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ABSTRACT

Research into student affect detection has historically relied on
ground truth measures of emotion that utilize one of three sources
of data: (1) self-report data, (2) classroom observations, or (3) sen-
sor data that is retrospectively labeled. Although a few studies have
compared sensor- and observation-based approaches to student af-
fective modeling, less work has explored the relationship between
self-report and classroom observations. In this study, we use both
recurring self-reports (SR) and classroom observation (BROMP) to
measure student emotion during a study involving middle school
students interacting with a game-based learning environment for
microbiology education. We use supervised machine learning to
develop two sets of affect detectors corresponding to SR and
BROMP-based measures of student emotion, respectively. We
compare the two sets of detectors in terms of their most relevant
features, as well as correlations of their output with measures of
student learning and interest. Results show that highly predictive
features in the SR detectors are different from those selected for
BROMP-based detectors. The associations with interest and moti-
vation measures show that while SR detectors captured underlying
motivations, the BROMP detectors seemed to capture more in-the-
moment information about the student’s experience. Evidence sug-
gests that there is benefit of using both sources of data to model
different components of student affect.

Keywords
Affective Learning, Affect Detection, Machine Learning, Class-
room Observation, Self-reporting.

1. INTRODUCTION

Research on student affect detection is beginning to mature and in-
cludes a range of affective constructs that are relevant in academic
contexts. A fundamental step in building affect detectors is select-
ing the “ground truth” measure of emotion that will be used to
provide class labels for training the models [15]. The quality of an
affect detector depends in part on the robustness and reliability of
its training data in capturing the defined construct. The importance
of labeling ground truth in affect detection has been recognized
widely, with discussions on advantages and pitfalls of different
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methods [62]. Differences arising from these methods of obtaining
ground truth may influence our understanding of these phenomena,
making it essential to examine and compare these techniques with
each other.

Emotion research has a long history that dates as far back as Darwin
[20], and for many years it was heavily influenced by Ekman’s the-
ory of basic emotions: happiness, surprise, fear, disgust, anger, and
sadness [17]. Although the EDM community rarely engages with
that particular set of emotions, EDM researchers frequently utilize
approaches that share some of the same implicit assumptions as Ek-
man. For example, sensor-based affective research often uses
Ekman & Friesen’s [28] Facial Action Coding System (FACS).
Self-report and classroom observation measures are often designed
as if students experience one (and only one) emotion at a time and
as if these were binary experiences (e.g., confused or not). Only a
few self-report studies have employed Likert scales to examine the
strength of reported emotions [47], and it is relatively rare to find
methods that capture multiple student emotions occurring simulta-
neously, such as a student being focused yet bored, or confused yet
happy [10, 18, 46].

Certainly, some simplification is necessary to produce replicable
analyses. The human face—often the primary vehicle for affective
expression—is a dynamic source of complex information [40].
Moreover, there is evidence that emotion labels are constructed lin-
guistically, making the emotion categories used in much of the
affective modeling literature susceptible to subtle cultural differ-
ences [29, 41, 55, 56]. Yet, the shortcomings of current methods for
obtaining ground truth measurements of student emotions are often
overlooked in research on student affect detection.

One measurement approach that has been widely used in the field
is the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP;
[55]). BROMP was initially developed for training interaction-
based affect detectors (e.g., [4, 8]), but it has also been used to train
detectors using sensor data [11]. BROMP has been successfully
adapted to other cultures, in a process where one of its developers
consults with two observers to develop a new coding scheme that
is culturally appropriate, and then interrater reliability is achieved
between the two observers rather than with someone who was cer-
tified in a US context [55].

This study seeks to build upon the research using BROMP to in-
vestigate Graesser et al.’s [35] questions about the relationship
between how a student might describe their own affective experi-
ence and the observable differences that manifest when the student
is being observed. It is possible, for example, that a student might
not be intrinsically interested in material, but still be willing to en-
gage with the material, resulting in an outside observer coding


https://doi.org/10.5281/zenodo.12729800

“engaged concentration” while the student internally feels “bored.”
Likewise, a student might be unaware of how frustrated they have
become while still manifesting a robust affective display (e.g., fa-
cial expression, body movement) that is easily observable to an
outsider. This is to say that differences between self-reports and
field observation measurements may not imply that one or the other
is erroneous. There is research documenting that people do not al-
ways differentiate between two different emotions in the same way
[30], and there is evidence that physical signals of emotion mean
different things in different contexts [29]. As such, disagreement
between self-report and field observations could mean that these
methods are picking up on different parts of a signal.

In this paper, we investigate this issue within the context of Crystal
Island [67], a game-based learning environment for middle school
science education. Specifically, we compare affect detectors
trained on typical BROMP-based observations of student emotion
to those trained on data from a novel 2-stage affect self-reporting
tool that was integrated within the game. The BROMP-based train-
ing and testing data was resampled to mitigate the impact of the
difference in sample size and rate when comparing both types of
detectors. We then examine the degree to which the input feature
space overlaps for these different detectors, and the degree to which
their output relates to measures of student interest and learning.

2. RELATED WORK

Detection of students’ affective experiences is a crucial first step in
designing affect-sensitive learning technologies, as these require a
deeper understanding of the occurrence of affect, and its impact on
learning [10, 25, 63], engagement, motivation [65], and self-effi-
cacy [52]. As a latent state, affect can be very challenging to
measure. Researchers have devoted considerable energy into devel-
oping stealth measurements of affect that can run in the
background. To date, these have typically relied on supervised ma-
chine learning [4, 38, 70, 78], which requires a “ground truth”
measurement. As automated measures are not yet reliable enough
for this (indeed, this is the issue these detectors are trying to solve),
we have to rely on human measurements. Human measures of af-
fect can be made either by the subject (self-report) or by a third
party (observer), and each approach comes with its own caveats.

The variations in ground truth measurements stem from differ-
fences in how affective states are present internally and externally
[15]. This variation has the potential to impact what subsequent ma-
chine-learned models are measuring. Work in EDM has typically
focused on the effects and meaning of students’ affective states
(e.g., [25, 59]), or the data with which a detector was trained (e.g.,
sensor vs sensor free) with less attention being paid to the theoreti-
cal implications implicit in the measurement techniques being used
(see [66]). For example, assumptions about the consistency/univer-
sality, measurability, rate of occurrence, and salience of affective
experiences are implicit in many machine-learned models, but
these assumptions often go unstated and unexplored. The literature
on these issues exists, but it often occurs outside of the EDM com-
munity (e.g., [19, 29]).

