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—— Abstract

Knowledge compilers convert Boolean formulas, given in conjunctive normal form (CNF), into
representations that enable efficient evaluation of unweighted and weighted model counts, as well
as a variety of other useful properties. With projected knowledge compilation, the generated
representation describes the restriction of the formula to a designated set of data variables, with
the remaining ones eliminated by existential quantification. Projected knowledge compilation has
applications in a variety of domains, including formal verification and synthesis.

This paper describes a formally verified proof framework for certifying the output of a projected
knowledge compiler. It builds on an earlier clausal proof framework for certifying the output of a
standard knowledge compiler. Extending the framework to projected compilation requires a method
to represent Skolem assignments, describing how the quantified variables can be assigned, given
an assignment for the data variables. We do so by extending the representation generated by the
knowledge compiler to also encode Skolem assignments. We also refine the earlier framework, moving
beyond purely clausal proofs to enable scaling certification to larger formulas.

We present experimental results obtained by making small modifications to the D4 projected
knowledge compiler and extensions of our earlier proof generator. We detail a soundness argument
stating that a compiler output that passes our certifier is logically equivalent to the quantified input
formula; the soundness argument has been formally validated using the HOL4 proof assistant. The
checker also ensures that the compiler output satisfies the properties required for efficient unweighted
and weighted model counting. We have developed two proof checkers for the certification framework:
one written in C and designed for high performance and one written in CakeML and formally verified
in HOLA4.
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1 Motivation: (Projected) Knowledge Compilation

Although Boolean satisfiability (SAT) solvers serve as effective tools for many automated
reasoning tasks, some applications require evaluating more detailed properties about formulas
than whether or not they are satisfiable. For example, model counting [26] determines the
number of satisfying assignments to a formula, while probabilistic inference [11] determines
the probability that a formula will evaluate to 1 (true), given individual probabilities that
each variable is assigned value 1. Probabilistic inference is a special case of the more general
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problem of weighted model counting. Generalizing to weight functions computed over algebraic
semirings expands properties that can be evaluated even further [28].

Rather than implementing specialized programs for these different analysis tasks, a
knowledge compiler [18, 34] converts a Boolean formula into a form for which the tasks can
be performed in polynomial time, relative to the size of the representation. Most commonly,
knowledge compilers generate a restricted class of Boolean formulas for which the analysis
becomes tractable, such as the deterministic, decomposable, negation-normal form (d-DNNF,
defined in Section 4) [18]. These formulas are encoded as directed acyclic graphs, enabling
efficient sharing of common subformulas. We can therefore state the operation of a knowledge
compiler as converting a Boolean formula over a set of variables X, denoted ¢(X), into a
logically equivalent formula (X)), such that (weighted) model counting can be performed in
time polynomial in the size of .

With projected knowledge compilation, the variables X are partitioned into data variables
D and quantified variables Y, and so the input formula has the form ¢(D,Y’). The task is to
produce a formula (D) where the quantified variables have been eliminated via existential
quantification. That is, the satisfying assignments of 1 consist of those assignments « to the
data variables, such that for some assignment [ to the quantified variables, their combination
«- 3 satisfies the input formula ¢. This can be written as ¢¥(D) = 3Y ¢(D,Y’). This form of
projection is also referred to as “forgetting” [18, 21, 33].

The need to eliminate quantified variables arises in many contexts. For example, auxiliary
variables are commonly introduced when encoding general Boolean formulas into conjunctive
normal form (CNF), via either a Tseitin [38] or a Plaisted-Greenbaum [37] encoding. Although
the former preserves model counts, the latter does not, and both can complicate the task
of weighted model counting. As a second example, when a hardware system is described
as the composition of a set of components, Boolean variables are introduced to encode the
connections between components [13]. Existentially quantifying these variables abstracts
away the internal system details. As a third example, a state transition system can be
described via a transition relation T(S,S’) defining the allowed combinations of current
states S and next states S’ [8]. For some predicate P(S) describing the current states, the
quantified formula P’(S") = 3S[P(S)AT(S,S")] describes the set of possible successor states.

Our work makes use of version 2 of the D4 knowledge compiler [30].! Given a CNF
file that also includes a declaration of the data variables (referred to as “show” variables),
as is required for the projected model counting competitions,? it will generate a d-DNNF
representation of the set of data models.

2 Certification Framework and Tools

For many applications of automated reasoning, including formal verification and mathematics,
it is essential that the tools be fully trustworthy. In our context, there should be some method
of ensuring that the output (D) generated by a projected knowledge compiler is truly
equivalent to 3Y ¢(D,Y’). We have devised a proof framework for expressing such proofs and
a set of tools both to generate and to check these proofs. Such a proof enables the equivalence
to be established for individual executions of the compiler, even if the overall correctness
of the compiler cannot be guaranteed. In prior work [6, 7], we devised a framework for
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certifying the results of standard knowledge compilation. This paper extends this framework
and associated tools to handle projected knowledge compilation.

For standard knowledge compilation, the task is to prove that ¢(X) = (X)), i.e., that the
CNF and the d-DNNF representations are logically equivalent. In our framework, d-DNNF
formulas are represented by directed acyclic graphs that we refer to as “partitioned-operation
graphs” (POGs). These graphs have Boolean variables and their complements as terminal
nodes, Boolean sum and product operations as nonterminal nodes, and edges from each
operation to its arguments. The root node of the POG is denoted r. In the CPOG (for
“Certified POG”) framework, a proof consists of a sequence of equivalence-preserving clause
addition and deletion steps.

The equivalence proof for standard knowledge compilation has two phases. The forward
implication phase serves to prove ¢ = 1, i.e., that any assignment satisfying the input
formula also satisfies the compiled formula. It starts with the clauses for ¢, along with
clauses providing a Tseitin encoding of the compiled formula v, denoted 6(X, Z), where Z
is the set of auxiliary variables introduced by the encoding. The proof continues with a
sequence of added clauses, each of which must satisfy the reverse unit propagation (RUP)
property [25, 43] with respect to the existing clauses. This property guarantees that the
added clause is logically implied by the earlier clauses. The forward implication phase
terminates with the addition of a unit clause [r]|, where r is the variable in Z denoting root
node r. Adding this clause proves that any assignment « that satisfies ¢ must cause ¥ to
evaluate to 1. This phase can have exponential complexity. For example, when the input

formula is unsatisfiable, the forward implication proof must be able to certify unsatisfiability.

