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1. Introduction

The Landau equation was derived in 1936 by Lev Landau [42] to model the evolution of

densities of particles performing Coulomb collisions in a plasma. It can be derived as a

limit case of the Boltzmann equation when the grazing collisions dominate the evolution.

It is one of the central equations in kinetic theory. In the space-homogeneous case, it is

given by a very simple formula

ft = āij@ijf+f
2
, where āij =�@ij(��)�2

f.

A more general family of equations is usually studied. It has the form

ft = q(f), (1.1)

where the operator q(f) is given by the formula

q(f)(v)= @vi

Z

R3

↵(|v�w|)aij(v�w)(@vj�@wj )[f(v)f(w)] dw. (1.2)

Here ↵ (0,+1) [0,+1) is an arbitrary non-negative function and

aij(z)= |z|2�ij�zizj .

We will refer to ↵ as the interaction potential. It is common to study the case ↵(r)=r
�

with �2[�3, 1]. The most important case is ↵(r)=r
�3 that corresponds to the original

Landau equation written above, for charged particles interacting with Coulomb poten-

tials.
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316 n. guillen and l. silvestre

For a positive function f :R3 (0,1), its Fisher information is defined by the fol-

lowing expression

i(f) :=

Z

R3

|rf |2

f
dv. (1.3)

The formula (1.3) is extended to the case that f has vacuum regions by setting

|rf |2

f
=0

at those points.

Our main result is the following.

Theorem 1.1. Assume that f : [0, T ]⇥R3 [0,1) is a classical solution to the space-

homogeneous Landau equation (1.1). Assume that the interaction potential ↵ satisfies,

for all r>0,

r|↵0(r)|
↵(r)

6
p
19,

then the Fisher information i(f) is monotone decreasing as a function of time.

We present Theorem 1.1 as an a-priori estimate for classical solutions. By that,

we mean smooth functions f that decay su�ciently fast as |v| 1. Our second main

theorem tells us that the equation has global smooth solutions for every reasonably nice

initial data.

The assumption of Theorem 1.1 holds for any power-law interaction ↵(r)=r
� , with

� in the usual range �2[�3, 1]. It even goes beyond that range if the Landau collision op-

erator is understood appropriately taking into account the cancellations in the integrand

of (1.2) for |v�w| small. Our parameter
p
19 is not optimal. After we posted online a

first version of the this article, Sehyun Ji improved the computation of the threshold of

applicability of Theorem 1.1 to

r|↵0(r)|
↵(r)

6
p
22

in [38]. There is no reason to expect this condition to be optimal either. We are currently

not aware of any example, for any interaction potential, of a solution for which the Fisher

information is not monotone decreasing.

As a consequence of the monotonicity of the Fisher information, we deduce the global

existence of smooth solutions in the very-soft-potential range.
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Theorem 1.2. Assume that ↵(r)=r
� , for �2[�3, 1]. Let f0:R3 [0,1) be an ini-

tial data that is bounded by a Maxwellian in the sense that

f0(v)6C0e
��|v|2

,

for some positive parameters C0 and �.

Then, there is a unique global classical solution f : [0,1)⇥R3 [0,1) to the Landau

equation (1.1), with initial data f(0, v)=f0(v). For any positive time, this function f is

strictly positive, in the Schwartz space, and bounded above by a Maxwellian. The Fisher

information i(f) is non-increasing.

The remarkable new feature of Theorem 1.2 is that it applies to the very-soft po-

tential range �6�2. The most important case of Theorem 1.2 is ↵(r)=r
�3, which is

the original equation by Landau and corresponds to the evolution of the velocity den-

sity of charged particles that interact by Coulomb potentials. Regularity estimates for

this equation have remained an elusive well-known open problem for several years. The

di�culty comes from the fact that the reaction term is too singular to be bested by the

di↵usion term when we only use the previously known controlled coercive quantities of

mass, energy and entropy. The boundedness of the Fisher information, which is provided

by Theorem 1.1, overcomes this di�culty altogether.

Remark 1.3. Theorem 1.2 is a relatively direct consequence of Theorem 1.1 combined

with well-known techniques. There are various short-time well-posedness results in the

literature that one can apply, as well as conditional a-priori estimates. A slightly di↵erent

version of Theorem 1.2 would result from di↵erent choices between them. For example,

it is possible to replace the Maxwellian upper bound for f0 with the condition f02L1
k

for k su�ciently large, and it would lead to correspondingly weaker decay conditions for

the solution f .

Using our Theorem 1.1, minimalist assumptions on the initial data for which the

Cauchy problem is solvable are investigated in the recent preprints [17], [39].

Remark 1.4. A version of Theorem 1.1 for the homogeneous Boltzmann equation is

obtained in [36]. In that recent preprint, Cyril Imbert, Cedric Villani and the second

author reproduce much of the analysis of this paper in the context of the Boltzmann

equation. However, a new di�culty emerges that requires the development of a highly

non-trivial integro-di↵erential version of the inequality of §9.
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1.1. Historical remarks and references

Given that the Landau equation is one of the main equations in statistical mechanics,

especially in the Coulombic case ↵(r)=r
�3, it is no surprise that it has received a sig-

nificant amount of attention from the mathematical community through the years. It

is impossible to review all the literature in the subject. We discuss some of the most

relevant results below.

The analysis of the Boltzmann equation, as well as the Landau equation, involves sig-

nificantly simpler formulas in the case of the Maxwell-molecules model (which is ↵⌘1)

than in the case of general interaction potentials. One of the reasons is that there is

a manageable expression for the Fourier transform of the operator due to Alexander

Bobylev (see [6] and [7]). It is also well known that the evolution of the equation is

contractive with respect to the quadratic Wasserstein distance (see [49] and [10]), and

that the Fisher information is non-increasing along the flow (see [52] and [55]). We natu-

rally wonder if these properties fail to be true in the case of other interaction potentials,

or if they hold in more generality but proofs are only well understood in the case of

Maxwell molecules due to the simpler arithmetic structure of the operator. Is the Fisher

information monotone decreasing for the Boltzmann and Landau equation for some in-

teraction potential other than Maxwell molecules? What about the entropy dissipation?

What about the contractivity of the Wasserstein distance? We answer the first of these

questions for the Landau equation in Theorem 1.1.

It is rather unusual to find a new explicit Lyapunov functional for a very well stud-

ied equation in mathematical physics. Moreover, most basic conserved and monotone

quantities in PDEs are verified by a relatively simple computation. It is also unusual to

find a simple Lyapunov functional whose proof is non-trivial.

The first reference to the monotonicity of the Fisher information in a kinetic equation

is in an interesting paper by McKean in 1966 [44]. He considers Kac’s 1-dimensional

caricature of the Boltzmann equation with Maxwell molecules. He proves that the Fisher

information is monotone in this context. The paper includes a number of opinions and

conjectures including the following.

• The author writes that the Fisher information “probably fails to decrease” in the

3-dimensional problem.

• He conjectures (in the context of the Kac equation) that the functionals that result

as higher-order derivatives of the entropy by heat flow are all monotone. He reports that

he tried to prove it but could not do it.

• He conjectures that the entropy dissipation for the Boltzmann equation should be

monotone decreasing. He even suggests that its derivative may be monotone as well.
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In 1992, Giuseppe Toscani proved the monotonicity of the Fisher information for

the 2-dimensional Boltzmann equation in the Maxwell molecules case [50]. Toscani con-

jectures that the Fisher information can probably be proved to be monotone “at least

in the case of inverse power interaction potentials”, but he states that it is still an open

question.

In 1998, Villani proved the monotonicity of the Fisher information for the Boltzmann

equation with Maxwell molecules in arbitrary dimension [52]. The proof, which one may

say uses similar ideas as in Toscani’s paper, involves more complicated geometry and

formulas. In 2012, Matthes and Toscani provide a very short alternative proof based

on Fourier analysis [43]. This proof is very specific to ↵⌘1 and provides no intuition

about other interaction potentials. In the introduction of [52], Villani writes “We also

investigate briefly the case of arbitrary potentials, and show precisely why the Maxwellian

case seems to depart from the other”, which reflects the limitations of methods available

then when it came to general power law potentials.

The monotonicity of the Fisher information for the Boltzmann equation implies the

monotonicity for the Landau equation as a limit case. In 2000, Villani wrote a direct

proof in the case of the Landau equation with Maxwell molecules [55]. While the paper

[55] is fairly short, the proof is non-trivial. The intuition is arguably harder to grasp than

in the Boltzmann case. In §5, we provide an alternative proof for the Landau equation

in the Maxwell molecules case, which is in some ways the starting point for our general

method for Theorem 1.1.

Other recent publications studying the evolution of the Fisher information are [2]

for the hard-potential case and [45] for moderately soft potentials. They present upper

bounds (not monotonicity) for the Fisher information that are uniform in time. These

are scenarios in which there are well-known global-in-time regularity estimates.

The great majority of the regularity estimates for the Landau equation in the past

use a decomposition for the Landau collision operator (1.2) as a sum of a di↵usion term

plus a lower-order term. In non-divergence form, it reads

q(f)= āij@ijf+c̄f,

where

āij =

Z

R3

↵(|v�w|)aij(v�w)f(w),

and c̄=�@ij āij . Some ellipticity bounds can be deduced for the coe�cients āij based

only on the mass, energy and entropy of f . The reaction term c̄f is more singular when

� is more negative. The majority of the estimates in the literature are obtained using

parabolic estimates for the di↵usion term and using them to control the other term. We
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320 n. guillen and l. silvestre

do not use this decomposition in our proof of Theorem 1.1. When �>0, the reaction term

is very simple because c̄ is bounded pointwise in terms of the mass and energy of f . When

�2[�2, 0], the reaction term can still be controlled with the help of ellipticity estimates

from the di↵usion term. For the very-soft potential range �<�2, the reaction term is

too singular to be controlled from the di↵usion term. This is vaguely the reason of the

main di�culty in establishing unconditional bounds in the very-soft potential range.

The early results on classical well-posedness for the Landau equation focused on the

Maxwell-molecules case (�=0) or the hard-potentials case (�>0). Villani investigated

the Maxwell-molecules case first [54], and later the case of hard potentials in collabo-

ration with Laurent Desvillettes [19], [20]. The regularity in the hard-potentials case

was revisited by El Safadi in [21]. Our understanding of the global well-posedness and

smoothness for �>0 is very satisfactory. For moderately soft potentials, there are regu-

larity estimates in [58], [46], [31], from which one can construct global smooth solutions,

as in Theorem 1.2.

For very soft potentials, which is the range �2[�3,�2), the global classical well

posedness of the equation has been an elusive and well-known open question for several

years. This is the most interesting range, because it includes the original Landau equation

for Coulomb potentials which is �=�3. The development of our understanding before

this work was comparable with our current understanding of the Navier–Stokes equation

(in terms of what the known results are). The results in the current literature can be

roughly classified in the following groups.

Global-in-time weak solutions. In 1998, Villani defined a notion of generalized so-

lution for the space-homogeneous Boltzmann and Landau equation [53], which he called

H-solution. He was able to prove the existence of global solutions of this kind, but not

the uniqueness. In some way, Villani’s result for the Landau equation plays the same

role as Leray’s global weak solutions do for the Navier–Stokes equation. See also [3] for

an earlier notion of generalized solution.

From an entropy dissipation estimate, Desvillettes proved that the H-solutions con-

structed by Villani belong to L
1([0, T ], L3

�3(R3)) and are in fact weak solutions in a more

classical sense [16] (see also [37]).

Francois Golse, Maria Gualdani, Cyril Imbert and Alexis Vasseur showed that the

global weak solutions constructed by Villani are smooth outside of a potential set of

times of dimension at most 1
2 (see [27] and [26]).

