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1. Introduction

The Landau equation was derived in 1936 by Lev Landau [42] to model the evolution of
densities of particles performing Coulomb collisions in a plasma. It can be derived as a
limit case of the Boltzmann equation when the grazing collisions dominate the evolution.
It is one of the central equations in kinetic theory. In the space-homogeneous case, it is
given by a very simple formula

fe=aij05f+f? where ay;=—0;;(~A)7f.

A more general family of equations is usually studied. It has the form

where the operator ¢(f) is given by the formula

(D=0 [ allo-uas—w)n, -2 fOf@]de. (12
Here « (0, +00)—[0, +00) is an arbitrary non-negative function and
Qi (Z) = ‘Z|25ij —RiZj-.

We will refer to « as the interaction potential. It is common to study the case a(r)=r"
with y€[—3,1]. The most important case is a(r)=r"3 that corresponds to the original
Landau equation written above, for charged particles interacting with Coulomb poten-

tials.
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For a positive function f:R3—(0,00), its Fisher information is defined by the fol-

i(f) ::/RS IV;c|dv. (1.3)

lowing expression

The formula (1.3) is extended to the case that f has vacuum regions by setting

V2

7 0

at those points.

Our main result is the following.

THEOREM 1.1. Assume that f:[0,T]xR?>—[0,00) is a classical solution to the space-
homogeneous Landau equation (1.1). Assume that the interaction potential o satisfies,
for all r>0,

rla’(r)]
a(r) <VI9,

then the Fisher information i(f) is monotone decreasing as a function of time.

We present Theorem 1.1 as an a-priori estimate for classical solutions. By that,
we mean smooth functions f that decay sufficiently fast as |v|—o00. Our second main
theorem tells us that the equation has global smooth solutions for every reasonably nice
initial data.

The assumption of Theorem 1.1 holds for any power-law interaction a(r)=r?, with
~ in the usual range y€[—3, 1]. It even goes beyond that range if the Landau collision op-
erator is understood appropriately taking into account the cancellations in the integrand
of (1.2) for [v—w| small. Our parameter v/19 is not optimal. After we posted online a
first version of the this article, Sehyun Ji improved the computation of the threshold of
applicability of Theorem 1.1 to

/
Tz(g) NG
in [38]. There is no reason to expect this condition to be optimal either. We are currently
not aware of any example, for any interaction potential, of a solution for which the Fisher
information is not monotone decreasing.

As a consequence of the monotonicity of the Fisher information, we deduce the global

existence of smooth solutions in the very-soft-potential range.
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THEOREM 1.2. Assume that o(r)=r7, for y€[-3,1]. Let fo:R*—[0,00) be an ini-
tial data that is bounded by a Mazwellian in the sense that

fo(v) < Coe 1,

for some positive parameters Cy and (3.

Then, there is a unique global classical solution f:]0,00) xR3—[0,00) to the Landau
equation (1.1), with initial data f(0,v)=fo(v). For any positive time, this function f is
strictly positive, in the Schwartz space, and bounded above by a Mazwellian. The Fisher

information i(f) is non-increasing.

The remarkable new feature of Theorem 1.2 is that it applies to the very-soft po-
tential range y<—2. The most important case of Theorem 1.2 is a(r)=7r"3, which is
the original equation by Landau and corresponds to the evolution of the velocity den-
sity of charged particles that interact by Coulomb potentials. Regularity estimates for
this equation have remained an elusive well-known open problem for several years. The
difficulty comes from the fact that the reaction term is too singular to be bested by the
diffusion term when we only use the previously known controlled coercive quantities of
mass, energy and entropy. The boundedness of the Fisher information, which is provided

by Theorem 1.1, overcomes this difficulty altogether.

Remark 1.3. Theorem 1.2 is a relatively direct consequence of Theorem 1.1 combined
with well-known techniques. There are various short-time well-posedness results in the
literature that one can apply, as well as conditional a-priori estimates. A slightly different
version of Theorem 1.2 would result from different choices between them. For example,
it is possible to replace the Maxwellian upper bound for fo with the condition fo€Lg®
for k sufficiently large, and it would lead to correspondingly weaker decay conditions for
the solution f.

Using our Theorem 1.1, minimalist assumptions on the initial data for which the

Cauchy problem is solvable are investigated in the recent preprints [17], [39].

Remark 1.4. A version of Theorem 1.1 for the homogeneous Boltzmann equation is
obtained in [36]. In that recent preprint, Cyril Imbert, Cedric Villani and the second
author reproduce much of the analysis of this paper in the context of the Boltzmann
equation. However, a new difficulty emerges that requires the development of a highly

non-trivial integro-differential version of the inequality of §9.
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1.1. Historical remarks and references

Given that the Landau equation is one of the main equations in statistical mechanics,
especially in the Coulombic case a(r)=r"3, it is no surprise that it has received a sig-
nificant amount of attention from the mathematical community through the years. It
is impossible to review all the literature in the subject. We discuss some of the most

relevant results below.

The analysis of the Boltzmann equation, as well as the Landau equation, involves sig-
nificantly simpler formulas in the case of the Maxwell-molecules model (which is a=1)
than in the case of general interaction potentials. One of the reasons is that there is
a manageable expression for the Fourier transform of the operator due to Alexander
Bobylev (see [6] and [7]). It is also well known that the evolution of the equation is
contractive with respect to the quadratic Wasserstein distance (see [49] and [10]), and
that the Fisher information is non-increasing along the flow (see [52] and [55]). We natu-
rally wonder if these properties fail to be true in the case of other interaction potentials,
or if they hold in more generality but proofs are only well understood in the case of
Maxwell molecules due to the simpler arithmetic structure of the operator. Is the Fisher
information monotone decreasing for the Boltzmann and Landau equation for some in-
teraction potential other than Maxwell molecules? What about the entropy dissipation?
What about the contractivity of the Wasserstein distance? We answer the first of these

questions for the Landau equation in Theorem 1.1.

It is rather unusual to find a new explicit Lyapunov functional for a very well stud-
ied equation in mathematical physics. Moreover, most basic conserved and monotone
quantities in PDEs are verified by a relatively simple computation. It is also unusual to

find a simple Lyapunov functional whose proof is non-trivial.

The first reference to the monotonicity of the Fisher information in a kinetic equation
is in an interesting paper by McKean in 1966 [44]. He considers Kac's 1-dimensional
caricature of the Boltzmann equation with Maxwell molecules. He proves that the Fisher
information is monotone in this context. The paper includes a number of opinions and
conjectures including the following.

e The author writes that the Fisher information “probably fails to decrease” in the
3-dimensional problem.

e He conjectures (in the context of the Kac equation) that the functionals that result
as higher-order derivatives of the entropy by heat flow are all monotone. He reports that
he tried to prove it but could not do it.

e He conjectures that the entropy dissipation for the Boltzmann equation should be
monotone decreasing. He even suggests that its derivative may be monotone as well.
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In 1992, Giuseppe Toscani proved the monotonicity of the Fisher information for
the 2-dimensional Boltzmann equation in the Maxwell molecules case [50]. Toscani con-
jectures that the Fisher information can probably be proved to be monotone “at least
in the case of inverse power interaction potentials”, but he states that it is still an open
question.

In 1998, Villani proved the monotonicity of the Fisher information for the Boltzmann
equation with Maxwell molecules in arbitrary dimension [52]. The proof, which one may
say uses similar ideas as in Toscani’s paper, involves more complicated geometry and
formulas. In 2012, Matthes and Toscani provide a very short alternative proof based
on Fourier analysis [43]. This proof is very specific to =1 and provides no intuition
about other interaction potentials. In the introduction of [52], Villani writes “We also
investigate briefly the case of arbitrary potentials, and show precisely why the Maxwellian
case seems to depart from the other”, which reflects the limitations of methods available
then when it came to general power law potentials.

The monotonicity of the Fisher information for the Boltzmann equation implies the
monotonicity for the Landau equation as a limit case. In 2000, Villani wrote a direct
proof in the case of the Landau equation with Maxwell molecules [55]. While the paper
[55] is fairly short, the proof is non-trivial. The intuition is arguably harder to grasp than
in the Boltzmann case. In §5, we provide an alternative proof for the Landau equation
in the Maxwell molecules case, which is in some ways the starting point for our general
method for Theorem 1.1.

Other recent publications studying the evolution of the Fisher information are [2]
for the hard-potential case and [45] for moderately soft potentials. They present upper
bounds (not monotonicity) for the Fisher information that are uniform in time. These
are scenarios in which there are well-known global-in-time regularity estimates.

The great majority of the regularity estimates for the Landau equation in the past
use a decomposition for the Landau collision operator (1.2) as a sum of a diffusion term

plus a lower-order term. In non-divergence form, it reads
q(f)=ai;0; f+cf,

where

iy = / ojo—w])as; (v—w) f (w),
R3

and ¢=—0;;a;;. Some ellipticity bounds can be deduced for the coefficients a;; based
only on the mass, energy and entropy of f. The reaction term ¢f is more singular when
7 is more negative. The majority of the estimates in the literature are obtained using
parabolic estimates for the diffusion term and using them to control the other term. We
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do not use this decomposition in our proof of Theorem 1.1. When >0, the reaction term
is very simple because ¢ is bounded pointwise in terms of the mass and energy of f. When
~v€[-2,0], the reaction term can still be controlled with the help of ellipticity estimates
from the diffusion term. For the very-soft potential range v<—2, the reaction term is
too singular to be controlled from the diffusion term. This is vaguely the reason of the
main difficulty in establishing unconditional bounds in the very-soft potential range.

The early results on classical well-posedness for the Landau equation focused on the
Maxwell-molecules case (y=0) or the hard-potentials case (y>0). Villani investigated
the Maxwell-molecules case first [54], and later the case of hard potentials in collabo-
ration with Laurent Desvillettes [19], [20]. The regularity in the hard-potentials case
was revisited by El Safadi in [21]. Our understanding of the global well-posedness and
smoothness for v>0 is very satisfactory. For moderately soft potentials, there are regu-
larity estimates in [58], [46], [31], from which one can construct global smooth solutions,
as in Theorem 1.2.

For very soft potentials, which is the range y€[—3,—2), the global classical well
posedness of the equation has been an elusive and well-known open question for several
years. This is the most interesting range, because it includes the original Landau equation
for Coulomb potentials which is y=—3. The development of our understanding before
this work was comparable with our current understanding of the Navier—Stokes equation
(in terms of what the known results are). The results in the current literature can be

roughly classified in the following groups.

Global-in-time weak solutions. In 1998, Villani defined a notion of generalized so-
lution for the space-homogeneous Boltzmann and Landau equation [53], which he called
H-solution. He was able to prove the existence of global solutions of this kind, but not
the uniqueness. In some way, Villani’s result for the Landau equation plays the same
role as Leray’s global weak solutions do for the Navier—Stokes equation. See also [3] for
an earlier notion of generalized solution.

From an entropy dissipation estimate, Desvillettes proved that the H-solutions con-
structed by Villani belong to L1([0, T, L3 ;(R?)) and are in fact weak solutions in a more
classical sense [16] (see also [37]).

Francois Golse, Maria Gualdani, Cyril Imbert and Alexis Vasseur showed that the
global weak solutions constructed by Villani are smooth outside of a potential set of
times of dimension at most § (see [27] and [26]).

In a recent preprint [28], Golse, Imbert and Vasseur prove that the set of potential
singularities in (¢,v) has parabolic Hausdorff dimension at most  in the case of Coulom-
bic potential. This result is more or less comparable with the Caffarelli-Kohn—Nirenberg
partial regularity theorem for Navier—Stokes, except that the dimension they obtain is
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larger in the case of the Landau equation. In [28], they also prove that axially symmetric
solutions of the Landau equation with very soft potentials are smooth away from the axis

of symmetry.

Short-time existence. Short time existence results are obtained by Nicolas Fournier
and Hélene Guérin [23], by Chris Henderson, Stanley Snelson and Andrei Tarfulea [34], by
Hyung Ju Hwang and Jin Woo Jang [35], and by William Golding and Amélie Loher [25].

Perturbative theory around the Mazwellian. When the initial data is sufficiently close
to a fixed Maxwellian in an appropriate sense, Yan Guo constructed a global smooth solu-
tion [33] (even for the space-inhomogeneous case). See also [24] for a more recent result
with weaker assumptions on the initial data but restricted to the space-homogeneous

case.

Partial progress aiming at the regularity of solutions. Conditional regularity results
are obtained by the second author in [46], and by Gualdani and the first author in [31].
These works imply in particular that if the solution to (1.1) stays bounded in certain LP
space, for an appropriately large exponent p, then the solution will be smooth.

Recent results by Ricardo Alonso, Véronique Bagland, Laurent Desvillettes and
Bertrand Lods [1] and by William Golding and Amélie Loher [25], provide Prodi—Serrin-
type conditional regularity estimates depending on f € L?([0, T'], L4(R?)) for suitable pairs
of exponents p and gq.