The reverse implication phase for standard knowledge compilation serves to prove ¥ = ¢,
completing the proof of equivalence. It does so by showing that each input clause satisfies
the RUP property with respect to the combination of §(X, Z) and unit clause [r]. That is,
any assignment that falsifies the clause must cause v to evaluate to 0 (false). This clause
can therefore be deleted without affecting the set of satisfying assignments. This portion
of the proof is guaranteed to have polynomial complexity, since clausal entailment can be
tested efficiently for d-DNNF formulas [9, 18].

For certifying projected knowledge compilation, we can build on the CPOG framework.

The forward implication phase requires no change to the framework and only small changes to
how the proofs are generated. Having the phase culminate with the addition of unit clause [r]
proves that any pair of assignments « to the data variables and g to the quantified variables
that satisfies input formula ¢ will cause compiled formula i to evaluate to 1. This result

holds even when 1 contains only data variables and therefore depends only on assignment «.

On the other hand, it is less clear how to generalize the reverse implication phase to
handle projection. The input clauses contain both data and quantified variables, and so
the simple strategy of showing that each individual input clause is implied by the compiled
formula (containing only data variables) will not suffice. Instead, we handle the existential
quantification via a form of Skolemization [3], associating some assignment £ to the quantified
variables for each satisfying assignment « to the data variables. We do so by extending
the POG representation to include Skolem modes, representing partial assignments to the
quantified variables. This “Skolem POG” then represents two d-DNNF formulas:

Interpreting the Skolem nodes as tautologies gives the compiled representation (D).

This version is used in the forward implication phase.

By interpreting the Skolem nodes as Boolean products, the formula assigns values to both
data and quantified variables. This makes it possible to deduce a Skolem assignment 3
for any satisfying data assignment «. This version serves as the basis for the input clause
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deletion steps in the reverse implication phase.

The Skolem POG can be generated by a combination of minor modifications to the projected
knowledge compiler and postprocessing to partition the Boolean products into product and
Skolem nodes.

In a prototype implementation of a proof generator and checker for projected model
compilation, we found that storing the clausal representation of a Skolem POG, plus the
proof steps for a RUP derivation of the input clauses in the reverse implication phase, led
to excessive file sizes for the proofs—the degree for many of the Skolem nodes can be in
the thousands and the size of each RUP step is linear in the size of the Skolem POG. To
reduce file sizes and to speed up proof generation and checking, we shifted responsibility for
proving that the input clauses can be deleted from the proof generator to the proof checker.
As a result of this shift, we can also have the checker make inferences directly on the Skolem
POG, rather than on its clausal representation. Since the test for each input clause has
linear complexity (in the size of the Skolem POG), this shift in responsibility still fulfills a
requirement for propositional proof systems that the proof must be checkable in polynomial
time, with respect to the size of the proof [14].

3 Overview and Prior Work

This paper describes how our earlier work on certifying the results of a standard knowledge
compiler can be extended to those of a projected knowledge compiler. It provides background
on the relevant logical foundations, the extension of the POG representation to include
Skolem nodes, the structure of both the forward and the reverse implication phases, and a
sketch of a soundness proof for the framework. We also discuss the use of HOL4 and CakeML
to formally verify the soundness proof and to implement a formally verified proof checker.

We present experimental results for our implementation, consisting of modified versions
of D4 and our earlier proof generation and checking tools. By shifting the reverse implication
phase of the proof to the proof checker, our framework scales to formulas having large
d-DNNF representations.

In terms of prior research, there has been some work on proof frameworks for model
counting [5, 12, 23], along with comparisons of the expressive power of the different frame-
works [4]. In addition, another proof framework has been developed for standard knowledge
compilation [10]. We know of no previous work extending any of these frameworks to handle
projection. Indeed, the literature on projected model counting and projected knowledge
compilation is very sparse. Several algorithms and tools for projected knowledge compilation
and model counting have been published, based on top-down approaches [1, 27, 31, 32, 35, 39],
decision diagrams [20], and dynamic programming [22], but none of these can certify their
results.

We have found that formal proof assistants are essential in uncovering the many subtle
details that can arise in devising a sound proof framework. Working with a proof assistant
also let us explore possible optimizations in the proof framework and checker with complete
confidence of their soundness. In this work, we shifted from Lean 4 [19] to the HOL4 proof
assistant [40]. We did so in part to take advantage of the CakeML programming language [29],
which has a formally verified compiler [42] and a large body of support for developing verified
machine-code implementations of propositional proof frameworks [24, 41].
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Clause File line Formula Comment
p cnf 4 3 CNF formula with 4 variables and 3 clauses
c t pmc Projected model counting
cpshow1l20 D = {a,b} Declare data variables
1 1340 a= (xVy) a triggers either x or y
2 2-30 =0 When z is triggered, force b to 1
3 2-40 y=>o When y is triggered, force b to 1

Figure 1 CNF representation of disjunction of data variables a and b (numbered 1 and 2), with
quantified variables x and y (numbered 3 and 4). Clause identifiers are implicitly assigned in the
format and are shown here in red.

4 Logical Foundations

A Boolean formula ¢ over one or more disjoint sets of variables X1, Xo, ..., X,,, is written
as ¢(X1, Xa,...,X,,) for clarity or as simply ¢ when the context is clear.

The dependency set for Boolean formula ¢, denoted V(¢), consists of all variables occurring
init. An assignment for a set of variables X is a mapping a: X — {0,1}. When an assignment
includes a value for every variable in V(¢), it is said to be total; otherwise it is partial. We
assume assignments are total unless explicitly stated. The set of all total assignments for X
is denoted U(X). For formula ¢ with dependency set X, its set of models, denoted M ()
consists of all assignments in /(X)) that satisfy the formula. For assignments o € U(X) and
B eU(Y), where X NY = (), we write a3 as the assignment in (X UY') assigning z to
a(x) when z € X and to B(x) when © € Y. A literal is either a variable x or its complement
Z. The symbol ¢ denotes a generic literal. Clauses are written as disjunctions, except that a
unit clause, consisting of a single literal ¢ is written as [¢].

