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Abstract—GenProg implemented a novel method for automat-
ically evolving patches to repair test suite failures in legacy
C programs. It combined insights from genetic programming
and software engineering. Many of the original design decisions
in GenProg were ultimately less important than its impact as
an existence proof. In particular, it demonstrated that useful
patches for non-trivial bugs and programs could be generated
automatically. Since the original publication, research in auto-
mated program repair has expanded to consider and evaluate
many new methods, contexts and defects. As code synthesis and
debugging techniques based on machine learning have become
popular, it is informative to consider how views on perennial
issues in program repair have changed, or remained static, over
time. This retrospective discusses the issues of repair quality
(including the role of tests), use cases for automated repairs
(including the role of humans), and why these approaches work
at all.

Index Terms—Automatic programming, corrections, testing
and debugging, evolutionary computation.

1. INTRODUCTION

HE 2012 article “GenProg: A Generic Method for Auto-

matic Software Repair” described GenProg, a technique
that used genetic programming (GP) to automatically generate
patches for bugs in programs, identified by test cases. GP is a
stochastic search method inspired by biological evolution that
discovers computer programs tailored to a particular task [1],
[2]. It relies on computational analogs of biological mutation
and crossover to generate new program variations; in GenProg,
we referred to these variations as variants. A user-defined fit-
ness function evaluates each variant. GenProg uses the provided
test cases to evaluate variant fitness. Individuals with high fit-
ness are selected for continued evolution in an iterative search
process. The process is considered successful when it produces
a high-fitness variant according to the user-defined function. For
GenProg, this means a program that passes all tests encoding
required behavior, including those that expose the bug.
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That TSE’ 12 article was an invited extension of a 2009 Dis-
tinguished Paper at the International Conference on Software
Engineering (ICSE), “Automatically Finding Patches Using Ge-
netic Programming” [3]. The TSE article unified and expanded
on previous publications [4], [5], especially in terms of the
evaluation, including:

e New bugs and programs. The article reported on bugs in
five additional programs compared to the previous evalua-
tions, doubling the total amount of repaired code evaluated
to over 100k LOC. These new programs included four new
types of errors.

e Closed-loop repair. The TSE paper described, and pro-
vided a proof-of-concept evaluation of, a closed-loop re-
pair system integrating GenProg with anomaly intrusion
detection.

* Repair quality. The evaluation significantly expanded the
original publication’s treatment of repair quality. This in-
cluded both a manual/qualitative assessment and a quanti-
tative study using indicative workloads, fuzz testing, and
variant bug-inducing input.

GenProg was impactful because it demonstrated the feasi-
bility of automating program transformation for bug repair on
large (for the time) corpora of real-world open-source software
used in production. Automating this type of programming had
been proposed, particularly in the evolutionary computation
research area, but never explored seriously for production code.
Over the subsequent decade or so, Automatic Program Repair
(APR) has developed into a significant research subfield at the
intersection of program analysis and software engineering. This
work includes an adaptive radiation of methods for finding bugs
and generating repairs, some of which have been integrated
into industrial deployments [6], [7]. The recent development
of transformer-based language models and generative Al, as
applied to code, has accelerated interest in this type of work.

In our view, many of the details of the GenProg algorithm,
as described in the article, are less important to its impact than
its status as an existence proof. Many design decisions were
under active investigation at the time, e.g., in the same year
that the TSE article was published, we also published a more
efficient representation, which evolved edits to programs, or
patches [8], rather than entire ASTs. This has turned out to be
a more enduring design choice.

However, at least two design choices were significant. First,
GenProg targeted a widely-used, general-purpose programming
language (C). This, coupled with the fact that its program anal-
ysis strategy was relatively lightweight, allowed GenProg to
scale to nontrivial modules and programs. This emphasis on
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real open-source code endures in the APR research literature,
which continues to emphasize empirical studies, evaluations on
corpora of bugs in open repositories, and comparisons among
methods.