The complexities of measuring affect are further influenced by
frameworks used to describe affective states. For example, Izard’s
[39] work on discrete, basic emotions has been highly influential
(i.e., interest, joy/happiness, sadness, anger, disgust, and fear [28]),
but the community has given considerable focus to academic or
achievement emotions ([25, 60, 61]). This distinction is important,
as [zard ([39], p. 262) argues that “a basic emotion does not depend
on or include complex appraisals or higher order cognition such as
thought and judgment.” In Izard’s theoretical framework, complex

emotions are actually “emotion schemas” and are less fleeting than
basic emotions.

EDM research that takes a non-categorical approach to studying
students’ affective states tends to be heavily influenced by Russel’s
paradigm, which attempts to measure on the dimensions of valence
and arousal [68]. This model adds dimensionality to emotion labels,
though not as many dimensions as are found outside of the EDM
community (see discussion in [75]). For example, Gunes & Pantic
[36] employ five dimensions: arousal, expectation, intensity,
power, and valence.

Interrogating the assumptions that underlie our measurement tech-
niques might help the EDM community to better understand our
data. For example, we know that academic emotions require ap-
praisal, and that students differ in their metacognitive skills in this
area [60]. This might mean that their appraisals should not be the
only labeling system we employ for obtaining ground truth. How-
ever, it could also explain differences between observer-generated
and self-reported data, since a trained observer might better under-
stand the emotional processes a student has undergone, particularly
for younger or less-educated learners. For example, a student who
does not expect to overcome an obstacle in a particular domain
might immediately shift from engaged concentration to frustration
(bypassing confusion) when met with a task that they do not fully
understand. We should also be sensitive to the fact that an observer
often does not have access to the same channels of information
available to the learner, particularly when it comes to factors like
expectation and the experience of powerlessness (e.g., [36]). There-
fore, having data from both types of measurements could provide
us with a more complete picture of students’ affective experiences.

2.1 Observer-Based Measurement

Observation measurements rely on a third party who observes a stu-
dent and labels their affective state, usually based on some
predefined coding scheme and prior training. Such an approach re-
lies upon an external presentation of affect and is unlikely to be
influenced by biases of the student (e.g., social concerns). That said,
observation measurements may be susceptible to self-presentation
effects [72], in which students filter their external presentation and
displays of emotion (typically as they get older). There also may be
cultural differences in how emotion is displayed and interpreted
that can influence the validity of observer-based measurements.

Observer-based measurements also have to contend with the fact
that there are two humans in the loop—the student and the ob-
server—meaning there are two points where bias can confound the
measurement. Observer biases may come from varying cultural
norms, but in most cases, it is possible to subvert these through
training and protocols (e.g., interrater reliability).

In the EDM community, one of the most common observation
measurements for affect research is BROMP [55]. BROMP is a
momentary time sampling method in which students are coded in-
dividually in a predetermined order using an app that facilitates the
coding scheme and automatically includes metadata like time
stamps [54]. Specifically, trained, certified observers code the first
affective state they observe, but may take up to 20 seconds to con-
textualize that observation, resulting in codes made every 3-20
seconds under typical classroom conditions.

Although the manual that formalized BROMP is now nearly a dec-
ade old [55], the methods were used in a large number of
publications leading up to its publication [4, 6, 50, 53, 64, 65, 71].
Coding schemes have now been developed for 7 countries, and typ-
ically include boredom, confusion, engaged concentration, delight,



and frustration [55]. The observation method is holistic, facilitating
greater use of contextual classroom cues than can typically be gath-
ered in sensor-based detection [8], and it has now been used to
construct affect detectors in over 20 learning systems, including
several for educational games [5, 6, 42, 65].

Observation methods have been used successfully to train several
affect detectors, as well as subsequent validation studies of said de-
tectors. Similarly, detectors trained on observation ground truth
data have been used to create successful interventions and adaptive
technologies that respond to student affect [22, 24].

2.2 Self Report-based Measurement

The self-reporting of educationally-relevant affective states has a
long history that skews toward trait-level measurements, which
have the benefit of allowing for students to be asked about their
experiences using scales, as opposed to a single measure (see re-
view in [59]). Verbal protocols, such as think-alouds [23] have also
been used, and are notably able to provide a continuous stream of
data, which can then be coded for further analysis. These have
sometimes been done retrospectively, so as not to interrupt the
learning process (e.g., [26]).

As computer-based learning systems become more advanced, ex-
perience sampling methods [34], during which students are either
prompted to provide or volunteer emotions, are becoming more
common. Examples of these in education include both the use of
text-based reporting windows [18, 43, 74] and the use of emoticon-
based reporting systems [69, 70]. These are often employed with
forced choice (categorical answers), although researchers have also
employed multiple Likert scales [3].

The argument of many who favor self-report methods is that only
the individual can accurately communicate their internal state. Self-
report allows us to collect data ‘direct from the source.” Given the
highly internal nature of affect, it is possible that self-report meth-
ods are necessary to access certain nuances of affective
experiences. Likewise, it could potentially allow for students to ex-
press emotions in the report that they may be reluctant to display
visually (e.g., on their face) in front of their peers—a concern that
might be particularly important in older students (aged 12—18) or
among students who experience social pressures.

That said, participants may be unwilling or unable to admit their
feelings when they want to be perceived differently. For example,
researchers have documented self-presentation effects even in
anonymous survey work, where respondents reply in ways that pre-
sent themselves more positively regardless of their actual behaviors
[37]. Other researchers have documented satisficing practices,
which involve disengagement from the task to give minimally cor-
rect answers [45]. Still others have noted that some respondents
actively obscure their data [44] or lack the meta-cognition to accu-
rately diagnose their current affective state and accurately
communicate it [32]. Finally, we have seen some evidence that ask-
ing students to report their affect changes their subsequent affect
[78], which has other consequences for interpreting data.

Despite this, affect detectors have been successfully built on learner
self-report data [3, 13, 31, 32, 38, 78]. Self-report has also facili-
tated data collection in online environments where observation is
not possible, and at larger scales than observation-based measure-
ments [31], due to not requiring the presence of trained
professionals. This has meant that affect detectors can be trained on
a larger volume of data and can be used to implement adaptability
at scale with lower concerns regarding observer’s biases.

2.3 Comparison across Techniques

Affective research has long realized that there are several trade-offs
when it comes to choosing a ground truth labeling system. Re-
searchers must balance considerations related to the validity and
reliability of the signal in real-world environments with factors re-
lated to sampling rates, the signals’ timing, and intrusiveness [15].

