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ABSTRACT

Research on epistemic emotions has often focused on how students
transition between affective states (e.g., affect dynamics). More
recently, studies have examined the properties of cases where a
student remains in the same affective state over time, finding that
the duration of a student’s affective state is important for multiple
learning outcomes. However, the likelihood of remaining in a given
affective state has not been widely studied across different methods
or systems. Additionally, the role of motivational factors in the
persistence or decay of affective states remains underexplored. This
study builds on two prior investigations into the exponential decay
of epistemic emotions, expanding the analysis of affective
chronometry by incorporating two detection methods based on
student self-reports and trained observer labels in a game-based
learning environment. We also examine the relationship between
motivational measures and affective decay. Our findings indicate
that boredom exhibits the slowest decay across both detection
methods, while confusion is the least persistent. Furthermore, we
found that higher situational interest and self-efficacy are
associated with greater persistence in engaged concentration, as
identified by both detection methods. This work provides novel
insights into how motivational factors shape affective chronometry,
contributing to a deeper understanding of the temporal dynamics of
epistemic emotions.
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1. INTRODUCTION

Research on epistemic emotions has matured over the last decade
as researchers have progressed from being able to detect them in
the moment (e.g., [3, 32, 35]) to using the resultant detectors to
understand patterns in emotion over time and how those patterns
relate to learning or motivation (e.g., [1, 16, 22, 23, 26, 37]).
However, one aspect that has received less attention in the literature
is the temporal dynamics of epistemic emotions—specifically, their
duration and decay over time (but see [7, 13]). This includes
understanding how long these emotions last, the rate at which they
fade, and potential factors such as situational interest or self-
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efficacy that contribute to a faster decay or extend students’
persistence within those affective states.

Understanding typical rates of decay is an important area of
research, particularly for affective states like confusion or
frustration, where research shows that both too little and too much
time in that state is bad for learning [22]. As we are seeking to
personalize learning, understanding the timing-related differences
in students’ affective experience is an important step. In particular,
capturing ways in which students’ affective experiences are most
likely to change over time—and how these changes may be related
to learning and motivation measures—can be useful for
understanding different tolerances for negatively valenced
emotions and/or their antecedents (e.g., problem difficulty, poor
connections to student’s prior knowledge, etc.).

In this study, we examine differences in students’ affective
experience within the context of Crystal Island, an online learning
system aligned to state curriculum standards for middle school
math. In this system, two distinct suites of cross-validated affect
detectors—one based on self-reported data and one based on
BROMP-observation labels [24]—are already published [37]. We
use both sets of detectors—analyzed separately—to examine how
student affect changes over time, with a special emphasis on how
long a student is likely to persist in each affective state, or its half-
life.

Affect dynamic results for the full population are first compared to
previous work investigating the half-life of epistemic emotions,
namely Botelho et al. [7] and D’Mello et al. [13]. We then look for
differences based on the students’ motivational measures.
Specifically, building on new models of affective states that suggest
that student motivational measures may impact their tolerance for
difficulty [25], we also examine how the half-life of affective states
varies with respect to students’ self-efficacy [8] and situational
interest [21].

2. LITERATURE REVIEW
2.1 Affective Dynamics

To date, there are a handful of theoretical models related to the
ways in which students experience epistemic emotions during
learning. One common model is Csikszentmihalyi’s Flow Theory
[10], which suggests that people experience a state of flow when
difficulty of their task is well matched to their skill level. More
specific to epistemic emotions is D’Mello and Graesser’s [12]
affect dynamics model. This model predicts oscillation between
engaged concentration and confusion when students are learning,
and a path from confusion to frustration to boredom when they are
not.

More recently, Ocumpaugh et al. [25] have used Pekrun’s Control
Value Theory [27] to build upon both Csikszentmihalyi’s and



D’Mello and Graesser’s frameworks, proposing the Skills,
Difficulty, Value, Efficacy, and Timing (SDVET) model. The
SDVET model suggests that motivational constructs like self-
efficacy and value are important to explain why and when a student
might transition from one affective state to another. Much like
Csikszentmihalyi’s Flow Theory, it hypothesizes that the
intersection of skill and difficulty level is important, but it diverges
from that model in terms of what emotions are predicted when.

The SDVET model predicts that (a) boredom is likely to occur
when students’ skill is substantially higher than the task difficulty
and that (b) either boredom or canonical frustration are likely when
their skill level is well below their difficulty. However, it does not
predict that the space between those two areas is entirely occupied
by a flow state or engaged concentration. Instead, it hypothesizes
that (c) a student whose skill and difficulty are well matched, but
who does not value the task, will also experience canonical
frustration, whereas (d) a student with matched skill and difficulty,
plus high value, will experience the state of flow. Finally, it
describes a situation where students with higher self-efficacy are
asked to complete tasks with difficulty levels above their current
skill level—but within the range where their self-efficacy
encourages them to believe they can accomplish this task. Students
in this space are predicted to (e) experience intolerable levels of
confusion when their value for the task is low—which could make
them more likely to transition to boredom or (canonical) frustration.
However, when their perceived value of the task is high, they are
predicted to experience pleasurable frustration [17]. Notably, the
buffering effects of self-efficacy that are predicted in this model (f)
are expected to diminish as time persists—meaning that even
students with high self-efficacy will not persist in confusion or
pleasurable frustration infinitely.

In other words, there are explicit hypotheses about what extended
experiences of emotion might indicate, which align both with
Ocumpaugh et al.’s [25] empirical data and with the relationships
we often see between self-transitions and learning. For example,
Nasiar et al., [23] found that extended periods of boredom,
confusion, and frustration—all indications that a student was not
being appropriately challenged—were associated with low learning
gains, while extended periods of engaged concentration and delight
were associated with high learning gains. Likewise, Andres et al.
[1] showed that sustained boredom was negatively correlated with
both pre-test and post-test while sustained delight was positively
correlated with post-test and learning gains. None of these studies,
however, are able to show what a normal duration of a given
affective state might be for a given learner.