Second, GenProg relied exclusively on test cases to enforce
correctness. Testing was (and remains) the most common Qual-
ity Assurance technique in development practice. Relying on
tests rather than any kind of formal correctness specifications
allowed GenProg to apply to a wide variety of programs, bugs,
and errors. Using tests as proxies for correctness specifications
diverged strongly from common research wisdom and practice
at the time. It was a controversial design decision, and led
to significant ongoing debate and study. However, the use of
tests to inform and guide APR remains a de facto standard in
the program repair and transformation literature. This includes
techniques that, like GenProg, use test cases to guide repair di-
rectly and more recent approaches from the ML/AI community
which use tests to evaluate repairs in response to issue or bug
reports (e.g., [9]).

II. EVOLUTION OF REPAIR QUALITY

A major focus of the experiments unique to the TSE’12
article was repair quality. Although using tests to guide repair
allows techniques like GenProg to apply broadly, those tests are
also, by their nature, partial. It is always possible to construct
a program that satisfies a partial specification but that does not
generalize to the (unwritten) full specification.

Repair quality, often referred to as overfitting [10], has been
a major focus of subsequent work in program repair, both on
its own and as a component of evaluations of new techniques.
Generated tests, separate held-out tests, and fuzzing campaigns
have been used to evaluate repair quality, usually as an adjunct
to manual comparison to the developer-written “gold standard”
fix for a historical bug. This standard is more restrictive than
the one we applied in this article, when such experimental
norms had yet to be established, and as we argue below is
likely overly restrictive. Modern evaluations, therefore, define
“correct” differently from the TSE paper, even though both
types of assessment are effectively manual. Both approaches,
however, acknowledge the reality that tests provide only par-
tial arguments for quality. This is important to bear in mind
when evaluating and making claims about any new technique
for program transformation—whether based on more formal
reasoning, or on ML-based approaches.

That said, in the qualitative analysis of produced patches,
we carefully selected bugs that we considered illustrative; the
natural (or developer-provided, if available) fix; and the fix
produced by GenProg, if it differed. This is more subjective,
and less principled, than a strict comparison to a developer-
provided gold-standard patch, and it is impractical at the scale
of modern evaluations. However, there are benefits to such
narrative assessment of produced patches, especially for those
that do not perfectly reproduce the text of a historical fix. For
example, a GenProg repair to openldap fixes a denial-of-
service attack by removing a buggy loop that sanity-checks very
large request tags. This repair has the side effect of limiting
the range of request tags to 127, which is different from the
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gold-standard repair (which removes extraneous assertion fail-
ures in that same loop). However, since openldap only has 30
defined tags, the patches produce identical behavior in practice.
Such narratives add color as to what the technique can and did
do, and it acknowledges the fact that there are an infinite number
of ways to fix any particular defect. This theoretical diversity
also manifests in practice, including when multiple experienced
developers repair the same defect [11].

These results, and the ongoing challenges faced by re-
searchers in evaluating program transformation techniques,
highlight a need for more nuanced studies of repair quality, and
standards for how to evaluate it experimentally. One recurring
observation was that the evaluation standards for generated
repairs often varied with the use case: a patch that would be
deployed automatically might be considered differently from
one that would serve as informal guidance to a human.

III. EVOLUTION OF USE CASES

Over the years, APR efforts have considered multiple use
cases for generated patches. One primary dimension of varia-
tion is the degree of human involvement. We consider a highly-
manual use case and a fully-automated one.

Perhaps surprisingly, our original model envisioned candi-
date patches being presented to developers as suggestions, per-
haps via IDE integration. This was the use case considered in
precursor work to GenProg [12]: Proposed patches would be
shown to developers as parts of bug reports, and even incorrect
patches might reduce development time by providing ideas.
Although that use case was quite speculative in 2006-2009,
the rise of cloud computing led to the widespread adoption of
continuous integration continuous delivery (CI/CD) techniques.
The ensuing tighter push, test, commit, review cycle more nat-
urally placed humans in front of small, proposed changes. Hu-
man inspection as part of software evolution has a rich history,
but CI/CD has increased acceptance of a faster feedback loop
of small changes.