All methods of affect detection suffer from questions related to
sampling rates [57] and the associated data loss. Classroom obser-
vation techniques invariably result in times when one student is not
being closely observed, despite BROMP-based efforts to at least
ensure that one student is not being oversampled [55]. Experience
sampling methods must balance the need for high rates of training
data with the disruption these questions might cause to the student
[17]. In fact, some research has suggested that self-reporting alters
the physiological response [44], which raises generalization con-
cerns in addition to those related to sampling.

Even sensor data can have sampling problems at key learning mo-
ments. Although sensors offer a more continuous data stream, data
may be lost if students turn their heads or leave their seats to work
with a peer (as in video or voice-related data). Moreover, decontex-
tualized single streams of data may run counter to effective
detection of affective states [48], particularly if we believe that stu-
dents will experience non-educational emotions related to social
interactions (as in skin conductance sensors).

Combining several types of sensors might improve some interpre-
tations, but dealing with missing data in multimodal sensor systems
is still challenging [51]. Regardless of any continuity benefits that
sensor data might be able to provide, we must also be able to (a) get
them into classrooms and (b) label their output. This latter problem,
as discussed in Douglas-Cowie et al. [27], deserves greater atten-
tion than is currently found in the literature.

Classroom observations and self-report data may offer some ad-
vantages to sensor-based data in that their labels are often more
holistic than can sometimes be generated from sensor data. For ex-
ample, BROMP observers are trained to skip data from a student
who is clearly upset because of a social interaction rather than from
the experience in the software [55]. This approach is possible in
most classroom-based data collection methods, but might be diffi-
cult to discern if a researcher is retrospectively labeling video data.

Others point out the trade-offs between self-reported data (e.g., ex-
perience sampling) and classroom observations. Self-reported data
may prevent cultural biases from being imposed on student experi-
ences, but it may also be susceptible to gaps in students’
metacognitive abilities [77] and to self-presentation effects [14].
Moreover, the benefits that come with students' own interpretation
of their emotional experience (individualized interpretation) may
also come with a cost from that same variability [76]. That is, stu-
dents might use different labels to describe the same experience,
whereas trained classroom observers work to ensure more con-
sistency [55].

In some cases, self-report data represents additional challenges. Re-
search has suggested that students are not always able to label their
peer’s emotions [35], or even their own. Afzal and Robinson [1],
for example, report that students were so uncomfortable with retro-
spective self-labeling of video data, that the researchers had to
abandon the procedure altogether.

2.4 Novelty of the Current Study

Whereas previous research [62] has suggested that researchers
should ensure that self-report and external observer data align in



order to establish convergent validity, we take a different position.
Specifically, we point to social constructivist research, which sug-
gests that emotions are experienced as constellations of features
that people learn to label as their experience with them grows [29].
This research paradigm would suggest that self-reporters have ac-
cess to information that external observers do not have.

As such, we argue that the EDM community should more carefully
consider the implications of theoretical underpinnings of our label-
ing processes. For example, students may process internal
emotional signals in a way that is intrinsically entwined with their
motivational levels or with their past experiences with the topic,
and self-reporting may give us more direct access to that infor-
mation. On the other hand, external observers who do not have
access to that information can only label the affective displays be-
ing enacted in the moment. In some cases, they may be able to pick
up more immediate, affective responses that the student has not yet
reflected upon. In this way, observer-generated labels may provide
us with a less-filtered set of labels about a students’ affective expe-
rience.

This study offers a unique opportunity to compare detectors trained
on both types of data, since researchers rarely deploy both labeling
methods in the same study. Specifically, we look at what kinds of
features are selected by each suite of detectors, how detectors
trained using self-reported data are correlated with those trained us-
ing BROMP observations, and which outcome measures these
detectors are associated with. In this way, we are able to compare
the performance of different ground truth measures, providing in-
sights into the strengths and limitations of self-reported versus
observed (BROMP) data in specific educational research contexts.

3. METHODS
3.1 Context of Study

This study investigates student affective states within Crystal Island
[67], an open-world, single-player science mystery game promot-
ing inquiry-based learning in microbiology. Students are assigned
the role of an investigative scientist with a mission to identify an
illness that has spread across a research station. They must find the
disease, the associated pathogen causing its outbreak, and the
source of its transmission on a virtual remote island. In the learning
environment, students can explore several virtual locations, while
interacting with non-player characters (NPCs), reading educational
materials and testing game objects for viruses and bacteria to make
this determination. Students may carry objects with them for testing
and keep track of their work with a concept matrix and an additional
worksheet to help organize their hypotheses and results.

In this study, we examine the data from 124 middle school students
who played Crystal Island in an urban school in the southeastern
US. Data were well balanced for gender, and population statistics
from the school show that 44% come from economically-disadvan-
taged backgrounds and more than 75% represent ethnic minority
backgrounds (43% Black, 24% Latinx, 5% Asian, and 4% racial)
The study took place during their regular science instruction (ap-
proximately 1 hour/day) over a 2-day period. All study procedures
were approved by the respective IRBs of both partner institutions.

3.2 Data Collected
3.2.1 Survey Data Pre and Post Test

Identical pre and post-tests of domain knowledge (which scaled
from 0 to 17) were used to calculate learning gains normalized char-
acterized here as the maximum improvement or decline that the
student would have in the post-test. Normalized learning gains were

calculated using the equation below, proposed in previous work
[73], where pre and post refer to the percentage of correct answers
in the pre and post-tests, respectively:
ost — pre
post —pre if post > pre
1—pre

Normalized Learning Gain = post — pre

if t<

pre if post < pre
Alongside these knowledge assessments, we also administered sur-
veys for motivational constructs, including a self-efficacy scale
[12], a situational interest [49], and subscales from the Intrinsic
Motivation Inventory (IMI; [21]).

3.2.2 Trace Data

Traces of students’ interactions with Crystal Island were logged au-
tomatically as students played the game. Each row of the trace logs
includes the action the student takes, the time stamp when the ac-
tion occurs, the location in the game, and the duration of time the
student spends on that action. There are other pertinent details about
the action stored in the row; for example, when a student opens a
book, the book title is logged. Additionally, students' interactions
with the 2-stage emotion self-report survey are logged through this
system because the self-report is embedded in the game. This al-
lows us to understand what students are enacting in the game prior
to the self-report.

3.3 Development of Affect Detectors

Two approaches were used to develop two different sets of affect
detectors. These methods, described below, include both a novel
self-report tool that was embedded into Crystal Island, as well as
standard BROMP classroom observations [55], which are now
well-established in the field. Typical BROMP affect categories
were adapted to the self-report tool, as described in greater detail
below.