Other partial results regarding the regularity of the space-homogeneous Landau

equation with Coulomb potentials are given in [9], [5], [13], [47], [18].

Modified equations. In [41], Joachim Krieger and Robert Strain proposed an isotropic
toy model that retains some of the features of the original Landau equation for the case
of Coulomb potentials, and where blow up could be ruled out (for radial solutions). This
model and other variations is further analyzed in [29], [30], [32], [48]. Other simplified

radially symmetric models are analyzed by Alexander Bobylev in [8].

The difficulty of obtaining unconditional regularity estimates for the Landau equa-
tion with Coulomb potentials (resolved in Theorem 1.2) is mentioned as an outstanding
open problem in the majority of these papers.

The problem of establishing the regularity of the Landau equation with Coulomb
potentials is also described in the open problems section of Villani’s book [56, §5.1.3].
Villani first argues that finite-time blow-up may be expected from an analogy between
the Landau equation and the non-linear heat equation. However, he reports that after
seeing some numerical simulations by Francis Filbet, he changed his mind and became
convinced that blow-up should not occur. See also the related numerical computations
n [12]. That a blow up does not take place is finally confirmed by our Theorem 1.2.
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In [57], Villani provides further details about the history of these problems, as well
as a description of the ideas leadinccg to the proof of the monotonicity of the Fisher

information for the Boltzmann equation in [36].

1.2. Outline of the paper and main ideas in the proof.

In this section we attempt to explain a rough outline of the ideas involved in the proof
of Theorem 1.1 and the general organization of the paper.

In §2, we review some of the results in the literature that we apply in this paper.
None of the results presented in this preliminary section is new.

The first idea leading to Theorem 1.1 is described in §3. We observe that we can
write the Landau operator as a composition of a linear elliptic operator in R%, and the
projection of a distribution function F in R® over its marginal. More precisely, for a

function F:RS— [0, 00) with unit integral, we write

TF(v):= . F(v,w) dw.

We also define the degenerate elliptic operator @) acting on functions F'=F (v, w) as
QUF)(v,w) = (B, 0, (el fo—w|)ai; (v—w) (3, Do, ) F).
With this notation, we observe that

q(f)=mQ(f@f), where (f&f)(v,w):=f(v)f(w).

It turns out that the projection over marginals reduces the value of the Fisher

information, in the sense that, for any symmetric probability distribution F on RS,
1
i(N)=5I(fef)<I(F), when f=nF.

Here, we write I(F) for the Fisher information applied to a function in RS. From this
inequality we argue that the Fisher information will decrease along the direction of ¢(f)
if I(F') decreases along the direction of Q(F) for any function F'=F (v, w) defined on R®
such that F'(v,w)=F(w,v).

This is a substantial simplification. The Landau operator, ¢, which is non-linear
and non-local, is now replaced by a linear elliptic operator with explicit coefficients, Q.
Within this framework the known monotonicity of the Fisher information for Maxwell
molecules easily follows (see below). For all other potentials, estimating the derivative
of I along @ is still non-trivial and requires further ideas.
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In §4 we observe that, for certain vector fields Bl, by and l~)3, we have

3
Q)= Vab-V(Vab, VF).
k=1

This observation, while elementary, will help us organize our formulas efficiently. We use
these vectors and their properties extensively in the rest of the paper.

The transport of each of these vector fields bV individually goes by isometries
in RS. Thus, I(F) is constant along the flow of b-V. The fact that I(F) is monotone
decreasing in the direction of Q(F) in the case of Maxwell molecules follows immediately
from this and the convexity of the Fisher information I. This is explained in §5.

Whenever « is not constant, the flow of /by, -V is not an isometry in RS. However,
it is an isometry when we restrict it to the level sets of o. With this idea in mind, in §6,
we define a modified Fisher information Ii,, that only takes into account the gradient
of F along the directions parallel to the level sets of [v—w|. This functional Ii,, is
constant along the flow of \/az}k-v. Using the same convexity argument as in the case

of Maxwell molecules, we conclude that

(Iian (F), Q(F)) <0,

with a precise estimate of its dissipation in terms of second derivatives of F.

The difference between the full Fisher information I(F') and the modified one I;,, (F)
is only one direction, which we call n, and is the normalized gradient of |[v—w| in RS.
We write

J(F):=I(F)—Iipn(F) = / /R 6 @ dw dv.

In §7, we compute (J'(F),Q(F)) to express it in a form that resembles as closely as
possible the structure of the dissipation of I;,,. We do it through a direct computation
using the vector fields by and Lie brackets. We end up with a negative diffusion term

involving second derivatives of F' and a positive error term of the form

a2 - 2
R:= (b V1ogF)“F dw dv.
R «

In §8, we break the favorable diffusion terms obtained in the previous sections into
three groups, depending on the directions of their second derivatives. We isolate one term,
which we call Dgpherical, that only takes into account second derivatives in the directions
of the vector fields I;k’s. We claim that this diffusion term can be used to control the error

term R. After using polar coordinates and performing some manipulations, we reduce
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the problem to an inequality for functions on the sphere f:S?—(0,00) of the following

form:

[ V2ossPras=x [ (Vaousr o
S2 S2

It is not difficult to prove that the inequality holds for some A>0. However, it is important
for us to obtain a nearly sharp constant A. The maximum value that we are able to
handle for r|a’(r)|/a(r) in Theorem 1.1 (which is v/19) depends on the value of A from
this inequality. We prove the inequality in §9 (written slightly differently in terms of the
vector fields by). It appears to be new as far as we are aware.

Finally, in §11, we explain how Theorem 1.1, combined with results from the litera-

ture, can be used to derive Theorem 1.2. There is no difficulty in §11.
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2. Preliminaries

In this section we collect the results from the literature that we use in this paper. The
results we state here are well known. They either appear explicitly or are straightforward
minor modifications of the results in the literature. We provide references in every case.

As it is customary, we write (v)=(1+4|v|?)*/? and, for any p€[l, o] and any kR,
111y sy = 1(0)* £l o ms)-
The mass, momentum and energy, that is
(mass) ::/ f(v) dv,
R3
(momentum) := [ f(v)vdv,
R3
(energy) :z/ f(v)|v]? do.
R3

are constant along the flow of the equation.
To fix ideas, it is a comfortable choice to study solutions of the equation (1.1) with
unit mass and zero momentum. This will be preserved along the flow of the equation.
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We recall the following formula for the entropy:
h(t):= /]R3 f()logf(v) dv.

The entropy is non-increasing for solutions of (1.1). Before this work, it was the only
natural quantity associated to the equation known to be monotone decreasing— outside

the Maxwell-molecules case a=1.

To begin the analysis of the equation, we start from a short-time existence re-
sult. There exist a few in the literature, both in the space-homogeneous and space-
inhomogeneous regime. The most complete that we know of is given in [34]. Restricted

to the space-homogeneous regime, it becomes the following result.

THEOREM 2.1. (from [34]) Assume that a(r)=r" for some y€[—3,0). Assume that
fo: R?—10,00) is an initial value such that fo€ LS, with ko=max{5,15/(54~)}. There
exists a positive time T>0 and a classical solution f:[0,T]xR3—[0,00) to the equation
(1.1) with initial data fo. This solution satisfies the following properties:

o f(t,v)>0 for all t>0 and vER®.

o f€C>((0,T)xR3) with upper bounds for t>0 for all derivatives.

o If fo is continuous, then f matches the initial data continuously. Otherwise, it is
weakly continuous at t=0.

o The solution can be extended for as long as ||f(t)||Lz<(>) <+o0.

e Let Ty be the maximum time of existence and 7>0. For all meN, there exist k,
and Cy, such that, if fo€Ly , then D™ f(t)e L>([0, Tg—7], Ly _, (R?)).

The main result in [34] is for the space-inhomogeneous equation. There is an extra
assumption for the initial data fy, which they call well distributed. This assumption is
only relevant for the space-inhomogeneous case. In the space-homogeneous case, it would
be automatically satisfied if fj is continuous and non-zero. Even if fj is not continuous,
it is not difficult to see that f(¢,v) will be well distributed for any ¢>0 small.

There is also a more recent short-time existence result [25], which is specific to
the space-homogeneous Landau equation with Coulomb potentials, for initial data that
is merely in L}NLP for some p>2. The solution constructed in [25] is also classical
and smooth. The continuation criteria presented in [25] is a simpler Prodi—Serrin-type
condition without weights.

The following result can be found in [46, Theorem 3.7]. We use it to improve the

continuation criteria from Theorem 2.1 in the space-homogeneous case.
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THEOREM 2.2. (from [46]) Assume that o(r)=r" for some y€[—3,2]. Assume that
f:10, T]xR3—[0,00) is a classical solution to (1.1). Let p>3/(5+7), p=1, and k be
sufficiently large (depending on ~). Assume that, for all t€[0,T],

1f®)llry < Co.
Then, f is bounded for positive time with an upper bound
£ (@)l < Ca(1472/CP))
for a constant Cy that depends on Cy, the mass of fo. and 6.

While the conditional upper bound in Theorem 2.2 does not readily provide any
decay for large velocities, they can be deduced using the technique in [14]. The results
in [14] are only stated in the moderately soft potential range y€[—2,0]. However, they
apply in the full range of soft potentials when we know in addition that the solution f is
bounded.

THEOREM 2.3. (Essentially from [14]) Assume that a(r)=r" for some v€[—3,0] and
let f:]0,T]xR3—[0,00) be a classical solution to (1.1). Assume that, for k sufficiently
large and all t€[0,T],

1f (Ol <Co and |[f(t)]lr; < Co.
Assume further that foéC’le’m”|2 for some C1>0 and >0 sufficiently small. Then,
flt,v) < Coe Pl
for a constant Cs that depends on Cy, C1 and the mass of fy.

Sketch of proof. Theorem 2.3 is proved in [14, §5] for the moderately soft potential
range v€(—2,0]. The fact v>—2 is only used for the initial L>® bounds and the upper
bounds on the coefficients given in [14, Lemma 2.1]. We included the extra assumptions
that || f[|r=<Cp and |[f(t)[|z1 <Co to take care of those requirements. We are only
left to check that the upper bounds on the coefficients can be verified with our extra
assumptions.

For v<—2, following the proof of the computation for upper bounds for the coeffi-
cients @;; in [14, Lemma 2.1], we get

aiyeies 5 [ lo—ul7 f(w) du
<[ mul ) dos [ jo—w ™+ f(w) du
B,.(v) Bjy)/2\Br(v)

+/ |v—w|" 2 f(w) dw
R3\(B|y|/2UB(v))

S Fllzee + () 2 Fll e+ o) 7F 1 F 1l g
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We choose r=(v)(7F2)/(7+5) "and then k large enough so that
P (o) TE < (o),

Thus, we obtain the same upper bounds for the coefficients @;; as in [14, Lemma 2.1] for

the case y€[—3, —2] when we assume in addition that |||z~ and || f[|z; are bounded.
The upper bound in [14, Lemma 2.1] improves when e is parallel to v, which is

proved along the same lines. Once these upper bounds are established, the rest of §5 in

[14] follows without any major change. O

We also recall a result on the propagation of bounded moments. The following

theorem is a simplified version of a result in [16].

THEOREM 2.4. If f is a solution of the Landau equation (1.1), where a(r)=r" with

€[—3,1]. Assume that the initial data fo belongs to L} for some exponent k>0. Then,

for all te[0,T], we have | f(t)||1 <C(T), for some upper bound C(T') depending on T
[ follL1, and the mass, energy and entropy of fo.

Theorem 2.4 is stated in [16] for the Coulomb case y=—3 only. The proof easily
applies to any soft potential in the range y€[—3,0] (and even slightly smaller than —3).
The result in [16] is also stated and proved for H-solutions, which makes it technically
more complicated. The case y=0 had been covered earlier in [54]. For v>0, it is proved
in [19] that there is even a gain of moments in the sense that |[f(¢)[| 11 is bounded for
t>0 even if || fol|L1 is not. Note that, for v<0, even though C(7") may a-priori grow for
large time, it does not blow up in finite time.

For uniqueness of solutions, we cite [23] for v>—3 and [22] for y=—3. The following

theorem summarizes both cases.

THEOREM 2.5. When a(r)=r" with v€[—3,2), there exists at most one weak solu-
tion of (1.1) that belongs to the space

f € L%((0, T, Ly(R*))NL ([0, T, LP(R?)).

Here, p=oo for y=—=3, and p=3/(3+7) otherwise.