One aspect meriting particular attention is an apparent, very
recent, LLM-driven shift in developer tolerance for tools that
are explicitly not guaranteed to be correct. Informally, in prior
decades it was widely accepted that industrial developers were
intolerant of false positives [13], [14]. In our recent conver-
sations with industrial developers, however, they appear to be
more willing to receive and fix up slightly-incorrect suggestions
from synthesis tools like ChatGPT. This remains an important
use case and research topic, with a 2024 study finding that
access to correct APR suggestions increases the odds of debug-
ging success by a vastly larger margin as compared to having
access only to tests. Access to overfitting suggestions decreases
the odds of debugging success, but it hurts less than having good
suggestions helps [15].

A second family of use cases emphasizes the automated de-
ployment of patches without a human in the loop. The TSE’12
article considered a case study of a long-running webserver
deployment, imagining a scenario in which inputs that triggered
an anomaly detection system would pause the system, be passed
to GenProg to produce a patch, and then that patch would be
deployed automatically on future inputs.
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In the scenario, the webserver was running a version of
php vulnerable to a remote exploit against the str_replace
function, and 130,000 historical HTTP requests and 12,000
historical PHP requests were used. We first assessed the time
cost associated with pausing the webserver to conduct repairs,
determining that 2% of requests would be delayed. We also
assessed the requests lost to repair quality, as when a Gen-
Prog repair closes the vulnerability but disables single-character
string replacements. In this setting, the fraction of PHP requests
that differed by even one byte was not statistically different from
zero. One lesson was that functionality-deleting repairs do not
always have an impact on the user experience.

This fully automatic use case has been less emphasized in
the research since the article was written. The latter case study
especially highlights that the role of repair quality is subtle,
and its importance can vary strongly by use case. Deleting
functionality to automatically prevent the exploitation of key
vulnerabilities may be acceptable in some cases, such as when
a human operator is unavailable and the vulnerability partic-
ularly severe. Many bugs and vulnerabilities appear on less
commonly-executed code paths; our case study suggests that
removing such paths may sometimes enhance security, while
not meaningfully impacting user experience. However, these
considerations are necessarily contextual, and thus much more
difficult to evaluate in the types of large-scale empirical settings
that have become common in program repair literature since.

Use case and evaluation concerns are timeless. The overar-
ching question of where and to what degree human developers
should be ‘in the loop’ remains, and our answers to this question
are changing quickly as ML-based methods mature.

IV. EVOLUTION OF SOFTWARE

It is unsurprising that text prediction methods that work so
well for generating natural language should also work well for
generating program code, which has much smaller vocabulary
and simpler grammatical structure [16]. More surprising is the
fact that approaches based on random mutation, such as Gen-
Prog and its successors, can succeed at all.

Independent of progress developing APR tools that can repair
more bugs more correctly than the original GenProg, a separate
line of work has asked why GenProg and its successors succeed
as often as they do. A key assumption of the GenProg architec-
ture is that the ingredients of a repair are likely to already exist in
the program [17], which enables mutation operators to succeed
that simply reorder, delete or copy code. This assumption is
known as the plastic surgery hypothesis [18] and is an important
enabler of the success of GenProg and other mutation-based
methods. In addition, many researchers have observed that most
bugs are “small” [19], which helps explain why GenProg’s
repairs, which usually consist of one- or two-line edits, are often
sufficient.

Other work considers the hypothesis that software has certain
properties that make it inherently “evolvable,” i.e., amenable to
random mutation and selection. As just one example, several
studies [20], [21], [22] have measured mutational robustness,
i.e., how likely it is that a random mutation will change the
observed behavior of the program. These studies have shown

that, in programs written in different languages and at different
abstraction levels, software is highly robust to mutation (e.g.,
~ 30% of mutations are non-harmful for source code), which
is comparable to observations made in some biological systems
[23]. In biology, mutational robustness is believed to be a key
enabler of evolution, because it allows the search to explore
the adaptive landscape more widely without fatal consequences,
and thus improves the chances of discovering important inno-
vations [24]. Why this robustness exists in software, and what
its effects are, are interesting and unanswered questions.