With a projected formula ¢(D,Y) the variables are partitioned into a set of data variables
D and a set of quantified variables Y. Its set of data models, denoted M p(¢) is defined as

Mp(9) = {acU(D)[3BcUY).a-f e M(P)} (1)

The task of projected knowledge compilation is to convert a CNF formula ¢(D,Y") into
a formula (D) such that M(¢)) = Mp(¢). Furthermore, 7 should be in a form for
which computing important properties, such as the number of models, can be performed in
polynomial time, relative to the size of 1.

The class of Boolean formulas known as deterministic, decomposable, negation-normal
form (d-DNNF) is defined recursively as formulas ¢ of the form:
Literals: x and T for Boolean variable x.
Decomposable Products [15, 18]:

Y1 Ao A+ A by, where V(i) N V() =0 for 1 <i<j<m
Deterministic Sums [16, 18]:

Y1 Vo V- -V by, where M(1;) N M(1p;) =0 for 1 < i < j < m. Here we assume for all

1 <4 < m, that M(¢p;) CU(X) for a common set of variables X.

We represent d-DNNF formulas as partitioned-operation graphs (POGs) [6, 7). These
are directed acyclic graphs where the terminal nodes represent literals and the nonterminal
nodes represent product and sum operations. The root node is denoted r.

As a running example throughout this paper, Figure 1 shows the declaration for a CNF
formula encoding the disjunction of data variables a and b, with quantified variables  and
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y. Following the DIMACS CNF notation, literals are represented as integers. In this case,
we number the variables a and b as 1 and 2 and the variables x and y as 3 and 4. The
two comment lines (beginning with ‘c’) indicate that the file encodes a projected model
counting problem with variables 1 (a) and 2 (b) as the data variables. With clause 1, when a
is assigned 0, either x or y must be assigned 1. With clauses 3 and 4, assigning 1 to either x
or y will force b to be assigned 1.

5 Proof Requirements

Given a CNF formula ¢(D,Y) and a d-DNNF formula (D), represented as a POG, we
would like to generate a proof that M(¢)) = Mp(¢). We do so by converting ¢ into clausal
form as a CNF formula 0(D, Z), where Z is a set of extension variables used to encode the
product and sum operations, according to a Tseitin encoding [38]. The root variable for the
POG is defined as the extension variable r associated with root node r. This encoding has
the property that for any a € U(D), there is a unique assignment v € U(Z) such a-y € M(6).
We refer to this assignment as 7,. Furthermore, this assignment will satisfy v, (r) = 1 if and
only if & € M(¢)). We use the notation 60,.(D, Z) to represent the formula 6(D, Z) U {[r]},
the combination of the Tseitin encoding of the POG and a unit clause with the root literal
requiring the POG to evaluate to 1. Formula 6, therefore serves as the clausal representation
of d-DNNF formula .

The proof of M(y)) = Mp(¢) consists of two phases. The forward implication phase
serves to prove that any data model o for ¢(D,Y") will be a model for (D). With 6,.(D, Z)
serving as the clausal representation of ¥, we can write this as

Va3 .a-f € M(¢) = Iy.ay e M(6,)] (2)

We can transform this formula by bringing 8 outward and inverting the sense of the quantifi-
cation. Furthermore, we can make use of the fact that v is uniquely determined by «. These
changes yield the formula

Va Vﬁ[aﬁ € M(QS) = QY € M(97)] (3)

We can see here that the assignments to both the data variables and the quantified variables
are quantified in the same manner. We can therefore use the same method to generate
and check this proof as is done with standard knowledge compilation [6, 7]. Starting with
the combined clauses ¢(D,Y") and (D, Z), the proof of (3) consists of a sequence of clause
addition steps leading to the addition of the unit clause [r]. In doing so the proof transforms
0, the clausal representation of the POG operations, into 0,., the clausal representation of
the d-DNNF formula ).

The reverse implication phase serves to prove that, for any assignment « satisfying ¢ (D),
there is a 8 € U(Y') such that «- 3 satisfies ¢(D,Y’). Working directly with the d-DNNF
formula v, we can write this as:

Voo € M(y) = 3B.a- € M(¢)] (4)
We can bring  outward, yielding
Vo 3Bla € M(Y) = a-B € M(¢)] (5)

Here, the quantifications of « and g differ: they require the implication to hold for all
data assignments « but for only some quantified assignment (3 for a given a—and even then
only when « is a data model of ©. The task of generating such an assignment is known as
Skolemization, and f is referred to as a Skolem assignment for a [2, 3].
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Figure 2 Skolem POG representing disjunction of data variables a and b, with quantified variables
x and y. The Skolem nodes (shown in gray) define an assignment to the quantified variables for a
given assignment to the data variables.

6 Skolem POGs

A Skolem POG is an extension of the POG representation that serves two roles:

Compiler Output: It provides the POG representation of a d-DNNF formula ¢ (D) forming
the output of a projected knowledge compiler.

Skolemization: It augments this representation with a method for computing a Skolem
assignment [ for any assignment o € M(%) such that a-8 € M(¢).

6.1 Skolem POG Example

Figure 2 illustrates a Skolem POG generated from the CNF formula ¢(D,Y") of Figure 1
with D = {a,b} and Y = {z,y}. As can be seen, the graph is itself a POG—every product
operation is defined over disjoint sets of variables, and every sum operation is defined over
disjoint sets of models. The gray nodes, known as Skolem nodes, indicate a special class of
product operation. Skolem nodes only have literals of quantified variables as arguments, and
they are the only nodes having such arguments.

The nodes shown in white comprise the d-DNNF generated by D4. We can see that
D4 split on variable b at the top level, with node pg representing the case where a(b) =1
and node pio indicating the case where a(b) = 0, with these being combined by the root
node s11. On the left-hand side, we can see that s; shows a split on variable a, resulting in
the tautology a V @. On the right-hand side, we see that node pio requires a(a) = 1 when
a(b) = 0 to satisfy the disjunction a V b.