2.2  Exponential Decay Research

One analytical approach that can help us to understand typical
durations of affective states is the use of exponential decay. To date,
there are two primary studies that have looked at the rate of decay
of affective states in learning analytics. The first is D’Mello &
Graesser’s [13] study of the AutoTutor system, in which students
and trained human evaluators labeled students’ affective states
every 20 seconds based on the recorded interactions with the
platform. In this study, D’Mello and Graesser observed that both
self-labeled and judge-labeled affective states tended to change
rapidly within the first minute after students transitioned into the
corresponding affect. Specifically, they found a sharp decline in the
number of instances where a student still persisted in an affective
state recognized one minute earlier. They proposed that this
reduction in the probability of persisting in the same affective state
could be effectively modeled using exponential decay and
introduce the notion of affective half-life, where a half-life
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represents the point at which a quantity decreases to half of its
initial value [7, 13]. This measure provides a more informative
perspective than simply calculating the average episode length, as
it identifies the point where students are equally likely to remain in
or transition out of an affective state.

By modeling these probabilities as exponential decay, D’Mello and
Graesser [13] observed that students tend to persist longer in
boredom, engaged concentration, and confusion (persistent states),
whereas the durations of delight and surprise (transitory states) and
frustration (an immediate state) were significantly shorter.
Additionally, they found that prior knowledge was negatively
correlated with the decay rate of engaged concentration, suggesting
that students with higher prior knowledge tend to remain in this
affective state for longer. This finding aligns with
Csikszentmihalyi’s Flow Theory [10], which proposes a balance
between challenge and skill level as a key factor in sustaining
engagement.
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Figure 1. D’Mello & Graesser [13] Exponential Decay Results.
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Figure 2. Botelho et al.’s [7] Exponential Decay Results.
Inspired by D’Mello and Graesser’s analysis, Botelho et al. [7]

studied the same issues within the ASSISTments system [18],
where BROMP-based affect detectors made predictions about each



student’s affective state every 20 seconds. In this study, researchers
applied the same exponential function to understand the likelihood
that a student would persist in a given affective state once they
transitioned into it. However, Botelho et al. [7] found that boredom
and engaged concentration often lasted longer than the previously
found one-minute window. Consequently, they extended the decay
observation period to five minutes to better fit the exponential
function and determine the decay rate. The results from D’Mello
and Graesser’s study are shown in Figure 1, while those from
Botelho et al.’s study appear in Figure 2.

3. METHODS
3.1 Data Context

This study analyzes data from an inquiry-based virtual world
designed to align with state standards for middle school
microbiology. In Crystal Island [30], players act as researchers
prompted to identify the cause of an outbreak that has impacted a
research team on an island. To complete the game, players navigate
multiple locations, interact with non-playable characters (NPCs),
collect information from reading materials distributed across the
virtual world, and use laboratory tools to test their hypotheses. To
support their progress, players are given a concept matrix to
organize information from the readings and a worksheet to
structure their hypotheses and findings. Figure 3 displays the game
interface.
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Figure 3. Crystal Island interface with suggested solution path
[33].

3.2  Participants

This study analyzes data from 122 middle school students who
played Crystal Island at an urban school in the Southeastern United
States. The dataset is well-balanced in terms of gender, with 44%
of students coming from economically disadvantaged backgrounds,
according to school-level statistics. Additionally, over 75% of the
participants identify as members of ethnic minority groups,
including 43% Black, 24% Latinx, 5% Asian, and 4% from other
racial backgrounds. The study was conducted during the students’
regular science classes, which lasted approximately one hour per
day over a two-day period. All procedures were approved by the
Institutional Review Boards (IRBs) of the partner institutions.

3.3  BROMP vs. Self-Report Detectors

This study utilizes interaction-based detectors [3, 6] of epistemic
affective states that were previously published and cross-validated
[37] to infer their emotions in real-time (see [4, 6] for reviews).
These detectors were developed using labels generated from two
sources: (a) in-game self-reports (SR) and (b) observations
conducted with the BROMP protocol [24].

Data for both of Zambrano et al.’s [37] detectors were collected
simultaneously while students were playing the game (average
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gameplay duration: 41.6 minutes, SD = 15.6). At specific moments
during gameplay (e.g., after completing the tutorial, reading three
in-game texts, or testing three hypotheses), students were prompted
to self-report one of six affective states: boredom (31.7%), focus
(28.9%), confusion (13.4%), happiness (16.8%), frustration (7.6%),
or nervousness (1.5%). Self-reporting prompts were strategically
timed to minimize disruptions to gameplay. In total, 463 self-
reports were collected and used to train the self-report-based
detectors. No student was prompted to report their affective state
more than 10 times throughout the entire gameplay session.

As they were playing, BROMP classroom observations—a
momentary time sampling method designed for building detectors
of student affect—were conducted. BROMP observers collected
data on five affective states: boredom (4.7%), engaged
concentration (82.2%), confusion (6.6%), delight (1.3%), and
frustration (5.1%). In total, 1,716 observations were collected to
train the BROMP-based detectors. Nervousness was excluded from
BROMP observations as it is difficult to observe directly. Self-
report labels were adapted from BROMP researcher categories to
child-friendly language (e.g., “focus” for engaged concentration
and “happiness” for delight).

