. These results
show that DG-Gen (1) produces edge features with similar
distributional properties as the underlying source graph for
both categorical and numerical variables — even with mul-
timodal distributions — and (2) captures the relationship be-
tween feature pairs. To the best of our knowledge, DG-Gen
is the first model capable of generating edge features in CT-
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Figure 3: Average Precision for DG-Gen and baselines on
link prediction via inductive sampling.

DGs, preventing direct comparison with existing baselines.

Regarding the analysis of graph topological properties,
Table 2 shows that DG-Gen outperforms TIGGER-I in most
metrics across all datasets, notably excelling in closeness-
centrality (Bavelas 1950). This metric’s performance, par-
ticularly underscored in the LastFM dataset — the largest
among those evaluated, as detailed in Appendix A — attests
to DG-Gen’s adeptness at capturing extensive range depen-
dencies within graph structures even at large scales.

Inductive Link Prediction. Figure 3 reports the AP score
using inductive sampling. Appendix E includes AUC per-
formance with inductive sampling and AP and AUC scores
with standard sampling. DG-Gen outperforms the baselines
on all but the Reddit dataset, where it matches CAWN. No-
tably, DG-Gen outperforms TGN while using the latter as an
encoder, implying that the deep probabilistic decoder leads
to better representation learning than TGN alone.

Ablations. We compare DG-Gen, which utilizes graph
attention layers, with an otherwise identical model lacking
these layers. The results, labeled DG-Gen (no mem.) in Table
2, show that omitting attention reduces performance across
all datasets and metrics, with the most significant drop in
closeness centrality (CC), a measure of long-range topolog-
ical fidelity. This finding underscores the importance of the
attention module in capturing long-term global information.

As detailed in Section 3, we introduce random noise dur-
ing training to stabilize the Time+MSG module’s conver-
gence while learning the edge feature distribution. Table 2
compares this approach with a noise-free training scheme,
labeled DG-Gen (no noise). The results show a decline in
data quality without noise, particularly for discrete or mixed
feature distributions.

5 Conclusion

We have introduced DG-Gen, the first inductive generative
framework for CTDGs that handles arbitrarily-sized edge
features. Unlike prior methods, our approach directly mod-
els the probability of edge events, eschewing reliance on
static graph snapshots. DG-Gen generates graphs that, while
original, are statistically similar to user-provided graphs.
This underlines the framework’s ability to replicate essential
statistical properties, ensuring synthetic graphs are realistic
proxies for original data. Additionally, our method learns
representations of dynamic graphs that outperform existing
state-of-the-art approaches for tasks like link prediction.



Acknowledgments

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE)
Office of Science user facility at Argonne National Labo-
ratory and is based on research supported by the U.S. DOE
Office of Science-Advanced Scientific Computing Research
Program, under Contract No. DE-AC02-06CH11357. Ad-
ditional funding support comes from the National Science
Foundation (CCF-2119184 CNS-2313190 CCF-1822949
CNS-1956180).

References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International conference
on machine learning, 214-223. PMLR.

Ballard, D. H. 1987. Modular learning in neural networks.
In Aaai, volume 647, 279-284.

Barros, C. D.; Mendonga, M. R.; Vieira, A. B.; and Ziviani,
A. 2021. A survey on embedding dynamic graphs. ACM
Computing Surveys (CSUR), 55(1): 1-37.

Bastas, N.; Semertzidis, T.; Axenopoulos, A.; and Daras, P.
2019. evolve2vec: Learning network representations using

temporal unfolding. In International Conference on Multi-
media Modeling, 447-458. Springer.

Bavelas, A. 1950. Communication patterns in task-oriented
groups. The journal of the acoustical society of America,
22(6): 725-730.

Bojchevski, A.; Shchur, O.; Ziigner, D.; and Giinnemann,
S. 2018. Netgan: Generating graphs via random walks.
In International conference on machine learning, 610-619.
PMLR.