The Skolem nodes provide Skolem assignments for some of the assignments to a and b.

For a(b) = 1 and a(a) = 0, there are three possible assignments to variables x and y that
satisfy the input clauses. Skolem node t53 indicates the choice 8(z) = B(y) = 1. For a(b) = 0

3 The symbol “t” is chosen to honor Thoralf Albert Skolem (1887-1963), the Norwegian logician for whom
Skolemization is named.
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and a(a) = 1, there is a single satisfying assignment with 5(z) = 8(y) = 0, as indicated
by Skolem node tg. We can see that no Skolem assignment is given for a(a) = a(b) = 0.
This case is not needed, since it does not satisfy the input formula. We can also see that
no Skolem assignment is given for a(a) = a(b) = 1. This is not required, since the data
assignment alone guarantees that all input clauses are satisfied.

This example shows that, by considering or ignoring the Skolem nodes, a single graph
can serve the dual roles of knowledge compiler output and Skolemization.

6.2 Clausal Encoding

In generating a clausal representation of a POG, we introduce an extension variable for each
sum and product node. For a node with & children, we add k + 1 clauses, providing a Tseitin
encoding of the operation over its arguments. Generating a clausal encoding of a Skolem
POG is only required for the forward implication phase of the proof. We can therefore encode
a Skolem node t as an extension variable ¢ with a single unit clause [¢] indicating that the
node should be interpreted as a tautology.

7 Proof Generation and Checking

Generating the Skolem POG and the forward implication proofs involves only modest changes
to the knowledge compiler and to the proof generator. A more substantial change is required
for the shift of the reverse implication phase to the proof checker.

7.1 Compiler Modification

We make use of the knowledge compiler D4, which already supports projected knowledge
compilation. As with other top-down knowledge compilers [17, 36], D4 proceeds in a manner
similar to a CDCL SAT solver. On each step, it performs unit propagations and simplifies
the set of clauses by eliminating satisfied clauses and by removing falsified literals from the
remaining clauses. When it selects an unassigned variable x, it must, in general, consider
both assignments = and T. These splitting variables become the basis for deterministic sums,
with one argument satisfied only by assignments a with a(x) = 1 and the other only with
a(z) = 0. The assigned and propagated literals then become arguments for decomposable
product operations.

When running in projected compilation mode, D4 splits only on data variables. Once the
simplified set of clauses contains only quantified variables, it calls a SAT solver to determine
whether or not the formula is satisfiable. If so, it emits a tautology for the compiled result,
and if not it emits a conflict. In addition, when unit propagation detects a unique assignment
for a variable, it only includes the corresponding literal in the output for a data variable.

Modifying D4 to generate the information required to construct a Skolem POG involves
two small changes:

1. After the SAT solver determines that a set of clauses containing only quantified variables
is satisfiable, request a satisfying assignment. These become the arguments for a Skolem
node. For example, node t5 in Figure 2 was generated after the assignment «(b) = 1 and
a(a) = 0 reduced the input clauses in Figure 1 to the single clause 2 V y. The SAT solver
detected that this clause was satisfiable and returned the assignment §(z) = S(y) = 1.
This case only occurs as D4 reaches a terminal condition; it causes a Skolem node to be
generated rather than a tautology.
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2. Issue literals for both data and quantified variables when unit propagation occurs. These
are then grouped into arguments for product and Skolem nodes. For example, assigning
a(b) = 0 to the clauses of Figure 1 first causes the unit propagations f(x) = S(y) =0
and then a(a) = 1. These assignments are grouped into nodes tg and pjo in Figure 2.
This case can occur at any point where unit propagation occurs; it can cause a Skolem
node to be generated as the argument to a product node at upper levels in the POG.

Our modified version of D4 issues the additional literals as part of its regular output. We

postprocess these into the required structure for a Skolem POG.

7.2 Proof Generation

The monolithic proof generation method devised for standard knowledge compilation [6] can
be adapted for projected knowledge compilation. The generator runs a proof-generating SAT
solver on the (hopefully) unsatisfiable CNF formula consisting of the clauses in formulas
¢(D,Y) and (D, Z), as well as the unit clause [F]. The solver effectively proves that the
POG cannot generate value 0 as its output for any data assignment o € Mp(¢). Each
of the proof clauses is then augmented with the literal r, and so the empty clause of the
proof becomes the unit clause [r]. This approach works regardless of any preprocessing
transformations made by the knowledge compiler.

We also support a hybrid proof generation method, where the proof generator recursively
traverses the structure of the POG, as with a structural proof generation method [7], but
stopping once the size of a subgraph is sufficiently small. The proof for the subgraph is
generated monolithically. This approach only works if the recursive traversal of the d-DNNF
formula generated by the knowledge compiler yields corresponding simplifications and unit
propagations of the CNF input formula. This may not hold if the CNF has been transformed
by preprocessing.

7.3 Proof Checking

We have shifted the responsibility for the reverse implication phase to the proof checker.
Letting @E(D,Y) denote the d-DNNF formula encoded by the Skolem POG, the checker
should ensure that 1[1(D, Y) = ¢(D,Y). It can so by checking that for each input clause
C, any assignment to the data and quantified variables that falsifies this clause will also
cause 1/3 to evaluate to 0. It does this by performing a bottom-up unit propagation through
the Skolem POG. Figure 3 demonstrates how this process works for the three input clauses
from the formula of Figure 1. In each case, we can see that negating the literals of the
clause causes some of the arguments to the Skolem POG operations to be assigned value 0.
These are shown as dashed lines. Arguments that are assigned value 1, as well as unassigned
arguments are shown as solid lines. A product or Skolem operation having an argument
assigned value 0 will also evaluate to 0, and a sum operation will evaluate to 0 when both
arguments evaluate to 0. The result in all three cases is to assign 0 to root variable r.
Section 8 presents a soundness proof for the forward and reverse implication phases.

7.4 SCPOG Example

Our SCPOG proof framework modifies and extends the earlier CPOG framework to enable
certifying the results of a projected model counter. A single SCPOG file describes both a
Skolem POG representation of a formula, as well as the forward implication proof. Here,
we present the main features of the file format via an example. A more comprehensive
presentation is included as Appendix A.
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Clause 1: aVz Vy Clause 2: bV T Clause 3: bV 7y

Figure 3 Justifying input clause deletions. Negating the clause literals and then unit propagating
through the operations cause the Skolem POG to evaluate to 0. Literals assigned value 0 are shown
as dashed lines.