3.3.1 BROMP

Standard BROMP-based observations [55] were collected by two
coders, who applied labels independently over the duration of stu-
dent gameplay. As part of the certification process, those being
certified in BROMP must achieve a Kappa higher than 0.6 with
their trainer. Both coders were certified prior to this study’s data
collection. To maximize data collection, these coders did not ob-
serve the same student simultaneously (as advised in the BROMP
manual [55]). In this study, a total of 1,716 individual affective
observations were made using BROMP (Avg=14.07 per student,
SD=8.02). These were made using a typical BROMP coding
scheme of boredom, engaged concentration, con-fusion, delight,
and frustration.

3.3.2 Self-report

Self-reporting of affective states used categories similar to those in
BROMP, but made nomenclature changes in order to be more age
appropriate. These included focused (cf. engaged concentration)
and happy (cf. delight), as well as bored, confused, and frustrated
(which are all labeled the same in typical US-based BROMP obser-
vations). In addition to these standard affect labels, we also include
the option of “nervous,” as recent EDM research has begun to ex-
plore categories related to anxiety [2], which are some-times more
difficult to capture in direct classroom observations.

The self-reporting tool for this study was embedded within the
storyline of the game (Figure 1). Students were told during the in-
troduction to the mystery that an NPC in the game would text them
periodically to ask them how they were feeling. They would then



ask them for potential causes for those affective states. (The analy-
sis of this second stage question is beyond the scope of the current
analysis). Both questions (what are you feeling vs. why) were op-
erationalized in a virtual cell phone with forced choice options.
Students received requests to report their feelings when they hit
certain milestones within the game, but they could also voluntarily
self-report. A total of 547 self-reports were collected, 520 of which
were triggered by in-game milestones, and 27 of which were vol-
untary. This resulted in a range of 1 to 9 self-reported affective
states per student over the course of the study (avg=4.68, SD=1.56).

Back Report Next Back Report  Send

How are you feeling right Please explain why you are
now? feeling confused.

Bored This is too hard

Confused This isn't useful to me

Focused
This topic is important to

me
Frustrated
| don't know what to do
Happy next

Nervous The game isn't working
properly

Figure 1. Implementation of the novel 2-stage self-report meas-
ure. Students first report their affective state (stage 1, leff) and
then report a cause (stage 2, right, not analyzed in this work).
Note: Images have been cropped for publication; cell phone ap-
pears in the middle of the student’s screens.

3.3.3 Feature Engineering

A total of 220 features were then engineered for developing the de-
tectors. These included features from a 1-minute game time
window, as well as features that occurred prior to the given time
window, often operationalized as occurring within the last five ac-
tions. Ultimately, 98 features were derived for this study, falling
into nine categories.

Table 1. Examples of Features by Type.

Feature Type N Example

General 11 Duration. Duration of last action.

Reading 26 RepeatedReadings. Number of articles that
the student has read more than once.

Conversations 20 ConversationTime. Cumulative duration of
all the conversations with NPCs

Hypotheses 39 HypothesisTimeLastMinute. Cumulative
time that the student has been testing hy-
potheses during the last minute.

Worksheet/ 22 CorrectConceptMatrix. Average of correct
Concept Matrix responses in concept matrixes.
Qutside 39 MovementOutside. Number of times the

student went outside any specific location.
Bryce’s Quar- 10 BryceLast5. Cumulative time that the stu-

ters dent has been in Bryce's Quarters within
the last 5 actions.

Location- 45 CurrentDining. Is the student in the dining

specific hall?

Video Game 8 GamePreference. Does the student enjoy

Preference action, adventure, role playing, simulation,

or sports-themed video games.

Table 1 provides a breakdown of the number of features in each
category and accompanying examples. General features repre-
sented features that were not specific actions taken in the game but
described actions taken in the game, like Duration, or PlotPoints.
Other features (i.e., CorrectConceptMatrix or WorksheetTi-
meRatio) were related to the students' use of in-game functions that
help students to organize their ideas and track their progress. Others
were related to the time students spent with reading material (i.e.,
PosterTime and RepeatedRead-ings), their conversations with
NPCs more generally (ConversationTime), or their testing of Hy-
potheses (HypothesisTimeLastMinute). Location-related features
included those that were specific to individual buildings in the vir-
tual world (i.e., CurrentDining) or features that divided student
actions to “inside” or “outside” behaviors (i.e., MovementQutside-
TimeRatio or OutsideLast5). Finally, some features included
information embedded from an in-game survey that students an-
swered at the start of their gameplay, including students’
preferences for video game types (i.e., ActionGame, Adventure,
Role-playing, Simulation, or Sports).

3.3.4 Sampling

As Table 2 shows, raw data from the two labeling techniques re-
vealed major differences in the rates at which the various affective
states were observed. Specifically, BROMP-based observations re-
sulted in engaged concentration/focused rates of over 80%, with
rates for boredom, confusion, and frustration much closer to 5%.
These results mirror previous rates that have been observed with
BROMP (e.g., [4, 6, 53]). In contrast, self-report-based (henceforth,
SR-based) data for this label, was far less frequent and tied to much
more specific points in the game (as per the study design). It
showed only a 28.9% rate for engaged concentration/focus, and
higher rates for boredom (31.7%). These results are also in line with
previous rates that have been observed in self-reporting using ex-
perience sampling methods [69]. In order to ensure that the
comparison was not confounded by the number of samples, base
rate, and subsequent statistical power, the BROMP-based data was
resampled for each detector to match the base rate with the SR-
based data (prior to train/test split). In this case, resampling was
conducted separately by specifically undersampling the majority
class for each affective state. The resulting detectors of this process
will be referred to as BROMPrs-based detectors. This allows for
more of a “like to like” comparison where the differences in results
can be more conclusively related to the data collection mechanism
rather than being confounded by data distribution differences.

Table 2. Total Reported Affect Labels by Sampling Method.

SR BROMP BROMPrgs
N % N % N %

Boredom 147  31.7 81 4.7 81 32.0
Conc./Focus 134 289 | 1411 822 125  29.1
Confusion 62 134 | 113 6.6 113 13.0
Delight/Happ. 78 16.8 23 1.3 23 17.0
Frustration 35 7.6 88 5.1 88 8.0
Nervousness 7 1.5 NA NA NA NA

3.3.5 Detector Building Using Cross-Validation

For this work, we constructed two detectors: (1) BROMP-based
and (2) Self-Report-based (SR-based). To ensure comparability,
each were used to label 20 second clips and the same feature set
was used as input for both detectors. However, the models were
trained and tested independently.



