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Abstract. Affect detection is integral to creating affect-sensitive learning sys-

tems, but the impact of measurement methods needs further research. This paper

uses ordered network analysis (ONA) to compare the affect dynamics of two suites

of affect detectors trained on complementary data (i.e., labels from an in-the-

moment self-reporting (SR) tool vs labels from field observations) in game-based

learning. We then use ONA difference models to assess how divergence in learning

and motivational measures impact affect dynamics.

Keywords: Affect Dynamics · Epistemic Network Analysis · Transition

Analysis

1 Introduction

Epistemic emotions emerge during cognitive activities and play a vital role in learning

[1]. Typically, learning analytics research has focused on 5 emotions: boredom, confu-

sion, frustration, engaged concentration, and delight [1, 3, 4]. Prior work explores the

cumulative effect of each emotion [2], its distribution across the learning experience,

and the effect of different transitions [1]. However, affect dynamics results have been

difficult to interpret even when data is reanalyzed to correct for sampling biases and

align methodological choices [4].

One methodological concern that has not been fully studied concerns the ground

truth labels that train affect detectors. Exceptions exist [5], but types of labels are rarely

compared. Other understudied concerns relate to duration effects and the effects of

student-level characteristics (e.g., motivational factors, learning indicators). For exam-

ple, highly anxious students undergo longer frustration bouts [6], which may mean that

common practices of removing self-transitions [7] obscure results.

This study addresses these gaps with a study of Crystal Island, a game-based learn-

ing system for middle school microbiology. First, we compare the dynamics of affect

detectors [9] trained with ground-truth labels collected using BROMP observations [8]
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to detectors trained on data from a self-report tool employed during those observations.

Specifically, we use an ordered network analysis (ONA), a type of epistemic network

analysis (ENA) that accounts for directionality, to compare the networks from each set

of detectors. We then use ONA difference models to explore how learning gains and

situational interest, change affect transitions in these models. We do this to address two

research questions (RQ): RQ1: Which affective sequences emerge as methodological

consequences of ground truth labels (i.e., SR vs. BROMP-based detectors)? RQ2: Which

sequences emerge due to participant sampling (i.e., differences in students with respect

to (a) learning gains and (b) situational interest)?

2 Related Work

Detecting student affect helps us to understand its impact on learning, engagement, and

motivation [1, 10]. The development of affective detectors often relies on supervised

machine learning (ML) [3], which requires ground truth labels from either the subject

(self-report) or a third party (observer), each with strengths and weaknesses. Self-reports

can be hampered by self-presentation effects and metacognitive difficulties but have been

used to create effective affect detectors in education. Observation-based measurements—

like Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP; [8])—have informed the

development of affect detectors in many learning systems [10] but are limited to what

coders can discern.

In addition to concerns about labeling strategies, there have also been concerns about

what different affective states (or combinations thereof) might mean for learning. [1]

hypothesized two main affective pathways, which have been explored using L statistic

and ENA [15]. These studies show connections between those pathways and learning,

but the hypothesized pathways occur infrequently. Other studies [11] find that the rates of

occurrence and recurrence of affect are important. Finally, research suggests that affect

dynamics differ for different groups of students. Pathways are different among those

with high and low learning [1] and differences are also associated with trait-anxiety [6].

It seems reasonable that we should expand these efforts to other motivational constructs

linked to students’ emotions, like situational interest, and also learning gains.

3 Methods

This study investigates learning in Crystal Island (CI), an open-world, game-based learn-

ing system aligned to 8th-grade microbiology state standards. Students act as investiga-

tive scientists to identify a mysterious disease spread on the remote island, interacting

with NPCs, reading educational materials, and testing in-game items, while tracking their

hypotheses and results. This study uses data from 124 middle schoolers who played CI

during their regular science class in the southeastern US. Students are well-balanced

for male (N = 53) and female (N = 66), with 5 others who prefer to describe them-

selves. They include a large share of students from historically marginalized communities

(46% Black, 16% Hispanic, 5% Asian, 5% Multiracial, 1% Native American). Students

answered a series of pre-surveys (i.e., a demographic questionnaire, knowledge pre-test,

and situational interest scale). After 2 days of gameplay, they answered post-surveys
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(i.e., knowledge post-test and several other motivational measures). While interacting

with the game, affect was simultaneously labeled using 2 distinct methods: BROMP

observations [8] and a self-report.