Figure 4(A) shows the complete SCPOG file for the example with the CNF file shown in
Figure 1 and the Skolem POG shown in Figure 2. The CNF has four variables and three
clauses, and so it starts numbering extension variables with 5 and added clauses with ID 4.
The first line declares the root variable r as the extension variable we denote as s11. The
next seven lines declare the Skolem POG operations, as shown in Figure 2. These implicitly
generate the set of clauses shown in Figure 4(B). Skolem nodes t5 and tg require just single
(unit) clauses, while the other node declarations implicitly add either three or four clauses,
and so the clause identifiers in the declarations must be spaced apart.

Every sum node must include a mutual exclusion proof to certify determinism. Each
proof is given as list of clauses providing a RUP proof that the two arguments cannot both
evaluate to 1. In the example, the declaration of sum node s7 lists clause 6 (pg V @) as
proof that arguments pg and a cannot both evaluate to 1. The declaration of sum node s
references clauses 12 (pg V b) and 17 (p;, V b) for the mutual exclusion proof. These resolve
to the clause pg V Dy, proving that arguments pg and pio cannot both evaluate to 1.

Clause IDs 22-28 show the forward implication proof leading to the addition of unit
clause [s11] as the final step.

Overall, we can see that this file contains a full documentation of the d-DNNF formula
generated by the knowledge compiler, the Skolem assignments to the quantified variables
associated with the assignments to the data variables, and a forward implication proof.

In addition to checking the mutual exclusion and forward-implication proofs, the proof
checker must ensure that the arguments to each product operation are decomposable, and it
must check that reverse implication holds.
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(A) SCPOG Declaration

(B) Implicit Definitions

ID  File line Formula ID  Clauses Node
Root declaration 4 50 ts
r 11 T =511 61-50 Ps
Skolem POG declaration -6-10
4 t5340 ts=z Ay 650
5 p6-150 pe =alts 7610 S7
8 s76160 s7=peNa 7 -6 0
11 p8270 ps =bAs7 10 7-10
14 t9-3-40 to=TAY
15 p101-290 pro=aAbAte 11 8-2-70 bs
19 s 11 8 10 12 17 0 s11 =ps V p1o 12820
13 -870
Forward implication proof
22 6-210450 bAT = ps 4 90 to
23 7-20922100 b= st 15 10 -1 2 -90 P10
24 8 -20123110 b= ps 16 -1010
2561203210 aVb 17 -10 -2 0
26 10 2 0 25 14 15 0 5:>p10 18 -109 0
27 -2 11 0 20 24 0 b= s11 19 -11 8 10 0 11
28 11 0 27 21 26 0 [511] 20 11 -8 0

21 11 -10 0

Figure 4 SCPOG Example. A single file (A) declares the Skolem POG structure and provides
the forward implication proof. The declaration of the Skolem POG implicitly defines a set of clauses
(B). Clause IDs are shown in red.

8 Soundness

We have formally verified the soundness of our proof framework in HOL4 and developed a
verified proof checker using CakeML. Here, we provide an informal justification of the proof
framework to give some intuition for its soundness. Section 8.2 provides more details on the
formally verified checker.

8.1 Informal Justification

As a recap of notation, the POG has two forms: (D), including the sum and product nodes,
with the Skolem nodes treated as tautologies, and ¢¥(D,Y"), where the Skolem nodes are

treated as Boolean products of their arguments (which are literals of quantified variables).

The operations in POG formula ¢(D) have Tseitin clausal representation 6(D, Z), and when
we add unit clause [r], we obtain 6,.(D, Z), the clausal representation of ¥ (D).

As further notation, we require a way to describe an implication relation between
formulas over different sets of variables, considering only some of the variables they have
in common. For formulas ¢1(S5,T1) and ¢2(S,T»), define the relation ¢; =g ¢2 as holding
when Mg(¢p1) € Mg(¢p2). This notation makes no assumption about whether or not sets Tj
and T5 are disjoint. We can see that for formulas ¢1(X) and ¢2(X), the standard implication
@1 = ¢9 is equivalent to ¢1 = x ¢a.

The following propositions state two key properties of this relation: narrowing the
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set of variables preserves implication, and dropping conjuncts in the consequent preserves
implication. Note that in conjunctive normal form, the conjunction of two formulas can be
expressed as the union of their clauses.

» Proposition 1. For formulas ¢1(S,T1), ¢2(S,Ts), if 1 =5 ¢2, then any subset 8" C S
maintains the implication ¢1 =g/ ¢a.

» Proposition 2. For formulas ¢1(S,T1), ¢2(S,T2), and ¢3(S,T3), if ¢1 =5 P2 A @3, then
1 =5 P2.

The forward implication proof must show that ¢(D,Y) =p 0,.(D,Z), fulfilling the
requirement for the forward implication property (2). It begins with the clauses 0*(D,Y, Z) =
o(D,Y)UO(D, Z), the combination of the input formula and the Tseitin encoding of the POG
operations.* Since the union of two sets of clauses is equivalent to their conjunction, ' = ¢Af.
Furthermore, 0(D, Z) induces an assignment v, € U(Z) for every o € U(D), such that o - 7,
satisfies #. Therefore appending 6 to ¢ does not reduce the set of data models. That is,
#(D,Y) =puy 01(D,Y, Z), and therefore by Proposition 1, ¢(D,Y) =p 61(D,Y, Z).

The RUP addition steps define a sequence of formulas 6',62,...,60° concluding with
0°(D,Y,Z) 2 ¢(D,Y)UO(D,Z)U{[r]} = ¢(D,Y)AN0O,.(D,Z). Each proof step preserves
implication: §* =p #'T! for 1 < i < s, and therefore 8! = p 6°. By Proposition 2, we can see
that these steps provide a proof that ¢(D,Y) =p 0,(D, Z), and therefore ¢(D,Y) =p (D).