In a recent preprint [28], Golse, Imbert and Vasseur prove that the set of potential

singularities in (t, v) has parabolic Hausdor↵ dimension at most 7
2 in the case of Coulom-

bic potential. This result is more or less comparable with the Ca↵arelli–Kohn–Nirenberg

partial regularity theorem for Navier–Stokes, except that the dimension they obtain is
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larger in the case of the Landau equation. In [28], they also prove that axially symmetric

solutions of the Landau equation with very soft potentials are smooth away from the axis

of symmetry.

Short-time existence. Short time existence results are obtained by Nicolas Fournier

and Hélène Guérin [23], by Chris Henderson, Stanley Snelson and Andrei Tarfulea [34], by

Hyung Ju Hwang and Jin Woo Jang [35], and by William Golding and Amélie Loher [25].

Perturbative theory around the Maxwellian. When the initial data is su�ciently close

to a fixed Maxwellian in an appropriate sense, Yan Guo constructed a global smooth solu-

tion [33] (even for the space-inhomogeneous case). See also [24] for a more recent result

with weaker assumptions on the initial data but restricted to the space-homogeneous

case.

Partial progress aiming at the regularity of solutions. Conditional regularity results

are obtained by the second author in [46], and by Gualdani and the first author in [31].

These works imply in particular that if the solution to (1.1) stays bounded in certain L
p

space, for an appropriately large exponent p, then the solution will be smooth.

Recent results by Ricardo Alonso, Véronique Bagland, Laurent Desvillettes and

Bertrand Lods [1] and by William Golding and Amélie Loher [25], provide Prodi–Serrin-

type conditional regularity estimates depending on f2Lp([0, T ], Lq(R3)) for suitable pairs

of exponents p and q.

Other partial results regarding the regularity of the space-homogeneous Landau

equation with Coulomb potentials are given in [9], [5], [13], [47], [18].

Modified equations. In [41], Joachim Krieger and Robert Strain proposed an isotropic

toy model that retains some of the features of the original Landau equation for the case

of Coulomb potentials, and where blow up could be ruled out (for radial solutions). This

model and other variations is further analyzed in [29], [30], [32], [48]. Other simplified

radially symmetric models are analyzed by Alexander Bobylev in [8].

The di�culty of obtaining unconditional regularity estimates for the Landau equa-

tion with Coulomb potentials (resolved in Theorem 1.2) is mentioned as an outstanding

open problem in the majority of these papers.

The problem of establishing the regularity of the Landau equation with Coulomb

potentials is also described in the open problems section of Villani’s book [56, §5.1.3].
Villani first argues that finite-time blow-up may be expected from an analogy between

the Landau equation and the non-linear heat equation. However, he reports that after

seeing some numerical simulations by Francis Filbet, he changed his mind and became

convinced that blow-up should not occur. See also the related numerical computations

in [12]. That a blow up does not take place is finally confirmed by our Theorem 1.2.
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In [57], Villani provides further details about the history of these problems, as well

as a description of the ideas leadinccg to the proof of the monotonicity of the Fisher

information for the Boltzmann equation in [36].

1.2. Outline of the paper and main ideas in the proof.

In this section we attempt to explain a rough outline of the ideas involved in the proof

of Theorem 1.1 and the general organization of the paper.

In §2, we review some of the results in the literature that we apply in this paper.

None of the results presented in this preliminary section is new.

The first idea leading to Theorem 1.1 is described in §3. We observe that we can

write the Landau operator as a composition of a linear elliptic operator in R6, and the

projection of a distribution function F in R6 over its marginal. More precisely, for a

function F :R6 [0,1) with unit integral, we write

⇡F (v) :=

Z

R3

F (v, w) dw.

We also define the degenerate elliptic operator Q acting on functions F=F (v, w) as

Q(F )(v, w)= (@vi�@wi)(↵(|v�w|)aij(v�w)(@vj�@wj )F ).

With this notation, we observe that

q(f)=⇡Q(f⌦f), where (f⌦f)(v, w) := f(v)f(w).

It turns out that the projection over marginals reduces the value of the Fisher

information, in the sense that, for any symmetric probability distribution F on R6,

i(f)=
1

2
I(f⌦f)6 I(F ), when f =⇡F.

Here, we write I(F ) for the Fisher information applied to a function in R6. From this

inequality we argue that the Fisher information will decrease along the direction of q(f)

if I(F ) decreases along the direction of Q(F ) for any function F=F (v, w) defined on R6

such that F (v, w)=F (w, v).

This is a substantial simplification. The Landau operator, q, which is non-linear

and non-local, is now replaced by a linear elliptic operator with explicit coe�cients, Q.

Within this framework the known monotonicity of the Fisher information for Maxwell

molecules easily follows (see below). For all other potentials, estimating the derivative

of I along Q is still non-trivial and requires further ideas.
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In §4 we observe that, for certain vector fields b̃1, b̃2 and b̃3, we have

Q(F )=
3X

k=1

p
↵ b̃k ·r(

p
↵ b̃k ·rF ).

This observation, while elementary, will help us organize our formulas e�ciently. We use

these vectors and their properties extensively in the rest of the paper.

The transport of each of these vector fields b̃k ·r individually goes by isometries

in R6. Thus, I(F ) is constant along the flow of b̃k ·r. The fact that I(F ) is monotone

decreasing in the direction of Q(F ) in the case of Maxwell molecules follows immediately

from this and the convexity of the Fisher information I. This is explained in §5.
Whenever ↵ is not constant, the flow of

p
↵ b̃k ·r is not an isometry in R6. However,

it is an isometry when we restrict it to the level sets of ↵. With this idea in mind, in §6,
we define a modified Fisher information Itan that only takes into account the gradient

of F along the directions parallel to the level sets of |v�w|. This functional Itan is

constant along the flow of
p
↵ b̃k ·r. Using the same convexity argument as in the case

of Maxwell molecules, we conclude that

hI 0tan(F ), Q(F )i6 0,

with a precise estimate of its dissipation in terms of second derivatives of F .

The di↵erence between the full Fisher information I(F ) and the modified one Itan(F )

is only one direction, which we call n, and is the normalized gradient of |v�w| in R6.

We write

J(F ) := I(F )�Itan(F )=

ZZ

R6

|n·rF |2

F
dw dv.

In §7, we compute hJ 0(F ), Q(F )i to express it in a form that resembles as closely as

possible the structure of the dissipation of Itan. We do it through a direct computation

using the vector fields b̃k and Lie brackets. We end up with a negative di↵usion term

involving second derivatives of F and a positive error term of the form

R :=

ZZ

R6

|↵0|2

↵
(b̃k ·rlogF )2F dw dv.

In §8, we break the favorable di↵usion terms obtained in the previous sections into

three groups, depending on the directions of their second derivatives. We isolate one term,

which we call Dspherical, that only takes into account second derivatives in the directions

of the vector fields b̃k’s. We claim that this di↵usion term can be used to control the error

term R. After using polar coordinates and performing some manipulations, we reduce
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324 n. guillen and l. silvestre

the problem to an inequality for functions on the sphere f :S2 (0,1) of the following

form: Z

S2

|r2
�
logf |2f d�>�

Z

S2

|r�logf |2f d�.

It is not di�cult to prove that the inequality holds for some �>0. However, it is important

for us to obtain a nearly sharp constant �. The maximum value that we are able to

handle for r|↵0(r)|/↵(r) in Theorem 1.1 (which is
p
19) depends on the value of � from

this inequality. We prove the inequality in §9 (written slightly di↵erently in terms of the

vector fields bk). It appears to be new as far as we are aware.

Finally, in §11, we explain how Theorem 1.1, combined with results from the litera-

ture, can be used to derive Theorem 1.2. There is no di�culty in §11.
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2. Preliminaries

In this section we collect the results from the literature that we use in this paper. The

results we state here are well known. They either appear explicitly or are straightforward

minor modifications of the results in the literature. We provide references in every case.

As it is customary, we write hvi=(1+|v|2)1/2 and, for any p2[1,1] and any k2R,

kfkLp
k(R3) := khvikfkLp(R3).

The mass, momentum and energy, that is

(mass) :=

Z

R3

f(v) dv,

(momentum) :=

Z

R3

f(v)v dv,

(energy) :=

Z

R3

f(v)|v|2 dv.

are constant along the flow of the equation.

To fix ideas, it is a comfortable choice to study solutions of the equation (1.1) with

unit mass and zero momentum. This will be preserved along the flow of the equation.
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We recall the following formula for the entropy:

h(t) :=

Z

R3

f(v)logf(v) dv.

The entropy is non-increasing for solutions of (1.1). Before this work, it was the only

natural quantity associated to the equation known to be monotone decreasing—outside

the Maxwell-molecules case ↵⌘1.

To begin the analysis of the equation, we start from a short-time existence re-

sult. There exist a few in the literature, both in the space-homogeneous and space-

inhomogeneous regime. The most complete that we know of is given in [34]. Restricted

to the space-homogeneous regime, it becomes the following result.

Theorem 2.1. (from [34]) Assume that ↵(r)=r
� for some �2[�3, 0). Assume that

f0:R3 [0,1) is an initial value such that f02L1
k0
, with k0=max{5, 15/(5+�)}. There

exists a positive time T>0 and a classical solution f : [0, T ]⇥R3 [0,1) to the equation

(1.1) with initial data f0. This solution satisfies the following properties :

• f(t, v)>0 for all t>0 and v2R3.

• f2C1((0, T )⇥R3) with upper bounds for t>0 for all derivatives.

• If f0 is continuous, then f matches the initial data continuously. Otherwise, it is

weakly continuous at t=0.

• The solution can be extended for as long as kf(t)kL1
k0
<+1.

• Let TE be the maximum time of existence and ⌧>0. For all m2N, there exist km
and `m such that, if f02L1

km
, then D

(m)
f(t)2L1([0, TE�⌧ ], L1

km�`m
(R3)).

The main result in [34] is for the space-inhomogeneous equation. There is an extra

assumption for the initial data f0, which they call well distributed. This assumption is

only relevant for the space-inhomogeneous case. In the space-homogeneous case, it would

be automatically satisfied if f0 is continuous and non-zero. Even if f0 is not continuous,

it is not di�cult to see that f(t, v) will be well distributed for any t>0 small.

There is also a more recent short-time existence result [25], which is specific to

the space-homogeneous Landau equation with Coulomb potentials, for initial data that

is merely in L
1
k
\Lp for some p>

3
2 . The solution constructed in [25] is also classical

and smooth. The continuation criteria presented in [25] is a simpler Prodi–Serrin-type

condition without weights.

The following result can be found in [46, Theorem 3.7]. We use it to improve the

continuation criteria from Theorem 2.1 in the space-homogeneous case.
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Theorem 2.2. (from [46]) Assume that ↵(r)=r
� for some �2[�3, 2]. Assume that

f : [0, T ]⇥R3 [0,1) is a classical solution to (1.1). Let p>3/(5+�), p>1, and k be

su�ciently large (depending on �). Assume that, for all t2[0, T ],

kf(t)kLp
k
6C0.

Then, f is bounded for positive time with an upper bound

kf(t)kL1 6C1(1+t
�3/(2p))

for a constant C1 that depends on C0, the mass of f0. and �.

While the conditional upper bound in Theorem 2.2 does not readily provide any

decay for large velocities, they can be deduced using the technique in [14]. The results

in [14] are only stated in the moderately soft potential range �2[�2, 0]. However, they

apply in the full range of soft potentials when we know in addition that the solution f is

bounded.

Theorem 2.3. (Essentially from [14]) Assume that ↵(r)=r
� for some �2[�3, 0] and

let f : [0, T ]⇥R3 [0,1) be a classical solution to (1.1). Assume that, for k su�ciently

large and all t2[0, T ],

kf(t)kL1 6C0 and kf(t)kL1
k
6C0.

Assume further that f06C1e
��|v|2 for some C1>0 and �>0 su�ciently small. Then,

f(t, v)6C2e
��|v|2

.

for a constant C2 that depends on C0, C1 and the mass of f0.