Although there is a sharp contrast in the base rates between the two
ground truths (SR vs. BROMP), these differences are consistent
with findings from prior studies (e.g., see base rate differences in
[5] and [32]). This contrast likely reflects the distinct nature of the
signals each method captures and their different limitations (see
discussion section, below). Despite their differences, both types of
data are associated with multiple outcomes, including learning and
motivational measures [37]. Considering both signals can produce
a more comprehensive view of students’ affective dynamics than
either method alone (see discussion in [37]). The BROMP and SR
detectors were developed independently of each other, with each
set of affective data used to train separate ML-based affect
detectors. These were binary one vs all detectors trained using
Logistic Regression, Random Forests, and X Gradient Boosting.
These detectors were cross-validated at a subgroup level to ensure
they could generalize to new populations, and the best-performing
model for each affective state (AUC>0.65 for all affective states)
was used in this analysis. Consistent with previous work involving
BROMP [7], both sets of detectors were applied to 20-second
segments of students’ log files. Two labels were then assigned to
each clip (one from the SR-based detector and one from the
BROMP-based detector) based on the highest probability output
across categories after adjusting probabilities to account for the
base rates of the ground truth in each detector suite, ensuring the
distributions matched those observed in the ground truth [23, 25].

3.4  Affective Dynamics and Chronometry

We analyzed affect dynamics using a multistep approach. First, we
replicated the affect chronometry approach proposed by D’Mello
and Graesser [13] and replicated by Botelho et al. [7]. We
segmented each student’s sequence of labels into episodes, with
each episode representing the continuous duration a student
remained in a specific affective state before transitioning to a
different one. For example, if the model classified a student as
bored for three twenty-second clips before transitioning to
frustration for two twenty-second clips and then back to boredom
for four twenty-second clips, then they would have experienced
three affective episodes—two for boredom and one for frustration.

For each affective state, we used the detector labels to calculate the
probabilities of episodes persisting for durations ranging from 20
seconds to 5 minutes in increments of 20 seconds (Pr(E; =



E;120i), where i represents the number of future clips in which the
affective state persists). Note that this is in line with Botelho et al.’s
[7] approach, which also used affect detectors, the same
granularity, and observed episode lengths similar to those in our
study, but represents a deviation from D’Mello & Graesser’s
approach, as they used the same 20-second increments for labeling
but only considered the initial 60 seconds to estimate affective
decay. In our study, these calculations produced 16 probabilities
(for durations of 0, 20, 40, ..., 300 seconds), which were then used
to compute the decay rates and half-lives of each affective state.
For this calculation, we ignored the last affective episode of the
gameplay because it is not possible to determine what the length of
this episode might have been if the student had kept playing.

Unlike previous approaches, we fit the exponential function using
a Bayesian regression model, allowing us to calculate not only point
estimates but also 95% credible intervals, which represent the
probability density distribution within which the true parameter
value is likely to fall, given the data and prior knowledge about the
parameter (in this case, the prior decay factors found by D’Mello
& Graesser, and Botelho et al.). This methodological shift
incorporates uncertainty quantification from a different perspective
than the more traditional frequentist approach but does not alter the
mean estimate, ensuring comparability with previous studies.

In particular, we employed a log regression model to estimate decay
rates. The model was specified with an intercept of 1,
acknowledging that at time=0, the student is already experiencing
the corresponding affective state. Additionally, we used a naive
Gaussian prior (Mean=0, SD=1) to avoid imposing strong initial
assumptions about the distribution of decay rates. This choice
aligns with findings from D’Mello and Graesser and Botelho et al’s
studies, who obtained decay rates within the interval (-0.6, 0). Then,
using the estimated decay rates A and their corresponding 95%
credible intervals, the half-lives were calculated as HF = In(2)/A.

We compared results across studies and affective states using half-
lives instead of decay factors because they are expressed in
seconds, offering a straightforward and interpretable measure of the
moment when it is more likely to transition to a different affective
state rather than still persisting on it. For reference, we include
half-lives derived from two types of detectors in D’Mello and
Graesser’s study—those from external judges’ observations and
those from participants’ self-judgments. In their study, the self-
reported data (referred to as self-judgement) was collected
retrospectively, with students watching and labeling the video of
their own session immediately after ending it. Although this
method diverges from our in-the-moment methods, it is the closest
prior study to the self-reported data in our analysis.

3.5 Self-Efficacy and Situational Interest

After analyzing affect chronometry across the entire group of
students, we examined its association with self-efficacy and
situational interest. Prior to playing the game, students completed
two external survey measures: Linnenbrink-Garcia et al.’s [21]
situational interest scale and Britner & Pajares’ [8] self-efficacy
scale. Based on their scores for each measure, students were
categorized into high, middle, and low groups, considering the
middle groups as those students within a standard deviation of the
mean of each measure. Students were categorized into
high/middle/low separately for each measure. Then, our analysis
compared the high and low groups for both variables, in terms of
affect chronometry. This categorization method was chosen to
reduce the risk of spurious results, which can occur when splitting
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at the mean, as students near the mean often exhibit similar
characteristics.

4. RESULTS
4.1 Exponential Decay (All Students)

Next, we used affective chronometry to analyze the likelihood of
students transitioning out of a given affective state and estimate the
half-life of each affective state according to both suites of detectors.
Figures 4 and 5 present these results for the SR-based detectors and
the BROMP-based detectors, respectively. Additionally, Table 1
summarizes the half-life of each affective state, as well as findings
from prior studies by Botelho et al. [7] and D’Mello & Graesser
[13].
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Figure 4. SR-based detectors in Crystal Island.
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Figure 5. BROMP-based detectors in Crystal Island.

Across both types of detectors, students experienced longer
episodes of boredom than in any other affective state, though the
difference between the two detectors was still quite large. For the
BROMP-based detector, the half-life of boredom was 319.2
seconds (95% CI [296.3, 344.5]), whereas SR-based boredom had
a half-life that was nearly two minutes shorter (93.4 sec.; CI [85.5,



101.6]). These findings align with those reported by Botelho et al.
(2018), where boredom, as detected using BROMP-based methods,
was one of the two affective states with the longest half-life (173.3
sec.). In contrast, D’Mello & Graesser study reported a half-life of
less than 15 seconds for boredom for both types of labeling (self-
judgment and experienced external judges).