3.1 Measures Used in the Study

Affect Detectors using Self-report and BROMP-based Data. This study uses pre-

viously published [9], cross-validated, interaction-based detectors of epistemic affec-

tive states developed from labels generated from (a) in-game self-reports (SR) and (b)

BROMP-based observations. Interaction-based detectors model what students do within

a system when they are experiencing an emotion, allowing us to infer these emotions

in real-time (see reviews in [12, 13], including a review of BROMP [8]). Students self-

reported 1 of 6 affective states: boredom, focused, confusion, happiness, frustration,

and nervousness [9]. BROMP classroom observations [8] included boredom (BOR),

engaged concentration (ENG), confusion (CON), delight (DEL), and frustration (FRU),

but not nervousness, which is hard to observe directly. Corresponding SR labels were

aligned with standard BROMP labels adopting a child-friendly language (i.e., focus for

engaged concentration; happiness for delight).

BROMP and SR detectors were developed independently from one another. Each

set of affective data was used to train a distinct set of ML-based affect detectors, cross-

validated to ensure generalization to new populations. As in prior work using BROMP

[10], both suites of detectors are trained using 20-s clips of students’ log files. Then, each

suite is applied and analyzed separately, assigning 2 labels to each clip—from the SR-

based detector and BROMP-based detector with the highest probability. Previous work

suggests that SR- and BROMP-based detectors capture complementary information

about students’ affective states [9]. Hence, the differences produced by each are likely

to be meaningful.

Learning Gains (LG) and Situational Interest (SI). Students completed identical pre

and post-tests of domain knowledge. Normalized learning gains, which scale from 1- to

1, were calculated. Of 124 students, 46 answered both and we excluded students within

a standard deviation of the mean (avg = −.10, SD = .35). By ensuring that the groups

are distinct, this approach contrasts students with the lowest (LG < −.45, N = 9) and

highest (LG > .25, N = 6) LGs, avoiding spurious results that can occur when splitting

at the mean. SI surveys were adapted for middle school science from [14], featuring

9 items rated on a 7-point scale. Of 124 students, 122 completed this scale, and we

excluded students within a standard deviation of the mean (avg = 3.78, SD = 1.05),

comparing those with high (SI > 4.83, n = 20) and low SI (SI < 2.73, n = 16).

3.2 Ordered Network Analysis (ONA)

We study affective sequences using Ordered Network Analysis (ONA; [16]), building

on work using ENA to explore affect transitions [4] and in-game behaviors. We chose

ONA for its ability to capture directionality and self-transitions. In standard uses of ONA,

codes are visualized as nodes in a network, and edges have line weights (LW) of 0 to

1, representing connection strength. Self-transitions are shown with increased node size
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and LWs. In ONA difference models, LWs from one model are subtracted from another

(referred to as LWdiff). This study selects ONA parameters to best understand affective

transitions, including self-transitions. Each line of data corresponds to 20-s of gameplay,

with 2 labels are applied to each line, one from each suite of detectors. Interrater reliability

is unnecessary here as validated detectors provided codes. The conversation variable is

the full gameplay session (avg = 41.6 min, SD = 15.6) and a moving stanza window of

size one, meaning only connections between the current and previous line (i.e., affective

state) are considered, as standard when analyzing affective transitions [15].

4 Results

4.1 Comparing SR-Based and BROMP-Based Affect Detectors Using ONA

We first use ONA to assess differences in the affective transitions identified by the 2 sets

of detectors across all students. Figure 1 shows SR-based models (1a, left) and BROMP-

based models (1b, right). Line weights (Table 1) determine node size for self-transitions

(e.g., BOR → BOR).

Fig. 1. Ordered network of affect transitions for SR-based and BROMP-based detectors.

For both sets of detectors, self-transitions (where the affective state repeats across

two 20-s clips) are most common. For SR models, boredom (LW = .51) is followed by

concentration (LW = .43), confusion (LW = .21), happiness (LW = .21), and frustration

(LW = .12). For BROMP models, the distribution is more skewed towards concentration

(LW = .95) than the other four states (LW = .01 to .07).

Within the SR models, common pathways between different affective states are much

rarer. Pathways between boredom and concentration (BOR → ENG: LW = .04; ENG

→ BOR: LW = .03) occur slightly more often than pathways involving concentration,

confusion, and happiness (LW = .02 for ENG → CONF, CONF → ENG, HAP →

ENG, and ENG → HAP). All other transitions have lower LWs. Similarly, in BROMP

models, self-transitions (LW = .01 to .95) effectively mute other possible transitions

and only shifts between engaged concentration and confusion occur above .01 (CONF

→ ENG: LW = .03; ENG → CONF: LW = .02).
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Table 1. Line Weights for ONA Models shown in Fig. 1. LW > = .10 are in bold.