The solutions that we obtain from Theorem 2.1 are C*° smooth for ¢>0. If f is
not continuous, the initial data is only achieved in the sense of weak continuity. Because
of that, it is not irrelevant that Theorem 2.5 applies to weak solutions. It tells us in
particular that there cannot be two different solutions bifurcating from the same initial
data at time zero. The precise definition of weak solution given in [22], [23] is not
necessarily important here, but only the fact that it is compatible with a smooth solution
that achieves a potentially rough initial data by weak continuity.
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As we mentioned in the introduction, the Fisher information of a non-negative func-

tion f:R3—10,00) is given by the formulas

o [V 2p 2
z(f).—/]RS 7 dv—/RS|Vlogf| fdv—4/RS|V\/ﬂ dv.

Something must be clarified about the case when f has vacuum regions. In that

case, the last expression is the only one that makes immediate sense and suggests that
we should set the integrand as zero wherever f=0. This apparent difficulty with vacuum
regions is actually not relevant for our analysis. In [34], the authors prove that the
solution to the Landau equation becomes immediately strictly positive (even in the space
inhomogeneous setting).

The Fisher information i(f) is well defined for non-negative functions f so that
VieH! (R3). This will always be the case with the class of solutions that we work with
(see Appendix B). Moreover, the following lemma from [51] indicates that the Fisher
information is finite for all non-negative functions that are sufficiently smooth and fast

decaying at infinity.

LEMMA 2.6. For all >0, there exists C:>0 (only depending on dimension and &)

such that, for all fEH§/2+E(R3), one has

I(f) S Cellfll bz

3/2+4¢”

We use the notation (i’(f), g) to denote the Gateaux derivative of 7 in the direction g.

More precisely, if f(t) is a curve of non-negative functions such that

V) eH" and 9,f(0) =g,

then, by definition,
(i'(f), 9) = 0¢i(f (1))l e=o0-

Likewise, i"(f) denotes the quadratic form such that, if f(t) is second differentiable with

respect to t, then
(@ (£)g,9)+" (), Ose fli=0) = Orei(f(t)) |t=o0-

It is a standard fact that the values of these formulas do not depend on the curve f(t)
other than through the values of g=9, f(0). Moreover, the convexity of ¢ corresponds to
i"'(f) being a positive quadratic form.

We use Theorem 2.1 as the starting point to construct our global smooth solution
in Theorem 1.2. Combining it with the propagation of moments in Theorem 2.4 and
the Maxwellian upper bounds of Theorem 2.3, the solutions we work with are very-well-
behaved functions. They are C°° smooth functions, they have rapid decay at infinity
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together with all their derivatives, and they are strictly positive. This is the class of
functions that we work with in this paper, which minimizes the technical inconveniences
in our computations. A posteriori, Theorem 1.1, and most of the lemmas in this paper,
apply to a much wider class of functions by a density argument (see Appendix B).
However, we will make no attempt to classify the most general class of functions for
which our results make sense.

Even when f and |V f| decay faster than any algebraic rate as |v|—o0, it is not
completely obvious that |V f|2/f is integrable in R3. Moreover, there are several integrals
throughout this paper that involve first, second and even third derivatives of logf, and
these quantities may grow for large velocities. In the same vein as Lemma 2.6, it can be
argued that if sufficiently many derivatives of f decay sufficiently fast as |v|— o0, then
all the integrals in this article make sense. However, we can also avoid this technical
annoyance altogether by approximating the function f with one that is bounded from
below and above by a multiple of the same Maxwellian. We do not want to distract the
reader with this very standard technical point, so we explain it in Appendix B. For the
rest of this paper, we manipulate integrals involving the function f (or later F in the lifted

variables) multiplying various derivatives of its logarithm without further comments.

3. Lifting and projection

We have found that the question of monotonicity of ¢(f) for f solving (1.1) is essentially
the same as the question of monotonicity of the Fisher information for a specific linear
second-order equation in a space with double the original number of variables. This is a
significant simplification, it means we can understand our question by studying a simpler
and concrete evolution equation, and one that is linear and local —in contrast with the
original equation. The starting point is realizing that ¢(f) is defined as the integral of a
function in a space with twice the number of variables, and therefore it makes sense to
“lift” the flow and any quantity of interest into this space with double the variables. The
purpose of this section is to describe the usage of these lifting and projection operations.

Given a function f: R?—R, we can build a function F: R%t¢ R by taking the tensor
product of f with itself, as follows:

Fo,w)=(f@f)(v,w):= f(v)f(w).

This defines a map from scalar functions in R? to scalar functions in R%+¢. Conversely,

we define the following projection operator
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This is an operator that maps a function F(v,w) defined in R4*? into a function
7(F):RY—R. The map 7 is a bounded linear map from L'(R%*9) to L'(RY). Also
observe that, if F=F(v,w) is a probability density in R%*¢ then 7(F) is simply the
marginal probability distribution in the v€R? variable.

We will loosely use the terminology that the variables (v, w)€R? are the “lifted
variables”, functions in R4+ are lifted functions, and so on. The next ingredient is
a second-order differential operator for lifted functions. Concretely, we consider the
following degenerate-elliptic operator that applies to functions F'=F(v, w):

QF) (v, w) := (9v; =9w: ) (v —w])aij (v =w)(Dv; = Ouy; ) F' (v, w)). (3.1)

For any function f=f(v), we may study the initial value problem associated to the linear
operator () with initial data f® f:

F(O,’U,’LU) :f(v)f(w),
Ft:Q(F)~

(3.2)

Equation (3.2) is a linear degenerate parabolic equation with explicit coefficients.
Its classical well-posedness is straightforward from classical PDE theory.(*) The integral
of F on R is constant in time. From the symmetry of the initial data, and the symmetry
of the equation, we deduce that, for all ¢>0, the solution must be symmetric in the sense
that F'(t,v,w)=F(t,w,v).

LEMMA 3.1. For any twice-differentiable function f which is non-negative and has

mass 1, the Landau operator q (given in (1.2)) coincides with

q(f) =7(Q(F)) = Oi[w F]|1=0,
where F' is the solution of (3.2).

Proof. The proof follows by a straightforward substitution. We see that, by the
linearity of ,

Oe[m(F)]le=0 =m(Q(F))lt=0
= \/R?’ ((avz _awi)(a(|v_w|)aij (’U_w)(avj _awj )F(Oa v, w))) dw.
The derivatives with respect to w; integrate to zero respect to dw. Thus,

Ol (F)]lemo = Dy, / allo=wl)ag (0 -w)(Dy, ~0u,) FO,0,w) do=q(f). O

(1) In fact, one can see that equation (3.2) is literally the heat equation on each of the spheres
that we describe in (4.6) with diffusion coefficient «. See Remark 10.3.
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We use I for the Fisher information in the lifted variables. For F:R— (0, 00),

2
P [[ Bl awao= [[ vogrpravao=a [[ [oVFRave @)
R6 R6 R6

When F' has vacuum regions, only the last expression makes sense literally. For the first

two equalities to make sense, and agree with the third one, we must set

VF|?
% = |VlogF|?F =0

when F'=0.
The next lemmas relate i(f) with I(F'). The first one is very standard.

LEMMA 3.2. For any non-negative C' function f with ffdvzl and i(f)<oo, we

have
i) =51 )

Proof. We are going to show a bit more: if f is a C' function with f>0 and f is

rren=2( [ sao)ics,

First, let us prove this when f(v)>0 for all v. Since (f®f)(v,w)=f(v)f(w),

not identically zero, then

Ve (f@f)(v,w) = (f (w) Vs f (), f(v) Vs f (w)),

SO

IV(fN)*=f () IV )P +f () [V f(w)]*.

In particular,

VUSNP ) SISO w)?
en F(0) 7 (w)
o VIR Vi)
=I5y O Ty

Then, we integrate over R®, getting

IV(fef)l?
I(faf) //R Joh) v, w) dw dv

S o

=2( [, ) (/ vﬂ(v)w ),
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For a general non-negative f of class C!, we write f.=f+4ec¢, where gb(z):e"”'Q. Then,

rep=2( [ fa)ics).
Now, we note that

[ V@R 12V 0) Vo) + Ve
’(ff)‘/Rs 7-(0) I
[ VP [ 2660) Vo) 2T
*/Ra 7-(0) ‘”/Ra 7-(0) do-

The first integral converges to i(f) as e—0, due to i(f)<oo and the dominated conver-

fe>0 for every >0 and

gence theorem. The absolute value of the second one is bounded from above by

ViR, Vo
/ ) d“(g“)/w o)

Tt follows that i(f.)—i(f). It is obvious that

/ fe dv% f()
Lastly,
f@f-=fof+e(fRd+0Rf)+2pR¢.

From here, one can see that I(f.® f.)=I(f®f) as e—0 in a manner entirely analogous
to i(fe)—=i(f), by noting that f.® fe>max{f®f, ¢® f} for every £>0 and

VRG(fs®fs) HVRB(f(@f)

pointwise as € —0. O
The following is a crucial property of the Fisher information.

LEMMA 3.3. For any non-negative C* function F:R®— [0, 00) with F (v, w)=F (w,v),
we have

i(nF) < = I(F).

2

The inequality in Lemma 3.3 was first observed by Eric Carlen in [15], without the
symmetry assumption. There, he showed that some classical results related to the Fisher
information follow as a consequence of this elementary inequality.
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Proof. First we show inequality under the additional assumption that F'>0 every-
where. We note that

V(7rF)(v):Vv{/]R3 F(v,w)dw}: Vo F(v,w)dw,

R3

|[V(nF)(v)| < /}R3 |V, F(v,w)| dw.

Since F'>0 everywhere, we may apply the Cauchy—Schwarz inequality to get

(frtnan) < ([, 5 an) ( roman)

The last two inequalities combine to

V(rF) ) < ( /]R 3 W dw) (xF)(v) for all v.

Dividing by (7F')(v) (which is >0 for all v, since F'>0 everywhere) and integrating in v,

i(nF) // Vo (v, w)l® F“"” dwdv=L1(P).
R3 xR3 ’U ’lU) 2

To obtain the last equality, we have used that F(v,w)=F(w,v).

Now, let F' be just as in the statement of the lemma, and for every £>0 define
F.(v,w) :F(v,w)+se*‘”|2’|“"2.

Then, F. also satisfies all the assumptions of the lemma, but in addition F.>0 every-

where, and thus

—_

i(mF.) < §I(F€) for all € >0.

Observe that
(nF.)(v) = (7 F)(v)+cee™"I°

for some dimensional constant c. By repeating the argument in the proof of the previous
lemma, we conclude that i(wF.)—i(7F) and I(F.)—I(F) as e—0", and the lemma
follows. O

Lemma 3.3 is very important to make this program work. It would also hold if we
replace the Fisher information with the usual entropy, but it would not hold for most
usual quantities related to f that involve derivatives.
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LEMMA 3.4. Let f be a solution of (1.1) and F as in (3.2). Then
) 1
0¢i(f) < 501 (F)le=o-

Proof. Using Lemma 3.1, we get

Oi(f) =" (f),a(f))
=("(f), 0u(7F)|t=0)
= 0ti(7rF)|t70

1
+§8tI(F)

t=0 t=0

Because of Lemma 3.3, the first term is the time derivative of a non-positive function

that achieves its maximum at t=0. Therefore, it cannot be positive. We end up with

9i(f) < %atI(F> 0

t=0

It is convenient to rewrite Lemma 3.4 in terms of the Gateaux derivatives of ¢ and I.
It says that, for F'=f® f, we have

(1), () < 3 I'(F),Q(F)). (34)

In order to prove that the left-hand side is negative, we will show that the right-hand
side is. The remarkable advantage of our analysis is that the question of monotonicity
of the Fisher information for the Landau equation, which is non-linear and non-local, is
now reduced to its monotonicity for a linear equation with explicit coefficients, in the
doubled-variables. Precisely, we will prove Theorem 1.1 as soon as we prove the following
inequality for any function F:IR®— [0, 00) such that F (v, w)=F(w,v):

(I'(F),Q(F)) <0. (3.5)

Proving inequality (3.5) is the objective of the coming sections. We want to apply
it to solutions of the Landau equation. From Theorem 2.1, these solutions are strictly
positive, smooth and rapidly decaying functions. We must show that (3.5) holds for
any smooth function F:RS—(0,00) with sufficient decay at infinity. There is no time

evolution explicitly involved in the inequality (3.5).

Remark 3.5. Inequality (3.4) is in fact an equality. There is a very elementary
justification that we explain here. Consider the function F(¢,v,w) given by

F(t,v,w) = f(v) f(w) +HQ(fR ).
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Suppose that F(t,v,w)>0 at least in some small interval of time t€(—4d,0). Otherwise,
we may approximate it with a non-negative function appropriately.
Let «(t) be the function

o(t) = i(rF(t, -))—%I(F(t, ).

Since

F(07v7w) :f(v)f(w)u

Lemma 3.2 tells us that ¢(0)=0. Lemma 3.3 tells us that ¢(¢)<0 for all t€(—§,6). Thus,
¢(t) achieves its maximum at t=0 and we deduce that ¢'(0)=0.
If is also possible, although it looks rather magical, to justify the equality by writing
(#(f),q(f)) as a double integral and symmetrizing the expression in the correct way.
Since (3.4) is in fact an equality, the inequality (3.5) turns out to be equivalent to
the statement of Theorem 1.1. Our analysis so far is sharp.

