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Abstract. Affect detection is integral to creating affect-sensitive learning sys-
tems, but the impact of measurement methods needs further research. This paper
uses ordered network analysis (ONA) to compare the affect dynamics of two suites
of affect detectors trained on complementary data (i.e., labels from an in-the-
moment self-reporting (SR) tool vs labels from field observations) in game-based
learning. We then use ONA difference models to assess how divergence in learning
and motivational measures impact affect dynamics.
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1 Introduction

Epistemic emotions emerge during cognitive activities and play a vital role in learning
[1]. Typically, learning analytics research has focused on 5 emotions: boredom, confu-
sion, frustration, engaged concentration, and delight [1, 3, 4]. Prior work explores the
cumulative effect of each emotion [2], its distribution across the learning experience,
and the effect of different transitions [1]. However, affect dynamics results have been
difficult to interpret even when data is reanalyzed to correct for sampling biases and
align methodological choices [4].

One methodological concern that has not been fully studied concerns the ground
truth labels that train affect detectors. Exceptions exist [5], but types of labels are rarely
compared. Other understudied concerns relate to duration effects and the effects of
student-level characteristics (e.g., motivational factors, learning indicators). For exam-
ple, highly anxious students undergo longer frustration bouts [6], which may mean that
common practices of removing self-transitions [7] obscure results.

This study addresses these gaps with a study of Crystal Island, a game-based learn-
ing system for middle school microbiology. First, we compare the dynamics of affect
detectors [9] trained with ground-truth labels collected using BROMP observations [8]
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to detectors trained on data from a self-report tool employed during those observations.
Specifically, we use an ordered network analysis (ONA), a type of epistemic network
analysis (ENA) that accounts for directionality, to compare the networks from each set
of detectors. We then use ONA difference models to explore how learning gains and
situational interest, change affect transitions in these models. We do this to address two
research questions (RQ): RQ1: Which affective sequences emerge as methodological
consequences of ground truth labels (i.e., SR vs. BROMP-based detectors)? RQ2: Which
sequences emerge due to participant sampling (i.e., differences in students with respect
to (a) learning gains and (b) situational interest)?

2 Related Work

Detecting student affect helps us to understand its impact on learning, engagement, and
motivation [1, 10]. The development of affective detectors often relies on supervised
machine learning (ML) [3], which requires ground truth labels from either the subject
(self-report) or a third party (observer), each with strengths and weaknesses. Self-reports
can be hampered by self-presentation effects and metacognitive difficulties but have been
used to create effective affect detectors in education. Observation-based measurements—
like Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP; [8§])—have informed the
development of affect detectors in many learning systems [10] but are limited to what
coders can discern.

In addition to concerns about labeling strategies, there have also been concerns about
what different affective states (or combinations thereof) might mean for learning. [1]
hypothesized two main affective pathways, which have been explored using L statistic
and ENA [15]. These studies show connections between those pathways and learning,
but the hypothesized pathways occur infrequently. Other studies [ 11] find that the rates of
occurrence and recurrence of affect are important. Finally, research suggests that affect
dynamics differ for different groups of students. Pathways are different among those
with high and low learning [1] and differences are also associated with trait-anxiety [6].
It seems reasonable that we should expand these efforts to other motivational constructs
linked to students’ emotions, like situational interest, and also learning gains.

3 Methods

This study investigates learning in Crystal Island (CI), an open-world, game-based learn-
ing system aligned to 8-grade microbiology state standards. Students act as investiga-
tive scientists to identify a mysterious disease spread on the remote island, interacting
with NPCs, reading educational materials, and testing in-game items, while tracking their
hypotheses and results. This study uses data from 124 middle schoolers who played CI
during their regular science class in the southeastern US. Students are well-balanced
for male (N = 53) and female (N = 66), with 5 others who prefer to describe them-
selves. They include a large share of students from historically marginalized communities
(46% Black, 16% Hispanic, 5% Asian, 5% Multiracial, 1% Native American). Students
answered a series of pre-surveys (i.e., a demographic questionnaire, knowledge pre-test,
and situational interest scale). After 2 days of gameplay, they answered post-surveys
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(i.e., knowledge post-test and several other motivational measures). While interacting
with the game, affect was simultaneously labeled using 2 distinct methods: BROMP
observations [8] and a self-report.