Table 1. Estimated half-lives (in seconds) and 95% Credible
Intervals of affective states across different suites of detectors
and studies. Results from the current study are shown in bold.

Credible Intervals

Affect Study Half-life Low High
Boredom SR 93.4 85.5 101.6
D'Mello Self 9.6 - -
BROMP 319.2 296.3  344.5
Botelho BROMP 173.3 - -
D'Mello Judge 13.9 - -
Confusion SR 50.6 46.5 54.8
D'Mello Self 19.8 - -
BROMP 399 36.1 43.8
Botelho BROMP 28.8 - -
D'Mello Judge 23.5 - -
Engaged SR 61.9 524 71.9
Concentration D'Mello Self 25.7 - -
BROMP 259.7 249.8  270.2
Botelho BROMP 231.0 - -
D'Mello Judge 13.6 - -
Frustration =~ SR 65.7 54.8 771
D'Mello Self 19.8 - -
BROMP 74.3 69.2 79.5
Botelho BROMP 69.3 - -
D'Mello Judge 2.9 - -
Happiness/ SR 67.9 57.5 78.6
Delight D'Mello Self 4.1 - -
BROMP 44.1 35.0 534
D'Mello Judge 2.0 - -
Nervousness SR 59.4 55.9 63.0

Engaged concentration showed more differences across detectors.
Among our BROMP-based detectors, engaged concentration had
the second-longest half-life (259.7 sec., CI [249.8, 270.2]), closely
matching the half-life reported in Botelho et al.’s study (231.0 sec.).
However, its half-life was more than three minutes shorter when
we measured it using the SR-based detectors (61.9 sec., CI [52.4
71.9]), where it ranked in the middle among the other affective
states. This value aligns more closely with the shorter half-lives
(less than 30 seconds) reported by D’Mello & Graesser (2011).
However, in D’Mello & Graesser’s study, the half-life of
engagement (referred to by them as flow) obtained from external
observers (13.6 sec.) was smaller than the half-life obtained from
self-labeling (25.7 sec.).

Frustration shows highly consistent results across studies. Among
the BROMP-based detectors in this study, it had the third lowest
decay rate, with a half-life of just over a minute (74.3 seconds, CI
[69.2, 79.5]). Interestingly, the frustration decay curve for the SR-
based detectors also revealed a very similar half-life of 65.7
seconds (CI [54.8, 77.1]), suggesting that frustration persists for a
comparable duration according to both students (self-reports) and
observers (BROMP). These findings are comparable to Botelho et
al.’s results (69.3 seconds). Frustration’s half-life was much shorter
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in D’Mello and Graesser’s retrospective self-judgments (19.8
seconds). However, as with our BROMP-based detectors,
frustration had the third longest half-life. In contrast, their expert
judge’s frustration half-life value was substantially shorter (2.9
sec.).

The two affective states with the fastest decay rates, according to
our BROMP-based detectors, were confusion and delight, with
half-lives of 39.9 (CI [36.1, 43.8]) and 44.1 seconds (CI [35.0,
53.4]), respectively. Confusion had a similar half-life of 50.6 (CI
[46.5 54.8]) for the SR-based detectors. These findings again
closely align with Botelho et al.’s study, where confusion was
identified as the affective state with the fastest decay, with a half-
life of 28.8 seconds. The authors of that paper did not include
delight in their analysis due to its low frequency in that paper’s
learning system (still, they reported some instances of delight in
their data). Similarly, delight was found to have the lowest
persistence in the study by D’Mello and Graesser (less than 5
seconds for both labeling methods). However, when analyzing
delight through the SR-based detectors, renamed as happiness in
this context, the decay rate was slightly slower, with a half-life of
67.9 seconds (CI [57.5, 78.6])—making it the second most
persistent state, just below boredom. It is possible that these two
constructs do not align as much as originally intended and that
students may experience happiness as a more stable, enduring state
compared to the more transient nature of delight.

Lastly, SR-based nervousness showed a half-life of 59.4 seconds
(CI [55.9 63.0]), making it the second least persistent state after
confusion, but its half-life remained comparable to that of the self-
reported engaged concentration and frustration. Nervousness was
not measured either with our BROMP-based detectors, nor in either
of the previous studies, so further comparisons are not possible.

Overall, we see a pattern in the current data where BROMP-based
detectors have longer half-life values for boredom and engaged
concentration, and much shorter values for other detectors. In
contrast, our SR-based detectors have higher values for boredom
than other detectors—though not to the extreme seen in either our
BROMP-based detectors or those reported in Botelho et al. Instead,
the values for our SR-based detectors sit between the BROMP-
based detectors in both studies and the values reported for both
types of detectors in D’Mello & Graesser, demonstrating
considerable variability in half-life values, a finding that deserves
further consideration.

4.2  Exponential Decay: Effects of Self-
Efficacy & Situational Interest

Finally, we examined how different levels of self-efficacy (SE) and
situational interest (SI) influence the decay rate of affective states
in this dataset. We first report on the episodic differences in this
data and then upon the half-life results.

4.2.1  Episodic Analysis

Table 2 presents the average number of affective episodes (i.e., the
number of times an affective state appeared in a consecutive series
of clips) per student, based on both their self-efficacy and interest
levels and on the detectors making those predictions. In line with
the shorter half-life values seen among the SR-based detectors in
the previous section (Table 1), the SR-based detectors tended to
identify more episodes of each affective state than the BROMP-
based detectors (Mean difference of 1.8 episodes, CI [1.3, 2.4]). In
other words, when affect was detected using SR-based detectors, it
was more volatile—showing transitions from one affective state to
another on a more frequent basis.