The reverse implication phase involves making sure that @ZZ(D, Y) =p ¢(D,Y), fulfilling
property (4). The proof checker does so by showing that -C' = —n/;, and therefore 1/3 =C
for each clause C' € ¢. Combining all of these checks proves that z@(D, Y) = ¢(D,Y), and
therefore )(D,Y) =p ¢(D,Y).

The combination of the forward and reverse implications shows that the two formulas for
the Skolem POG bracket the input formula:

In terms of the data models, we can see therefore that 12 provides a lower bound, while v
provides an upper bound: Mp (1)) C Mp(é) C Mp(v).
Importantly, we can also see that the two formulas for the Skolem POG are equivalent in

terms of their data models:

» Proposition 3. A Skolem POG with representations {(D,Y) and (D) has Mp () =
Mp(¥).

This equivalence is proved by induction over the POG structure. The key observation is
that the decomposability of each product operation makes it possible to derive the Skolem
assignments for its arguments independently. Our bracketing is therefore an equivalence:

Mp(¥) = Mp(¢) = Mp(v), completing the proof that the POG formula (D) serves as
the projected compilation of input formula ¢(D,Y).

8.2 End-to-End Verification

We have formally verified the proof framework and used a refinement-based process to develop
a formally verified CakeML implementation of the SCPOG proof checker in HOL4. This

4 In our proof format specification (Appendix A), SCPOG proof steps are allowed to arbitrarily interleave
RUP additions and node declaration steps; the soundness argument is similar.
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is broadly similar to the development of verified machine-code implementations of prior
propositional proof frameworks [24, 41].

Checking proofs in these other frameworks only requires checking a sequence of clause addi-
tions. The SCPOG proof format also requires checking the decomposability and determinism
of the specified POG and to check each input clause for the reverse implication. The CakeML
checker starts with a clausal representation of the SCPOG nodes when checking the forward
implication proof. Upon success of this phase, it internally converts this representation into
an equivalent adjacency matrix-like representation where all nodes and their children can be
looked up in constant time. For each input clause C, this allows the CakeML checker to run
a fast, top-down evaluation from root node r to check that the POG evaluates to 0 under
the assignment corresponding to —C'; the checker short-circuits evaluation wherever possible
(e.g., when a child of a product node is falsified, it does not recurse into other children). The
constant-time lookup representation is particularly important for Skolem nodes, which can
contain a large number of quantified literals. For such nodes, we iterate over the literals in C
and check if any of them are in the Skolem node.

The final correctness theorem for the CakeML proof checker is obtained by compiling its
verified source implementation with CakeML’s formally verified compiler [42]. Informally,
the resulting verified theorem states that:

» Proposition 4. Assuming the SCPOG checker’s machine code is executed on a system
satisfying the standard CakeML assumptions (for the x64 ISA), then:
if it prints out "s VERIFIED UNSAT" on standard output, then the input CNF file parsed
to an unsatisfiable CNF formula;
if it prints out "s VERIFIED CPOG REPRESENTATION" on standard output, then the input
CNF file parsed to a CNF formula and the input proof file contains a POG such that the
CNF and POG have the same set of models on the specified data variables; moreover, the
CPOG indeed represents a d-DNNF, i.e., it is decomposable and deterministic; and
all proof checking failures lead to error messages printed to standard error.

9 Experimental Results

We implemented a proof generator in C++, along with two proof checkers: one written in C,
and the other in CakeML and verified with HOL4. The C checker uses multithreading when
performing the reverse-implication check, taking advantage of the property that the input
clause deletion checks can be performed independently.

All experiments were run on a 2021 Apple MacBook Pro, with a 3.2 Ghz Apple M1 8-core
processor and 64 GB of RAM. All reported times are for elapsed (“wall-clock”) times.

For benchmark problems, we used the private and public formulas from the 2024 un-
weighted and weighted projected model counting competitions.® There were 200 formulas
for each track, but with some duplicates across the two tracks, yielding a set of 389 unique
benchmark formulas.

We ran two versions of D4 on the 389 benchmark formulas: an unmodified version
generating just the d-DNNF data, and the modified version that included the information
from which the Skolem POG could be constructed. Both successfully compiled 175 formulas
within the time limit of 1,000 seconds. The modified version of D4 ran fast enough: at most
1.8 slower than the unmodified version, with a median of 1.11x.

5 Available at https://zenodo.org/records/14249068.
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The reverse implication check uses 7-way multithreading.

Figure 5 documents an important feature of the 175 compiled benchmark formulas,
showing the number of data variables (Y-axis), compared to the total number of variables

(X-axis). For many formulas, the data variables constitute only a small fraction of the total.

For one, only 100 of its 906,806 (0.0001%) variables are data variables. The median ratio of
data variables to total variables is 2.0%. This property has significant impact on the sizes
of the Skolem POGs and the challenge of checking reverse implication. The color coding
of the data in the plots of Figure 5 and 6 gives a preview of our success in verifying these
benchmarks: 172 of them (green) completed the full verification. For the remaining 3 (red),
the proof generator timed out, with a time limit of 10,000 seconds.

We generated the Skolem POGs from the output of the modified version of D4, and
we could also determine how large the POG would be without the Skolem information, as
illustrated on the Y and X axes of Figure 6, respectively. We measure POG sizes in terms of
the number of clauses in their Tseitin encodings. This is also equal to the number of nodes
plus the number of edges in the graphs. As can be seen, the Skolem POGs tend to me much

larger than the regular POGs, with size ratios ranging up to 4857x with a median of 34 x.

Considering the large fraction of quantified variables in these formulas, these large size ratios
are to be expected.

Figure 7 compares the runtime for verification versus for compilation for the 172 formulas
that were fully verified. The X axis shows the time to run the modified version of D4, while
the Y axis shows the time to postprocess the D4 output, generate and check the proof, and
compute an unweighted or weighted model count. The reverse-implication check uses 7-way
multithreading. For 19 formulas, compilation took longer than verification, while it required
less for the others. At worst, verification required 191.7x longer, with a median of 2.95x.
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Our use of multithreading provides a significant benefit. Verifying all 172 benchmarks
requires a total of 20.8 hours with the multithreaded version and 37.9 hours with a sequential
version. This includes proof generation, forward and reverse checking, and model counting.
Parallelism is only used when performing the reverse-implication check on the input clauses.
This portion requires 8.4 hours with multithreading and 25.5 hours sequentially, a speedup
of 3.0x. This is a reasonable performance gain for a memory-intensive application. Multi-
threading also reduces the benchmark with the longest sequential verification time from 15.3
to 4.4 hours.