Sketch of proof. Theorem 2.3 is proved in [14, §5] for the moderately soft potential

range �2(�2, 0]. The fact �>�2 is only used for the initial L1 bounds and the upper

bounds on the coe�cients given in [14, Lemma 2.1]. We included the extra assumptions

that kfkL16C0 and kf(t)kL1
k
6C0 to take care of those requirements. We are only

left to check that the upper bounds on the coe�cients can be verified with our extra

assumptions.

For �6�2, following the proof of the computation for upper bounds for the coe�-

cients āij in [14, Lemma 2.1], we get

āijeiej .
Z

|v�w|�+2
f(w) dw

6
Z

Br(v)
|v�w|�+2

f(w) dw+

Z

B|v|/2\Br(v)
|v�w|�+2

f(w) dw

+

Z

R3\(B|v|/2[Br(v))
|v�w|�+2

f(w) dw

. r
�+5kfkL1+hvi�+2kfkL1+r

�+2hvi�kkfkL1
k
.
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We choose r=hvi(�+2)/(�+5), and then k large enough so that

r
�+2hvi�k 6 hvi�+2

.

Thus, we obtain the same upper bounds for the coe�cients āij as in [14, Lemma 2.1] for

the case �2[�3,�2] when we assume in addition that kfkL1 and kfkL1
k
are bounded.

The upper bound in [14, Lemma 2.1] improves when e is parallel to v, which is

proved along the same lines. Once these upper bounds are established, the rest of §5 in

[14] follows without any major change.

We also recall a result on the propagation of bounded moments. The following

theorem is a simplified version of a result in [16].

Theorem 2.4. If f is a solution of the Landau equation (1.1), where ↵(r)=r
� with

�2[�3, 1]. Assume that the initial data f0 belongs to L
1
k
for some exponent k>0. Then,

for all t2[0, T ], we have kf(t)kL1
k
6C(T ), for some upper bound C(T ) depending on T ,

kf0kL1
k
, and the mass, energy and entropy of f0.

Theorem 2.4 is stated in [16] for the Coulomb case �=�3 only. The proof easily

applies to any soft potential in the range �2[�3, 0] (and even slightly smaller than �3).

The result in [16] is also stated and proved for H-solutions, which makes it technically

more complicated. The case �=0 had been covered earlier in [54]. For �>0, it is proved

in [19] that there is even a gain of moments in the sense that kf(t)kL1
k
is bounded for

t>0 even if kf0kL1
k
is not. Note that, for �<0, even though C(T ) may a-priori grow for

large time, it does not blow up in finite time.

For uniqueness of solutions, we cite [23] for �>�3 and [22] for �=�3. The following

theorem summarizes both cases.

Theorem 2.5. When ↵(r)=r
� with �2[�3, 2), there exists at most one weak solu-

tion of (1.1) that belongs to the space

f 2L
1([0, T ], L1

2(R3))\L1([0, T ], Lp(R3)).

Here, p=1 for �=�3, and p=3/(3+�) otherwise.

The solutions that we obtain from Theorem 2.1 are C
1 smooth for t>0. If f0 is

not continuous, the initial data is only achieved in the sense of weak continuity. Because

of that, it is not irrelevant that Theorem 2.5 applies to weak solutions. It tells us in

particular that there cannot be two di↵erent solutions bifurcating from the same initial

data at time zero. The precise definition of weak solution given in [22], [23] is not

necessarily important here, but only the fact that it is compatible with a smooth solution

that achieves a potentially rough initial data by weak continuity.
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328 n. guillen and l. silvestre

As we mentioned in the introduction, the Fisher information of a non-negative func-

tion f :R3 [0,1) is given by the formulas

i(f) :=

Z

R3

|rf |2

f
dv=

Z

R3

|rlogf |2f dv=4

Z

R3

|r
p
f |2 dv.

Something must be clarified about the case when f has vacuum regions. In that

case, the last expression is the only one that makes immediate sense and suggests that

we should set the integrand as zero wherever f=0. This apparent di�culty with vacuum

regions is actually not relevant for our analysis. In [34], the authors prove that the

solution to the Landau equation becomes immediately strictly positive (even in the space

inhomogeneous setting).

The Fisher information i(f) is well defined for non-negative functions f so that
p
f2Ḣ1(R3). This will always be the case with the class of solutions that we work with

(see Appendix B). Moreover, the following lemma from [51] indicates that the Fisher

information is finite for all non-negative functions that are su�ciently smooth and fast

decaying at infinity.

Lemma 2.6. For all ">0, there exists C">0 (only depending on dimension and ")

such that, for all f2H2
3/2+"

(R3), one has

I(f)6C"kfkH2
3/2+"

.

We use the notation hi0(f), gi to denote the Gateaux derivative of i in the direction g.

More precisely, if f(t) is a curve of non-negative functions such that

p
f(t)2 Ḣ

1 and @tf(0)= g,

then, by definition,

hi0(f), gi= @ti(f(t))|t=0.

Likewise, i00(f) denotes the quadratic form such that, if f(t) is second di↵erentiable with

respect to t, then

hi00(f)g, gi+hi0(f), @ttf |t=0i= @tti(f(t))|t=0.

It is a standard fact that the values of these formulas do not depend on the curve f(t)

other than through the values of g=@tf(0). Moreover, the convexity of i corresponds to

i
00(f) being a positive quadratic form.

We use Theorem 2.1 as the starting point to construct our global smooth solution

in Theorem 1.2. Combining it with the propagation of moments in Theorem 2.4 and

the Maxwellian upper bounds of Theorem 2.3, the solutions we work with are very-well-

behaved functions. They are C
1 smooth functions, they have rapid decay at infinity
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the landau equation does not blow up 329

together with all their derivatives, and they are strictly positive. This is the class of

functions that we work with in this paper, which minimizes the technical inconveniences

in our computations. A posteriori, Theorem 1.1, and most of the lemmas in this paper,

apply to a much wider class of functions by a density argument (see Appendix B).

However, we will make no attempt to classify the most general class of functions for

which our results make sense.

Even when f and |rf | decay faster than any algebraic rate as |v| 1, it is not

completely obvious that |rf |2/f is integrable in R3. Moreover, there are several integrals

throughout this paper that involve first, second and even third derivatives of logf , and

these quantities may grow for large velocities. In the same vein as Lemma 2.6, it can be

argued that if su�ciently many derivatives of f decay su�ciently fast as |v| 1, then

all the integrals in this article make sense. However, we can also avoid this technical

annoyance altogether by approximating the function f with one that is bounded from

below and above by a multiple of the same Maxwellian. We do not want to distract the

reader with this very standard technical point, so we explain it in Appendix B. For the

rest of this paper, we manipulate integrals involving the function f (or later F in the lifted

variables) multiplying various derivatives of its logarithm without further comments.

3. Lifting and projection

We have found that the question of monotonicity of i(f) for f solving (1.1) is essentially

the same as the question of monotonicity of the Fisher information for a specific linear

second-order equation in a space with double the original number of variables. This is a

significant simplification, it means we can understand our question by studying a simpler

and concrete evolution equation, and one that is linear and local— in contrast with the

original equation. The starting point is realizing that q(f) is defined as the integral of a

function in a space with twice the number of variables, and therefore it makes sense to

“lift” the flow and any quantity of interest into this space with double the variables. The

purpose of this section is to describe the usage of these lifting and projection operations.

Given a function f :Rd R, we can build a function F :Rd+d R by taking the tensor

product of f with itself, as follows:

F (v, w)= (f⌦f)(v, w) := f(v)f(w).

This defines a map from scalar functions in Rd to scalar functions in Rd+d. Conversely,

we define the following projection operator

⇡(F )(v) :=

Z

Rd

F (v, w) dw.
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330 n. guillen and l. silvestre

This is an operator that maps a function F (v, w) defined in Rd+d into a function

⇡(F ):Rd R. The map ⇡ is a bounded linear map from L
1(Rd+d) to L

1(Rd). Also

observe that, if F=F (v, w) is a probability density in Rd+d, then ⇡(F ) is simply the

marginal probability distribution in the v2Rd variable.

We will loosely use the terminology that the variables (v, w)2Rd+d are the “lifted

variables”, functions in Rd+d are lifted functions, and so on. The next ingredient is

a second-order di↵erential operator for lifted functions. Concretely, we consider the

following degenerate-elliptic operator that applies to functions F=F (v, w):

Q(F )(v, w) := (@vi�@wi)(↵(|v�w|)aij(v�w)(@vj�@wj )F (v, w)). (3.1)

For any function f=f(v), we may study the initial value problem associated to the linear

operator Q with initial data f⌦f :

F (0, v, w)= f(v)f(w),

Ft =Q(F ).
(3.2)

Equation (3.2) is a linear degenerate parabolic equation with explicit coe�cients.

Its classical well-posedness is straightforward from classical PDE theory.(1) The integral

of F on R6 is constant in time. From the symmetry of the initial data, and the symmetry

of the equation, we deduce that, for all t>0, the solution must be symmetric in the sense

that F (t, v, w)=F (t, w, v).

Lemma 3.1. For any twice-di↵erentiable function f which is non-negative and has

mass 1, the Landau operator q (given in (1.2)) coincides with

q(f)=⇡(Q(F ))= @t[⇡F ]|t=0,

where F is the solution of (3.2).

Proof. The proof follows by a straightforward substitution. We see that, by the

linearity of ⇡,

@t[⇡(F )]|t=0 =⇡(Q(F ))|t=0

=

Z

R3

((@vi�@wi)(↵(|v�w|)aij(v�w)(@vj�@wj )F (0, v, w))) dw.

The derivatives with respect to wi integrate to zero respect to dw. Thus,

@t[⇡(F )]|t=0 = @vi

Z

R3

↵(|v�w|)aij(v�w)(@vj�@wj )F (0, v, w) dw= q(f).

(
1
) In fact, one can see that equation (3.2) is literally the heat equation on each of the spheres

that we describe in (4.6) with di↵usion coe�cient ↵. See Remark 10.3.
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We use I for the Fisher information in the lifted variables. For F :R6 (0,1),

I(F ) :=

ZZ

R6

|rF |2

F
dw dv=

ZZ

R6

|rlogF |2F dw dv=4

ZZ

R6

|r
p
F |2 dw dv (3.3)

When F has vacuum regions, only the last expression makes sense literally. For the first

two equalities to make sense, and agree with the third one, we must set

|rF |2

F
= |rlogF |2F =0

when F=0.

The next lemmas relate i(f) with I(F ). The first one is very standard.

Lemma 3.2. For any non-negative C
1 function f with

R
f dv=1 and i(f)<1, we

have

i(f)=
1

2
I(f⌦f).

Proof. We are going to show a bit more: if f is a C
1 function with f>0 and f is

not identically zero, then

I(f⌦f)= 2

✓Z

R3

f dv

◆
i(f).

First, let us prove this when f(v)>0 for all v. Since (f⌦f)(v, w)=f(v)f(w),

rR6(f⌦f)(v, w)= (f(w)rR3f(v), f(v)rR3f(w)),

so

|r(f⌦f)|2 = f(w)2|rf(v)|2+f(v)2|rf(w)|2.

In particular,

|r(f⌦f)|2

(f⌦f)
(v, w)=

f(w)2|rf(v)|2+f(v)2|rf(w)|2

f(v)f(w)

= f(w)
|rf(v)|2

f(v)
+f(v)

|rf(w)|2

f(w)
.

Then, we integrate over R6, getting

I(f⌦f)=

ZZ

R6

|r(f⌦f)|2

(f⌦f)
(v, w) dw dv

=

Z

R3

Z

R3

✓
f(w)

|rf(v)|2

f(v)
+f(v)

|rf(w)|2

f(w)

◆
dw dv

=2

✓Z

R3

f(w) dw

◆✓Z

R3

|rf(v)|2

f(v)
dv

◆
.
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For a general non-negative f of class C1, we write f"=f+"�, where �(x)=e
�|v|2 . Then,

f">0 for every ">0 and

I(f"⌦f")= 2

✓Z

R3

f" dv

◆
i(f").