In addition to the differences in the number of episodes between the
two suites of detectors, there were also differences in the number
of episodes seen among the High vs. Low SE and High vs. Low SI
groups. Notably, BROMP-based detectors found no episodes of
boredom for both High ST and High SE students and no episodes of
delight for the Low SE group.

Table 2. Average episodes of each affective state per student.

Method Group N Bor Conf Eng Fru Del Nerv

SR HighSE 18 37 33 56 1.7 29 03
LowSE 18 3.6 23 438 .1 26 02
HighST 20 3.1 32 58 1.2 33 02
LowSI 16 43 28 47 12 1.8 0.8

BROMP HighSE 18 0 1.5 33 .1 04 -
LowSE 18 03 1.7 29 06 O -
HighSI 20 O 1.9 4.1 09 06 -
LowSI 16 03 1.8 3.8 1.0 03 -

4.2.2  Exponential Decay—Motivational Differences
We next analyze how students’ motivational measures impact the
half-life values predicted by these detectors. Results for the SR-
based detectors are presented in Table 3 and Figures 6 and 8, while
results for the BROMP-based detectors are shown in Table 4 and
Figure 7. As with our analysis above (where we compared the full
data set to previous research), we present these results by each
affective state. The goal is to better understand the relationships
between these motivational constructs and the duration of each
affective state, as that is now theorized as an important component
of understanding affect dynamics.

Table 3. SR-based detector half-life estimates (seconds) for
high/low levels of Situational Interest (SI) and Self-Efficacy
(SE).

Low SE/SI Group High SE/SI Group

HL Range HL Range hi-lo

Boredom  SE 78.9 (69.9-88.5) 75.7 (66.7-85.2) -3.2

SI 97.6 (85.6-110.4) 99.2 (87.5-111.7) 1.6

Confusion SE 50.2 (44.1-56.5) 41.8 (36.0-47.8) -8.4
SI 62.8 (55.8-70.0) 49.7 (43.3-56.5) -13.0

Eng Conc SE 454 (38.4-52.7) 74.8 (65.8-84.2) 294
SI 453 (37.6-53.4) 71.7 (61.5-82.3) 26.4
Frustration SE 39.1 (32.2-46.5) 63.6 (53.0-74.8) 24.5
SI 80.4 (68.1-93.6) 922 (77.6-107.7) 11.8

Happiness SE 48.0 (41.8-54.6) 62.8 (54.9-70.7) 14.7
SI 504 (45.5-55.5) 69.7 (64.0-75.6) 19.3
Nervousness SE 38.9 (32.9-45.1) 139.3 (124.4-155.0) 100.4
SI 37.6 (33.2-42.1) 11.0 (8.5-13.6) -26.6

*Grayscale indicates non-overlapping 95% credible intervals
comparing high vs low SE/SI groups.

In our first analysis, boredom showed the longest half-life values
among all detectors, though that finding was much stronger for
BROMP-based detectors than for SR-based detectors. As Table 4
and Figure 7 show, we can see that the BROMP-based findings
were driven exclusively by students with low self-efficacy and/or
low situational interest, who experienced episodes of boredom
lasting longer than nine minutes. When measured with BROMP-
based detectors, neither the high self-efficacy or high situational
interest groups exhibited any boredom at all. However, this effect
is not seen in the SR-based detectors (Table 3 and Figure 6), where

322

there was minimal difference in the duration of boredom between
both situational interest groups (97.6 and 99.2 seconds) and
between both self-efficacy groups (75.7 and 78.9 seconds). These
half-lives—around a minute and a half—differ substantially from
the nearly nine minutes observed for the BROMP-based detector, a
trend seen across all affective states.

Table 4. BROMP-based detector half-life estimates (seconds)
across low/high levels of Situational Interest (SI) and Self-
Efficacy (SE).

Low SE/SI Group High SE/SI Group

HL Range HL Range hi-lo

Boredom SE 602.8 (505.4-724.3) - (---) -600.3
SI 536.6 (435.6-668.0) - (---) -533.1

Confusion SE 574 (52.6-62.4) 38.1 (34.4-41.9) -19.3
SI 62.5 (58.1-67.0) 37.3 (34.0-40.6) -25.2

Eng Conc SE 216.4 (198.4-235.9) 302.1 (274.1-333.2) 85.7
SI 183.6 (168.5-199.8) 282.2 (256.2-310.7) 98.6
Frustration SE 58.7 (53.0-64.6) 86.5 (79.1-94.3) 27.8
SI 824 (75.6-89.5) 799 (73.4-86.6) -2.5

Delight SE - (---) 224 (18.0-27.1) 22.6
SI 353 (30.0-40.7) 23.6 (19.7-27.7) -11.7

*Grayscale indicates non-overlapping 95% credible intervals
comparing high vs low SE/SI groups.

We next examine the relationship between motivational measures
and the half-life values of engaged concentration, which had overall
half-life values of four and half minutes in the BROMP-based data
but less than a minute in the SR-based data. In this analysis, we see
that there are significant differences in both motivational measures
for both BROMP and SR-based detectors. In the BROMP data,
both high self-efficacy and situational interest groups tend to persist
in being concentrated for periods around 5 minutes (302.1 and
282.2 sec.), which is around a minute and a half longer than
students with low self-efficacy (216.4 sec.) and low situational
interest (183.6 sec.). In the SR-based data, these differences are
smaller, but in the same direction, students with high situational
interest and high self-efficacy tended to remain in the engaged
concentration state for nearly 30 seconds longer than their low self-
efficacy and low situational interest peers (SE: 74.8 vs. 45.4 sec and
SI: 71.7 vs. 45.3 sec.), suggesting a difference over 25 seconds
between both groups (non-overlapping credible intervals). A
similar result is observed according to the BROMP-based
detectors.