We performed a nested 4-fold student-level cross-validation, with
the inner fold used for feature selection. Features were selected
through a forward feature selection process, using the Area Under
the Receiver Operating Characteristic Curve (AUROC; AUC for
short) and Kappa as the performance metrics. Because each set of
detectors has multiple affective states, we trained these models as a
one vs. rest classification for each detector. This is standard practice
for affect detection in the EDM community [4, 8, 11]. To evaluate
the performance of both detectors, we explored 4 machine learning
algorithms from the SciKit Learn Library for Python [58]: Logistic
Regression, Random Forests, Gradient Boosting, Support Vector
Machines. We used default hyperparameters for all models.

4. RESULTS

As Table 3 shows, 3 algorithms outperformed all the others. Lo-
gistic regression (LR) performed best for 9 detectors, including all
3 boredom detectors (SR-based, BROMP-based, and BROMPrs-
based) all 3 delight/happiness detectors, 2 confusion detectors (SR-
based and BROMPrs-based), and the BROMP-based concentration
detector. Random Forests (RF) performed best for 5 detectors: the
SR-based focus detector and its corresponding BROMPrs-based
concentration detector, 2 of the frustration detectors (SR-based and
BROMP-based), and the SR-based detector of nervousness. (As
readers recall, BROMP does not code for nervousness, so BROMP-
based nervousness detectors were not built.) Finally, Extreme Gra-
dient Boosting (XGB) performed best for 2 detectors: BROMP-
based confusion and BROMPrs-based frustration.

Table 3. Algorithms and Performance Metrics by Detector

SR BROMP BROMPrs

Algo AUC K |Algo AUC K |Algo AUC K
Bored LR 0.67 021| LR 08 02| LR 08 047
Conc/Focus | RF 0.67 0.21| LR 0.67 0.19] RF 0.6 0.19
Confused LR 0.67 0.21|{XGB 0.67 0.19] LR 0.66 0.21
Del./Happ. | LR 0.76 0.25| LR 0.75 0.11| LR 0.84 0.47
Frustration | RF  0.67 0.26] RF 0.7 0.12|XGB 0.78 0.27
Nervousness| RF  0.79 0.17) NA NA NA|NA NA NA

Performances across the three types of detectors (SR-based,
BROMP-based, and BROMPrs-based) were comparable. SR-
based detectors ranged from AUC=.67-.79 and Kappa=.21-.26.
BROMP-based detectors ranged from AUC=.67-80 and Kappa
=.11-.20 before resampling. BROMPrs-based detectors performed
similarly to the original BROMP-based detectors for AUC (.60—
.84) and performed slightly better for Kappa (.19—.47).

These results show that BROMPrs-based detectors performed
slightly better than SR-based detectors, particularly for boredom
(AUC=0.8, Kappa=0.47 compared to AUC=0.67. Kappa=0.21).
The performance of the BROMPrs-based delight and frustration
detectors was also higher compared to SR-based detectors. In con-
trast, after controlling for the affect distributions, the performance
of engaged concentration detectors was slightly higher for SR.
Given that BROMP data was resampled to control for the affect
distribution when comparing both types of ground truth, these re-
sults suggest a higher consistency in the affect categorization of
human observers compared to students’ self-reports for boredom,
confusion and frustration. On the other hand, these results also sug-
gest that human observers may have categorized some instances of
other affective states as engaged concentration.

Moreover, the increase in performance between original BROMP
observations and the BROMPrs-based detectors is explained by the
higher imbalance in the original distribution of BROMP observa-
tions. This also explains the reduction in performance for engaged
concentration after reducing its rate during resampling. These re-
sults do not imply that the BROMP-based detectors are worse than
the BROMPrs-based detectors. In fact, BROMP-based detectors
could arguably perform better because they use more samples for
the training process, and therefore, our analysis will be focused on
these detectors using the original data BROMP observations.

4.1 Feature Comparisons

Table 4 shows how the 9 types of features described in Table 1
emerge in these detectors. Specifically, it compares the features se-
lected by the SR-based detectors to those selected by the original
BROMP-based detectors and the BROMPrs-based detectors. In
general, this table shows there is little overlap between the features
selected for SR-based detectors and those selected by the two
BROMP-based detectors. Overall, 25 of 45 instances in this com-
parison (highlighted in grayscale) show no overlap in feature type
between the SR-based detectors and either BROMP-based detector.
Three groups of features included in this study describe students'
most basic interactions with the game, and these show little overlap.
For example, general features were selected 8 times by these de-
tectors, and this category is most common in the boredom detectors.
There is some overlap in the two BROMP-based boredom detec-
tors, where both the original detector and the BROMPrs-based
detector use the same feature (i.e., duration), but this is not the gen-
eral feature selected by the SR-based boredom detector. No other
overlap was shown between SR-based detectors and BROMP-
based detectors for this feature.

For reading features, the results are very similar. Most reading fea-
tures were selected by BROMP-based or BROMPgs-based
detectors, and the two features that were selected by the SR-based
delight detector were different from the reading feature selected by
the BROMPrs-based delight detector.

Results for conversation features were slightly different, but over-
lap was still minimal. For three affective states, a conversation
feature was selected both by the SR-based detector and by the
BROMPrs-based detector (i.e., boredom, concentration and confu-
sion). As with the reading features, these features were not identical
to one another.

Two other sets of features (concept matrix/worksheet and hypothe-
ses) encode information about students' scientific activities in the
game. These also show minimal overlap between SR-based and
BROMP-based detectors. For the first category, only the boredom
and confusion detectors showed this feature type appearing in an
SR-based detector and a BROMP-based detector, and these were
not identical features. The second category contains an exception
to this overlap. Although one feature (HypothesisTesting-to-Read-
ing) appears in both the SR-based concentration detector and the
BROMPrs-based concentration detector, the only other overlap is
between the two BROMP-based detectors of boredom.

Three feature sets are related to locations in the game. These in-
clude outside, Bryce’s quarters, and other location specific
features. The outside category shows overlap between SR-based
and BROMP-based detectors for three affective states. For concen-
tration and frustration, the features are not identical, but for
confusion one feature (MovementOutsideLastMinute) was selected
by both the SR-based and BROMPrs-based detector.



Table 4. Summary of Feature Type by Detector (SR vs. BROMP vs. BROMPRS). Grayscale indicates cases where there is no overlap
between the SR-based detectors and either of the BROMP-based detectors.