Now, we note that

i(f")=

Z

R3

|rf(v)|2+2"rf(v)·r�(v)+"2|r�(v)|2

f"(v)
dv

=

Z

R3

|rf(v)|2

f"(v)
dv+

Z

R3

2"rf(v)·r�(v)+"2|r�(v)|2

f"(v)
dv.

The first integral converges to i(f) as " 0, due to i(f)<1 and the dominated conver-

gence theorem. The absolute value of the second one is bounded from above by

"

Z

R3

|rf(v)|2

f(v)
dv+"("+1)

Z

R3

|r�(v)|2

�(v)
dv.

It follows that i(f") i(f). It is obvious that

Z

R3

f"(v) dv

Z

R3

f(v) dv.

Lastly,

f"⌦f" = f⌦f+"(f⌦�+�⌦f)+"2�⌦�.

From here, one can see that I(f"⌦f") I(f⌦f) as " 0 in a manner entirely analogous

to i(f") i(f), by noting that f"⌦f">max{f⌦f,�⌦f} for every ">0 and

rR6(f"⌦f") rR3(f⌦f)

pointwise as " 0.

The following is a crucial property of the Fisher information.

Lemma 3.3. For any non-negative C1 function F :R6 [0,1) with F (v, w)=F (w, v),

we have

i(⇡F )6 1

2
I(F ).

The inequality in Lemma 3.3 was first observed by Eric Carlen in [15], without the

symmetry assumption. There, he showed that some classical results related to the Fisher

information follow as a consequence of this elementary inequality.
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Proof. First we show inequality under the additional assumption that F>0 every-

where. We note that

r(⇡F )(v)=rv

⇢Z

R3

F (v, w) dw

�
=

Z

R3

rvF (v, w) dw,

so

|r(⇡F )(v)|6
Z

R3

|rvF (v, w)| dw.

Since F>0 everywhere, we may apply the Cauchy–Schwarz inequality to get

✓Z

R3

|rvF (v, w)| dw
◆2

6
✓Z

R3

|rvF (v, w)|2

F (v, w)
dw

◆✓Z

R3

F (v, w) dw

◆
.

The last two inequalities combine to

|r(⇡F )(v)|2 6
✓Z

R3

|rvF (v, w)|2

F (v, w)
dw

◆
(⇡F )(v) for all v.

Dividing by (⇡F )(v) (which is >0 for all v, since F>0 everywhere) and integrating in v,

i(⇡F )6
ZZ

R3⇥R3

|rvF (v, w)|2

F (v, w)
dw dv=

1

2
I(F ).

To obtain the last equality, we have used that F (v, w)=F (w, v).

Now, let F be just as in the statement of the lemma, and for every ">0 define

F"(v, w)=F (v, w)+"e�|v|2�|w|2
.

Then, F" also satisfies all the assumptions of the lemma, but in addition F">0 every-

where, and thus

i(⇡F")6
1

2
I(F") for all "> 0.

Observe that

(⇡F")(v)= (⇡F )(v)+c"e
�|v|2

for some dimensional constant c. By repeating the argument in the proof of the previous

lemma, we conclude that i(⇡F") i(⇡F ) and I(F") I(F ) as " 0+, and the lemma

follows.

Lemma 3.3 is very important to make this program work. It would also hold if we

replace the Fisher information with the usual entropy, but it would not hold for most

usual quantities related to f that involve derivatives.
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Lemma 3.4. Let f be a solution of (1.1) and F as in (3.2). Then

@ti(f)6
1

2
@tI(F )|t=0.

Proof. Using Lemma 3.1, we get

@ti(f)= hi0(f), q(f)i

= hi0(f), @t(⇡F )|t=0i

= @ti(⇡F )|t=0

= @t

✓
i(⇡F )� 1

2
I(F )

◆����
t=0

+
1

2
@tI(F )

����
t=0

.

Because of Lemma 3.3, the first term is the time derivative of a non-positive function

that achieves its maximum at t=0. Therefore, it cannot be positive. We end up with

@ti(f)6
1

2
@tI(F )

����
t=0

.

It is convenient to rewrite Lemma 3.4 in terms of the Gateaux derivatives of i and I.

It says that, for F=f⌦f , we have

hi0(f), q(f)i6 1

2
hI 0(F ), Q(F )i. (3.4)

In order to prove that the left-hand side is negative, we will show that the right-hand

side is. The remarkable advantage of our analysis is that the question of monotonicity

of the Fisher information for the Landau equation, which is non-linear and non-local, is

now reduced to its monotonicity for a linear equation with explicit coe�cients, in the

doubled-variables. Precisely, we will prove Theorem 1.1 as soon as we prove the following

inequality for any function F :R6 [0,1) such that F (v, w)=F (w, v):

hI 0(F ), Q(F )i6 0. (3.5)

Proving inequality (3.5) is the objective of the coming sections. We want to apply

it to solutions of the Landau equation. From Theorem 2.1, these solutions are strictly

positive, smooth and rapidly decaying functions. We must show that (3.5) holds for

any smooth function F :R6 (0,1) with su�cient decay at infinity. There is no time

evolution explicitly involved in the inequality (3.5).

Remark 3.5. Inequality (3.4) is in fact an equality. There is a very elementary

justification that we explain here. Consider the function F (t, v, w) given by

F (t, v, w)= f(v)f(w)+tQ(f⌦f).
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Suppose that F (t, v, w)>0 at least in some small interval of time t2(��, �). Otherwise,

we may approximate it with a non-negative function appropriately.

Let ◆(t) be the function

◆(t) := i(⇡F (t, ·))� 1

2
I(F (t, ·)).

Since

F (0, v, w)= f(v)f(w),

Lemma 3.2 tells us that ◆(0)=0. Lemma 3.3 tells us that ◆(t)60 for all t2(��, �). Thus,
◆(t) achieves its maximum at t=0 and we deduce that ◆0(0)=0.

If is also possible, although it looks rather magical, to justify the equality by writing

hi0(f), q(f)i as a double integral and symmetrizing the expression in the correct way.

Since (3.4) is in fact an equality, the inequality (3.5) turns out to be equivalent to

the statement of Theorem 1.1. Our analysis so far is sharp.

4. Flowing along vector fields

In this section we decompose the lifted Landau operator (3.1) as a sum of second-order

di↵erential operators each acting along one direction in R6. The vector fields b̃k giving

these directions correspond to the generators of rotations along three perpendicular axes

in R3 (which are then “lifted” to R6). We write the majority of the computations in this

paper using the vectors bk. Because of this, it is important to get used to their basic

arithmetic properties which we describe in this section.

First, for each value of v�w, we define the following three vectors

b1(v�w)=

0

B@
0

w3�v3

v2�w2

1

CA , b2(v�w)=

0

B@
v3�w3

0

w1�v1

1

CA , b3(v�w)=

0

B@
w2�v2

v1�w1

0

1

CA . (4.1)

One can check that the vector fields b1, b2 and b3 are always perpendicular to v�w.

In fact, for each fixed value of v�w, with v 6=w these three vectors span the plane in

R3 perpendicular to v�w. The following identity, that is readily verified by a direct

computation, links these vectors with the Landau equation:

b1⌦b1+b2⌦b2+b3⌦b3 = aij(v�w), (4.2)

where

aij(z)= |z|2�ij�zizj
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is the matrix used in the definition of the Landau operator (1.2). As a consequence of

these two observations, the lifted operator Q (3.1) can be rewritten as

Q(F )=
3X

k=1

(divv � divw)(↵(|v�w|)bk⌦bk(rv�rw)F )

=
3X

k=1

(@vi�@wi)(↵(|v�w|)(bk)i (bk)j ·(@vj�@wj )F ).

Remark 4.1. Denote by ⇧(z) (z 6=0) the orthogonal projection from R3 to the plane

perpendicular to z. It is elementary that

⇧ij(z)= �ij�|z|�2
zizj

and so we see that

aij(z)= |z|2⇧(z).

Accordingly the formula relating aij and the vector fields bk’s gives a corresponding one

for ⇧(z), which we record here:

⇧ij(z)= |z|�2
3X

k=1

(bk(z))i(bk(z))j .

Since the di↵erential operators bk ·(rv�rw) act on functions in R6, it is both con-

venient and natural to write it in terms of vectors in R6. For k=1, 2, 3, we define the

following corresponding vector fields b̃k in R6:

b̃k(v�w)=

✓
bk

�bk

◆
. (4.3)

We abuse notation by writing b̃k:R6 R6 to denote b̃k=b̃k(v�w). The vector fields b̃1,

b̃2 and b̃3 are divergence free in R6. They satisfy the following matrix identity:

b̃1⌦b̃1+b̃2⌦b̃2+b̃3⌦b̃3 =

✓
{aij(v�w)} �{aij(v�w)}
�{aij(v�w)} {aij(v�w)}

◆
. (4.4)

Moreover, b̃k(v�w) is always perpendicular to

✓
v�w

w�v

◆
.
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In particular, for any function �=�(|v�w|), we always have (for the gradient and the

divergence in R6)

b̃k ·r�=0 and div(�(|v�w|)b̃k)= 0.

In light of all the above, we can write Q in terms of these vector fields b̃k:

Q(F )=
3X

k=1

div(↵(|v�w|)(b̃k ·rF )b̃k)

=
3X

k=1

↵(|v�w|)(b̃k ·r(b̃k ·rF ))

=
3X

k=1

p
↵ b̃k ·r(

p
↵ b̃k ·rF ).

In this formula, rF stands for the gradient of F with respect to the variable (v, w)2R6.

We think of the operator Q(F ) as the sum of the second derivatives of F along the

directions b̃k, with a weight ↵(|v�w|). To make this point clearer, while also introducing

additional notation we will use later, let us define, for a given vector field b in R6, the

operator

Lb(F ) := b·rF.

Then, Lb(F ) is simply the derivative of F along b. One sees that the above decomposition

for Q can be restated as a sum of squares of operators of the form Lb, concretely

Q=
3X

k=1

Lp
↵ b̃k

Lp
↵ b̃k

=
3X

k=1

↵L
b̃k

L
b̃k
. (4.5)

It is interesting to notice that, if we consider the flow of each vector field b̃k,
✓

v
0(t)

w
0(t)

◆
= b̃k(v(t)�w(t)),

then

v(t)+w(t), |v(t)|2+|w(t)|2 and |v(t)�w(t)|

are all constant in t. This is simply the fact that b̃ is everywhere perpendicular to the

gradient of |v|2+|w|2, to the gradient of |v�w|, and to vectors of the form (e, e)2R6

with e2R3.

Given any point (v, w)2R6, the set of points in R6 that we may reach by flowing

along the three vector fields bk’s, is exactly the sphere used in the usual formulas for the

Boltzmann equation:

sphere(v, w) := {(v0, w0)2R6 : v0+w
0 = v+w and |v0|2+|w0|2 = |v|2+|w|2}. (4.6)

62n7KinN2687ZE5VLGN517uhlmXXGHR4eSUf+ofNhRE=

62n7KinN2687ZE5VLGN517uhlmXXGHR4eSUf+ofNhRE=



338 n. guillen and l. silvestre

Based on this intuition, there are some quantities that we define later on taking into

account derivatives along the directions b̃k for which we use names referring to this sphere.

The set sphere(v, w) is indeed a 2-dimensional sphere of radius |v�w|/
p
2 isometrically

embedded in R6. It is the same sphere used in the usual parametrization of the Boltzmann

equation:

sphere(v, w)=

⇢
(v0, w0) : v0 =

v+w

2
+
|v�w|

2
� and w

0 =
v+w

2
� |v�w|

2
� for � 2S

2

�
.

At any given point (v, w)2R6, the vectors b̃1(v�w), b̃2(v�w) and b̃3(v�w) are tangent

to sphere(v, w). These vectors are necessarily linearly dependent. We can easily verify

this fact by hand, since

(v1�w1)b̃1+(v2�w2)b̃2+(v3�w3)b̃3 =0.