In our first analysis, confusion had the shortest half-life values for
both suites of detectors (under one minute), at only 39.9 seconds in
the BROMP data and 50.6 seconds in the SR data. In the BROMP-
based data (Table 4), this low half-life appears to be driven by
students with high self-efficacy and high situational interest, whose
values approached the half-minute mark (38.1 sec. CI [34.4, 41.9]
and 37.3 sec., CI [34.0, 40.6]). Students with lower motivational
measures tended to remain in the confusion state for nearly a minute
or more (SE: 57.4 sec., CI [52.6, 62.4] and SI: 62.6 sec., CI [58.1,
67.0]). These differences are lower than those seen in the BROMP-
based detectors for motivational differences in engaged
concentration (approx. 20-25 sec. for confusion vs. 85-100 sec. for
engaged concentration), but account for a greater proportion of the
variance related to the estimated half-life across all students (39.9
sec. for confusion and 259.7 sec. for engaged concentration). A
similar pattern was observed using the SR-based detectors, though,
as Table 3 shows, the credible intervals overlapped in this
comparison.
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10

Probability

=
[

0.0 T : -

100 200 300
Time

Confusion

160 2(‘)0
Time
Boredom

300

100
Time
Eng. Concentration

lC;O 260
Time
Delight

lUIG 20‘0 300 300
Time
Frustration

T
200 300

Figure 7. Half-life of BROMP-based detectors affective states by high and low self-efficacy (SE) and situational interest (SI).

Frustration’s half-life values had highly consistent patterns within
our own results and also in Botelho’s results. Interestingly, in this
analysis, neither suite of detectors showed differences based on
situational interest, both of which remained within 79.9 to 92.2
seconds. All the estimated half-lives for the High and Low SI
groups were greater than the overall results (SR: 65.7 sec.;
BROMP: 74.3 sec), indicating that mid-level situational interest
students tended to show shorter episodes of frustration according to
both suites of detectors. Self-efficacy, however, had more
contrasting results between the high and low groups. For both suites
of detectors, students with high self-efficacy showed longer
episodes of frustration (63.6 and 86.5 seconds for SR and BROMP-
based detectors, respectively), persisting 20 seconds longer than the
low self-efficacy groups (39.1 and 58.7 seconds for SR and
BROMP).

Happiness and delight tended to rank in the middle compared to the
estimated half-lives of the other affective states, with happiness
lasting longer than delight. Students in the high self-efficacy and
high situational interest groups also tended to remain in a state of
happiness for longer durations (62.8 and 69.7 sec., respectively),
according to the SR-based detectors. However, this difference (14.7
and 19.3 sec., respectively) was smaller than the differences
observed for engaged concentration and frustration, particularly for
self-efficacy. Notably, students with low self-efficacy either never
experienced delight or, if they did, transitioned almost immediately
to another affective state, similar to the boredom dynamics
observed in the high situational interest and high self-efficacy
groups. For situational interest, the pattern was the opposite.
Students with high situational interest remained in the delight state
for only 23.6 seconds, compared to 35.3 seconds for their low
situational interest peers. However, this result merely indicates that
high situational interest students transitioned out of delight more
quickly. Since they also experienced twice as many episodes of
delight as their low situational interest peers, this should not be
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interpreted as a negative association between situational interest
and delight.

Finally, we examine the results for nervousness (Figure 8), which
was the affective state with the second fastest decay for the SR-
based detectors. Notably, the difference in nervousness between SE
groups are greater than the difference for SI groups. Surprisingly,
however, high self-efficacy is associated with higher half-life
values for nervousness (139.3 sec., CI [124.4, 155.0]). In contrast,
students with high situational interest have substantially shorter
half-lives compared to those with low situational interest (11.0 sec.
CI [8.5, 13.6]; CI [33.2, 42.1], respectively), though both
situational interest groups have half-life values for nervousness that
are well below the estimate we gave in the previous section for the
full group (59.4 sec., CI1[55.9, 63.0]).
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Figure 8. Half-life of nervousness among students with varying
levels of self-efficacy and situational interest.



Overall, the BROMP-based detectors show greater sensitivity to
motivational differences than the SR-based detectors. Although
neither type of detector revealed differences in the relationship
between situational interest and frustration, the BROMP-based
detectors showed distinctions for all other motivational and
affective combinations. In contrast, the SR-based detectors did not
find self-efficacy or situational interest differences for either
boredom or confusion. This suggests that if affect detectors are to
be used in motivational interventions, BROMP-based detectors
may offer some advantages, though notably, the SR-based detectors
do offer the ability to detect nervousness, which also showed
motivational differences.

S. DISCUSSION

In this study, we examined the half-lives of epistemic emotions
using two different suites of detectors—one trained on in-game
self-reported data and the other on BROMP observations. We also
analyzed how the decay rates of these affective states interact with
motivational factors such as self-efficacy and situational interest.

51 Comparison to Previous Results

Notably, the order and broader distribution of half-lives observed
in our BROMP-based detectors (ranging 40 to 320 seconds) closely
aligned with the findings of Botelho et al. [7], who also used
BROMP-based detectors. In contrast, the SR-based detectors
produced shorter half-lives, ranging between 50 and 100 seconds.
In other words, the SR-based detectors portray students’ affect
dynamics as more volatile than the BROMP-based detectors, which
show fewer transitions from one affective state to the next. Despite
these differences, across both suites of detectors, boredom
consistently exhibited the slowest decay rate (highest persistence),
while confusion had the fastest decay rate (lowest persistence).

Additionally, the half-lives observed in our study were
substantially higher than those reported by D’Mello and Graesser
[13]. It is not clear why D’Mello & Graesser’s students appeared to
experience more volatility in their affective states, but it could be
related to methodological differences, as their transitions were
manually labeled on intervals of 20 seconds by human experts and
students, and the data was collected within a laboratory study,
which may have impacted how they approached the task.