3.1 Measures Used in the Study

Affect Detectors using Self-report and BROMP-based Data. This study uses pre-
viously published [9], cross-validated, interaction-based detectors of epistemic affec-
tive states developed from labels generated from (a) in-game self-reports (SR) and (b)
BROMP-based observations. Interaction-based detectors model what students do within
a system when they are experiencing an emotion, allowing us to infer these emotions
in real-time (see reviews in [12, 13], including a review of BROMP [8]). Students self-
reported 1 of 6 affective states: boredom, focused, confusion, happiness, frustration,
and nervousness [9]. BROMP classroom observations [8] included boredom (BOR),
engaged concentration (ENG), confusion (CON), delight (DEL), and frustration (FRU),
but not nervousness, which is hard to observe directly. Corresponding SR labels were
aligned with standard BROMP labels adopting a child-friendly language (i.e., focus for
engaged concentration; happiness for delight).

BROMP and SR detectors were developed independently from one another. Each
set of affective data was used to train a distinct set of ML-based affect detectors, cross-
validated to ensure generalization to new populations. As in prior work using BROMP
[10], both suites of detectors are trained using 20-s clips of students’ log files. Then, each
suite is applied and analyzed separately, assigning 2 labels to each clip—from the SR-
based detector and BROMP-based detector with the highest probability. Previous work
suggests that SR- and BROMP-based detectors capture complementary information
about students’ affective states [9]. Hence, the differences produced by each are likely
to be meaningful.

Learning Gains (LG) and Situational Interest (SI). Students completed identical pre
and post-tests of domain knowledge. Normalized learning gains, which scale from 1- to
1, were calculated. Of 124 students, 46 answered both and we excluded students within
a standard deviation of the mean (avg = —.10, SD = .35). By ensuring that the groups
are distinct, this approach contrasts students with the lowest (LG < —.45, N = 9) and
highest (LG > .25, N = 6) LGs, avoiding spurious results that can occur when splitting
at the mean. SI surveys were adapted for middle school science from [14], featuring
9 items rated on a 7-point scale. Of 124 students, 122 completed this scale, and we
excluded students within a standard deviation of the mean (avg = 3.78, SD = 1.05),
comparing those with high (ST > 4.83, n = 20) and low SI (SI < 2.73, n = 16).

3.2 Ordered Network Analysis (ONA)

We study affective sequences using Ordered Network Analysis (ONA; [16]), building
on work using ENA to explore affect transitions [4] and in-game behaviors. We chose
ONA for its ability to capture directionality and self-transitions. In standard uses of ONA,
codes are visualized as nodes in a network, and edges have line weights (LW) of 0 to
1, representing connection strength. Self-transitions are shown with increased node size
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and LWs. In ONA difference models, LWs from one model are subtracted from another
(referred to as LWgisr). This study selects ONA parameters to best understand affective
transitions, including self-transitions. Each line of data corresponds to 20-s of gameplay,
with 2 labels are applied to each line, one from each suite of detectors. Interrater reliability
is unnecessary here as validated detectors provided codes. The conversation variable is
the full gameplay session (avg = 41.6 min, SD = 15.6) and a moving stanza window of
size one, meaning only connections between the current and previous line (i.e., affective
state) are considered, as standard when analyzing affective transitions [15].

4 Results

4.1 Comparing SR-Based and BROMP-Based Affect Detectors Using ONA

We first use ONA to assess differences in the affective transitions identified by the 2 sets
of detectors across all students. Figure 1 shows SR-based models (1a, left) and BROMP-
based models (1b, right). Line weights (Table 1) determine node size for self-transitions
(e.g., BOR — BOR).
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Fig. 1. Ordered network of affect transitions for SR-based and BROMP-based detectors.

For both sets of detectors, self-transitions (where the affective state repeats across
two 20-s clips) are most common. For SR models, boredom (LW = .51) is followed by
concentration (LW = .43), confusion (LW = .21), happiness (LW = .21), and frustration
(LW =.12). For BROMP models, the distribution is more skewed towards concentration
(LW = .95) than the other four states (LW = .01 to .07).

Within the SR models, common pathways between different affective states are much
rarer. Pathways between boredom and concentration (BOR — ENG: LW = .04; ENG
— BOR: LW = .03) occur slightly more often than pathways involving concentration,
confusion, and happiness (LW = .02 for ENG — CONF, CONF — ENG, HAP —
ENG, and ENG — HAP). All other transitions have lower LWs. Similarly, in BROMP
models, self-transitions (LW = .01 to .95) effectively mute other possible transitions
and only shifts between engaged concentration and confusion occur above .01 (CONF
— ENG: LW = .03; ENG — CONF: LW = .02).
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Table 1. Line Weights for ONA Models shown in Fig. 1. LW > = .10 are in bold.