We ran the formally verified checker on the 172 formulas for which the proof generator
completed. It verified 156 of them, and it exceeded its heap memory limit of 48 GB for the
remaining 16. Comparing its performance to the unverified checker for the 156 completed
checks, it ran between 2.9x faster and 17.7x slower, with a median of 1.5x slower. This is
remarkable performance for a formally verified tool.

Overall, our tool handled these formulas well. On the other hand, we found that letting
D4 run for longer than 1000 seconds leads to d-DNNF formulas that are beyond the capacity
of our current tool chain. The major weakness is in generating forward implication proofs.

10 Conclusions and Further Research

We have shown that the output of a projected knowledge compiler can be certified by
extending our prior proof framework for standard knowledge compilation. The compiler
already has access to information about how the quantified variables can be assigned according
to the assignment to the data variables. By having it provide this information and then
postprocessing the output, the proof generator can construct a Skolem POG, serving the
dual roles of encoding the projected formula and the Skolem assignments. Certification
proceeds by proving implication in both directions, within forward implication proved by
clausal additions and reverse implication checked directly on the generated formula.

We were able to formally verify the soundness of our proof framework in HOL4 and
develop a formally verified checker. A successful run of the checker gives full confidence
that the compiled formula (D) has the same data models as the input formula 8(D,Y).
In our earlier effort to devise a proof framework for standard knowledge compilation, the
formal verification effort uncovered some subtle requirements that we had overlooked. Our
experience was quite different this time. We correctly anticipated the requirements to achieve
soundness. On the other hand, having the support of formal verification enabled us to
be more aggressive in exploring refinements to improve the combined proof generator and
checker performance. These optimizations greatly improved the scaling of our tools.

Projected knowledge compilation, and the closely related topic of projected model counting,
are active areas of research, with many optimizations being discovered. Our framework will
only be of value if it can keep up with these innovations. We describe two examples here.

First, some have discovered conditions under which it is possible for the compiler or
model counter to split on quantified variables, remove the literals for these variable in the
compiled output, and still have the result be a d-DNNF formula [27]. This requires more
extensive mutual exclusion proofs for the sum operations than the simple cases illustrated
in the SCPOG example of Figure 4. Our framework, described in Appendix A, includes
support for such proofs. For a sum node with children represented by literals /1 and /5, the
mutual exclusion proof can be generated with a proof-generating SAT solver that includes
clauses encoding the two branches, plus the unit literals [¢1] and [¢2]. The proof clauses in
the UNSAT proof are augmented by the literals £; and /5, and so the empty clause of the
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Table 1 SCPOG Clause Types. Different types have different rules for generating them.

Clause Addition

Type How Generated Variables Hints

Input Input formula Data, Quantified None

Tseitin Sum and Product operations Data, Extension = None

Tseitin Skolem operations Extension None

Structural RUP addition Data, Extension  Tseitin, Structural
Forward RUP addition Data, Extension  Input, Tseitin, Structural

proof becomes the mutual exclusion 01V 0.

Second, some have discovered cases where input clauses can be removed via blocked-clause
elimination [32]. Significantly, they do so as an inprocessing step, where the conditions for the
elimination hold only under a partial assignment to the variables. Our framework can handle
the special case of pure-literal elimination, where the blocked clause has been reduced to a
unit literal, by having the knowledge compiler record the literal as being satisfied. Handling
more general cases would seem to require a new way to prove reverse implication for those
input clauses that have been eliminated.

A The SCPOG Format

This appendix documents the SCPOG proof format. A single file declares the structure of
the Skolem POG and provides the required proof steps. The file consists of a sequence of
steps that either implicitly or explicitly add clauses. The clauses in the input CNF file are
not in the SCPOG file, but they serve as part of the proofs. Overall, the clauses support
two different proof types: the mutual exclusion proofs for the sum operations, guaranteeing
that these operations are deterministic, and the forward implication proof that the generated
POG is implied by the quantified input formula.

The variables are partitioned into three disjoint classes:
Data: The variables declared as “show” variables in the input CNF file
Quantified: All other variables occurring in the input CNF file
Extension: The variables associated with the POG Sum, Product, and Skolem operations

The clauses are also partitioned into disjoint classes. This categorization is determined
by how they are generated and how they are used.
Input: The clauses in the input CNF file
Tseitin: The clauses implicitly defined by the Sum, Product, and Skolem operations
Structural: Clauses to express the mutual exclusion proofs for the Sum operations
Forward: Clauses added as steps in the forward implication proof

Table 1 provides more detail about the different clause types, and how these clauses are
generated. According to its type, each clause has restrictions on how it is generated, what
variables it contains, and what clauses can serve in the hints to support their addition.

Input clauses contain only data and quantified variables. Their addition is implicit.

Tseitin clauses encode the sum, product, and Skolem operations, each defining an extension

variable in terms of data and other extension variables. Each Skolem operation is encoded

by a single unit clause.
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Table 2 SCPOG Step Types. C: clause identifier, L: literal, V: variable

Rule Description

1% Declare root variable

0 Declare unsatisfiable formula
C a L*o cto Add Forward clause
C as L*o cto Add Structural clause
C VL*O0 Declare product operation
C VLL cto Declare sum operation
C VL*O0 Declare Skolem operation

Structural clauses support the mutual exclusion proofs for the sum operations. They
are generated via RUP addition starting with Tseitin clauses. They contain only data
and extension variables. These clauses are only needed when the POG contains sum
operations that are not decision nodes.®

Forward clauses form the steps in the forward implication proof. They are added as RUP
steps, starting with Input, Tseitin, and Structural clauses. They can contain only data
and extension variables. The root clause is the final clause in the forward-implication
proof. It consists of the unit clause [r] for root variable r.