The strong similarity between our results and those reported by
Botelho et al., despite their use of a very different non-game
learning platform, suggests some degree of generalizability in the
typical half-lives of affective states. However, the sharp contrast
with the findings from D’Mello & Graesser also indicates that
differences in estimated half-lives may not only reflect variations
in learning contexts but may also stem from similarities or
differences in the methodologies used across these studies.
Specifically, four distinct methods were employed to determine
students’ affective states: (1) self-reports from students (this study),
(2) retrospective self-judgments after watching recordings of
themselves (D’Mello & Graesser), (3) real-time observations by
human evaluators (this study and Botelho), and (4) expert labeling
based on video reviews of students (D’Mello & Graesser).

Each of these methods for obtaining ground truth present unique
challenges and may capture slightly different signals. The
implications of these differences could help to explain the patterns
we are reporting upon here. For example, while the student is the
only person with direct access to their own emotions, the way they
categorize affective states can vary depending on whether they
report them in real time or recall and label them later while
watching a video of their past experiences. When reviewing a
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video, students may interpret their facial expressions as signs of
emotional transitions, potentially perceiving shifts in affect that felt
more gradual in the moment. For instance, a person who feels bored
or has low interest in a particular activity might be more likely to
report boredom in real time than they would be if, after that
experience is resolved positively, they are asked to reflect on it
later. If their overall perception of the educational experience is
positive at the end, they may rely on that perception to identify
fewer instances of boredom and instead report more instances of
delight or engaged concentration than they would have labeled in
real-time. In other words, the opportunity to self-reflect might
influence their reporting in ways that do not capture the in situ
experience.

Similar differences may arise between real-time, in-person
observations and retrospective assessments by trained experts. The
additional contextual information that might help determine a
student’s affective state more accurately, cannot be fully captured
in video. On the other hand, since it is impractical to observe all
students at each instant—just as students should not be asked to
report their affective state every 20 seconds—video recordings
might capture more granular and subtle expressions associated with
more momentary states. In contrast, a real-time observer who is not
permanently assessing the same student (as doing so would disrupt
the learning experience) may perceive a slightly more stable
emotional signal rather than capturing every fleeting shift in affect.

In addition to differences in the collection of the ground truth,
another important distinction between D’Mello & Graesser, and
Botelho et al.’s and our study lies in the use of detectors. Because
detectors estimate general behavioral patterns, they may capture
more stable emotional signals over time. In contrast, labeling based
on video recordings—without the use of detectors—may focus
more on fleeting affective states, such as brief facial expressions
lasting only a few seconds (e.g., 0—5 seconds), which may not fully
represent the predominant emotional state over longer time
intervals (e.g., 20-30 seconds).

Finally, the choice of a 1-minute window (D’Mello & Graesser)
versus a S-minute window (Botelho et al. and our study) can
significantly impact the estimation of decay rates and half-lives.
While the exponential function provides a good approximation of
how the probability of remaining in a given affective state declines
over time, as seen in D’Mello & Graesser’s and Botelho et al.,
studies [7, 13], it is not a perfect model. Shorter windows (e.g., 1
minute) may be particularly useful for capturing the initial decay of
an emotion or tracking affective states that are brief (e.g., delight).
In contrast, longer windows (e.g., 5 minutes) may be better suited
for capturing both the initial decay and the later-stage decline of
more persistent states (e.g., boredom or engaged concentration).

These methodological differences and the potential limitations of
each approach do not imply that any of these studies are incorrect.
Rather, they highlight how research design choices can shape
results. The most appropriate method depends on the type of
affective signal researchers aim to capture—whether momentary
emotional states, students’ real-time self-perceptions, more stable
affective states, or external observers’ interpretations—all of which
might be correlated with important learning outcomes (e.g., [37]).
Future research should focus on identifying the specific aspects of
the affective constellation that each labeling method captures to
develop a more nuanced understanding of the implications of half-
lives estimated across multiple ground truths and contexts.



5.2  Alignment to SDVET Model

Our analysis of the differences across groups with different levels
of self-efficacy and situational interest allows us to explore some
of the theoretical and empirical claims made by the SDVET model
[25]. Although we did not have a large enough sample to run an
analysis on prior knowledge or time in game, which are important
components of the SDVET predictions, situational interest is a
reasonable proxy for value and self-efficacy is explicitly included
in the model.

In particular, we see that engaged concentration episodes have
significantly longer half-life values for students with high
situational interest, corresponding to the SDVET model. This is
true regardless of detector type. Although there were no SDVET
predictions for the effect of self-efficacy on engaged concentration,
the effects of high self-efficacy were the same as those seen with
situational interest.

Similarly, the longer half-life of confusion among students with
low situational interest supports the SDVET model’s prediction
that this affective state is most likely to occur when value is low.
However, this finding appears only in the BROMP-based data,
where low self-efficacy follows the same pattern.

The BROMP-based data also align with SDVET model predictions
for boredom. Specifically, no episodes of boredom were observed
among students with high situational interest or high self-efficacy.
This supports the SDVET prediction that higher self-efficacy
enables students to persist longer before cycling between
frustration and boredom.

Because our data collection did not distinguish between canonical
frustration and pleasurable frustration [17], our results around
frustration are more difficult to interpret. Students with low self-
efficacy are predicted in SDVET to transition more quickly into the
space where cycles between canonical frustration and boredom
occur. Students with high situational interest are predicted by
SDVET to spend more time in pleasurable frustration, and higher
self-efficacy would be predicted to further extend those
experiences. In our results, students with high self-efficacy are
more likely to experience longer episodes of frustration, which
would be predicted if these experiences were pleasurable. To the
degree that there is considerable diversity in how confusion and
frustration manifest [2, 9], it may be worth considering how to
capture different forms of confusion and frustration in future
studies of this nature. One approach could involve follow-up
questions administered shortly after students self-report or are
observed experiencing confusion or frustration. These prompts
could ask about the cause of the emotion, whether the issue was
resolved, and how the student is feeling now, providing deeper
insight into the underlying affective dynamics.