Bonner, S.; Brennan, J.; Kureshi, I.; Theodoropoulos, G.;
McGough, A. S.; and Obara, B. 2018. Temporal graph offset
reconstruction: Towards temporally robust graph representa-
tion learning. In 2018 IEEE International Conference on Big
Data (Big Data), 3737-3746. IEEE.

Chen, B.; Sun, L.; and Han, X. 2018. Sequence-to-action:
End-to-end semantic graph generation for semantic parsing.
arXiv preprint arXiv:1809.00773.

Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bougares, F.;
Schwenk, H.; and Bengio, Y. 2014. Learning phrase rep-
resentations using RNN encoder-decoder for statistical ma-
chine translation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014).

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2020. Generative adversarial networks. Communications of
the ACM, 63(11): 139-144.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855-864.

Guo, X.; and Zhao, L. 2020. A systematic survey on deep
generative models for graph generation. arXiv preprint
arXiv:2007.06686.

17256

Gupta, S.; Manchanda, S.; Bedathur, S.; and Ranu, S. 2022.
TIGGER: Scalable Generative Modelling for Temporal In-
teraction Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, 6819—6828.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.

Kazemi, S. M. 2022. Dynamic graph neural networks.
Graph Neural Networks: Foundations, Frontiers, and Appli-
cations, 323-349.

Kazemi, S. M.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.;
Forsyth, P.; and Poupart, P. 2020. Representation learning
for dynamic graphs: A survey. J. Mach. Learn. Res., 21(70):
1-73.

Kingma, D. P; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kumar, S.; Zhang, X.; and Leskovec, J. 2019. Predicting
dynamic embedding trajectory in temporal interaction net-
works. In Proceedings of the 25th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining,
1269-1278.

Kunegis, J. 2013. Konect: the koblenz network collection. In
Proceedings of the 22nd international conference on world
wide web, 1343-1350.

Lei, K.; Qin, M.; Bai, B.; Zhang, G.; and Yang, M. 2019.
GCN-GAN: A non-linear temporal link prediction model
for weighted dynamic networks. In IEEE INFOCOM 2019-
IEEE conference on computer communications, 388-396.
IEEE.

Lin, J. 1991. Divergence measures based on the Shannon
entropy. IEEE Transactions on Information theory, 37(1):
145-151.

Ma, Y.; Guo, Z.; Ren, Z.; Tang, J.; and Yin, D. 2020. Stream-
ing graph neural networks. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, T19-728.

Mahdavi, S.; Khoshraftar, S.; and An, A. 2020. Dy-
namic joint variational graph autoencoders. In Machine
Learning and Knowledge Discovery in Databases: Interna-
tional Workshops of ECML PKDD 2019, Wiirzburg, Ger-
many, September 16-20, 2019, Proceedings, Part I, 385—
401. Springer.

Nguyen, G. H.; Lee, J. B.; Rossi, R. A.; Ahmed, N. K.; Koh,
E.; and Kim, S. 2018a. Continuous-time dynamic network
embeddings. In Companion proceedings of the the web con-
ference 2018, 969-976.

Nguyen, G. H.; Lee, J. B.; Rossi, R. A.; Ahmed, N. K.; Koh,
E.; and Kim, S. 2018b. Dynamic network embeddings: From
random walks to temporal random walks. In 2018 IEEE In-
ternational Conference on Big Data (Big Data), 1085-1092.
IEEE.

Oussidi, A.; and Elhassouny, A. 2018. Deep generative mod-
els: Survey. In 2018 International Conference on Intelligent
Systems and Computer Vision (ISCV), 1-8. IEEE.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of



the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701-710.

Popova, M.; Shvets, M.; Oliva, J.; and Isayev, O. 2019.
MolecularRNN: Generating realistic molecular graphs with
optimized properties. arXiv preprint arXiv:1905.13372.