Using the vector fields b̃
0
i
s, we will eventually verify that the operator Q is exactly

the Laplace–Beltrami operator on sphere(v, w) times the function |v�w|2↵(|v�w|). See
Remark 10.3.

There is one last vector field in R6 that will play an important role in our analysis.

Let n:R6 R6 be the unit normal vector to the level sets of |v�w|. That is

n=
1p

2|v�w|

✓
v�w

w�v

◆
. (4.7)

We can see that, for k=1, 2, 3, [n, b̃k]=0. For the reader’s convenience, let us recall the

definition of the Lie bracket [a, b], this is the vector whose components are given by

[a, b]i = aj@jbi�bj@jai.

The Lie bracket computes the error of commuting the di↵erentiation with respect to a

and b:

a·r(b·ru)�b·r(a·ru)= [a, b]·ru (4.8)

In contrast to the vectors b̃k, in general we have

n·r↵ 6=0 whenever ↵=↵(|v�w|).

Moreover, we have

[n,↵b̃k] = (n·r↵)b̃k =
p
2↵0(|v�w|) b̃k.
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For the last identity, note that

n·r↵=n·↵
0(|v�w|)
|v�w|

✓
v�w

w�v

◆

=
1p

2|v�w|

✓
v�w

w�v

◆
·↵

0(|v�w|)
|v�w|

✓
v�w

w�v

◆

=
2|v�w|2p
2|v�w|2

↵
0(|v�w|)

=
p
2↵0(|v�w|).

We will also be using vector fields to decompose the Fisher information, and we

record here a definition and two preparatory lemmas that will be used later. Given a

vector field e:R6 R6, we define the functional

Ie(F ) :=

ZZ

R6

(e·rF )2

F
dw dv.

One can see Ie(F ) as a kind of Fisher information(2) of F that only uses rF in the

direction e. The first of the preparatory lemmas provides a formula for the Gateaux

derivative of Ie at F (for some vector field e) in the direction given by Lb(F ) (for some

divergence-free vector field b).

Lemma 4.2. Let e and b be vector fields in R6 and assume that b satisfies div(b)=0.

Then, the following identity holds for any smooth positive function F :R6 (0,1) with

rapid decay at infinity :

hI 0
e
(F ), Lb(F )i=2

ZZ

R6

(e·rlogF )([e, b]·rlogF )F dw dv.

Proof. We directly compute

hI 0
e
(F ), Lb(F )i=

ZZ

R6

✓
2
(e·rF )(e·r(b·rF ))

F
� (e·rF )2

F 2
(b·rF )

◆
dw dv.

Observe that

e·r(b·rF )= b·r(e·rF )+[e, b]·rF.

This results in

hI 0
e
(F ), Lb(F )i

=

ZZ

R6

✓
2
(e·rF )(b·r(e·rF ))

F
� (e·rF )2

F 2
(b·rF )+2

(e·rF )([e, b]·rF )

F

◆
dw dv.

(
2
) In fact, Ie(F ) is the standard Fisher information (as understood in statistics) at ✓=0 for the

1-parameter distribution F✓ obtained by transporting the distribution F along the flow given by e.
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The first two terms in the integrand add up to a divergence, since

2
(e·rF )(b·r(e·rF ))

F
� (e·rF )2

F 2
(b·rF )= b·r (e·rF )2

F
=div

✓
(e·rF )2

F
b

◆
.

It follows that

hI 0
e
(F ), Lb(F )i=2

ZZ

R6

(e·rF )([e, b]·rF )

F
dw dv.

and the lemma now follows using that

rF =FrlogF.

The second preparatory lemma is the corresponding pure second derivative for Ie(F ).

Lemma 4.3. Let e and b be vector fields in R6. Then, the following identity holds

for any smooth positive function F :R6 (0,1) with rapid decay at infinity :

hI 00
e
(F )Lb(F ), Lb(F )i=2

ZZ

R6

(e·r(b·rlogF ))2F dw dv.

Proof. For any function G:R6 R, we see that

hI 0
e
(F ), Gi=

ZZ

R6

✓
2
(e·rF )(e·rG)

F
� (e·rF )2

F 2
G

◆
dw dv.

Di↵erentiating again, we get

hI 00(F )G,Gi=
ZZ

R6

✓
2
(e·rG)2

F
�4

(e·rF )(e·rG)

F 2
G+2

(e·rF )2

F 3
G

2

◆
dw dv

=

ZZ

R6

2F

✓
e·rG

F
�G

(e·rF )

F 2

◆2
dw dv.

In particular, if G=Lb(F )=b·rF , it reduces to

hI 00(F )Lb(F ), Lb(F )i=
ZZ

R6

2F

✓
e·r(b·rF )

F
� (b·rF )

F

(e·rF )

F

◆2
dw dv

=

ZZ

R6

2F

����e·r
✓
b·rF

F

◆����
2

dw dv.
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5. The case of Maxwell molecules

In case ↵(|v�w|)⌘1, the monotonicity of the Fisher information was obtained in [55],

and also follows from the earlier work for the Boltzmann equation in [50], [52]. Here, we

provide a quick proof by verifying (3.5) in that case. It also serves to explain some of

the ideas that will be used later for more general interaction potentials ↵. Let b̃1, b̃2 and

b̃3 be the vector fields as in (4.3). We use formula (4.5) for ↵⌘1:

Q(F )=
3X

k=1

L
b̃k

L
b̃k
(F ).

We see that, when ↵⌘1, the operator Q(F ) is a sum of squares of di↵erential operators

given by vector fields which are generators of certain rotations in R6. Since the Fisher

information is invariant under rotations, it follows that I(F ) is unchanged if one flows F

by L
b̃k
F .

Lemma 5.1. For any smooth positive function F :R6 (0,1) with rapid decay at

infinity, we have

hI 0(F ), L
b̃k
(F )i=0.

Proof. The result already follows by the rotational invariance, but we also verify

directly by di↵erentiating the integral. We proceed by direct computation:

hI 0(F ), L
b̃k
(F )i=

ZZ

R6

✓
2
rF ·rL

b̃k
(F )

F
� |rF |2

F 2
L
b̃k
(F )

◆
dw dv

=

ZZ

R6

✓
b̃k ·r|rF |2+2h(Db̃k)rF,rF i

F
� |rF |2

F 2
L
b̃k
(F )

◆
dw dv

Observe that Db̃k is antisymmetric for k=1, 2, 3, and thus

h(Db̃k)rF,rF i⌘ 0.

Then,

hI 0(F ), L
b̃k
(F )i=

ZZ

R6

✓
b̃k ·r|rF |2

F
� |rF |2

F 2
b̃k ·rF

◆
dw dv

=

ZZ

R6

b̃k ·r
|rF |2

F
dw dv=0.

Motivated by Lemma 5.1, we study the first-order transport equation, where we flow

F by L
b̃k
. For any function F0=F0(v, w), let us consider the initial value problem

F
k(0, v, w)=F0(v, w),

F
k

t
(t, v, w)=L

b̃k
(F ).

(5.1)
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Lemma 5.2. Let F
k be as in (5.1), then I(F ) is constant in t.

Proof. It follows from Lemma 5.1.

Lemma 5.3. For any smooth positive function F0:R6 (0,1) with rapid decay at

infinity, if F
k solve the problems (5.1) for k=1, 2, 3, then we have

Q(F0)(v, w)=
3X

k=1

@ttF
k(0, v, w).

Proof. This is simply the fact that

Q=
3X

k=1

L
b̃k

L
b̃k

as in (4.5).

The following result was proved by Villani in [55]. Using our current framework, we

are able to provide a short proof.

Proposition 5.4. The Fisher information is monotone decreasing along the flow

of the Landau equation (1.1) when ↵⌘1.

Proof. We have to verify that (3.5) holds in this case. Then, the result follows using

Lemma 3.4.

Let F
k(t, v, w) solve (5.1) with initial data F0=F (v, w). We di↵erentiate I(F k)

twice using Lemma 5.2, to get that

0= @ttI(F
k)= hI 0(F k), @ttF

ki+hI 00(F k)@tF
k
, @tF

ki.

Since the Fisher information is convex, then

hI 00(F k)@tF
k
, @tF

ki> 0.

Thus, using Lemma 5.3, we conclude

hI 0(F ), Q(F )i=�
3X

k=1

hI 00(F )@tF
k
, @tF

ki|t=0 6 0.

Lemma 5.3 still holds if we use
p
↵ b̃k instead of b̃k for problem (5.1). However,

Lemma 5.2 would not hold for any non-constant function ↵. In order to verify inequality

(3.5), we need another idea whenever ↵ is not constant.
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6. The Fisher information along layers

As we explained in §4 and recorded in (4.5), the operator Q can be expressed in terms

of a composition of transport operators Lp
↵ b̃k

. In §5 we saw how this decomposition

can be used to show the monotonicity of the Fisher information in the case of Maxwell

molecules ↵⌘1. In this section we begin the analysis for non-constant ↵.

Since we will be writing Lp
↵ b̃k

repeatedly, from now on we will use the simpler

notation

Lk(F ) :=
p
↵ b̃k ·rF. (6.1)

As noted in §5, when ↵⌘1 the operator Lk is the generator of a flow by isometries in R6,

and therefore it preserves the Fisher information I(F ). This is not true any more when

↵ is not constant. We cannot use the analysis in §5 to immediately deduce (3.5).

The main observation for this section is that, since ↵ depends only on |v�w| and
the vectors b̃k are tangent to these level sets, the flow defining Lk is still an isometry

layer-by-layer when we restrict our analysis to the level sets of |v�w|. Thus, if we modify

the Fisher information to only take into account the components of rF that are tangent

to these level sets, we obtain a quantity that is indeed preserved by the flow of Lk.

The unit normal to the level set of |v�w| is precisely the vector field n defined in

(4.7). The modified Fisher information that we want to study is the following:

Itan(F )

: =

ZZ

R6

✓
|rF |2

F
� (n·rF )2

F

◆
dw dv

=

ZZ

R6

✓
|@viF |2+|@wiF |2

F
� (vi�wi)(vj�wj)

2|v�w|2
(@vi�@wi)F (@vj�@wj )F

F

◆
dw dv.

(6.2)

It is convenient to write Itan as Isph+Ipar where

Isph(F ) :=

ZZ

R6

aij(v�w)

2|v�w|2 ·
(@vi�@wi)F (@vj�@wj )F

F
dw dv,

Ipar(F ) :=

ZZ

R6

|(@vi+@wi)F |2

2F
dw dv.

We used the notation

aij(z)= |z|2�ij�zizj .

Remark 6.1. The subindices in Itan, Isph and Ipar are meant to convey which direc-

tions are being included. We already noted that Itan(F ) is the Fisher information of F

in the tangential directions to the level sets of (v, w) 7 ↵(|v�w|), and so here we call

it the tangential (with respect to the level sets of ↵) Fisher information. Meanwhile,
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Isph(F ) involves the directions tangent to sphere(v, w): we call it the spherical Fisher

information. Last but not least, Ipar(F ) involves the directions in the 3-dimensional

linear subspace of R6 of “parallel” pairs of velocities {(e, e)2R6 :e2R3}: we call it the

parallel Fisher Information.

Proposition 6.2. Let b̃k be the vector fields from (4.3), let ↵=↵(|v�w|) be an ar-

bitrary non-negative function and let Lk be as in (6.1). For any smooth positive function

F :R6 (0,1) with rapid decay at infinity and any k=1, 2, 3, we have

hI 0par(F ), Lk(F )i=0

hI 0sph(F ), Lk(F )i=0

hI 0tan(F ), Lk(F )i=0.

Moreover,

hI 0tan(F ), Q(F )i=�
3X

k=1

hI 00tan(F )Lk(F ), Lk(F )i6 0,

and similar identities hold for Isph and Ipar.