Self-Transitions SR BROMP Other Transitions SR BROMP

BOR → BOR 0.51 0.05 BOR → ENG 0.04 <.01

ENG → ENG 0.43 0.95 ENG → BOR 0.03 <.01

DEL/HAP → DEL/HAP 0.22 0.01 DEL/HAP → ENG 0.02 <.01

CONF → CONF 0.21 0.07 CONF → ENG 0.02 0.03

FRU → FRU 0.12 0.05 ENG → DEL/HAP 0.02 <.01

ENG → CONF 0.02 0.02

4.2 ONA Difference Models for Learning Gains (LG)

Figure 2 uses ONA difference models to compare students with high and low LG, with

models for SR (2a) and BROMP (2b) data. Here, LWs indicate the difference between

the two student groups. Transitions that are most common among those with high LG are

shown in blue, with low LG in red. Network variability (confidence interval) is shown

as a rectangle surrounding a point that represents the average network position (mean).

Mann-Whitney U tests show statistically significant differences for LG in SR models

but not in BROMP models (U = 9.0, p = .04, r = .67 vs U = 13.0, p = .11, r = .52).

In SR models, sustained states show the largest differences. Low LG learners are

more likely to sustain boredom (BOR → BOR: LW = .35 for high vs LW = .45 for

low, producing LWdiff = .25) or confusion (CONF → CONF: LW = .09 vs LW = .32,

producing LWdiff = .23). Six other transitions have LW ≥ .02 (ENG → CONF, CONF

→ ENG and ENG → HAP) or LW ≥ .01 (BOR → HAP, CONF → HAP, and HAP →

BOR) (Table 2).

a. SR-based detector (p=.04) b. BROMP-based detector (p=.11)

Fig. 2. Difference models for students with high (blue) and low LG (red) for each set of data.

In BROMP models, the largest differences are also for sustained states. High LG

students spent less time in sustained frustration or boredom (FRU → FRU: LW = .01 vs

LW = .08, LWdiff = .06; BOR → BOR: LW = .06 vs LW = .09, LWdiff = .03), and less
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Table 2. LWs for ONA difference models in Fig. 2. LW and LWdiff > = .10 are in bold.

SR BROMP SR BROMP

Self-Trans HiLG LoLG |Diff| HiLG LoLG |Diff| Other Trans HiLG LoLG |Diff| HiLG LoLG |Diff|

BOR 0.25 0.45 0.25 0.06 0.09 0.03 BOR → ENG 0.02 0.02 <.01 <.01 <.01 -

ENG 0.66 0.49 0.17 0.98 0.97 0.02 ENG → BOR 0.01 0.01 <.01 0.01 <.01 <.01

DEL/HAP 0.38 0.24 0.14 <.01 0.02 0.02 DEL/HAP → ENG 0.03 0.01 0.02 <.01 <.01 -

CONF 0.09 0.32 0.23 0.04 0.05 0.02 CONF → ENG 0.03 0.01 0.02 0.02 0.02 <.01

FRU 0.03 0.13 0.10 0.01 0.08 0.06 ENG → DEL/HAP 0.03 0.01 0.02 <.01 0.01 <.01

ENG → CONF 0.03 0.01 0.02 0.02 0.03 0.01

CONF → FRU <.01 <.01 <.01 - 0.01 0.01

time in sustained happiness (HAP → HAP: LW < .01 vs LW = .02, yielding LWdiff =

.02). Differences in 2 other transitions are small but at .01 (ENG → CONF: LW = .02

vs LW = .03, LWdiff = .01; CONF → FRU: LW = 0 vs. LW = .01, LWdiff = .01).

4.3 ONA Difference Models for Situational Interest (SI)

ONA is also used to examine how affect transitions differ based on SI, and detector type

influences these results. High and low SI groups are statistically different in SR models

but not in BROMP models (Mann Whitney α = .05, U = 68.0, p = .00, r = .56 vs U =

115.5, p = .16, r = .28). In Fig. 3, blue lines show the transitions most common among

high SI learners, while red show those for low SI learners (Table 3).

Fig. 3. Difference models for high SI (blue) vs. low SI (red) for SR and BROMP data.

Within SR models, the largest differences are again related to self-transitions. High

SI learners are less likely to sustain boredom (BOR → BOR: LW = .37 vs LW = .72,

LWdiff = .35) and more likely to sustain concentration and happiness (ENG → ENG:

LW = .59 vs LW = .32, LWdiff = .27; HAP → HAP: LW = .25 vs LW = .1, LWdiff =

.15) and even frustration and confusion (FRU → FRU: LWdiff = .04; CONF → CONF

LWdiff = .02). Differences in transitions between distinct affective states are also found



The Influence of Different Measurement Approaches 201

Table 3. Line weights for ONA difference models in Fig. 3. LW and LWdiff >= .10 are in bold.