Although there were no predictions for delight in the SDVET
model, the relationship between self-efficacy and delight in this
study would be compatible with the idea that high self-efficacy is
associated with pleasurable frustration. Notably, no student in the
low self-efficacy group showed any episodes of delight (in the
BROMP-based data), and although happiness (the SR-based
equivalent) does occur among low self-efficacy students, the
duration of this emotion is longer among those with high self-
efficacy.

That said, this interpretation is complicated by results related to
situational interest, which contrasts with the relationship between
self-efficacy and delight/happiness. For the SR-based happiness
detector, low situational interest is associated with shorter bouts of
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happiness, but for the BROMP-based delight detector, the results
are the opposite; students with low situational interest experienced
longer bouts of delight. However, despite persisting longer in this
state, students with low situational interest experienced only half as
many episodes of delight as their high situational interest peers.
This suggests that, overall, they do not necessarily experience more
delight.

One possible explanation is that students who are already interested
in a specific domain may become less sensitive to novelty, surprise,
or success after overcoming challenges—factors that typically
trigger and prolong the high-intensity emotion of delight [27]. As a
result, their experiences of delight may occur more frequently but
be shorter in duration. In contrast, students with high situational
interest tend to persist longer in other positive but less intense states
[24, 31], such as happiness and engaged concentration, as observed
in this study. Overall, these students appear to have a more
positive—but potentially less intense—experience of the game.
Further research exploring the underlying causes of delight,
happiness, and engaged concentration may help validate this
interpretation.

5.3  Potential for Interventions

The strong similarity between Botelho’s findings and ours, even
using different systems (a question-based learning platform and an
educational game), suggests the presence of general trends in
affective half-life that could inform interventions across multiple
platforms. The high persistence of boredom (lasting over five
minutes according to the BROMP-based detectors) indicates that
this affective state may be particularly difficult to overcome, a
finding previously noted [23]. For this reason, researchers should
focus on predicting boredom before it occurs, as students may
struggle to transition out of it once they are bored [36]. This
prolonged persistence in this affective state can negatively impact
multiple learning outcomes [5].

Additionally, understanding the half-lives of confusion and
frustration—affective states that are not inherently negative but can
lead to undesirable outcomes if unresolved [15, 28, 29, 34]—can
help determine the optimal time frame for interventions. For
example, educational systems or games could use this information
to provide timely hints that assist students in overcoming these
states. Interventions should not necessarily be immediate, as
confusion and frustration can contribute to positive outcomes [14,
16, 20, 22, 26]. However, waiting until the students potentially
transition to boredom might also have negative effects. Therefore,
knowing that there is a window of 30 seconds to a minute in which
these affective states can be effectively resolved—potentially
allowing students to transition back to engaged concentration
[22]—enables systems to deliver more strategically timed
interventions. Still, as noted earlier, different forms of confusion
and frustration may vary in duration, impact on learning, and the
types of interventions they require [2, 9].

The interplay between motivational factors and the half-lives of
affective states also plays a crucial role in determining the most
effective timing for interventions. For example, as proposed by the
SDVET framework, students with higher self-efficacy or
situational interest may be better equipped to manage frustration,
making them more likely to self-regulate and transition back to
engaged concentration even if they persist in frustration for longer
[25]. This hypothesis is further supported by the absence of
boredom detected in these students. In contrast, students with lower
situational interest or self-efficacy may persist in frustration for a
shorter duration but, in some cases, transition to boredom more



quickly, which could lead to the potential negative consequences
associated with this affective state. Further research is necessary to
evaluate this hypothesis.

The association between confusion and motivational factors
appears to be the opposite of what was observed for frustration.
Students with low situational interest and self-efficacy tend to
persist in confusion for longer, suggesting that they may require
more time to resolve their confusion and either return to engaged
concentration or transition to another affective state. Based on this,
further analysis is needed to determine when these students are able
to self-regulate, overcome confusion, and re-engage independently
versus when external support from the system or game is necessary
to facilitate their learning process.

Additionally, the shorter half-life of engaged concentration—
generally the most common emotion for learners using digital
learning platforms [19]—in students with low situational interest
and self-efficacy suggests that their affective dynamics may be
more volatile, causing them to transition out of the flow state more
quickly and frequently. These findings align with predictions in the
SDVET framework [24] and highlight the importance of predicting
affective states in this group to develop targeted interventions, such
as motivational messages [11], that could help them sustain
engagement for longer periods.

6. CONCLUSIONS

This study highlights the importance of understanding the half-lives
of affective states as a crucial step toward better understanding
students’ affective dynamics and designing more -effective
interventions in learning environments. Our findings suggest that
while emotions like boredom and engaged concentration tend to
persist for extended periods, emotions like confusion have shorter
durations. The alignment between our results and previous research
investigating a different digital non-game learning environment
indicates the presence of general affective trends that could inform
adaptive learning systems across different platforms. However,
there is a need to replicate these results in other learning contexts
and different domains. Additionally, our findings show that
motivational factors, such as self-efficacy and situational interest,
influence student persistence in these states. As this is, to our
knowledge, the first study of its kind, further replication across
varied educational settings—incorporating a range of motivational
measures—is warranted.

Overall, the results presented in this study could guide the
development of timely interventions aimed at preventing boredom
while promoting positive transitions between confusion,
frustration, happiness, and engaged concentration—pathways that
may lead to improved learning outcomes. These insights
underscore the importance of considering both motivational factors
and the appropriate time frame when designing affect-based
interventions.
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