Concentration Delight/

Boredom / Focus Confusion Happiness Frustration Grand Total

Feature Type 2 | & v:% 2 | = c% % | :’:‘ = - :’:‘ @ | c’:‘ © | & k

©n =] =) n ==} ==} ©n ==} ==} 7)) ==} ==} 7)) --H -] ) =) =)
General 1 1 2 0 2 0 0 0 0 0 0 0 0 0 |2 1 3 4
Reading 0 1 0 0 1 1 0 0 2 2 0 1 0 0 |1 2 2 5
Conversations 1 0 1 1 0 1 1 0 2 1 0 0 0 1 |0 4 1 4
Hypotheses 0 1 1 1 0 1 2 2 0 1 0 0 1 0 |1 5 3 3
Conc.Mx/Wrksht 1 0 1 1 0 0 1 1 0 0 0 0 0 0 |1 3 1 2
Outside 0 1 0 1 1 0 1 1 1 0 3 2 2 0 |2 4 5 5
Bryce’s Quarters 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 2 1
Other Locations 2 1 0 1 1 3 2 2 2 0 2 2 3 312 8 10 | 9
Video Game Pref. 1 0 0 0 0 0 1 0 0 3 2 1 1 1 ]0 6 3 1

subtotal 6 6 5 5 5 6 9 6 7 7 7 7 7 6 |9 34 | 30 | 34

Only four features related to Bryce’s quarters—the location in the
game that contains the most academic content—were selected for
any of the detectors. These four appeared in the BROMP-based de-
tector of boredom, the SR-based detector of confusion, the
BROMPrs-based detector of delight, and the BROMP-based detec-
tor of frustration. In other words, the SR-based and BROMP-based
detectors of the same affective state showed no overlap.

Among the 27 other location-specific features, Table 4 shows the
greatest potential of identical features appearing in SR-based and
BROMP-based detectors of the same affective state. For example,
8 of these features are distributed among the three confusion detec-
tors, but no identical features are found across SR and BROMP-
based confusion detectors or for any other affective states.

Finally, we look at video game preference features. These were
unique in that they were extracted from a survey that students took
at the beginning of the game as opposed to their behaviors within
the game. These features typically appeared in SR-based detectors
(i.e., boredom, confusion, happiness, frustration, and nervousness),
though they also appeared in BROMP-based detectors of delight
and frustration. Only one answer appeared as a feature across de-
tectors from different data sources. Specifically, SR-based,
BROMP-based and BROMPrs-based detector of delight included
a feature for students who preferred role-playing games.

4.2 Detector Comparisons

Next, we consider differences between predictions made by the two
sets of detectors when labeling the same 20-second clips. For these
comparisons, we use the original distributions for both detectors
(i.e., not BROMP resampled). The original distributions allow us
to further analyze the varying signals collected by these two mech-
anisms (including varying base rates in the data) and how that
influences future detection. We correlated the detector predictions
for aligned 20-second clips (across students, N=15,964) for the two
types of detectors (SR and BROMP-based) for each construct pair.

The correlation matrix (shown in Table 5) shows a positive trend
along the diagonal (e.g., the two boredom detectors were positively

correlated), but low correlations overall (rho=-0.42 to rho=.24).
Significance values are not reported due to the lack of independ-
ence between samples, however we report the magnitude of the
correlations as this can still be informative.

Table 5. Correlations between SR-based and BROMP-based
detector outputs at the clip-level. (rho>.05 in bold; note that
BROMP does note code for nervousness).

BROMP-based detectors

Bor. Conc. Conf. Frus. Del.

Bored 0.09 -0.02 0.17 -036 -0.42
2 Focused -0.19 0.2 -0.13  0.06 0.13
E IConfused 0.01 0.2 0.01 -0.09 -0.21
o [Frustrated 0.09 -0.11 0.02 0.16 0.07
“ Happy -0.05 -0.14 0.04 -0.07 0.24
INervous 0.03 0 -0.01 -0.02 0.08

It should be noted that the correlations indicate only a weak align-
ment between the two detectors. Of particular note, when detectors
based on the students’ self-report say that the student is happy, ob-
server-based detectors of delight most often concur (rho=0.24).
Likewise, when SR-based detectors predict that a student is fo-
cused, BROMP-based detectors are most likely to agree (rho=0.2),
but they may also predict that the student is frustrated (rho=0.06)
or delighted (rtho=0.13).

Other detector relationships are not as strong. When SR-based de-
tectors predict that a student is bored, BROMP-based detectors
sometimes agree (rho=0.09) but they more often predict that the
student is confused (rtho=0.17). Likewise, when SR-based detectors
identify frustration, BROMP-based detectors often agree
(tho=0.16), but sometimes predict that the student is bored
(rho=0.09). When SR-based detectors predict that a student is nerv-
ous (an affective experience with no correlation in current
BROMP-coding schemes), BROMP-based detectors are most
likely to predict delight (tho=0.08).



Table 6. Correlations of Detector Output with Learning and Interest Measures. Statistically significant correlations (p< 0.05) that
are still significant after the B&H correction are marked with an asterisk.

Self Efficacy Situational Interest Pre-Test Norm. Learning Gains
Detector (N=122) (N=122) (N=122) (N=46)

Boredom SR -0.29 (p=0.00)* -0.31 (p<0.00)*

BROMP -0.27 (p=0.00)* -0.39 (p=0.01)*
Concentration/Focus SR

BROMP
Confusion SR

BROMP
Delight/Happiness SR

BROMP 0.29 (p=0.00)*
Frustration SR

BROMP

4.3 Correlation with Learning and Interest
4.3.1 All SR-based & BROMP-based detectors

Our next analysis compares the relationship between these two
suites of detectors (SR-based and BROMP-based) and learning and
interest measures. Table 6 presents the Spearman correlations of
each detector (aggregated at the student level) against measures of
self-efficacy, interest, prior knowledge, and learning as collected
with pre- and post-test surveys. Three subscales of surveys are not
given here, as they were not significantly correlated with any de-
tector (the IMI’s value-utility, pressure-tension, and emotion-
attention). Significance levels in the table reflect a Benjamini-
Hochberg post hoc correction (B&H; [9]) that was applied to each
scale to correct for multiple comparisons.

Results in Table 6 show that boredom detectors show more statis-
tically significant relationships with the four learning and interest
measures than any of the other detectors. Specifically, the SR-based
boredom detector was negatively associated with Britner & Pa-
jares’ [12] self-efficacy measure (rho=-0.29; p=0.00) and
Linnenbrink-Garcia et al.’s [49] situational interest scale (rho=-
0.31, p=0.00). Meanwhile, the BROMP-based boredom detector
was negatively associated with situational interest (rtho=-0.27,
p=0.00) and normalized learning gains (rtho=-0.39, p=0.01). The
last statistically significant relationship was between the BROMP-
based delight detector and situational interest (rho=0.29, p=0.00).