Poursafaei, F.; Huang, S.; Pelrine, K.; and Rabbany, R.
2022. Towards better evaluation for dynamic link predic-
tion. Advances in Neural Information Processing Systems,
35:32928-32941.

Rossi, E.; Chamberlain, B.; Frasca, F.; Eynard, D.; Monti,
F.; and Bronstein, M. 2020. Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J.
1985. Learning internal representations by error propaga-
tion. Technical report, California Univ San Diego La Jolla
Inst for Cognitive Science.

Shi, Y.; Huang, Z.; Feng, S.; Zhong, H.; Wang, W.; and Sun,
Y. 2020. Masked label prediction: Unified message pass-
ing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509.

Trivedi, R.; Dai, H.; Wang, Y.; and Song, L. 2017. Know-
evolve: Deep temporal reasoning for dynamic knowledge
graphs. In international conference on machine learning,
3462-3471. PMLR.

Trivedi, R.; Farajtabar, M.; Biswal, P.; and Zha, H. 2019.
Dyrep: Learning representations over dynamic graphs. In
International conference on learning representations.
Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang,
F.; Xie, X.; and Guo, M. 2018a. Graphgan: Graph repre-
sentation learning with generative adversarial nets. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32.

Wang, Q.; Ji, Y.; Hao, Y,; and Cao, J. 2020. GRL:
Knowledge graph completion with GAN-based reinforce-
ment learning. Knowledge-Based Systems, 209: 106421.
Wang, Y.; Chang, Y.-Y.; Liu, Y.; Leskovec, J.; and Li, P.
2021. Inductive Representation Learning in Temporal Net-
works via Causal Anonymous Walks. In International Con-
ference on Learning Representations.

Wang, Y.; Che, W.; Guo, J.; and Liu, T. 2018b. A neural
transition-based approach for semantic dependency graph
parsing. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 32.

Xiong, Y.; Zhang, Y.; Fu, H.; Wang, W.; Zhu, Y.; and
Yu, P. S. 2019. Dyngraphgan: Dynamic graph embedding
via generative adversarial networks. In Database Systems
for Advanced Applications: 24th International Conference,
DASFAA 2019, Chiang Mai, Thailand, April 22-25, 2019,
Proceedings, Part I 24, 536-552. Springer.

Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; and Achan, K.
2020. Inductive representation learning on temporal graphs.
arXiv preprint arXiv:2002.07962.

You, J.; Du, T.; and Leskovec, J. 2022. ROLAND: Graph
Learning Framework for Dynamic Graphs. In Zhang, A.;
and Rangwala, H., eds., KDD ’22: The 28th ACM SIGKDD

17257

Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022, 2358-2366.
ACM.

You, J.; Ying, R.; Ren, X.; Hamilton, W.; and Leskovec, J.
2018. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on machine
learning, 5708-5717. PMLR.

Zeno, G.; LaFond, T.; and Neville, J. 2021. DYMOND: DY-
namic MOtif-NoDes Network Generative Model. In Pro-
ceedings of the Web Conference 2021, 718-729.

Zhang, L. 2019. STGGAN: Spatial-temporal graph genera-
tion. In Proceedings of the 27th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information
Systems, 608—609.

Zhang, L.; Zhao, L.; Qin, S.; Pfoser, D.; and Ling, C. 2021a.
TG-GAN: Continuous-time temporal graph deep generative
models with time-validity constraints. In Proceedings of the
Web Conference 2021, 2104-2116.

Zhang, W.; Zhang, L.; Pfoser, D.; and Zhao, L. 2021b. Dis-
entangled dynamic graph deep generation. In Proceedings
of the 2021 SIAM International Conference on Data Mining
(SDM), 738-746. SIAM.

Zhou, D.; Zheng, L.; Han, J.; and He, J. 2020. A data-
driven graph generative model for temporal interaction net-
works. In Proceedings of the 26th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery & Data Mining,
401-411.