Proof. Since Itan=Ipar+Isph, then the result follows for Itan after we prove it for

Isph and Ipar. Let us start with the case of Ipar. Let us define the unit vectors p1, p2 and

p3 in R6 as

p1 =
1p
2

0

BBBBBBBB@

1

0

0

1

0

0

1

CCCCCCCCA

, p2 =
1p
2

0

BBBBBBBB@

0

1

0

0

1

0

1

CCCCCCCCA

and p3 =
1p
2

0

BBBBBBBB@

0

0

1

0

0

1

1

CCCCCCCCA

.

We write Ipar in terms of these vectors. We have

Ipar(F )=
3X

i=1

ZZ

R6

|pi ·rF |2

F
dw dv.

We observe that [pi,
p
↵ b̃k]=0 for i, k=1, 2, 3. Then, using Lemma 4.2, we get that

hI 0par(F ), Lk(F )i=0.

We now move on to Isph. Because of (4.4), we can write Isph as

Isph =
3X

i=1

ZZ

R6

1

2|v�w|2
|b̃i ·rF |2

F
dw dv.
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Di↵erentiation in the directions b̃i and b̃k does not commute when i 6=k. Their commu-

tators are easy to compute:

[b̃1, b̃2] =�2b̃3, [b̃2, b̃3] =�2b̃1 and [b̃3, b̃1] =�2b̃2.

Taking this into account, we compute hI 0sph(F ), Lk(F )i using Lemma 4.2:

hI 0sph(F ), Lk(F )i=
3X

i=1

ZZ

R6

p
↵

|v�w|2 (b̃i ·rlogF )·([b̃i, b̃k]·rlogF )F dw dv=0.

The last identity holds because the two terms where k 6=i cancel out. For example, for

k=1, we have [b̃2, b̃1]=2b̃3 and [b̃3, b̃1]=�2b̃2, which makes the integrand

2
p
↵

|v�w|2F ((b̃2 ·rlogF )·(b̃3 ·rlogF )�(b̃3 ·rlogF )·(b̃2 ·rlogF ))= 0.

Therefore, we obtain both

hI 0sph(F ), Lk(F )i=0 and hI 0par(F ), Lk(F )i=0

Adding them, we also obtain

hI 0tan(F ), Lk(F )i=0.

The final identity follows mimicking the proof of Proposition 5.4.

7. Using commutators to estimate the remaining directional derivative

In §6 we found a quantity Itan that is monotone decreasing in the direction of Q. The

di↵erence between this quantity Itan and the full Fisher information I depends only on

the component of rF in the single direction n perpendicular to the level sets of |v�w|.
In this section, we analyze the value of J :=I�Itan and compute its derivative explicitly.

Lemma 7.1. Let n be as in (4.7) and b=b̃k for one of the vector fields (4.3) with

k=1, 2, 3. Let J be the functional

J(F ) :=

ZZ

R6

|n·rF |2

F
dw dv,

and let

Qb(F ) :=↵b·r(b·rF ),

for some scalar function ↵=↵(|v�w|). Then, following identity holds :

hJ 0(F ), Qb(F )i=
Z

R6

✓
�2F (n·r(

p
↵ b·rlogF ))2+

(↵0)2

↵
(b·rlogF )2F

◆
dw dv.
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Proof. The proof is a direct computation. We write it in detail.

Recall that div(↵b)=0 and also div((n·r↵)b)=0. Moreover,

[n,↵b] = (n·r↵)b.

It is good to remember that, since [n, b]=0, then

n·r(b·rG)= b·r(n·rG)

for any function G.

We di↵erentiate and follow the computation:

hJ 0(F ), Qb(F )i

=

ZZ

R6

[2(n·rlogF )(n·rQb(F ))�(n·rlogF )2Qb(F )] dw dv

=

ZZ

R6

[2(n·rlogF )(n·r(↵b·r(b·rF )))�(n·rlogF )2(↵b·r(b·rF ))] dw dv.

We commute di↵erentiation with respect to n and ↵b introducing an error term:

hJ 0(F ), Qb(F )i=
ZZ

R6

[2(n·rlogF )(↵b·r(n·r(b·rF )))

+2(n·rlogF ) (n·r↵)b·r(b·rF ))

�(n·rlogF )2(↵b·r(b·rF ))] dw dv.

Integrating by parts, and using that div b=0 and div(↵b)=0, we get

hJ 0(F ), Qb(F )i=
ZZ

R6

[�2↵b·r(n·rlogF )(n·r(b·rF ))

�2(n·r↵)b·r(n·rlogF )(b·rF )

+↵b·r(n·rlogF )2(b·rF )] dw dv.

We expand the derivative in the last term and observe that

n·r(b·rlogF )F =(n·r(b·rF ))�(n·rlogF )(b·rF ),

from where we get

hJ 0(F ), Qb(F )i

=

ZZ

R6

[�2↵F (n·r(b·rlogF ))2�2(n·r↵)b·rlogF (n·r(b·rlogF ))F ] dw dv.

We complete squares and conclude this is equal to
ZZ

R6


�2F

✓p
↵n·r(b·rlogF )+

(n·r↵)
2
p
↵

b·rlogF

◆2
+
1

2

(n·r↵)2

↵
(b·rlogF )2F

�
dw dv

=

ZZ

R6


�2F (n·r(

p
↵b·rlogF ))2+

(↵0)2

↵
(b·rlogF )2F

�
dw dv.
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Remark 7.2. It is possible to compute hJ 0(F ), Q(F )i using a method that follows

more closely the ideas of §5. For that, we would have to compute hJ 0
, Lki (which is no

longer zero) in terms of commutators of n and bk. Then, following the ideas in §5, we
may proceed with computing the second derivative in time of I(F ) when Ft=Lk(F ), and

derive the formula in Lemma 7.1.

It is also true that we can rewrite the proofs of Propositions 5.4 and 6.2 using a

more direct computation with commutators, like the one presented here for Lemma 7.1.

We believe that the method of §5 is more intuitive than the computation presented

in this section. Yet, there might be some value in presenting alternative approaches to

the computation.

8. The three distinct di↵usion terms

In §6, we analyzed the derivative of Itan in the direction Q(F ) and obtained a negative

value in terms of I 00tan. In §7, we analyzed the derivative of J in the direction Q(F ) and

obtained a negative value in terms of J 00, and a positive error term. In this section,

we analyze the derivative of the full Fisher information I in the direction Q(F ), which

results from adding the estimates we computed in previous sections.

We want to analyze the second derivative of the Fisher information.

Lemma 8.1. Let I be the Fisher information of a smooth positive function

F :R6 � (0,1),

as in (3.3). Let b:R6 R6 be any smooth vector field. Then

hI 00(F )(b·rF ), (b·rF )i=2

ZZ

R6

F |r(b·rlogF )|2 dw dv.

Proof. We apply Lemma 4.3 with the canonical basis of R6: e1, e2, ..., e6. We add

the six corresponding identities and obtain the desired result.

We apply Lemma 8.1 with b=
p
↵ b̃k for each k=1, 2, 3 and ↵=↵(|v�w|). These

vector fields are divergence free for any scalar function ↵. We obtain

hI 00(F )(
p
↵ b̃k ·rF ), (

p
↵b̃k ·rF )i=2

ZZ

R6

F |r(
p
↵ b̃k ·rlogF )|2 dw dv.
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Lemma 8.2. Let Q be the linear operator associated to the Landau equation as in

(3.1). Let I be the usual Fisher information. Then,

1

2
hI 0(F ), Q(F )i=�

3X

k=1

ZZ

R6

|r[
p
↵ b̃k ·rlogF ]|2F dw dv

+
3X

k=1

ZZ

R6

↵
0(|v�w|)2

2↵(|v�w|) (b̃k ·rlogF )2F dw dv.

Here, b̃k are the vector fields defined in (4.3).

Both terms are homogeneous of degree 1 in F . The second term vanishes when

↵ is constant, which corresponds to the monotonicity of the Fisher information in the

Maxwell-molecules case.

Proof. We start by recalling that I is almost the same as Itan defined in §6, except
for one extra term

I(F )= Itan(F )+

ZZ

R6

F |n·rlogF |2 dw dv.

Here, n be the vector field defined in (4.7).

Recall that, with the vector fields b̃k defined in (4.3),

Q(F )=
3X

k=1

p
↵ b̃k ·r(

p
↵ b̃k ·rF ).

We established the monotonicity of Itan along the flow of Q in Proposition 6.2.

Moreover, for Lk(F )=
p
↵ b̃k ·rF , we computed

hI 0tan(F ), Q(F )i=
3X

k=1

�hI 00tan(F )Lk(F ), Lk(F )i. (8.1)

Let us write J :=I�Itan. That is,

J(F )=

ZZ

R6

F |n·rlogF |2 dw dv.

We now apply Lemma 7.1 to with each vector field b̃k, and add the three identities.

We get the following equality:

hJ 0(F ), Q(F )i

=
3X

k=1

✓
hJ 00(F )Lk(F ), Lk(F )i+

ZZ

R6

↵
0(|v�w|)2

↵(|v�w|) F (b̃k ·rlogF )2 dw dv

◆
.

(8.2)
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Adding (8.1) and (8.2), we get

hI 0(F ), Q(F )i

=
3X

k=1

✓
hI 00(F )Lk(F ), Lk(F )i+

ZZ

R6

↵
0(|v�w|)2

↵(|v�w|) F

✓
b̃k ·rlogF

◆2
dw dv

◆

=
3X

k=1

✓
�2

ZZ

R6

F |r[
p
↵ b̃k ·rlogF ]|2 dw dv

+

ZZ

R6

↵
0(|v�w|)2

↵(|v�w|) F (b̃k ·rlogF )2 dw dv

◆
.

Lemma 8.3. Given any di↵erentiable function G:R6 R, the following identity holds
at every point (v, w)2R6:

|rG|2 = 1

2

3X

i=1

|(@vi+@wi)G|2+|n·rG|2+ 1

2|v�w|2
3X

k=1

|b̃k ·rG|2.

Here, n is as in (4.7) and b̃k are as in (4.3).

Proof. We start from the elementary identities

((@vi±@wi)G)2 =(@viG)2±2(@viG)(@wiG)+(@wiG)2.

These can be added together, resulting in

|rG|2 =
3X

i=1

[(@viG)2+(@wiG)2] =
1

2

3X

i=1

[((@vi+@wi)G)2+((@vi�@wi)G)2].

The sum of the squares ((@vi�@wi)G)2 is simply |rvG�rwG|2, and we have

|rvG�rwG|2 = |⇧(v�w)(rvG�rwG)|2+
✓

v�w

|v�w| ·(rvG�rwG)

◆2
,

where ⇧(v�w) denotes the orthogonal projector from R3 onto the space perpendicular

to v�w, which we already introduced in Remark 4.1. The formula for ⇧ in Remark 4.1

says that

|⇧(v�w)(rvG�rwG)|2 = 1

|v�w|2
3X

k=1

(bk ·(rvG�rwG))2 =
1

|v�w|2
3X

k=1

(b̃k ·rG)2.

From the definition of n in (4.7), it follows that

1

2|v�w|2 ((rvG�rwG)·(v�w))2 = |n·rG|2,

and the lemma is proved.
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Based on Lemma 8.3, we may decompose the second derivative I
00 in the direction

of
p
↵ b̃k ·rF as the sum of three terms:

|r(
p
↵ b̃k ·rlogF )|2 = 1

2

3X

i=1

|(@vi+@wi)(
p
↵ b̃k ·rlogF )|2

+|n·r(
p
↵ b̃k ·rlogF )|2

+
1

2|v�w|2
3X

i=1

|b̃i ·r(
p
↵ b̃k ·rlogF )|2.

We multiply this identity by F , integrate over R6 and add up the result for k=1, 2, 3.