4. Flowing along vector fields

In this section we decompose the lifted Landau operator (3.1) as a sum of second-order
differential operators each acting along one direction in R®. The vector fields by, giving
these directions correspond to the generators of rotations along three perpendicular axes
in R? (which are then “lifted” to R®). We write the majority of the computations in this
paper using the vectors bx. Because of this, it is important to get used to their basic
arithmetic properties which we describe in this section.

First, for each value of v—w, we define the following three vectors

0 V3 — W3 W — V2
bi(v—w)=| wz—wv3 |, ba(v—w)= 0 , by(v—w)=| vi—w; |. 41)

Vo — W2 w1 —v1 0

One can check that the vector fields by, bo and b3 are always perpendicular to v—w.
In fact, for each fixed value of v—w, with v#£w these three vectors span the plane in
R3 perpendicular to v—w. The following identity, that is readily verified by a direct
computation, links these vectors with the Landau equation:

b1®b1—|—b2®b2—|—b3®b3:aij(@—w), (42)

where

aij(2) = 2*6i—ziz;
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is the matrix used in the definition of the Landau operator (1.2). As a consequence of

these two observations, the lifted operator @ (3.1) can be rewritten as

QF)= (div, — divy)(a(jlv—w|)br @bk (Vy— V) F)

o
w || w
=

= (avi_awi)(a(|v_w|)(bk>i (bk)j'(avj_awj)F)'
k=

—_

Remark 4.1. Denote by I1(z) (2#0) the orthogonal projection from R? to the plane
perpendicular to z. It is elementary that

I;;(2) = 85— |2| 222

and so we see that
aij(2) = |2[*TI(2).

Accordingly the formula relating a;; and the vector fields by’s gives a corresponding one
for TI(z), which we record here:

3
Iy (=) = |2 > 3 (0k(2))a(Bi(2)),-
k=1

Since the differential operators by -(V, —V,,) act on functions in R®, it is both con-
venient and natural to write it in terms of vectors in R®. For k=1,2,3, we define the

following corresponding vector fields by, in RS:

be(v—w) = (_bzk> (4.3)

We abuse notation by writing Ek:R(j%RG to denote I;k:l;k (v—w). The vector fields l~)17

by and by are divergence free in R. They satisfy the following matrix identity:

l~)1®81+l~)2®l~)z+83®l~)3= < {aij(viw)} {a”(vw)}) (4.4)

—{aij(v—w)}  A{aij(v—w)}

Moreover, Ek(v—w) is always perpendicular to

()
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In particular, for any function S=p(jv—w|), we always have (for the gradient and the

divergence in RY)
be'VB=0 and div(3(jv—w|)b)=0.

In light of all the above, we can write @ in terms of these vector fields by:

Zdw (Jo—w|) (b -V F)by,)

3
a(jv—w|)(by-V (b VF))
k=1

\Fbk V(Vab,-VF).

w

In this formula, VF stands for the gradient of F with respect to the variable (v, w)cR®.
We think of the operator Q(F) as the sum of the second derivatives of F' along the
directions by, with a weight o(|Jv—w|). To make this point clearer, while also introducing
additional notation we will use later, let us define, for a given vector field b in RS, the

operator
Ly(F):=b-VF.

Then, Ly(F') is simply the derivative of F' along b. One sees that the above decomposition

for @) can be restated as a sum of squares of operators of the form L;, concretely
3

3
Q:ZL\/agkoL\/agk :ZaLgkOLBk. (4'5)
k=1

k=1
It is interesting to notice that, if we consider the flow of each vector field bre,
v'(t) ) A
=br(v(t)—w(t)),
(L) =hutt )
then
v(t)+w(t), )P+ w®)? and  [o(t)-w(t)]
are all constant in ¢. This is simply the fact that b is everywhere perpendicular to the
gradient of |[v|2+|w|?, to the gradient of |[v—w|, and to vectors of the form (e,e)ERS
with e€R3.
Given any point (v, w)€R®, the set of points in RS that we may reach by flowing
along the three vector fields b’s, is exactly the sphere used in the usual formulas for the

Boltzmann equation:

sphere(v, w) := {(v/,w’) €R® : v/ +w' =v+w and [v/|*+|w'|* = [v]|?+|w|*}. (4.6)
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Based on this intuition, there are some quantities that we define later on taking into
account derivatives along the directions by, for which we use names referring to this sphere.
The set sphere(v, w) is indeed a 2-dimensional sphere of radius |v—w|/v/2 isometrically
embedded in R. Tt is the same sphere used in the usual parametrization of the Boltzmann
equation:

_vtw  ju—w|

,:v;w+|v—2w|a and w' = 5 5 o for 065’2}.

sphere (v, w) = {(v’, w') v

At any given point (v, w)€RS, the vectors by (v—w), ba(v—w) and bs(v—w) are tangent
to sphere(v,w). These vectors are necessarily linearly dependent. We can easily verify

this fact by hand, since

(’Ul —w1>b1 —l—(?)g —w2)1~)2+(1)3—w3)l~)3 =0.

Using the vector fields Egs, we will eventually verify that the operator @ is exactly
the Laplace-Beltrami operator on sphere(v, w) times the function |v—w|?a(jJv—w|). See
Remark 10.3.

There is one last vector field in R® that will play an important role in our analysis.

Let n: RS —RS be the unit normal vector to the level sets of |[v—w]|. That is

()

We can see that, for k=1,2,3, [n, Ek]:O. For the reader’s convenience, let us recall the

definition of the Lie bracket [a,b], this is the vector whose components are given by
[a, b]z = ajé)jbi 7bjajai.

The Lie bracket computes the error of commuting the differentiation with respect to a
and b:

a-V(b-Vu)—b-V(a-Vu) =a,b]-Vu (4.8)

In contrast to the vectors by, in general we have
n-Va#0 whenever a=a(jv—w)).

Moreover, we have

[n, aby] = (n-Va)b, = v2a/ (jv—w]) by.
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For the last identity, note that

/ p— —
n~Va:n~a(|v w)(v w>

‘U—’w| w—v
B 1 (v—w>.a’(|v—w|) (v—w>
_ﬁ\v—w| w—v |v—w] w—uv
_ 2fv—w|?
V2fu-wf?
o))

o (Jv—wl)

We will also be using vector fields to decompose the Fisher information, and we
record here a definition and two preparatory lemmas that will be used later. Given a
vector field e:R® —R®, we define the functional

L= [T

One can see I.(F) as a kind of Fisher information(?) of F that only uses VF in the
direction e. The first of the preparatory lemmas provides a formula for the Gateaux
derivative of I, at F (for some vector field e) in the direction given by L;(F) (for some

divergence-free vector field b).

LEMMA 4.2. Let e and b be vector fields in RS and assume that b satisfies div(b)=0.
Then, the following identity holds for any smooth positive function F:R®—(0,00) with
rapid decay at infinity:

(IL(F), Ly(F)) :2// (e-VlogF')(le, b]- VlogF) F dw dv.
R6
Proof. We directly compute

<Ié(F),Lb(F)> ://R6 (2 (BVF)(eFV(bVF)) _ (6;5) (bVF>> dw dv.

Observe that
e-V(b-VF)=b-V(e:-VF)+[e,b]-VF.
This results in
(Ie(F), Lo (F))

://6 (2(6~VF)(b-V(e-VF)) B (e-VF)2(b.VF)+2(e-VF)([e,b]-VF)) dwr do.

F F? F

(3) In fact, I(F) is the standard Fisher information (as understood in statistics) at §=0 for the
1-parameter distribution Fy obtained by transporting the distribution F' along the flow given by e.
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The first two terms in the integrand add up to a divergence, since

2

(e:VF)(b-V(e:VF)) (e-VF)? (e.-VF)?  [(e-VF)?
7 — 7 (b-VF):b~V:d1V(Fb>.

It follows that

(1L(F) // eVE)(&HVE) 1 gy,

and the lemma now follows using that
VF = FVlogF. O

The second preparatory lemma is the corresponding pure second derivative for I, (F).

LEMMA 4.3. Let e and b be vector fields in R®. Then, the following identity holds
for any smooth positive function F:R®—(0,00) with rapid decay at infinity:

(I'(F)Ly(F) // V(b-ViogF))*F dw dv.
R6
Proof. For any function G: R —R, we see that

://R (Q(e-VF;Ee-VG) B (e-;F)QG> dw do.

Differentiating again, we get

<I”(F)G,G>=//RG (2(6'?;) —4(6'VF;(2€'VG)G o€ ZF> G )dwdv

- eVG (e VF)Y
—//RGZF( 7 -G 72 )dwdv.

In particular, if G=Ly(F)=b-VF, it reduces to

(I"(F)Ly(F //RG2F< bVF) (b-VF) (e'VF)>2dwdv

F F
VF
_//]Re 2F GV(bF>

2
dw dv. O
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5. The case of Maxwell molecules

In case a(lv—w|)=1, the monotonicity of the Fisher information was obtained in [55],
and also follows from the earlier work for the Boltzmann equation in [50], [52]. Here, we
provide a quick proof by verifying (3.5) in that case. It also serves to explain some of
the ideas that will be used later for more general interaction potentials «. Let l~)1, by and
bs be the vector fields as in (4.3). We use formula (4.5) for a=1:

3
QF) =YL oLy, (F).
k=1
We see that, when a=1, the operator Q(F) is a sum of squares of differential operators
given by vector fields which are generators of certain rotations in RS. Since the Fisher
information is invariant under rotations, it follows that I'(F) is unchanged if one flows F'
by L F.

LEMMA 5.1. For any smooth positive function F:RS—(0,00) with rapid decay at
infinity, we have
(I'(F), Ly, (F)) = 0.
Proof. The result already follows by the rotational invariance, but we also verify

directly by differentiating the integral. We proceed by direct computation:

N N

br-V|VF|?4+2((Db,)VF,VF) |VF)?
://]R6< 7 — = Ly, (F) | dwdv

Observe that Dby, is antisymmetric for k=1,2, 3, and thus
((Dby)VF,VF) =

Then,

2 2
(I'(F), Ly, (F //RG<b’“ VIVE] |v;;| br VF) dw dv

“JlE

Motivated by Lemma 5.1, we study the first-order transport equation, where we flow

O

F by Lj, . For any function Fy=Fy(v,w), let us consider the initial value problem

F50,v,w) = Fy(v, w), (5.1)
Ftk(tavvw):LEk (F) |
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LEMMA 5.2. Let F* be as in (5.1), then I(F) is constant in t.
Proof. Tt follows from Lemma 5.1. O

LEMMA 5.3. For any smooth positive function Fy:R%—(0,00) with rapid decay at
infinity, if F* solve the problems (5.1) for k=1,2,3, then we have

3
Q(Fo)(v,w) = Z Ou F¥(0, v, w).
k=1

Proof. This is simply the fact that
3
Q=2 Li~Li,
k=1

as in (4.5). O

The following result was proved by Villani in [55]. Using our current framework, we

are able to provide a short proof.

PRrROPOSITION 5.4. The Fisher information is monotone decreasing along the flow
of the Landau equation (1.1) when a=1.

Proof. We have to verify that (3.5) holds in this case. Then, the result follows using
Lemma 3.4.
Let F*(t,v,w) solve (5.1) with initial data Fo=F(v,w). We differentiate I(F*)

twice using Lemma 5.2, to get that
0=0ul(F*)=(I'(F*), 0y F*)+(I" (F*)8,F*, 9, F*).
Since the Fisher information is convex, then
(I"(F*8,F* 0,F*) > 0.

Thus, using Lemma 5.3, we conclude

3
(I'(F),Q(F)) ==Y (I"(F)3,F*,0,F*)|1= <O0. 0

k=1

Lemma 5.3 still holds if we use /a by instead of by, for problem (5.1). However,
Lemma 5.2 would not hold for any non-constant function «. In order to verify inequality

(3.5), we need another idea whenever « is not constant.
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6. The Fisher information along layers

As we explained in §4 and recorded in (4.5), the operator @ can be expressed in terms
of a composition of transport operators L Jabe In §5 we saw how this decomposition
can be used to show the monotonicity of the Fisher information in the case of Maxwell
molecules a=1. In this section we begin the analysis for non-constant «.

Since we will be writing L Jabe repeatedly, from now on we will use the simpler

notation
Li(F):=+/abg-VF. (6.1)

As noted in §5, when a=1 the operator Ly, is the generator of a flow by isometries in RS,
and therefore it preserves the Fisher information I(F'). This is not true any more when
« is not constant. We cannot use the analysis in §5 to immediately deduce (3.5).