4.3.2 Analysis of Detector Agreement/Disagreement
To further examine the impacts of how ground truth measurement
influences future detection, we considered specifically the in-
stances where the detectors disagreed (as described in Table 6). For
example, the positive correlation between the SR-based boredom
detector and the BROMP-based confusion detector implies a disa-
greement. We anchor this analysis with instances where the two
detectors agreed (i.e., both detectors predict the student is bored),
and we normalize instances of agreement and disagreement based
on the number of clips per student (dividing instances of agreement
or disagreement between detectors for each student in the total
number of student’s clips). We then calculate the Spearman corre-
lation between the number of instances per student where each of
these disagreements (and agreements) appear and the students’
learning and interest measures.

Descriptive states for these correlated clips are given in Table 7,
which presents how often these correlated clips occurred for each
student. It also includes the number of students for whom the over-
lapping labels occurred. The relationship between the clip labels
and the learning and outcome measures is given in Table 8.

Table 7. Descriptive Stats for Correlated SR-labeled and
BROMP-labeled Clips. Only students for whom the overlap-
ping labels occurred are considered.

SR BROMP
Label Label Students | Min | Max | Avg SD
Bored | Bored < 7 9 121 35.0 | 364
Conf. 58 1 65 9.2 13.9
Conf. | Conf. « 20 1 25 6.7 6.3
Conc. 104 1 78 154 | 15.8
Frus. Frus. « 11 1 24 5.6 6.8
Bored 4 24 79 45.0 | 20.7

We first look at clips that were labeled as boredom by the SR-based
detectors, where BROMP detectors sometimes agreed (rho=0.09,
Table 5), but more often produced a confusion label (tho=0.17, Ta-
ble 5). As the data in Table 8 show, both sets of clips are correlated
with self-efficacy at the same rate (tho=-0.19). In other words, stu-
dents with low self-efficacy are more likely to label themselves as
boredom more generally (tho=-0.29, Table 6), but this may present
as either boredom or confusion to external observers. Situational
interest, which was significantly correlated with SR-based boredom
detectors more generally (and at approximately the same level as
for self-efficacy, i.e., tho=-0.31, Table 6) were still marginally sta-
tistically significant once this further division was applied.

Table 8. Participant-level correlations of Learning and Interest
Measures, based on detector type labelling agreement.

Detector Prediction Self Sit Norm.
SR BROMP Efficacy Interest Pre-Test LG
Bored Bored < -0.19 -0.15
(p=0.04) (p=0.09)
Conf. -0.19 -0.17
(p=0.04) (p=0.06)
Conf. Conf « -0.4
(p-0.00)
Conc. 0.18
(p=0.05)
Frus. Frus. <«
Bored -0.18
(p=0.05)

We next look at the clips that were labeled as confused by the SR-
based detectors, where BROMP detectors rarely agreed (tho=0.01,
Table 5), and instead were more likely to produce a concentration
label (tho=0.2 Table 5). Despite the infrequency of agreement



between these two detectors (rho=-0.40, Table 8) among a low
number of students (N=20, Table 7), agreement between the two
detectors produces one of the strongest correlations with outcome
measures that we see in this entire study. Namely, clips that are
labeled as confused by both SR-based and BROMP-based detectors
are significantly correlated with normalized learning gains at rho=-
0.40 (Table 8). However, when the SR-based detector labels a clip
as confused and a BROMP-based detector labels the clip as con-
centrating, the correlation with learning gains disappears and
instead we find a significant correlation with situational interest
(rho=0.18). This suggests that students with different levels of in-
terest may be presenting their confusion in different ways.

Finally, we look at clips that were labeled as frustration by the SR-
based detectors. Our prior analysis (Table 5) showed that these clips
were most often correlated with a matching frustration label from
the BROMP-based detectors (rho=0.16), but that they were also
frequently labeled with boredom (rho=0.09). Our analysis in Table
8 shows that the clips with matching labels are not significantly
correlated with any of our learning and outcome measures, but clips
where there is disagreement (i.e., the SR-based detector predicts
frustration while the BROMP-based detector predicts boredom) are
negatively correlated with self-efficacy (rho=-0.18) at about the
same rate that is found for the SR-boredom clips that are also in-
cluded in this table.

5. DISCUSSION
5.1 Study Goals

This study seeks to better understand how our modeling methods
impact our understanding of students’ affective experiences. Spe-
cifically, it compares the impact of using two different kinds of
ground truth measurements (self-report vs. BROMP observation)
commonly used supervised machine learning for developing affect
detectors. In order to ensure fair comparisons, we first report on the
construction and performance of these detectors, including control-
ling for different distributions between the datasets through
resampling.

Comparison of raw measurements in this study (i.e., the training
labels obtained through self-reports or BROMP observations) is
challenging because the sampling rates of momentary time sam-
pling methods (that used in BROMP) are susceptible to different
biases than other kinds of sampling methods (e.g., the triggers used
for our self-report data). These sampling differences are hard to ad-
just for [57]. That said, the results from these two measures are
consistent with previous research, where self-report tends to report
much higher rates of boredom than classroom observations [7].
These large differences in the rates of boredom and focus/engaged
concentration in the raw training data support the conjecture that
the two methods record different signals of the internal states. One
hypothesis for this is that observations might be picking up on more
of the in-the-moment affective expressions while self-report may
be picking up on affect influenced by trait-like internal qualities
(e.g., motivation, interest, game preference, and prior knowledge).

Instead, our study focuses on comparing the output of the two suites
of detectors, which can be applied at the same sampling level. We
then compare the constituent features of corresponding detectors
and their co-correlations. Both of these analyses also suggest that
corresponding SR-based and BROMP-based detectors are picking
up on different signals, as do the results of our correlational study,
which compares the detector output to motivational and learning
constructs.

5.2 Main Findings

Feature analyses (section 4.1) support the hypothesis that SR and
BROMP-based detectors are picking up on different signals, as do
the correlations between the two suites of detectors in section 4.2.

Notably, we show minimal overlap in types of features selected,
and even less in the specific features selected when comparing SR-
based detectors to BROMP-based detectors of the same state.
While feature interpretability is challenging with such complex
models, the emergence of video game preferences as more common
feature in SR-based detectors than in BROMP-based or
BROMPRS-based detectors also suggests that the SR-based detec-
tors are more likely to be picking up on trait-like qualities of
students emotional experience, while the BROMP and BROMPRS-
based detectors may be reflecting more transient experiences that
the observers are focused on. For example, a student might appear
to be confused to the outside observer, but unable or unwilling to
apply that label because of low interest in the game (resulting in
self-reported boredom).