As can be seen, there are some ambiguities in how a clause should be classified. For
example, a clause containing only data and extension variables and having only Tseitin and
Structural clauses as hints could be a Structural or a Forward clause. We therefore have a
distinct command for adding Structural clauses.

A.1 Syntax

Table 2 shows the declarations that can occur in a SCPOG file. The checker is provided
with the input formula as a separate file. As with other clausal proof formats, a variable is
represented by a positive integer v, with the first ones being input variables, and higher ones
serving as extension variables. Literal ¢ is represented by a signed integer, with —v being
the logical negation of variable v. Each clause is indicated by a positive integer identifier
C, with the first ones being the IDs of the input clauses and successive ones being the IDs
of added clauses. Clause identifiers must be defined in order, with any clause identifier C”
given in the hint when adding clause C' having C’ < C.

The r command declares the root of the POG. For a satisfiable formula, it declares the
root as a variable r > 0, indicating an extension variable representing the root of a graph.
It must be declared before the root clause is added. For an unsatisfiable formula, the root
declaration has value 0, and there is no root clause.

The second set of proof rules allows different clause types to be added. Forward clauses
are added via RUP addition (command a), with a sequence of antecedent clauses (the “hint”).
Structural clauses are added similarly, but with command as.

6 A sum operation is a decision node when, for some variable z, the operation has one argument that is
either the literal = or a product operation having = as an argument, while the other child is either the
literal =, or it is a product operation containing having literal  as an argument.
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Table 3 Defining Clauses for Product (A) and Sum (B) Operations, and Skolem (C) Operations

(A). Product Operation (B). Sum Operation
1D Clause ID Clause
i v =l =Ly e —l i —v b A
i+1 —v 21 i+1 v —0
1+2 —v 12 i+2 v —ly
itm v b (C). Skolem Operation
1D Clause
1 v

The final three step types declare the product, sum, and Skolem operations. The clauses
implicitly generated by these operations are shown in Table 3.
The declaration of a product operation has the form:

1 p v %) Lo L, 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and {1, /s, ..., ¢, is a sequence of m integers, indicating the arguments as literals
of existing variables. The variables associated with these literals must be data variables or
previously defined extension variables. To guarantee negation-normal form, any argument
that represents some other operation must be positive. This declaration implicitly causes
m + 1 Tseitin clauses to be added to the proof, providing a Tseitin encoding that defines

extension variable v as the product of its arguments. These clauses are shown in Table 3(A).

To guarantee decomposability, the dependency sets for the arguments represented by
each pair of literals ¢; and ¢; must be disjoint, for 1 <7 < j < k. The dependency set for
the operation then consists of the union of the dependency sets for its arguments. A product
operation may have no arguments, representing Boolean constant 1. The only clause added
to the proof will be the unit literal v.

The declaration of a sum operation has the form:

7 S v 51 Zz H 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and #; and /5 are signed integers, indicating the arguments as literals of existing
variables. The variables associated with these literals must be data variables or previously
defined extension variables. To guarantee negation-normal form, any argument that represents
some other operation must be positive. Hint H consists of a sequence of clause IDs, all of
which must be structural clauses.” The dependency set for the operation consists of the union
of the dependency sets for its arguments. As Table 3(B) shows, this declaration implicitly
causes three Tseitin clauses to be added to the proof, providing a Tseitin encoding that
defines extension variable v as the sum of its arguments. The hint must provide a RUP proof
of the clause £ V fy, showing that the two arguments have disjoint models.
The declaration of a Skolem operation has the same form as a product operation:

7 The restriction to structural clauses in the hint is critical to soundness. Allowing the hint to include the
IDs of input clauses creates an exploitable weakness. We discovered this weakness in the course of our
earlier efforts at formal verification.
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i t v 4y 4y 12 0

Integer i is a new clause ID, v is a positive integer that does not correspond to any previous
variable, and £, /s, ..., ¢, is a sequence of m integers, indicating the arguments as literals of
existing variables. The variables associated with these literals must be quantified variables.
This declaration implicitly causes a single clauses to be added to the proof, as is documented
in Table 3(C). It is a unit clause indicating that the operation evaluates to 1 during the
forward implication proof. The dependency set for the operation is the set of variables
associated with the argument literals.

A.2 Overall Proof Requirements

We classify a compiled formula as special when it is unsatisfiable or a tautology. Otherwise
it is standard. We describe the proof requirements for the special cases after we cover the
standard ones. For standard cases, an SCPOG proof consists of the following;:

A declaration of the root variable.
Declarations of POG sum, product, and Skolem operations

RUP clause additions
Each of these steps must obey its respective rules. For a standard formula, the proof must,
via a sequence of clause additions, generate the root clause [r].

The standard case includes some formulas that might seem to require special consideration.
A CNF formula containing only the unit clause [¢], for literal ¢, can be compiled into a POG
consisting of a product node with ¢ as its only argument. The forward implication proof can
then proceed in the standard form. With projected knowledge compilation, a formula can
become that of a single literal via projection. For example, the formula (a V ) A (a V T),
when projected for quantified variable  becomes a. In this case, however, the Skolem POG
for the formula will contain several nodes and satisfy the conditions for the standard cases.

A.3 Special Cases

For standard knowledge compilation, a formula can be a tautology only if it either contains
no clause, or if every input clause contains some variable a and its complement @. The POG
representation consists of a single product node with no arguments, encoding constant 1.
The declaration of this node yields an extension variable v that serves as the root variable:
r = v. The unit clause for this variable is implicitly added by the declaration of the product
operation. There is no need for a forward implication proof, since the implication holds
trivially.

With projected knowledge compilation, a formula can become a tautology via projection.
For example, the formula (a V x) A (@ V T), when projected for quantified variable x becomes
(a Va). In this case, however, the Skolem POG of this formula will contain several nodes
and satisfy the conditions for the standard cases.

As is shown in Table 2, the SCPOG format representation of an unsatisfiable formula has
a root declaration with value 0, rather than a literal. The forward implication proof consists
of a sequence of clause addition steps leading to the addition of the empty clause. This special
case holds for both standard and projected knowledge compilation—an unsatisfiable formula
cannot become satisfiable via projection, nor can a satisfiable formula become unsatisfiable
via projection.
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