The main observation for this section is that, since a depends only on |v—w| and
the vectors by, are tangent to these level sets, the flow defining Ly, is still an isometry
layer-by-layer when we restrict our analysis to the level sets of |[v—w]|. Thus, if we modify
the Fisher information to only take into account the components of VF' that are tangent
to these level sets, we obtain a quantity that is indeed preserved by the flow of Ly.

The unit normal to the level set of |[v—w| is precisely the vector field n defined in
(4.7). The modified Fisher information that we want to study is the following;:

Itan(F)

://RG(W;’P_(TL.ZF)Q)dde o)

B (e N T UG S N P
RS F 2|v—wl? F

It is convenient to write Itan as Ispn +Ipar Where

Lon(F // a;j(v—w) 8U,i—8wi)F(8Uj—8wj)Fdwdv,
re 2|v—w|? F

U w F2
// Put D) 4 g,
RG

‘We used the notation

Q5 (Z) = ‘Z|25ij —RZiZj-.

Remark 6.1. The subindices in Itan, Ispn and Iy, are meant to convey which direc-
tions are being included. We already noted that Iia, (F') is the Fisher information of F'
in the tangential directions to the level sets of (v, w)—a(Jv—w|), and so here we call
it the tangential (with respect to the level sets of «) Fisher information. Meanwhile,
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Ipn(F) involves the directions tangent to sphere(v,w): we call it the spherical Fisher
information. Last but not least, Ina(F) involves the directions in the 3-dimensional
linear subspace of R® of “parallel” pairs of velocities {(e,e)ER®:e€R3}: we call it the

parallel Fisher Information.

PROPOSITION 6.2. Let by be the vector fields from (4.3), let a=a(lv—w)|) be an ar-
bitrary non-negative function and let Ly be as in (6.1). For any smooth positive function

F:R—(0,00) with rapid decay at infinity and any k=1,2,3, we have

(Tjar (F), Lie(F)) =0
(Tpn(F), L (F)) =0
(I{an(F), Li(F)) =0
Moreover,
3
(Han(F), Q(F)) == Y _{Ilan(F)Li(F), Ly (F)) <O,
k=1

and similar identities hold for I and Ipay.

Proof. Since Itan=1Ipar+Ispn, then the result follows for Ii,, after we prove it for

Isph and Ip,y. Let us start with the case of I,,,. Let us define the unit vectors p;, p2 and

ps in RS as
1 0 0
0 1 0
1 0 1 0 1 1
pl:ﬁ 1 pzzﬁ 0 and 103:E 0
0 1 0
0 0 1

We write I, in terms of these vectors. We have

3
_ pi- VF|?
Ipar(F) = ;:1 //R6 I dw dv.

We observe that [p;, \/aék]:o for i, k=1,2,3. Then, using Lemma 4.2, we get that
(1 (F), Li(F)) = 0.

par

We now move on to Ispn. Because of (4.4), we can write Igpn as

5 -
1 |5 VF)?

I :E dw dv.

ph P //Ra 2u—w?2 F waw
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Differentiation in the directions Bl and Bk does not commute when i#k. Their commu-

tators are easy to compute:
[?)1, 52] = 72?)3, [?)2, i)g] = 72?)1 and [53, l;l] = 7252.

Taking this into account, we compute (I;ph

(F), Li(F)) using Lemma 4.2:

[v—wl[?

( ;ph(F),Lk(F»—;//RG ﬂ(l},mogF)-([Ei,Ek}VlogF)Fdw dv=0.

The last identity holds because the two terms where k#i cancel out. For example, for
k=1, we have [l~)2, 51]:253 and [53, 51]:—252, which makes the integrand

2
ﬂp

[v—w|?

((by-VlogF)-(bs-VlogF)—(bs-VlogF)-(by-VlogF)) = 0.
Therefore, we obtain both

(L (F), Le(F)) =0 and (I, (F), L, (F)) =0

par

Adding them, we also obtain

The final identity follows mimicking the proof of Proposition 5.4. O

7. Using commutators to estimate the remaining directional derivative

In §6 we found a quantity Ii,, that is monotone decreasing in the direction of Q). The
difference between this quantity Ii,, and the full Fisher information I depends only on
the component of VF' in the single direction n perpendicular to the level sets of |v—w|.

In this section, we analyze the value of J:=I—I,, and compute its derivative explicitly.

LEMMA 7.1. Let n be as in (4.7) and b=by for one of the vector fields (4.3) with
k=1,2,3. Let J be the functional

_ 2
J(F)::// dedv,
re F

Qu(F):=ab-V(b-VF),

and let

for some scalar function a=a(lv—wl). Then, following identity holds:

«

(J(F), Qu(F)) = /

(—2F(n-V(\/& b-ViegF))?+ (o)® (b~VlogF)2F> dw dv.
RG
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Proof. The proof is a direct computation. We write it in detail.
Recall that div(ab)=0 and also div((n-Va)b)=0. Moreover,

[n, ab] = (n-Va)b.
It is good to remember that, since [n,b]=0, then
n-V(b-VG)=b-V(n-VG)

for any function G.

We differentiate and follow the computation:
(J'(F), Qu(F))
=[] 120V 108F) (n-V Q) (n-Vlog Y Qu()] du do
://}R [2(n-VlogF) (n-Y (ab-V (b-V F))) — (n-ViogF)?(ab-V (b-V F))] duw dv.
We commute differentiation with respect to n and ab introducing an error term:
T ELQUEN = [[ - ViogF) (ab- V(T (V)
) +2(n-VlogF) (n-Va)b-V(b-VF))
—(n-VlogF)?(ab-V(b-VF))] dw dv.
Integrating by parts, and using that divb=0 and div(ab)=0, we get
(J'(F),Qu(F)) ://6[—2ab~V(n~VlogF)(n.V(b~VF))
- —2(n-Va)b-V(n-VlogF)(b-VF)
+ab-V(n-VlogF)?(b-VF)] dw dv.
We expand the derivative in the last term and observe that
n-V(b-VlogF)F = (n-V(b-VF))—(n-VlogF)(b-VF),
from where we get
(J'(F), Qu(F))
= //RG [—2aF (n-V(b-ViogF))?*—2(n-Va)b-VlogF (n-V (b-VlogF))F] dw dv.

We complete squares and conclude this is equal to

(n-Va) > 1 (n-Va)? 9
—2F | Van-V(b-VlogF)+ b-VlogF' | + - ——(b-VlogF)“F | dw dv
R6 2\/a 2 «

://R {_QF(n-v(ﬁb-mogF))%W(b-VlogF)QF} dw dv.

[e%

O
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Remark 7.2. It is possible to compute (J'(F'), Q(F)) using a method that follows
more closely the ideas of §5. For that, we would have to compute (J’, L) (which is no
longer zero) in terms of commutators of n and bg. Then, following the ideas in §5, we
may proceed with computing the second derivative in time of I(F') when Fy=Ly(F'), and
derive the formula in Lemma 7.1.

It is also true that we can rewrite the proofs of Propositions 5.4 and 6.2 using a
more direct computation with commutators, like the one presented here for Lemma 7.1.

We believe that the method of §5 is more intuitive than the computation presented
in this section. Yet, there might be some value in presenting alternative approaches to

the computation.

8. The three distinct diffusion terms

In §6, we analyzed the derivative of ., in the direction Q(F) and obtained a negative
value in terms of I/’ . In §7, we analyzed the derivative of J in the direction Q(F') and
obtained a negative value in terms of J”, and a positive error term. In this section,
we analyze the derivative of the full Fisher information I in the direction Q(F"), which
results from adding the estimates we computed in previous sections.

We want to analyze the second derivative of the Fisher information.

LEMMA 8.1. Let I be the Fisher information of a smooth positive function
F:R5 — (0, 00),
as in (3.3). Let b:R®—RC be any smooth vector field. Then

(I'"(F)(b-VF), (b-VF)) =2 //RG F|V(b-ViogF)|? dw dv.

Proof. We apply Lemma 4.3 with the canonical basis of R%: e, e, ...,e5. We add

the six corresponding identities and obtain the desired result. O

We apply Lemma 8.1 with b=1/a by for each k=1,2,3 and a=a(jlv—w|). These

vector fields are divergence free for any scalar function a. We obtain

(I"(F)(v/aby-VF), (Vabe-VF)) :2//]1@ FIV(v/aby-ViogF)|? dw dv.
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LEMMA 8.2. Let @ be the linear operator associated to the Landau equation as in
(3.1). Let I be the usual Fisher information. Then,

<I'( Z// |V[vaby-ViogF]|*F dw dv

lv—w]|)? 9
(by,-ViogF)?F dw dv.
+E//H§52a|v— - V1ogF') w dv

Here, by, are the vector fields defined in (4.3).

Both terms are homogeneous of degree 1 in F. The second term vanishes when
« is constant, which corresponds to the monotonicity of the Fisher information in the

Maxwell-molecules case.

Proof. We start by recalling that I is almost the same as Ii,, defined in §6, except
for one extra term
I(F) :Itan(F)—i-/ F|n-VlogF|? dw dv.
R6

Here, n be the vector field defined in (4.7).
Recall that, with the vector fields by, defined in (4.3),

Zfbk (Vaby-VF).

We established the monotonicity of Ii,, along the flow of @ in Proposition 6.2.
Moreover, for Ly(F)=+/aby-VF, we computed

3
(Tian(F :Z (Tian (F) Li(F), L (F)). (8.1)

Let us write J:=1—1I;,,. That is,

= // F|n-ViogF|? dw dv.
R6

We now apply Lemma 7.1 to with each vector field Bk, and add the three identities.
We get the following equality:

(J'(F),Q(F))
> o (lv—w? -+
Z( (J"(F)Li(F), Lk(F)>+//RG a((||v_w|))F(bk~VlogF)2dwdv>.

k=1

(8.2)
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Adding (8.1) and (8.2), we get

(I'(F),Q(F))
( (I"(F ,Liu(F))+ / /}R 6 MF(@-V@F)Q dw dv)
( // F|V[v/aby-ViogF]|? dw dv

// o/ (jo—wl)® (Bk~VlogF)2dwdv>. O
re a(jv—wl])

LEMMA 8.3. Given any differentiable function G: R =R, the following identity holds

Il
B
w || Mm
[S

=1

at every point (v, w)ER®:
1 1O
VG =32 (s, 40w,)GP+|n- VG + -— ) by VG
VI =5 D2 0u +0m )G+ VG 5 S V6]
Here, n is as in (4.7) and by are as in (4.3).

Proof. We start from the elementary identities
((8111 :I:ﬁ'wi )G)2 = (auz G)2 + 2(6111 G) (awi G) + (8wi G)2 .

These can be added together, resulting in

3 3

VG =3 1(00.G)* +(05,G)°1 = 5 D (00,40, )G+ (0, — 0, )G)?).

=1 =1

The sum of the squares ((d,, — ., )G)? is simply |V,G—V,,G|?, and we have

|~

v—
v —wl

where IT(v—w) denotes the orthogonal projector from R? onto the space perpendicular

|VUGVMG|2|H(vw)(VUGVwG)2+( (V,G=V G)>2

to v—w, which we already introduced in Remark 4.1. The formula for IT in Remark 4.1

says that

3 3
((VoG—=V,,G)) (bp-VG)?
|v w| P |v w| Z

k=

I(v—w)(VoG— VW)

From the definition of n in (4.7), it follows that

1
2]lv—wl?

(V,G—=V,G)-(v—w))? = |n-VG|?,

and the lemma is proved. O
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Based on Lemma 8.3, we may decompose the second derivative I” in the direction
of \/ab-VF as the sum of three terms:

3

- 1 -
IV (Vabe:ViogF)[* = o 3 7 |(Du,+0u,)(Va by ViogF)[?

i=1

+|n-V(Vaby-ViogF)|?

3
1 . -
> |bi-V(vaby- ViogF)[>.

2]v—w|? “
i—

We multiply this identity by F, integrate over R® and add up the result for k=1,2, 3.
This, combined with Lemma 8.2, leads to the decomposition

3
1 /\2
§<I/(F)a Q(F)> = _Dparallel_Dradial_Dspherica1+2/ (
k=1 /R®

by, ViogF|? dw dv,
where

parallel Z // |U ’U)| F|( ULJ'_awl)b VlogF|2dwdv

131

Dradiau:Z//e F|n-V(yab;-ViogF)|? dw dv,
; R

Dspherlcal = Z //]RG 2‘7} w‘2F|b V(b VlogF)|2dwdv (83)

3,j=1

Let us also write

spherlcml Z//RG |U F|bk VlogF|2dw dv. (84)

Note that, since a depends only on |v—w|, then b-Va=0 and (O, + 0w, )a=0. This
is the reason why we can pull the factor a outside of the differentiation in the expressions

for Dparallel and Dspherical-

LEMMA 8.4. The following inequality holds:

1 r2a’(r)?
= I/ F F < -D aralle *Dra ia, *Ds erical SRCHE Rs erical-
5 (L (F), Q) parallel ~ Dradial — Dsph 1+§glg( Da(r)? ) tspherical

Proof. This is a direct consequence of Lemma 8.2 in terms of the new notation and
using that the integrand in Rgpherical iS non-negative. O
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In order to prove Theorem 1.1, we want to control the positive term Rgpherical With
the negative terms —Dparallel — Dradial = Dspherical.  We are going to use only Dgpherical,
that involves second derivatives in the directions l;,

Recall that, starting from any point (v, w)€R®, the flow of the vector fields b1, by and
bs stays within the sphere (4.6). The inequality Dgpherical = ARspherical Will be deduced
as a consequence of an elementary and apparently new inequality for functions on the

sphere that we present in the next section.