Self-Transitions SR BROMP | Other Transitions SR BROMP
BOR — BOR 0.51 |0.05 BOR — ENG 0.04 | <.01
ENG — ENG 043 |0.95 ENG — BOR 0.03 <.01
DEL/HAP — DEL/HAP |0.22 |0.01 DEL/HAP — ENG |0.02 |<.01
CONF — CONF 021 |0.07 CONF — ENG 0.02 |0.03
FRU — FRU 0.12 |0.05 ENG — DEL/HAP |0.02 |<.01
ENG — CONF 0.02 0.02

4.2 ONA Difference Models for Learning Gains (LG)

Figure 2 uses ONA difference models to compare students with high and low LG, with
models for SR (2a) and BROMP (2b) data. Here, LWs indicate the difference between
the two student groups. Transitions that are most common among those with high LG are
shown in blue, with low LG in red. Network variability (confidence interval) is shown
as a rectangle surrounding a point that represents the average network position (mean).
Mann-Whitney U tests show statistically significant differences for LG in SR models
but not in BROMP models (U =9.0,p=.04,r=.67vs U= 13.0,p=.11,r=.52).

In SR models, sustained states show the largest differences. Low LG learners are
more likely to sustain boredom (BOR — BOR: LW = .35 for high vs LW = .45 for
low, producing LW gt = .25) or confusion (CONF — CONF: LW = .09 vs LW = .32,
producing LW 4;gr = .23). Six other transitions have LW > .02 (ENG — CONF, CONF
— ENG and ENG — HAP) or LW > .01 (BOR — HAP, CONF — HAP, and HAP —
BOR) (Table 2).
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Fig. 2. Difference models for students with high (blue) and low LG (red) for each set of data.

In BROMP models, the largest differences are also for sustained states. High LG
students spent less time in sustained frustration or boredom (FRU — FRU: LW = .01 vs
LW = .08, LW = .06; BOR — BOR: LW = .06 vs LW = .09, LW4iff = .03), and less
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Table 2. LWs for ONA difference models in Fig. 2. LW and LWy > = .10 are in bold.

SR BROMP SR BROMP

Self-Trans | HILG | LoLG | IDiffl | HILG | LoLG | IDiffl | Other Trans HiLG | LoLG | IDiffl | HILG | LoLG | IDiffl

BOR 0.25 0.45 0.25 | 0.06 0.09 0.03 | BOR — ENG 0.02 0.02 <.01 | <01 <.01

ENG 0.66 0.49 0.17 | 0.98 0.97 0.02 | ENG — BOR 0.01 0.01 <.01 | 0.01 <.01 <.01

DEL/HAP | 0.38 0.24 0.14 | <01 |0.02 0.02 | DEL/HAP — ENG | 0.03 0.01 0.02 | <.01 <.01

CONF 0.09 0.32 023 | 0.04 0.05 0.02 | CONF — ENG 0.03 0.01 0.02 | 0.02 0.02 <.01

FRU 0.03 0.13 0.10 | 0.01 0.08 0.06 | ENG — DEL/HAP | 0.03 0.01 0.02 | <01 |0.01 <.01
ENG — CONF 0.03 0.01 0.02 | 0.02 0.03 0.01
CONF — FRU <.01 <.01 <.0l |- 0.01 0.01

time in sustained happiness (HAP — HAP: LW < .01 vs LW = .02, yielding LW gt =
.02). Differences in 2 other transitions are small but at .01 (ENG — CONF: LW = .02
vs LW = .03, LWgjff = .01; CONF — FRU: LW = 0 vs. LW = .01, LW = .01).

4.3 ONA Difference Models for Situational Interest (SI)

ONA is also used to examine how affect transitions differ based on SI, and detector type
influences these results. High and low SI groups are statistically different in SR models
but not in BROMP models (Mann Whitney o = .05, U = 68.0, p =.00,r = .56 vs U =
115.5, p = .16, r = .28). In Fig. 3, blue lines show the transitions most common among
high SI learners, while red show those for low SI learners (Table 3).
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Fig. 3. Difference models for high SI (blue) vs. low SI (red) for SR and BROMP data.

Within SR models, the largest differences are again related to self-transitions. High
SI learners are less likely to sustain boredom (BOR — BOR: LW = .37 vs LW = .72,
LWgigr = .35) and more likely to sustain concentration and happiness (ENG — ENG:
LW = .59 vs LW = .32, LWyiff = .27; HAP — HAP: LW = 25 vs LW = .1, LWy =
.15) and even frustration and confusion (FRU — FRU: LWy = .04; CONF — CONF
LWiigr = .02). Differences in transitions between distinct affective states are also found



The Influence of Different Measurement Approaches 201

Table 3. Line weights for ONA difference models in Fig. 3. LW and LW ;¢ >= .10 are in bold.