In SE terms, mutational robustness can be thought of as
“neutral mutations considered helpful,” in contrast with the sub-
field of mutation analysis, where neutral mutations complicate
the interpretation of mutation adequacy scores and are usually
considered negatively, as evidence of either a missing test or
semantic equivalence [25]. In many cases, however, mutations
can produce functionally-correct code improvements, even if
the result is not strictly equivalent semantically. For example,
a mutation that changes run-time behavior but still produces
correct results might be considered semantically distinct but
functionally correct. This principle was leveraged in follow-
on work to GenProg that optimized quality properties, such
as energy efficiency or run-time, by discovering variants that
behave differently but acceptably [26], [27]. Beyond mutational
robustness, other aspects of software have been shown to re-
semble natural biology as well, including epistasis (interaction
among genes), neutral landscapes, and bimodal fitness distribu-
tions [27], [28].

More macroscopically, modern software development prac-
tices incorporate the three key mechanisms of Darwinian evolu-
tion: variation, selection, and inheritance. Variations, random or
otherwise, are introduced whenever a developer or tool changes
a line of code. They are also introduced through an analog
of the biological process of crossover, whenever two libraries,
code snippets, or modules are combined from different sources.
Selection and inheritance occur each time a piece of software is
copied — successful software is copied frequently and becomes
prevalent in the software ecosystem, and unsuccessful software
fades away. Modern tools and development practices, including
everything from Stack Overflow to GitHub to A/B testing of
interfaces to continuous integration all reinforce and accelerate
this dynamic.

V. CONCLUSION AND LOOKING TO THE FUTURE

APR has evolved significantly, from the traditional GenProg
that used testsuites, GP, and focused on C to techniques that
use many methods (formal specifications, program synthesis,
machine learning, etc.) and apply to many languages. APR
has been transformed from academic research to industrial de-
ployment (e.g., Facebook’s SapFix [7] and Getafix), and was
a precursor to Al-driven code suggestion tools (e.g., Codex,
Copilot).

Looking back to GenProg’s theoretical underpinnings, given
the evidence that the mechanistic drivers of evolution are all
present in modern software practices, important questions in-
clude: Can we measure these effects? How do evolutionary
dynamics affect or constrain the overall trajectory of software
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development? What are best practices for leveraging these evo-
lutionary dynamics in the context of human- or Al-driven soft-
ware development?

While the potentials of APR are exciting in the modern area
of Al, there are still many challenges that need to be addressed.
For example, there is interest in using APR techniques to debug
Al models, potentially addressing issues of Al trustworthiness
and safety. While such applications (e.g., repairing deep neural
networks) are exciting and have the potential for significant
impact, a number of domain-specific challenges remain. These
include scalability (Al models are large), repair quality (while
software behavior is often captured by tests or specifications, Al
is often defined by a training set that is not as easily captured
by traditional methods), and use case (Al models are not easily
interpretable, so how and how much the human should be in
the loop is less certain).

Conversely, as Al continues to support code synthesis and
debugging, careful attention may be merited for some use cases
and defects. Some perceive that certain classes of defects, like
zero-day vulnerabilities that often have few analogs in train-
ing sets, may be more difficult to solve with LLM-based ap-
proaches. In addition, the human-in-the-loop aspect of repair
quality assessments and use cases is more critical with ChatGPT
interfaces and IDE tools like Codex. We speculate that it will
become increasingly important to train developers to assess
candidate patches and synthesis tools.

Finally, just as extending APR to Al models stretches our no-
tion of what a “program” is, years of work by many researchers
have stretched the notion of what a “bug” is. In a recent article,
we argued that the definition of a bug includes subjectivity
and judgment, notions that also inform whether it should be
fixed: “tests can fail for any number of reasons—flakiness,
failed code style checks—that we do not ordinarily consider
bugs. Further, there are almost always more bugs reported than
can be reasonably handled given available resources, a fact
baked into modern continuous-deployment pipelines and bug
triage processes.” [29] As APR is increasingly stretched from
its original conception of passing test cases to more modern use
cases of improving non-functional properties or supporting Al
models, the question of what we want software to be—and how
that differs from what it is now—remains central.
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