9. An inequality for functions on the sphere

The objective of this section is to prove the following lemma, which will be crucial for
the proof of our main result. It is a Poincaré-like inequality involving the derivatives
of the logarithm of a function on the sphere S2. Properly interpreted (see Remark 9.14
below), it corresponds to some form of the TI's-criterion of Bakry and Emery (see [4,
Proposition 5.7.3]) on the projective space. The lemma is about symmetric functions on
52, which is the 2-dimensional sphere in R3. Equivalently, it is a result about functions on
the projective space RP2. The value of the constant (which is 17? below) is not optimal.
A more precise value for this constant, as well as a generalization to higher dimensions,
is obtained by Sehyun Ji in [38].

LEMMA 9.1. Let f:5%2—(0,00) be a C? function on the sphere such that
flo)=f(—0o) for all o €S2

Then, the following inequality holds:

Z/ f(bi-V(b;-Vlogf))? 192/ f(bi-Viogf)?d (9.1)

1,7=1

Remark 9.2. Note that, for €S2, the vector fields by(c), ba(c) and bz(o) are per-
pendicular to o, and are therefore vectors on the tangent space of S? at every point

o€S52. Tt is useful to compute their Lie brackets.
[b1,ba] = —b3, [b2,b3]=—b1 and [b3,b1]=—bo. (9.2)

Remark 9.3. For functions ¢, o€ C*(S?), their gradients V,¢ and V,¢ at a 0€5?
are elements of the tangent plane to S2. This makes them vectors in R? perpendicular
to 0. The directional derivative b;-Vy is an intrinsic differentiation of the function ¢
on S2. Both vectors b;(0) and V4 belong to the tangent space of S? at o. Moreover,
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one can check that the b;’s are also divergence free as vector fields on S?. We omit the
subindex o for V=V, in most of this section.

Applying the decomposition (4.2), we observe that
b1 ®b1+ba @bz +b3 b3

is the orthogonal projector matrix to the tangent space to S? at o. In particular, it
is the identity when applied to vectors on that tangent space. We derive the following

elementary but useful identity:

3
Z(bi(a) Vo) (bi(0)- V) =V,0-Vop forall ¢, p€C(S?). (9.3)

=1

Another useful identity that follows from this, and that we record here for later use,

relates the Laplace-Beltrami operator on S? with second derivatives in the directions b;:
3

> 0i-V(biVI)=Anf forall feC?(S5?). (9.4)

i=1

To see this, we multiply the left-hand side by €52 and integrate by parts over S? using
that the b;’s are divergence free. We use (9.3) to obtain

3
;/Sz(bi-wbi.w))cpda — /S Vof -Vepdo.

Integrating by parts on the second integral, it follows that

3
7" ' g = Ag a.
> [ ¥ 0uD)edr= [ Aasod

Since ¢ is an arbitrary function in C?(S5?), we have proved (9.4).

The starting point for the proof of Lemma 9.1 is to express both sides of (9.1) in
terms of /f, motivated by the well-known observation that the Fisher information of
f is four times the H' norm of v/f. Once this is done, the lemma will follow from the
Poincaré inequality on S? applied to each (b;-V,+/f).

It is easy to write the right-hand side of (9.1) in terms of v/f. Using (9.3), we have

3 3
. 2 Jor — | 2 gy 24 |
2_;/5 F(by-Viogf)? d 4;/S2(b2 ViRde=t [ VTR 05)
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As for the left-hand side of (9.1), for the terms with i=j, there is a simple trick to obtain
a clean bound in terms of a respective integral involving +/f. Indeed, consider the case
1=j. Writing b=0b;, we see that
/ (b-V(b-Viogf))? f do
S2

_ . 2 o (O-VOVVIB-VV? | O-VVITY
_4/52((1)V(bv\/f)) 2 77 S )d.

Integrating by parts the middle term, we arrive at

2 _ . . 2 1(b~V\/7)4 o
/Sz(bv(b-Vlogf)) fdo—4/52 ((b V(b-VVF)) +3 7 )d

24/ (b-V(b-V/))? do. (9.6)
S2

We can apply the same trick for all the terms with i=7, but it does not yield a useful
expression when i#£j. To overcome this, we will consider pure second derivatives in all

possible directions below. Let us first introduce, for a given g€ C?(S?), the matrices

bi-V(b;-Vg)+b;-V(b;-Vyg
(Mg)ij = (b; )2J ( ),
bi-V(b;j-Vg)—b;-V(b;-Vg)

(N‘J)U = 2 :

(9.7)

That is, My (o) and Ny(o) are the symmetric and antisymmetric parts of the matrix
(0i-V(b;-Vg))ij-

Note that My(co) and Ny(o) are 3x3 matrices, corresponding to the fact that we are
working with three vector fields b1, by and bs3. Moreover, the squared norms of M, and
N, are of direct interest to us, since
3 3
> (5 Vo by Volog)E = D (Miogs)%+(Niogs)3; = | Miogs (o) 2+ Niog (o) [

i,j=1 i,5=1

Therefore, we want to understand the integrals of

[Miogs ()| f  and || Nogs (o) f-

Analyzing the latter is straightforward, since the components of N,(o) are given by the
derivatives b;-Vg.
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LEMMA 9.4. Let g: S?—R be any C? function and Ny(c) be as in (9.7). Then,

3

INy(0) 7= 5 D2 (b V)™

i=1

Proof. The entries (Ng)ij correspond to the Lie brackets of by, by and b3:

(NQMZ%Wh%}

Thus,
3

3
INP= 30 NZ =1 3 (11.b,)- V)"

ij=1 ij=1
Note that each non-zero term appears twice in the sum. Using (9.2), we get

3
1
||N||2:§Z(bi'vg)2~ ]

=1

Lemma 9.4 already gives us a fraction of the inequality of Lemma 9.1. Indeed, by

Lemma 9.4, we get

3
> [ V0, Viog)sdo

ij=1

1 3
= [ Wt @) (o) do 5 |3 0w Viog o) o

S2

To obtain our desired inequality (9.1), it remains to understand the integral of
| Miogrl|?f. Recall that a symmetric matrix A€R?*? is uniquely determined by the
quadratic form (Ae,e). Therefore, we may try to estimate its norm ||A||? in terms of
the values of (Ae,e)?, as e ranges over all vectors in S2. Likewise, in order to compute
| Miogf(0)]|?, we may average the values of second derivatives of logf along all possible
directions and properly normalize it. We need a practical way to determine all possible
directional derivatives from a point o€ S2. For any e€S?, we define the vector field b,
using the cross product:

be(o) =0 xe.

Note that b, , be, and b, conveniently correspond to by, by and bs from (4.1). Using
these vector fields, we want to recover the quantities on the left- and right-hand sides of
Lemma 9.1. It is easy for the right-hand side using the next lemma.
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LEMMA 9.5. For any C' function g: S?—R, the following equality holds at every
point o €S2
> 3
S (beo(@)P =2 [ (Valo)?de.
i—1 W2 Jees?
Proof. Note that here 0€5? is a fixed point and Vg(o) is the same vector for all

values of e€S2. Let us write e=(z1, 2, 23). We observe that
be =x1b1+32b2+x3b3,

SO

3

2
be-Vy(o :/ ( xib;- Vg)
/eeSZ( e€s? Z

i=1

3
:/ . Z (:b;-Vg)(xjb;-Vg)de

1,7=1

Note that b;=b;(c) and Vg=Vg(c) are independent of the variable of integration e€S2.

Since z;x; integrates to zero on S? unless i=j, we get
(be-Vg(0))? de —/ z2(b;-Vg)?
/ees2 e€S? Z

= x2 d6> (b;-Vg)?
(o) 2

3
=223 (b Vg) =
=1

The following is the second-order version of Lemma 9.5. It is slightly more compli-

cated.

LEMMA 9.6. For any C? function ¢: S>—R and any o €52, we have the identity

2¢1 \|Mg(cr)|\2+cl |tr3uce(Mg(cf))|2 = /es2 (be(0)-V(be(0) .Vg(a)))2 de.

Here,

c1= [ xix3dsS.
S2

From identity (9.4), we point out that

trace(My) = Aqg.
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Proof. We write e=(x1,x2,x3) and expand like in the proof of Lemma 9.5:

/ (be-V(be-Vg))? de:/ Z (x:bi-V(xjb;-Vg))(xrbr-V(zib-Vg)) de
c€s? €€5?; j k=1
3

= > ([ avarnande )V ) (V1T

i,k l=

The integral factors vanish except when (4, j, k,1) consists of either four equal indices, or
two pairs of equal indices. We are left with

3
/ (be-V(be-Vg))? de = </ x;*de) > (bi-V(bi-Vg))?
ecs? ecsS? i—1
+ </ a2 de) Z(bi~V(bj-Vg))2
e€S2

i#]
+ (/8652 rix3 de) Z(bi'v(bj -Vg))(b;-V(bi-Vg))

i#j

+ </€ES2 x%x% de) Z(bi'v(bi‘vg))(bj ~V(bj~Vg)).

i#]

We define ¢; >0 to be the (computable(?)) value of the integral in the last factor

1
=gz x] de = 2222 de.
ecS? e€S?

We continue with our computation, getting

/eesz (be-V (be-Vg))? de =3¢y i(bi~v(bi-Vg))2
+lc_1 Z(bi'V(bj'vg))Q
+c1 é(bi'v(bj -Vg))(b;-V(bi-Vg))
+e1 é(brv(bi -Vg))(b;-V(b;-Vg))

(3) It can be seen by an elementary computation that c; =47 /15.



THE LANDAU EQUATION DOES NOT BLOW UP 357
3
=c1 Y (bi-V(b;-Vyg))?
ij=1

+er Y (b-V(b;-V9)) (b;-V(bi-Vg))

4,J=1

+cq (llilbi-V(waVg))2

:201|\Mg(a)||2+cl\trace(Mg(a))\Z. O

LEMMA 9.7. For any C? function f:S?—(0,00) and any e€S?, the following in-
equality holds:

/(be-V(be-v1ogf))2fda>4/ (be-V(be-V/f))? do.
S2 S2

Proof. We have already proved this in the discussion leading to (9.6). In this lemma,
we state the inequality for the vector fields be. O

LEMMA 9.8. For any C? function f:S5%—(0,00), the following inequality holds:
/52(2||M10gf(0)||2+|trace(M10gf(o))|2)f(U) do
>4/32(2||Mﬂ(a)|\2+|trace(Mﬂ(a))\2) do.
Proof. We use Lemma 9.6 to rewrite the left-hand side as follows:
/52(2||Mlogf(0)||2+|t1"aC€(M10gf(J))|2)f(U) do
= ?11 [S /Sz(be-V(be-Vlogf(a)))Zf(a) de do.

We apply Lemma 9.7 for each individual direction e€S? and see that the integral on the
right is no smaller than

: ’ i : : 2do de
E/sz [qz(be-V(be-Vlogf(a>)) f(cr)clecla>c1 /g /SZ(be V(be-VA/f))? do de.

The desired inequality then follows by applying Lemma 9.6 again to rewrite this last
integral as

4
5/52 /52(be.V(be-v\/}))2dade:4/52(2||Mﬁ(a)||2+|trace(Mﬂ(g))|2)do—,

Combining the last three displayed formulas, the proof of the lemma is completed. [
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Due to Lemma 9.8, one can express the integral of || Miogy||*f in terms of that of
plus some extra terms involving their respective traces. The next two lemmas
M /%[ pl tra t involving thei tive t Th t two 1

will use this to obtain a further inequality, one without the inconvenient trace terms.

LEMMA 9.9. Let AcR3*3 and let M and N be its symmetric and anti-symmetric

parts, that is

A+ AT A-AT

M= d N=
an 5

Assume that rank A<2. Then,
2 1 2
1M 2§|trace(M)| .

Proof. The quantities || M| and trace(A) (which is the same as trace(M)) are invari-
ant by orthonormal changes of coordinates. Since rank A<2, it has a zero eigenvector.
We can pick an orthonormal basis that starts with this eigenvector, so that A; 1=0. In
this basis,

1 1
||M||2 > A§’2+A§’3 > —(Ag +A3,3)2 = §|tlrace(A)|2 = §|trace(M)|2. O

N =

As we argue below, one can apply Lemma 9.9 to see that, for every o€ S2,
2||M (0)||* = |traceM (o) |*.