SR BROMP SR BROMP

Self Trans | HiSI | LoSI | IDiffl | HiSI | LoSI | IDiffl | Other Trans HiSI | LoSI | IDiffl | HiSI | LoSI | IDiffl

BOR 037 072 | 035 - 0.07 0.07 BOR — ENG 0.03 | 0.05 0.02 - <.01 | <01

ENG 059 | 032 |0.27 098 | 0.9 0.08 ENG — BOR 0.02 | 0.04 |0.02 - 0.01 0.01

DEL/HAP | 0.25 |0.10 | 0.15 0.01 <.01 <.01 | DEL/HAP — ENG | 0.03 | 0.01 0.01 <.01 <.01 | <01

CONF 020 | 0.18 | 0.02 0.06 | 0.16 0.10 CONF — ENG 0.02 | 0.03 0.01 0.02 0.02 <.01

FRU 0.13 | 0.09 |0.04 0.06 | 0.09 0.03 ENG — DEL/HAP | 0.03 | 0.01 0.02 0.01 <.01 | <.01
ENG — CONF 0.02 | 0.02 <.01 |0.02 0.02 <.01

in the SR models. High ST learners are more likely to transfer from engaged concentration
to happiness (e.g., ENG — HAP: LW = .03 vs. LW = .01) and less likely to transfer
back and forth between boredom and engagement (BOR — ENG: LW = .03 vs. LW =
.05; ENG — BOR: LW = .02 vs LW = .04). Likewise, high SI learners are less likely
to show two transitions involving confusion (BOR — CONF: LW = .01 vs. LW = .02;
CONF — ENG: LW = .02 vs. LW = .03).

In BROMP models, the largest differences are also in self-transitions, but sustained
confusion (i.e., not the most common code, ENG) shows the largest difference. High
SI learners are less likely to sustain confusion (CONF — CONF: LW = .06 vs LW =
.16, LWyifr = .1) and boredom, which was notably absent among high SI learners (BOR
— BOR: LWy = .07). Instead, they are more likely to sustain concentration (ENG —
ENG: LW = .98 vs LW = .9, LWyifr = .08). Smaller differences are driven by absent
transitions among high SI learners, including the only transition between 2 different
states with LWgigr > .01 (CONC — BOR), and 5 transitions with LWgif < .01 (BOR
— ENG, BOR — CONF, CONF — BOR, CONF — DEL, and FRUS — DEL).

5 Discussion and Conclusions

Since affect modeling is key to supporting learning and motivation, it is important to
examine the effects of methodological differences. This study uses 2 sets of cross-
validated, interaction-based affect detectors, trained with self-reports and BROMP obser-
vations, to examine differences in affective dynamics using ONA. Further, ONA differ-
ence models are used to study how affect dynamics are shaped by two student-level
characteristics, learning gains and situational interest.

Results from RQ1 show that self-transitions are more common regardless of detector
type, but the SR-trained data are far more distributed (LW = .51 to .12, BOR and FRU)
than the BROMP-trained data, where sustained concentration is markedly more common
(LW = .95) than other self-transitions. That is, even though self-transitions are important
in both sets of detectors, there are still major persistence-rate differences that could
significantly impact intervention design.

Results from RQ2 show the relevance of student-level characteristics in affect dynam-
ics research. Specifically, we compare students at the extreme ends of normalized learn-
ing gains (LG), and situational interest (SI). For LG, SR-trained data produced large
differences. All 5 self-transitions showed LWy > .1, with boredom and confusion
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more likely for low LG students. In BROMP-trained data, self-transitions were also
more common than transitions between 2 distinct states. Sustained frustration has the
largest difference, with low LG learners experiencing the most frustration. For SI, simi-
lar patterns emerge when comparing the 2 sets of detectors. Differences are larger (a) in
SR models than BROMP models and (b) for self-transitions, chiefly boredom and con-
centration. In SR models, low SI learners undergo sustained boredom at twice the rate
of others. BROMP models show similar patterns: sustained boredom is entirely absent
in high SI learners. High SI learners also exhibit higher rates of concentration, though
this effect is strongest in SR models.

More generally, we emphasize the need to study differences related to learning and
motivation. Combined with results from the initial ONA analyses, the difference models
show the relative importance of self-transitions, often excluded in previous work. We
hope that these results motivate similar future investigations.
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