Validity and generalizability concerns related to machine-learned
detectors should also be closely considered in the interpretation of
the correlations we present in 4.2, as any machine-learned model is
likely to demonstrate statistical noise. However, our analyses in
section 4.3 shows that these two suites of detectors—like those in
previous research using the same well-established methods—are
both associated with important learning and interest measures. Spe-
cifically, section 4.3.1 shows that both SR-based and BROMP-
based detectors are associated with situational interest, but only the
SR-based detector of boredom is associated with self-efficacy and
only the BROMP-based detector of boredom is associated with
learning. These findings offer evidence that both types of detectors
are related to constructs that are important to student learning ex-
periences, as opposed to suggesting that neither is useful.

Finally, we considered how the agreement and contradictions be-
tween the two suites of detectors might tell us about the students’
broader learning experience (section 4.3.2). These analyses seek to
answer Graesser et al.’s [35] call to better understand what it means
when self-reports and external observations do not agree by focus-
ing on the strongest positive correlations found in 4.2. Namely, we
focus on data where the SR-based detectors labeled clips as bore-
dom, confusion, or frustration. In some cases, the output of these
detectors was strongly correlated with the corresponding affective
state from the BROMP-based detectors, but in other cases there
were discrepancies that deserve consideration.

5.3 Interpretations

Research on the differences between self-report and observational
measurements points to the availability of different signals. For in-
stance, an observer might see a student who has reached an impasse
as experiencing confusion or frustration, but self-reported confu-
sion requires some metacognitive recognition on the part of the
student. If the student does not believe they are wrong (e.g., if they
decide the system is providing them with incorrect feedback), their
motivation to continue may evaporate quickly, leading them to ac-
curately report internal feelings of boredom. Similarly, a student
who knows that they are wrong but has low motivation to continue
(e.g., because they have low self-efficacy) may also process the ex-
perience as boredom. In contrast, a student with high motivation
(e.g., high situational interest) might hit a minor impasse and rec-
ognize internal feelings of confusion without visibly demonstrating
it to the observer.



The kinds of overlap that this study shows in its comparison of self-
report and observational models requires a more complex approach
than has been found in many previous EDM studies that have
sought to model student affect. In many cases, more simple ap-
proaches may be desirable. However, we show that there are cases
where differences between the two sets of detectors are related to
distinct learning and interest measures. For example, SR-based
confusion is correlated with learning gains when BROMP-based
detectors agree, but with situational interest when BROMP-based
detectors predict that the student is concentrating. From these re-
sults, we might infer that students’ experience of confusion is
different depending on their situational interest levels, and that
these differences were likely manifesting in observably different
ways during the BROMP data collection process.

These results suggest that having affect detectors generated from
both sets of ground-truth measures could be potentially revealing
in terms of better understanding the complex relationships between
epistemic emotions and learning. These results are also in line with
longstanding research that suggests that other affective states may
have more than one type. For example, Gee’s proposes the notion
of pleasurable frustration as distinct from a more canonical experi-
ence of frustration [33], and more recently Cloude and colleagues
have suggested that both confusion and frustration may manifest in
multiple ways [16].

5.4 Limitations & Future Work

One potential limitation of this study is that our results do not reveal
a single gold standard. Because both sets of detectors correlate with
learning and interest measures, we cannot recommend one meas-
urement strategy over another. However, as we have discussed,
finding a single gold standard was not the goal of this project.

Another potential limitation is that these results stem from only one
learning environment. It is possible that different types of learning
experiences (e.g., those from a more traditional intelligent tutoring
system) might be different than those that we are finding in Crystal
Island. We hope that these results might inspire future research that
compares similar kinds of data.

Future work should look at additional methods for exploring detec-
tor differences, such as data-driven classroom interviews [5]
Specifically, we would like to compare instances where SR-based
and BROMP-based detectors contradict one another within Crystal
Island (e.g., when SR-based detectors predict confusion but
BROMP-based detectors predict concentration) to the times in
which they agree (e.g., when both sets of detectors predict confu-
sion). In-the-moment interviews could help us to better characterize
these affective experiences so that we can better understand how to
support students. This approach could also help us better under-
stand students’ affective experiences during learning (even when
only one suite of detectors is being applied) as in [2, 5].

6. CONCLUSIONS

Latent states such as affect can be challenging to accurately meas-
ure, either by self-report (subject to internal biases) or observation
(subject to observer bias and presentation effects). In this work, we
investigate how the ground truth collection impacts the perfor-
mance of affect detectors, including how it changes the selected
features in our models. We do so in service of better understanding
differences in the different signals being collected.

In contrast to previous research, which has suggested that we might
achieve validity in affective research by demonstrating agreement
between self-report and external observations [62], we argue the

opposite. Namely, we suggest that students have access to different
kinds of information about their learning experience than the per-
son observing them. Drawing upon these rich and diverse personal
experiences can provide us with meaningful data about how stu-
dents learn. Likewise, the consistency of an established external
observation method like BROMP, which requires training and cer-
tification before an observer can collect data, can provide stability
that might not be found among students with various levels of mo-
tivation or metacognitive skills.

Rather than arguing that one measure is better than the other, we
suggest that two sets of affect detectors may be better than one.
Specifically, we point to the strong evidence about the social con-
struction of emotions that has been more commonly discussed in
other fields (e.g., [29]). This approach assumes that the experience
of emotion includes a constellation of signals that are both internal
and external to the students, and that the student and the observer
would apply a linguistically appropriate label depending on their
attention to how these signals manifested and where their attention
was most closely focused. Under social constructivist assumptions
[28], both self-report and observational labels could be simultane-
ously correct even if they sometimes showed disagreement.

Other theoretical frameworks also argue for a more complex and
less deterministic formation and presentation of academic emotions
than is suggested by the frameworks that have influenced common
categorical labeling practices in the EDM community. For exam-
ple, while Izard’s [39] theoretical framework takes a categorical
stance for basic emotions, it argues that academic emotions are
more constructed. This description also makes space for the possi-
bility that a single categorical label might represent more than one
type of affective experience.

Such possibilities have not been considered in much of the previous
EDM research. Although the field has sometimes explored differ-
ences in valence and arousal, it has more commonly favored the
simplicity of categorical labels applied one at a time. We see the
present study as building off this approach, which has been very
successful at improving our understanding of the relationships be-
tween in-the-moment affective experiences and student learning.

At the same time, we encourage the field to consider how the theo-
retical and methodological assumptions that we are making as we
collect data might be influencing our results. Specifically, we point
to evidence in this study that suggests that although self-report and
external observations appear to be modeling slightly different in-
formation about the students' experience, both are tapping into
important signals about learning and motivation. We hope that fu-
ture work will continue to explore how these methodological
differences could be seen as an opportunity rather than a drawback
as we work to better understand these complex emotions.
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