We use this fact for the next lemma.

LEMMA 9.10. Let f:S5%—(0,00) be a C? function. Then, the following inequality
holds:

[ s @ do> [ QUM 5(0) P+ race(M 5 (o)) do
Proof. The matrix A(c) given by
Aij (U) = bl‘ V(bj V]ng)

is of rank at most 2, because the vectors b1, by and b3 are linearly dependent at every o.

From Lemma 9.9, we deduce that
4| Miogy |1 = 2|| Miog s |* +[trace(Miog) %,

and then replace it on the left-hand side of Lemma 9.8. O



THE LANDAU EQUATION DOES NOT BLOW UP 359

The inequality in Lemma 9.10 is how we have managed to turn the trick in Lemma 9.7
into an inequality relating Miogs to M, /7 (plus an extra term). With (9.10) at hand, what
remains in order to prove Lemma 9.1 is using the integral involving M /7 to bound the
integrals of (b;-V+/f)2.

The following lemma is the version for M (o) of the well-known fact that the integral

of |[D%g|? and |Ag|? coincide for any twice differentiable function g: T¢—R.

LEMMA 9.11. Let g: S? =R be any C? function. Then, the following identity holds:

L(gbi.v(bi.vg))? d":/sz Mg(a)nzd"*;/52§;(bi~vg)2dg
- 23_: /Sz(bz"v(bj-Vg))2 do.

Proof. We integrate by parts starting from the left-hand side, getting

3 2 3
I:=A2(;bi~v<bi-v9>) io=3 [ eV 0eT) 0, (0,-90) do

i,j=1
3
=3 [ 0V (b0 V) do
ij=1795%
We introduce commutators to switch the order of differentiation:
3
1= 3 [ H0e Vo) bV (0T 0-9) = (5 Vg) (1.1 V- V)] do
ij=1

We integrate by parts again:

3
T= 32 [ (0 0V0)) (V0 V0) = (b V) (b)Y (1Y) o

i,j=1
We use that the antisymmetric part of the second derivatives correspond to differentiation
along commutators [b;, b;], getting

3
_ 2 ([bi,b,]-Vg)?
I=3 /SQ(I(Mq)ijI _4—(bi'vg)([bi,bj]-V(bj-Vg))> do.

i,j=1
We now apply another commutator to the second term and integrate by parts again:

_y ([bi,b;]-Vg)?
I= Z /5’2(|(Mg)ij|2_4_(bi'VQ)([[biabj],bj]'vg))

4,j=1

(0 59) [3.0]-V) ) do.
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Note that [[b;, b;], b;]=—b; whenever i#j. Moreover, exchanging ¢ with j in the last term,
the symmetric part of b;-V(b;-Vg) cancels out and we are left with, yielding

¢ - bl 2 ey )
I= Z A2 (|(Mg)ij|2_W+5i¢j(bi.vg)2_([bz,bj;vg)> do

ij=1
1 3

= Mgy|?do+= b;-Vg)? do.

[l aos 32090 do

The second identity follows from Lemma 9.4. O

The last ingredient needed for the proof of Lemma 9.1 is a Poincaré inequality on

the sphere.

LEMMA 9.12. Let g: S?—R. Assume that g(o)=g(—0o) for all c€S?%, and that g

has average zero on S2. The following inequality holds:

3

b;-Vog)?do =6 g% do.
>/
i=175% 52

Proof. The identity (9.3) says that

3
|vog|2 = Z(bv 'vrrg)27

i=1

so the desired inequality is equivalent to

/|Vog|2d026/ g° do.
52 52

This inequality amounts to an elementary observation about the eigenvalues and eigen-
functions of —A,, which are well understood. The eigenfunctions of —A, correspond
to spherical harmonics. The first three eigenvalues are 0, 2 and 6. They correspond
to constant functions, first-order spherical harmonics, and second-order spherical har-
monics. Since g has average zero and g(o)=g(—0), then it is orthogonal in L%(S?) to
the eigenspaces corresponding to the first and second eigenfunctions. We obtain the

inequality of the lemma because the third eigenvalue of —A, equals 6. O

LEMMA 9.13. Let f:5%—(0,00) be C? and even (i.e. f(o)=f(—0)), and M, be as
in (9.7). The following inequality holds:

3
17
M, 2fdo>— b;-Vlogf|*f do.
[ Wees@Psdo > S [ oeFioas o
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Proof. We start from applying Lemma 9.10:

[, Vhoes )| do

2/ (2||M\/?(U)H2+|traceM\/f(a)|2)da
S2
3
:/32 (2<i§::1(bi.V(bj.V\/f)) )—2||N\/7(U) +|traceM  7(o)| )da.

We use Lemma 9.4 to compute the middle term that involves N 7
| gy @) do
3
2/ < (Z (b-V (b;-VF)) >—|—|trace M /7(0))| )da—/ > (bi-Vlogf)* f do.
52 i=1

1,9=1
We apply Lemma 9.11 to g=+/f to replace the second term:
3 3
[52 ||Mlogf(a)||2fda>[52 3( > (bi-V(bj-V\/f)f) 0—7/ > (bi-Viogf)* f do.
ij=1 i=1

Applying Lemma 9.12 to g=b;-V+/f, we get

2 . 2 1 : 2
/52 [Miogs (o) fda}lS/SQZ(waV\/?) dcr4/522(bi~V10gf) fdo
(—)/ Zb Vlogf)?f do. O

Proof of Lemma 9.1. We combine Lemma 9.4 with Lemma 9.13. O

Remark 9.14. The quantities involved in this section correspond to intrinsic geomet-
ric objects on the sphere S?. The identity (9.4) says that, for any C? function g: S2—R,

3
D biV(bi-Vg) = Agyg.
i=1
It can be seen that other quantities that play a role in this section correspond to the
following objects:

3
1 1
84,12 = V2915 Vgl and [N,2 =5 S 10 Vool = 5[Vog

i=1
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Here V, and A, are respectively the gradient and the Laplace-Beltrami operators in $2
with its standard metric. The proofs in this section can be written in terms of these
intrinsic objects. We write it in terms of the vector fields b; to keep a uniform notation
throughout the paper, and to keep the proof more elementary.

Moreover, the integrands in Lemma 9.1 correspond to the carre-du-champ operator
I' and the operator I'; in the Bakry—Emery formalism. In fact, from the definition of '

and I'y one can check that, for any smooth function g: S2 =R,

Y (h-Vg) =T(g.9) and > (bi-V(b;-Vg))*=Ts(g,9)-

i,j=1 1,5=1

One only needs to make use of the above expressions for V,g and A,g in terms of the
b;’s, expand the resulting terms, and use the commutator identities for all [b;,b;] to get
the needed cancellations. For the reader’s convenience, we recall the definition of the

operators I" and I's associated to the Laplacian A,:

I(f.g) = Ag(fg)*f(A;g)*(Aaf)g’

A, (T(f,9)-T(f,Asg)—T(As f,9)
; .

FQ(fv g) =

Remark 9.15. The optimal constant for the I'; criterion on the sphere is well known
to be equal to 2 (see [4, §5.7]), which would not suffice to prove our main result in
the case of Coulomb potentials. We get an advantage, due to the symmetry assump-
tion f(o)=f(—o) that is effectively equivalent to consider functions on the projective
space RP2. A discussion of the best known constants in this setting, and an improve-

ment over the constant of Lemma 9.1 is given in [38].

10. The monotonicity of the Fisher information

In this section we complete the proof of Theorem 1.1 as a consequence of the results in

the previous sections.

LEMMA 10.1. Let F:R®—(0,00) be a smooth function with rapid decay at infinity
such that F(v,w)=F(w,v). Let Dgpherical and Rspherical be the quantities defined in (8.3)
and (8.4), respectively. Then, the following inequality holds:

19

Dspherical = ? Rspherical .
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Proof. Let us parametrize v and w in the following way: we let z::%(v+w) €R3 and

we write 1(v—w)=ro for r€[0,00) and o €S2 In these coordinates,
v=z+ro and w=z-r0. (10.1)
The Jacobian of this change of variables corresponds to
dv dw = 82 do dz dr.

Note that |[v—w|=2r and by (v—w)=2rbi(c). Moreover, for any vector b perpendic-
ular to o, we can think of b as a vector on the tangent space of S? at ¢ and we observe

that, for any function G: R®—R, one has
b-V oG =rb-(Vy— V)G

In particular, with G=logF, it leads to
b (v—w)-VlogF = 2rby(0)-(Vy— Vi )logF = 2bi () - VlogF.
The symmetry condition F(v,w)=F(w,v) translates to F(z,r,0)=F(z,r,—0) in
terms of the new variables.

We rewrite Dgpherical 80d Rspherical in these coordinates:

3
o 2
Danerica= 3 [ [ CE16100) V. ty(0) T loe )P s0% dordr i

ij=1

:16/}1@/000a(2r)<

3 00
Repherical = Y / / / O‘(2§ ) 401 (0) -V log F)? F(81° do dr- d2)
1 R3 JO S2 47‘

:8/Rs /OOO a(2r)(gfsz(bk(a).vglogF)QFda) dr dz.

For each value of z€R? and r€(0, c0), the inner integrals with respect to o (the ones

3
> /S bi(0)- Vo (bj(0)-VologF)[*F da> drdz,

4,J=1

inside the parenthesis) satisfy the inequality of Lemma 9.1. Therefore, we conclude that
%Dspherical P 14T9 Rspherical- EquivalentIY7 Dspherical = 1*QQRSpherical- O
PROPOSITION 10.2. If «(r)>=0 is any interaction potential such that, for all >0,
!/
o'l _ s,
a(r)
then (3.5) holds for any smooth function F:R%—(0,00) with rapid decay at infinity such
that F(v,w)=F(w,v).
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Proof. Combine Lemma 8.4 with Lemma 10.1. O
Theorem 1.1 is essentially proved already.

Proof of Theorem 1.1. Note that Proposition 10.2 tells us that (3.5) holds whenever
f:R3—(0,00) is smooth, well-behaved at infinity and strictly positive. Therefore, the
right-hand side in Lemma 3.4 is non-positive and Theorem 1.1 follows in that case.

If f has vacuum regions, or if its tails are not sufficiently well-behaved, we can
approximate F with a smooth and well-behaved function and pass to the limit. For

example, let n: R®—[0,1] be a smooth function such that
n=11in B; and n=0 in R®\ B,.

We set
F.(v,w)=(F(v,w)+e)n(ev,ew)+(1—n(ev, 5w))6*|’0‘2.

This function F. converges to F' as e—0. Moreover, for each £>0, F.>0 and equals a
Maxwellian for large values of v and w. We thus know that (3.5) holds for F;, and then
we deduce that it also holds for F. For a more thorough description of this technical

approximation argument, see Appendix B. O

Remark 10.3. The operator @) has a very simple expression in terms of the variables

z, r and o. From the observation that
bi-VF =2b;(0)-V, F

and (9.4), we see that
Q(F)=4a(2r) A F.

Here, A, is the Laplace-Beltrami operator with respect to o on S2.

11. The global existence theorem
In this section we explain how Theorem 1.1 is used to obtain Theorem 1.2.

Proof of Theorem 1.2. We recall that the result is already well known in the case
~€[0,1] from [54], [19]. It is also easy to derive for y€[—2,0], as a consequence of the
upper bound in [46]. We focus on the case v<—2.

Given any initial data as in Theorem 1.2, we construct a solution for a short period
of time [0, T"), with 7">0, using Theorem 2.1. This solution becomes immediately smooth
and rapidly decaying. Applying Lemma 2.6, we observe that the Fisher information i(f)
also becomes finite for any small ¢>0.
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The continuation criteria in Theorem 2.1 tells us that the solution can be extended
for as long as || f(¢) ”LZ‘(’] is bounded. In other words, the solution may blow up at time 7'
only if

lim [ f|[ e = +00.

Also, from Theorem 2.1, during the interval [0, T') the solution is C*°, strictly positive
and bounded by C(t)(v) =% (here, C(t)=|f(t) ”Liﬁ might be blowing up as t—7T'). Under
these conditions, we are able to apply Theorem 1.1 and deduce that its Fisher information
is monotone decreasing on the time interval (0,7). In particular, for ¢;>0 small, the
Fisher information will remain smaller or equal to i(f(tp)) in the interval [to,T]. It
implies the uniform boundedness of || f(¢)||zz. Indeed,

i
1£1lzs = IVFI2e < CIVF I = Zif)_

From Theorem 2.4, we also know that || f(¢)||z; remains bounded in [0, 7] for all ¢>0.