This, combined with Lemma 8.2, leads to the decomposition

1

2
hI 0(F ), Q(F )i=�Dparallel�Dradial�Dspherical+

3X

k=1

ZZ

R6

(↵0)2

2↵
F |b̃k ·rlogF |2 dw dv,

where

Dparallel : =
1

2

3X

i,j=1

ZZ

R6

↵(|v�w|)F |(@vi+@wi)b̃j ·rlogF |2 dw dv,

Dradial : =
3X

i=1

ZZ

R6

F |n·r(
p
↵ b̃i ·rlogF )|2 dw dv,

Dspherical : =
3X

i,j=1

ZZ

R6

↵

2|v�w|2F |b̃i ·r(b̃j ·rlogF )|2 dw dv. (8.3)

Let us also write

Rspherical :=
3X

k=1

ZZ

R6

↵

|v�w|2F |b̃k ·rlogF |2 dw dv. (8.4)

Note that, since ↵ depends only on |v�w|, then b̃k ·r↵=0 and (@vi+@wi)↵=0. This

is the reason why we can pull the factor ↵ outside of the di↵erentiation in the expressions

for Dparallel and Dspherical.

Lemma 8.4. The following inequality holds:

1

2
hI 0(F ), Q(F )i6�Dparallel�Dradial�Dspherical+sup

r>0

✓
r
2
↵
0(r)2

2↵(r)2

◆
Rspherical.

Proof. This is a direct consequence of Lemma 8.2 in terms of the new notation and

using that the integrand in Rspherical is non-negative.
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In order to prove Theorem 1.1, we want to control the positive term Rspherical with

the negative terms �Dparallel�Dradial�Dspherical. We are going to use only Dspherical,

that involves second derivatives in the directions b̃i.

Recall that, starting from any point (v, w)2R6, the flow of the vector fields b1, b2 and

b3 stays within the sphere (4.6). The inequality Dspherical>⇤Rspherical will be deduced

as a consequence of an elementary and apparently new inequality for functions on the

sphere that we present in the next section.

9. An inequality for functions on the sphere

The objective of this section is to prove the following lemma, which will be crucial for

the proof of our main result. It is a Poincaré-like inequality involving the derivatives

of the logarithm of a function on the sphere S
2. Properly interpreted (see Remark 9.14

below), it corresponds to some form of the �2-criterion of Bakry and Emery (see [4,

Proposition 5.7.3]) on the projective space. The lemma is about symmetric functions on

S
2, which is the 2-dimensional sphere in R3. Equivalently, it is a result about functions on

the projective space RP 2. The value of the constant (which is 19
4 below) is not optimal.

A more precise value for this constant, as well as a generalization to higher dimensions,

is obtained by Sehyun Ji in [38].

Lemma 9.1. Let f :S2 (0,1) be a C
2 function on the sphere such that

f(�)= f(��) for all � 2S
2.

Then, the following inequality holds :

3X

i,j=1

Z

S2

f(bi ·r(bj ·rlogf))2 d�> 19

4

3X

i=1

Z

S2

f(bi ·rlogf)2 d�. (9.1)

Remark 9.2. Note that, for �2S2, the vector fields b1(�), b2(�) and b3(�) are per-

pendicular to �, and are therefore vectors on the tangent space of S2 at every point

�2S2. It is useful to compute their Lie brackets.

[b1, b2] =�b3, [b2, b3] =�b1 and [b3, b1] =�b2. (9.2)

Remark 9.3. For functions �,'2C1(S2), their gradients r�� and r�' at a �2S2

are elements of the tangent plane to S
2. This makes them vectors in R3 perpendicular

to �. The directional derivative bi ·r' is an intrinsic di↵erentiation of the function '

on S
2. Both vectors bi(�) and r�' belong to the tangent space of S2 at �. Moreover,
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one can check that the bi’s are also divergence free as vector fields on S
2. We omit the

subindex � for r=r� in most of this section.

Applying the decomposition (4.2), we observe that

b1⌦b1+b2⌦b2+b3⌦b3

is the orthogonal projector matrix to the tangent space to S
2 at �. In particular, it

is the identity when applied to vectors on that tangent space. We derive the following

elementary but useful identity:

3X

i=1

(bi(�)·r�)(bi(�)·r')=r��·r�' for all �,'2C
1(S2). (9.3)

Another useful identity that follows from this, and that we record here for later use,

relates the Laplace–Beltrami operator on S
2 with second derivatives in the directions bi:

3X

i=1

(bi ·r(bi ·rf))=��f for all f 2C
2(S2). (9.4)

To see this, we multiply the left-hand side by '2S2 and integrate by parts over S2 using

that the bi’s are divergence free. We use (9.3) to obtain

3X

i=1

Z

S2

(bi ·r(bi ·rf))' d�=�
Z

S2

r�f ·r�' d�.

Integrating by parts on the second integral, it follows that

3X

i=1

Z

S2

(bi ·r(bi ·rf))' d�=

Z

S2

��f' d�.

Since ' is an arbitrary function in C
2(S2), we have proved (9.4).

The starting point for the proof of Lemma 9.1 is to express both sides of (9.1) in

terms of
p
f , motivated by the well-known observation that the Fisher information of

f is four times the Ḣ
1 norm of

p
f . Once this is done, the lemma will follow from the

Poincaré inequality on S
2 applied to each (bj ·r�

p
f).

It is easy to write the right-hand side of (9.1) in terms of
p
f . Using (9.3), we have

3X

i=1

Z

S2

f(bi ·rlogf)2 d�=4
3X

i=1

Z

S2

(bi ·r
p

f )2 d�=4

Z

S2

|r�

p
f |2 d�. (9.5)
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As for the left-hand side of (9.1), for the terms with i=j, there is a simple trick to obtain

a clean bound in terms of a respective integral involving
p
f . Indeed, consider the case

i=j. Writing b=bi, we see that

Z

S2

(b·r(b·rlogf))2f d�

=4

Z

S2

✓
(b·r(b·r

p
f))2�2

(b·r(b·r
p
f))(b·r

p
f)2p

f
+
(b·r

p
f )4

f

◆
d�.

Integrating by parts the middle term, we arrive at

Z

S2

(b·r(b·rlogf))2f d�=4

Z

S2

✓
(b·r(b·r

p
f))2+

1

3

(b·r
p
f)4

f

◆
d�

> 4

Z

S2

(b·r(b·r
p
f))2 d�. (9.6)

We can apply the same trick for all the terms with i=j, but it does not yield a useful

expression when i 6=j. To overcome this, we will consider pure second derivatives in all

possible directions below. Let us first introduce, for a given g2C2(S2), the matrices

(Mg)ij =
bi ·r(bj ·rg)+bj ·r(bi ·rg)

2
,

(Ng)ij =
bi ·r(bj ·rg)�bj ·r(bi ·rg)

2
.

(9.7)

That is, Mg(�) and Ng(�) are the symmetric and antisymmetric parts of the matrix

(bi ·r(bj ·rg))ij .

Note that Mg(�) and Ng(�) are 3⇥3 matrices, corresponding to the fact that we are

working with three vector fields b1, b2 and b3. Moreover, the squared norms of Mg and

N� are of direct interest to us, since

3X

i,j=1

(bi ·r�(bj ·r�logf))
2
ij
=

3X

i,j=1

(Mlogf )
2
ij
+(Nlogf )

2
ij
= kMlogf (�)k2+kNlogf (�)k2.

Therefore, we want to understand the integrals of

kMlogf (�)k2f and kNlogf (�)k2f.

Analyzing the latter is straightforward, since the components of Ng(�) are given by the

derivatives bi ·rg.
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Lemma 9.4. Let g:S2 R be any C
2 function and Ng(�) be as in (9.7). Then,

kNg(�)k2 =
1

2

3X

i=1

(bi ·rg)2.

Proof. The entries (Ng)ij correspond to the Lie brackets of b1, b2 and b3:

(Ng)ij =
1

2
[bi, bj ].

Thus,

kNk2 =
3X

i,j=1

N
2
ij
=

1

4

3X

i,j=1

([bi, bj ]·rg)2.

Note that each non-zero term appears twice in the sum. Using (9.2), we get

kNk2 = 1

2

3X

i=1

(bi ·rg)2.

Lemma 9.4 already gives us a fraction of the inequality of Lemma 9.1. Indeed, by

Lemma 9.4, we get

3X

i,j=1

Z

S2

(bi ·r(bj ·rlogf))2f d�

=

Z

S2

kMlogf (�)k2f(�) d�+
1

2

Z

S2

3X

i=1

(bi ·rlogf)2f(�) d�.

To obtain our desired inequality (9.1), it remains to understand the integral of

kMlogfk2f . Recall that a symmetric matrix A2Rd⇥d is uniquely determined by the

quadratic form hAe, ei. Therefore, we may try to estimate its norm kAk2 in terms of

the values of hAe, ei2, as e ranges over all vectors in S
2. Likewise, in order to compute

kMlogf (�)k2, we may average the values of second derivatives of logf along all possible

directions and properly normalize it. We need a practical way to determine all possible

directional derivatives from a point �2S2. For any e2S2, we define the vector field be

using the cross product:

be(�)=�⇥e.

Note that be1 , be2 and be3 conveniently correspond to b1, b2 and b3 from (4.1). Using

these vector fields, we want to recover the quantities on the left- and right-hand sides of

Lemma 9.1. It is easy for the right-hand side using the next lemma.
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Lemma 9.5. For any C
1 function g:S2 R, the following equality holds at every

point �2S2:
3X

i=1

(bi ·rg(�))2 =
3

!2

Z

e2S2

(be ·rg(�))2 de.

Proof. Note that here �2S2 is a fixed point and rg(�) is the same vector for all

values of e2S2. Let us write e=(x1, x2, x3). We observe that

be =x1b1+x2b2+x3b3,

so

Z

e2S2

(be ·rg(�))2 de=

Z

e2S2

✓ 3X

i=1

xibi ·rg

◆2
de

=

Z

e2S2

3X

i,j=1

(xibi ·rg)(xjbj ·rg) de.

Note that bi=bi(�) and rg=rg(�) are independent of the variable of integration e2S2.

Since xixj integrates to zero on S
2 unless i=j, we get

Z

e2S2

(be ·rg(�))2 de=

Z

e2S2

3X

i=1

x
2
i
(bi ·rg)2 de

=

✓Z

e2S2

x
2
1 de

◆ 3X

i=1

(bi ·rg)2

=
!2

3

3X

i=1

(bi ·rg)2.

The following is the second-order version of Lemma 9.5. It is slightly more compli-

cated.

Lemma 9.6. For any C
2 function g:S2 R and any �2S2, we have the identity

2c1kMg(�)k2+c1|trace(Mg(�))|2 =
Z

e2S2

(be(�)·r(be(�)·rg(�)))2 de.

Here,

c1 =

Z

S2

x
2
1x

2
2 dS.

From identity (9.4), we point out that

trace(Mg)=��g.
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Proof. We write e=(x1, x2, x3) and expand like in the proof of Lemma 9.5:

Z

e2S2

(be ·r(be ·rg))2 de=

Z

e2S2

3X

i,j,k,l=1

(xibi ·r(xjbj ·rg))(xkbk ·r(xlbl ·rg)) de

=
3X

i,j,k,l=1

✓Z

e2S2

xixjxkxl de

◆
(bi ·r(bj ·rg))(bk ·r(bl ·rg)).

The integral factors vanish except when (i, j, k, l) consists of either four equal indices, or

two pairs of equal indices. We are left with

Z

e2S2

(be ·r(be ·rg))2 de=

✓Z

e2S2

x
4
1 de

◆ 3X

i=1

(bi ·r(bi ·rg))2

+

✓Z

e2S2

x
2
1x

2
2 de

◆X

i 6=j

(bi ·r(bj ·rg))2

+

✓Z

e2S2

x
2
1x

2
2 de

◆X

i 6=j

(bi ·r(bj ·rg))(bj ·r(bi ·rg))

+

✓Z

e2S2

x
2
1x

2
2 de

◆X

i 6=j

(bi ·r(bi ·rg))(bj ·r(bj ·rg)).

We define c1>0 to be the (computable(3)) value of the integral in the last factor

c1 :=
1

3

Z

e2S2

x
4
1 de=

Z

e2S2

x
2
1x

2
2 de.