SR BROMP SR BROMP

Self Trans HiSI LoSI |Diff| HiSI LoSI |Diff| Other Trans HiSI LoSI |Diff| HiSI LoSI |Diff|

BOR 0.37 0.72 0.35 - 0.07 0.07 BOR → ENG 0.03 0.05 0.02 - <.01 <.01

ENG 0.59 0.32 0.27 0.98 0.9 0.08 ENG → BOR 0.02 0.04 0.02 - 0.01 0.01

DEL/HAP 0.25 0.10 0.15 0.01 <.01 <.01 DEL/HAP → ENG 0.03 0.01 0.01 <.01 <.01 <.01

CONF 0.20 0.18 0.02 0.06 0.16 0.10 CONF → ENG 0.02 0.03 0.01 0.02 0.02 <.01

FRU 0.13 0.09 0.04 0.06 0.09 0.03 ENG → DEL/HAP 0.03 0.01 0.02 0.01 <.01 <.01

ENG → CONF 0.02 0.02 <.01 0.02 0.02 <.01

in the SR models. High SI learners are more likely to transfer from engaged concentration

to happiness (e.g., ENG → HAP: LW = .03 vs. LW = .01) and less likely to transfer

back and forth between boredom and engagement (BOR → ENG: LW = .03 vs. LW =

.05; ENG → BOR: LW = .02 vs LW = .04). Likewise, high SI learners are less likely

to show two transitions involving confusion (BOR → CONF: LW = .01 vs. LW = .02;

CONF → ENG: LW = .02 vs. LW = .03).

In BROMP models, the largest differences are also in self-transitions, but sustained

confusion (i.e., not the most common code, ENG) shows the largest difference. High

SI learners are less likely to sustain confusion (CONF → CONF: LW = .06 vs LW =

.16, LWdiff = .1) and boredom, which was notably absent among high SI learners (BOR

→ BOR: LWdiff = .07). Instead, they are more likely to sustain concentration (ENG →

ENG: LW = .98 vs LW = .9, LWdiff = .08). Smaller differences are driven by absent

transitions among high SI learners, including the only transition between 2 different

states with LWdiff > .01 (CONC → BOR), and 5 transitions with LWdiff < .01 (BOR

→ ENG, BOR → CONF, CONF → BOR, CONF → DEL, and FRUS → DEL).

5 Discussion and Conclusions

Since affect modeling is key to supporting learning and motivation, it is important to

examine the effects of methodological differences. This study uses 2 sets of cross-

validated, interaction-based affect detectors, trained with self-reports and BROMP obser-

vations, to examine differences in affective dynamics using ONA. Further, ONA differ-

ence models are used to study how affect dynamics are shaped by two student-level

characteristics, learning gains and situational interest.

Results from RQ1 show that self-transitions are more common regardless of detector

type, but the SR-trained data are far more distributed (LW = .51 to .12, BOR and FRU)

than the BROMP-trained data, where sustained concentration is markedly more common

(LW = .95) than other self-transitions. That is, even though self-transitions are important

in both sets of detectors, there are still major persistence-rate differences that could

significantly impact intervention design.

Results from RQ2 show the relevance of student-level characteristics in affect dynam-

ics research. Specifically, we compare students at the extreme ends of normalized learn-

ing gains (LG), and situational interest (SI). For LG, SR-trained data produced large

differences. All 5 self-transitions showed LWdiff > .1, with boredom and confusion
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more likely for low LG students. In BROMP-trained data, self-transitions were also

more common than transitions between 2 distinct states. Sustained frustration has the

largest difference, with low LG learners experiencing the most frustration. For SI, simi-

lar patterns emerge when comparing the 2 sets of detectors. Differences are larger (a) in

SR models than BROMP models and (b) for self-transitions, chiefly boredom and con-

centration. In SR models, low SI learners undergo sustained boredom at twice the rate

of others. BROMP models show similar patterns: sustained boredom is entirely absent

in high SI learners. High SI learners also exhibit higher rates of concentration, though

this effect is strongest in SR models.

More generally, we emphasize the need to study differences related to learning and

motivation. Combined with results from the initial ONA analyses, the difference models

show the relative importance of self-transitions, often excluded in previous work. We

hope that these results motivate similar future investigations.
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