Interpolating between || f(¢)[| 2 and | f]|Ls, we deduce that || f(¢)|[1r is bounded for any
p in the range (1,3) and any large exponent k. We can thus apply Theorem 2.2, since
3/(5+7)<3. We deduce that

1 £(8)]|Lee < Cs(14(t—t) ~3/2P),
for a constant C3 that depends only on p and the mass, energy and Fisher information

of fo. Since the function f is certainly bounded in some short time interval [0, d] (from
Theorem 2.1), we deduce that

Hf(t)HLoo <C4 for te [O,T), (111)

for a constant Cj.

We want to apply Theorem 2.3. It propagates a Maxwellian upper bound when the
exponent 5>0 is sufficiently small depending on the mass, energy and entropy of f. This
is not a restriction for us because, if fo(fu)gc'oe*ﬁ'“‘2 for some Cy and 5>0, then the
same inequality also holds with a smaller value of 5. We can therefore assume without
loss of generality that >0 is small.

Using the upper bound (11.1) and the moment bounds together with Theorem 2.3,

we deduce the following uniform Maxwellian upper bound for t€[0,T):
flt,v) < Cse PV,
But this means that || f| e is uniformly bounded in [0,7") for any exponent k. Thus,

the solution can never blow up according to the continuation criteria in Theorem 2.1.

The uniqueness of the solution follows from Theorem 2.5. O

Remark 11.1. Note that the only a-priori estimate on [0,7] used in the proof of
Theorem 1.2 that may deteriorate as T— o0 is the moment estimate from Theorem 2.4,
in the case v<0.
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Appendix A. The 2-dimensional case

It is slightly simpler to prove a version of Theorem 1.1 in two dimensions, following

approximately the same steps in the proof. We state the result here.

THEOREM A.1. Let f:[0,T]xR2—[0,00) be a classical solution to the space-homo-

geneous Landau equation (1.1). Assume that the interaction potential « satisfies

rla’(r)]

a(r)

Then, the Fisher information i(f) is monotone decreasing as a function of time.

<4 for all r>0.

The proof of Theorem A.1 follows the same steps as the proof of Theorem 1.1. We
sketch the differences here. We only need one vector field by to write Q(F'), for a function
F:R*—[0,00). We write

b(v—w)= v and b = b .
w1 — vy —b

With this notation, we have
Q(F)=ab,-V(b,-VF).

Since we have only one vector by instead of the three vectors by, bo and bs, the resulting
formulas are simpler and involve no summation. Following the same line of thought as
for the 3-dimensional case, we end up with

1 , ,’,.20[/(7,.)2
7<I (F)Q(F)7Q(F)> < *Dparallcl*DradiaI*Dsphcrical‘Fsup W Rsphcricah

2 >0
where
D=3 [ alo=wl)FI(00, +0u, )b ViogF P du do (A1)
Dmdial::/F|a.V(\/aél-v1ogF)|2dw dv (A.2)
Dspherical::/ﬁF‘Bl'V(El'VIOgF”? dw dv (A.3)
Repherical i= / ﬁF(l;yVlogF)%lw dv. (A4)

We still want to control Repherical With Dgpherical. It is achieved after the following

lemma.
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LEMMA A.2. Let f: S1—(0,00) be a C? function on the circle such that f(o)=f(—o)
for all €S, Then, the following inequality holds:

f(by-V(b1-Viogf))? da>4/ f(by-Viogf)? do.
St St

In this case, the factor 4 on the right-hand side is optimal. It is achieved asymptoti-
cally for a function f=1+eg as e—0, when g is the third eigenfunction of the Laplacian
on St.

The proof of Lemma A.2 is significantly easier than Lemma 9.1. Since there is only

one direction by, we apply Lemma 9.7 and obtain right away
f(bl-V(bl-Vlogf))Qda>4/ (b1-V(b1-V/f))? do
st st

Since f(o)=f(—0), then b;-Vf is orthogonal to the first two eigenspaces. The third

eigenvalue of —92 in S! is equal to 4. Then, we get

f(b1~V(b1~Vlogf))2d0216/ (bl.v\/f)2da:4/ f(by-Vlogf)? do.
St St St

We conclude that Dgpherical =8 Rspherical, and use it to finish the proof of Theorem A.1.
If we want to carry out the analysis in this paper in R? for d>3, we would have to

consider %d(d—l) vectors b;’s. For example, in four dimensions, the six vectors would be

V2 — w2 W3 —v3 Vg — Wy
w1 —v1 0 0
bl = ) bQ = ’ b3 = )
0 V1 — w1 0
0 0 W1 — Vg
0 0 0
V3 — W3 Wy — Vg 0
b4 = ) b5 = ) bﬁ =
Wo — V2 0 Vg4 — W4
0 Vg — Wo w3 — V3

There is a result similar to Lemma 9.1 in any dimension. However, the constant
factor on the right-hand side depends on the dimension, as well as the range of admissible
values of |ra/(r)/a(r)| for the higher-dimensional counterpart of Theorem 1.1. The values
we computed in this paper for the 3-dimensional case are probably not optimal. It would

require some work to compute the sharp range in arbitrary dimension.
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Appendix B. On the decay of the tails of our integrals

Throughout this paper, we work with solutions f that are C* and decay as |v|— oo faster
than any algebraic rate. The equation (1.1) is understood in the classical sense. There
are several instances where we consider the derivative of the Fisher information and we
end up with integrals in R® involving two or three derivatives of logf. All the integrands
are homogeneous of degree 1 in f. It is natural to expect them to decay rapidly as
|v|—o00. However, some justification is required, since logf and its derivatives have some
growth as |v|—o0. It is not completely inappropriate (even if admittedly pedantic) to
provide a justification that all the integrals in this paper make sense. We describe it in
this appendix, so that the reader is not distracted through the main text of the article.

In the proof of Theorem 1.1, we argued that a generic function F' can be approxi-
mated with a strictly positive function which agrees with a Maxwellian for large veloc-
ities. This approximation can be used, whenever necessary, to justify that the lemmas
and inequalities throughout this paper apply to a much wider class of functions. In
this appendix, we show that the upper and lower Maxwellian bounds introduced in this
approximation are propagated in time by the Landau equation. Thus, we show that
these solutions to the Landau equation (1.1) will always be well-behaved, C'°° smooth,
strictly positive, and with well-behaved tails for |v|—o00. Theorem 2.1 justifies the ma-
jority of these statements. The only condition that remains to be justified is that the
derivatives of logF are appropriately bounded for large velocities, so that the tails of
the integrals throughout this paper are convergent. In this appendix, we describe the
procedure to approximate the whole solution to (1.1) with solutions f¢ for which we
verify these bounds.

One sufficient condition that would easily validate all the integral expressions in this

article would be when

_ 2
fe i,

(1—HVlogf|—|—\Dzlogf|)ge‘g‘vl2 for e < 3.

We will show that this condition is satisfied for a general class of initial data fo. If fy is
bounded below and above by a multiple of the same Maxwellian, that is

fO ~ 676|v|2 )
then these bounds can be propagated in time following the ideas in [14] for as long as

there is a classical solution to the equation. Bounds on the derivatives of logf follow
applying standard parabolic estimates.
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Below, we briefly review the propagation of Gaussian bounds following techniques
from the literature. It is a completely standard technique, so we only sketch the proofs
here.

We explain the propagation of Gaussian bounds in the case a(r)=r" with y€[-3,0].

In the case y€]0, 1], upper and lower bounds of the same kind are obtained in [19].

PROPOSITION B.1. Let f:]0,T]xR3—[0,00) be a solution of (1.1) with a(r)=r7,
~E€[—3,0] and initial data fo. Assume that, for some >0, 6o>0 and Cy, one has

folv) = doe P17,

flt,v) < Cge*m”lz.
Then, for any €>0, there is a §1>0 such that
F(t,v) > e Prall,
for all t€[0,T) and all vER3.
Sketch of proof. We write the Landau collision operator in non-divergence form:
q(f) =ai;0f +cf,

where
a1 = / o(fv—w])ag; (v—w)f(w) dw, = —d,ai; >0.

We follow the same idea as in [14, Theorem 4.3], but with a Maxwellian bound from

below. We must find a function (¢, v) which is a subsolution to
O < aijOijp+cy.

Following [14], we know that, if ¢(0,v)< f(0,v), then we will also have (¢, v)< f(t,v)
for all t€[0,7] and all veR3. We claim that the function

w(tv U) _ 5O€7C1t75t|v\267ﬂ|v\2

satisfies this differential inequality.
It is well known that the coeflicients a;; satisfy certain ellipticity bounds. We have,

for some constants A>A>0,

{aij} 2 M) ((WPI = (v&@v))+(v) 7 (v&w)),

(B.1)
{ai;} <A ) (([0]* = (v©v)) +(v) > (v@W)).
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The constant A>0 in the lower bound depends only on the mass, energy and entropy
of fo. The proof is the same for any value of y€[—3, 1]. It can be found in [46, Lemma 3.1]
and [19, Proposition 4]. For a proof of the upper bound, see [14, Lemma 2.1] and the
proof of Theorem 2.3 in §2.
Plugging these estimates on our function 1, we see that
0rp = —(Cr+elvf*)o,
a0+ > ;5050 2 —Aw) 2.

We pick C; sufficiently large so that for all v€R? we have
Crtelvl* 2 A{)+2,

and we finish the proof. O
The derivatives of f can be bounded using standard parabolic estimates.
PROPOSITION B.2. Let f:[0,T]xR3—[0,00) be a solution of (1.1) with a(r)=r",

€[—3,0]. Assume that, for some >0 and Cy,
ft,v)< Coe PP,

Then, for any €>0, there is a constant Cy (depending on T and Cy) such that

Vo f(t,v)] < C’le*(ﬂ*s)\vﬁ7
ID2f(t,v)| < Ce~ Bl

for all te [3T,T| and all veR?.

Sketch of proof. The function f satisfies the equation
Jt=a;0; f+cf.

The coefficients a;; satisfy the ellipticity bounds (B.1). Moreover, from the Gaussian
upper bound on f, we can deduce that both a;; and ¢ are Holder continuous in wv.
In order to overcome the difficulty that the ellipticity condition degenerates as |v|— o0,
for every to>0 and every vg€R?® we use the change of variables T;,, described in [14,
§4]. It maps a parabolic ellipsoid around (tg,vp) into (—1,0]x By, and the function f
into a function f that satisfies a linear parabolic equation whose coefficients are elliptic
with parameters uniform with respect to vg. We may further rescale it to make the
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Hoélder norm of the coefficients less than one. Applying the Schauder estimates to this

function f , we obtain
|D12)f~(0)| < C”JE”LOC((—LO]XBl) 5675‘”()' .

Rewriting the estimate above in terms of the original function f, we obtain, for some

computable exponent meN,
|D2f(to, v0)| < C<U0>me—5\vo|2 < Cre~(B=a)lvol”

Some early references to the Schauder estimates depending on the Holder norm of the

coefficients in space only are [11], [40]. O

Combining the upper bound from Theorem 2.3, the lower bound of Proposition B.1
and the bounds for the derivatives of Proposition B.2, we see that, whenever f is a
solution of (1.1) with initial data fy such that

doe™P1F < fo(v) < Coe™ 10T,
then for any £>0 and >0 there exists a constant C; such that

[Vulogf (t,v)| < Coc”!*T,
|D2log f(t,v)| < Coell’.

Not only do the solutions of the Landau equation decay at large velocities, but so
do their derivatives. We can use that to deduce that the coefficients a;; are also C'*°,
and deduce estimates like those of Proposition B.2 for higher-order derivatives of f.

The potential growth of Vlogf and D?logf is of lower order than the decay of f,
as |v|—oo. This is enough to conclude that every integrand considered in this paper
decays faster than some Gaussian rate as [v|—o00. It shows that all our integrals are well
defined, and our manipulations (such as integration by parts) are fully justified at least
when the initial data f; satisfies these Gaussian bounds.

If fo is a generic function with arbitrary decay and perhaps some vacuum regions,
we may approximate fo following the same rule as in the proof of Theorem 1.1. More

precisely, let f¢ be the solution to (1.1) with initial data

fE(O’ U) = (fO(U)+€)77(€’U)+(1f77(5v))67|“‘2.

Here, 7: R3— [0, 1] is a smooth function supported in By such that n=1 in Bj.
As we discussed above, this solution f¢ propagates in time the Gaussian bounds
from above and below. For this approximate solution, all our computations are justified
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and Theorems 1.1 and 1.2 hold. We deduce that, for every >0, there exists a global-

in-time smooth solution whose Fisher information is monotone decreasing. As e—0, f¢

converges to f, which is the unique (from Theorem 2.5) solution to (1.1) with initial

data fy. The convergence holds for example in L>* for f, for any exponent k, and
in L>°([0,T], H*(R?)) for v/f. We conclude that the Fisher information of an arbitrary
solution f of (1.1) is monotone decreasing in time, assuming only that fo€L>* for k as
in Theorem 2.1 and /f e H'.
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