We continue with our computation, getting

Z

e2S2

(be ·r(be ·rg))2 de=3c1

3X

i=1

(bi ·r(bi ·rg))2

+c1

X

i 6=j

(bi ·r(bj ·rg))2

+c1

X

i 6=j

(bi ·r(bj ·rg))(bj ·r(bi ·rg))

+c1

X

i 6=j

(bi ·r(bi ·rg))(bj ·r(bj ·rg))

(
3
) It can be seen by an elementary computation that c1=4⇡/15.
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= c1

3X

i,j=1

(bi ·r(bj ·rg))2

+c1

3X

i,j=1

(bi ·r(bj ·rg))(bj ·r(bi ·rg))

+c1

✓ 3X

i=1

bi ·r(bi ·rg)

◆2

=2c1kMg(�)k2+c1|trace(Mg(�))|2.

Lemma 9.7. For any C
2 function f :S2 (0,1) and any e2S2, the following in-

equality holds:
Z

S2

(be ·r(be ·rlogf))2f d�> 4

Z

S2

(be ·r(be ·r
p
f))2 d�.

Proof. We have already proved this in the discussion leading to (9.6). In this lemma,

we state the inequality for the vector fields be.

Lemma 9.8. For any C
2 function f :S2 (0,1), the following inequality holds:

Z

S2

(2kMlogf (�)k2+|trace(Mlogf (�))|2)f(�) d�

> 4

Z

S2

(2kMp
f
(�)k2+|trace(Mp

f
(�))|2) d�.

Proof. We use Lemma 9.6 to rewrite the left-hand side as follows:
Z

S2

(2kMlogf (�)k2+|trace(Mlogf (�))|2)f(�) d�

=
1

c1

Z

S2

Z

S2

(be ·r(be ·rlogf(�)))2f(�) de d�.

We apply Lemma 9.7 for each individual direction e2S2 and see that the integral on the

right is no smaller than

1

c1

Z

S2

Z

S2

(be ·r(be ·rlogf(�)))2f(�) de d�> 4

c1

Z

S2

Z

S2

(be ·r(be ·r
p

f))2 d� de.

The desired inequality then follows by applying Lemma 9.6 again to rewrite this last

integral as

4

c1

Z

S2

Z

S2

(be ·r(be ·r
p
f))2 d� de=4

Z

S2

(2kMp
f
(�)k2+|trace(Mp

f
(�))|2) d�.

Combining the last three displayed formulas, the proof of the lemma is completed.
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Due to Lemma 9.8, one can express the integral of kMlogfk2f in terms of that of

kMp
f
k2 plus some extra terms involving their respective traces. The next two lemmas

will use this to obtain a further inequality, one without the inconvenient trace terms.

Lemma 9.9. Let A2R3⇥3 and let M and N be its symmetric and anti-symmetric

parts, that is

M =
A+A

T

2
and N =

A�A
T

2
.

Assume that rankA62. Then,

kMk2 > 1

2
|trace(M)|2.

Proof. The quantities kMk and trace(A) (which is the same as trace(M)) are invari-

ant by orthonormal changes of coordinates. Since rankA62, it has a zero eigenvector.

We can pick an orthonormal basis that starts with this eigenvector, so that A1,1=0. In

this basis,

kMk2 >A
2
2,2+A

2
3,3 >

1

2
(A2,2+A3,3)

2 =
1

2
|trace(A)|2 = 1

2
|trace(M)|2.

As we argue below, one can apply Lemma 9.9 to see that, for every �2S2,

2kM(�)k2 > |traceM(�)|2.

We use this fact for the next lemma.

Lemma 9.10. Let f :S2 (0,1) be a C
2 function. Then, the following inequality

holds:
Z

S2

kMlogf (�)k2f d�>
Z

S2

(2kMp
f
(�)k2+|trace(Mp

f
(�))|2) d�.

Proof. The matrix A(�) given by

Aij(�)= bi ·r(bj ·rlogf)

is of rank at most 2, because the vectors b1, b2 and b3 are linearly dependent at every �.

From Lemma 9.9, we deduce that

4kMlogfk2 > 2kMlogfk2+|trace(Mlogf )|2,

and then replace it on the left-hand side of Lemma 9.8.
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The inequality in Lemma 9.10 is how we have managed to turn the trick in Lemma 9.7

into an inequality relating Mlogf to Mp
f
(plus an extra term). With (9.10) at hand, what

remains in order to prove Lemma 9.1 is using the integral involving Mp
f
to bound the

integrals of (bi ·r
p
f )2.

The following lemma is the version for Mg(�) of the well-known fact that the integral

of |D2
g|2 and |�g|2 coincide for any twice di↵erentiable function g:Td R.

Lemma 9.11. Let g:S2 R be any C
2 function. Then, the following identity holds:

Z

S2

✓ 3X

i=1

bi ·r(bi ·rg)

◆2
d�=

Z

S2

kMg(�)k2 d�+
1

2

Z

S2

3X

i=1

(bi ·rg)2 d�

=
3X

i,j=1

Z

S2

(bi ·r(bj ·rg))2 d�.

Proof. We integrate by parts starting from the left-hand side, getting

I :=

Z

S2

✓ 3X

i=1

bi ·r(bi ·rg)

◆2
d�=

3X

i,j=1

Z

S2

(bi ·r(bi ·rg))(bj ·r(bj ·rg)) d�

=
3X

i,j=1

Z

S2

[�(bi ·rg)(bi ·r(bj ·r(bj ·rg))] d�.

We introduce commutators to switch the order of di↵erentiation:

I =
3X

i,j=1

Z

S2

[�(bi ·rg)(bj ·r(bi ·r(bj ·rg))�(bi ·rg) ([bi, bj ]·r(bj ·rg))] d�.

We integrate by parts again:

I =
3X

i,j=1

Z

S2

[(bj ·r(bi ·rg))(bi ·r(bj ·rg))�(bi ·rg) ([bi, bj ]·r(bj ·rg))] d�.

We use that the antisymmetric part of the second derivatives correspond to di↵erentiation

along commutators [bi, bj ], getting

I =
3X

i,j=1

Z

S2

✓
|(Mg)ij |2�

([bi, bj ]·rg)2

4
�(bi ·rg)([bi, bj ]·r(bj ·rg))

◆
d�.

We now apply another commutator to the second term and integrate by parts again:

I =
3X

i,j=1

Z

S2

✓
|(Mg)ij |2�

([bi, bj ]·rg)2

4
�(bi ·rg)([[bi, bj ], bj ]·rg))

+bj ·r(bi ·rg)([bi, bj ]·rg)

◆
d�.
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Note that [[bi, bj ], bj ]=�bi whenever i 6=j. Moreover, exchanging i with j in the last term,

the symmetric part of bj ·r(bi ·rg) cancels out and we are left with, yielding

I =
3X

i,j=1

Z

S2

✓
|(Mg)ij |2�

([bi, bj ]·rg)2

4
+�i 6=j(bi ·rg)2� ([bi, bj ]·rg)2

2

◆
d�

=

Z

S2

kMgk2 d�+
1

2

Z

S2

3X

i=1

(bi ·rg)2 d�.

The second identity follows from Lemma 9.4.

The last ingredient needed for the proof of Lemma 9.1 is a Poincaré inequality on

the sphere.

Lemma 9.12. Let g:S2 R. Assume that g(�)=g(��) for all �2S2, and that g

has average zero on S
2. The following inequality holds:

3X

i=1

Z

S2

(bi ·r�g)
2
d�> 6

Z

S2

g
2
d�.

Proof. The identity (9.3) says that

|r�g|2 =
3X

i=1

(bi ·r�g)
2
,

so the desired inequality is equivalent to

Z

S2

|r�g|2 d�> 6

Z

S2

g
2
d�.

This inequality amounts to an elementary observation about the eigenvalues and eigen-

functions of ���, which are well understood. The eigenfunctions of ��� correspond

to spherical harmonics. The first three eigenvalues are 0, 2 and 6. They correspond

to constant functions, first-order spherical harmonics, and second-order spherical har-

monics. Since g has average zero and g(�)=g(��), then it is orthogonal in L
2(S2) to

the eigenspaces corresponding to the first and second eigenfunctions. We obtain the

inequality of the lemma because the third eigenvalue of ��� equals 6.

Lemma 9.13. Let f :S2 (0,1) be C
2 and even (i.e. f(�)=f(��)), and Mg be as

in (9.7). The following inequality holds:

Z

S2

kMlogf (�)k2f d�> 17

4

3X

i=1

Z

S2

|bi ·rlogf |2f d�.
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Proof. We start from applying Lemma 9.10:

Z

S2

kMlogf (�)k2f d�

>
Z

S2

(2kMp
f
(�)k2+|traceMp

f
(�)|2) d�

=

Z

S2

✓
2

✓ 3X

i,j=1

(bi ·r(bj ·r
p
f))2

◆
�2kNp

f
(�)k2+|traceMp

f
(�)|2

◆
d�.

We use Lemma 9.4 to compute the middle term that involves Np
f
:

Z

S2

kMlogf (�)k2f d�

>
Z

S2

✓
2

✓ 3X

i,j=1

(bi ·r(bj ·r
p
f))2

◆
+|trace(Mp

f
(�))|2

◆
d�� 1

4

Z

S2

3X

i=1

(bi ·rlogf)2f d�.

We apply Lemma 9.11 to g=
p
f to replace the second term:

Z

S2

kMlogf (�)k2f d�>
Z

S2

3

✓ 3X

i,j=1

(bi ·r(bj ·r
p
f))2

◆
d�� 1

4

Z

S2

3X

i=1

(bi ·rlogf)2f d�.

Applying Lemma 9.12 to g=bj ·r
p
f , we get

Z

S2

kMlogf (�)k2f d�> 18

Z

S2

3X

j=1

(bj ·r
p

f)2 d�� 1

4

Z

S2

3X

i=1

(bi ·rlogf)2f d�

>
✓
18

4
� 1

4

◆Z

S2

3X

i=1

(bi ·rlogf)2f d�.

Proof of Lemma 9.1. We combine Lemma 9.4 with Lemma 9.13.

Remark 9.14. The quantities involved in this section correspond to intrinsic geomet-

ric objects on the sphere S
2. The identity (9.4) says that, for any C

2 function g:S2 R,

3X

i=1

bi ·r(bi ·rg)=��g.

It can be seen that other quantities that play a role in this section correspond to the

following objects:

kMgk2 = kr2
�
gk2+1

2
|r�g|2 and kNgk2 =

1

2

3X

i=1

|bi ·r�g|2 =
1

2
|r�g|2.
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Here r� and �� are respectively the gradient and the Laplace-Beltrami operators in S
2

with its standard metric. The proofs in this section can be written in terms of these

intrinsic objects. We write it in terms of the vector fields bi to keep a uniform notation

throughout the paper, and to keep the proof more elementary.

Moreover, the integrands in Lemma 9.1 correspond to the carre-du-champ operator

� and the operator �2 in the Bakry–Emery formalism. In fact, from the definition of �

and �2 one can check that, for any smooth function g:S2 R,

3X

i,j=1

(bi ·rg)2 =�(g, g) and
3X

i,j=1

(bi ·r(bj ·rg))2 =�2(g, g).

One only needs to make use of the above expressions for r�g and ��g in terms of the

bi’s, expand the resulting terms, and use the commutator identities for all [bi, bj ] to get

the needed cancellations. For the reader’s convenience, we recall the definition of the

operators � and �2 associated to the Laplacian ��:

�(f, g) :=
��(fg)�f(��g)�(��f)g

2
,

�2(f, g) :=
��(�(f, g))��(f,��g)��(��f, g)

2
.

Remark 9.15. The optimal constant for the �2 criterion on the sphere is well known

to be equal to 2 (see [4, §5.7]), which would not su�ce to prove our main result in

the case of Coulomb potentials. We get an advantage, due to the symmetry assump-

tion f(�)=f(��) that is e↵ectively equivalent to consider functions on the projective

space RP 2. A discussion of the best known constants in this setting, and an improve-

ment over the constant of Lemma 9.1 is given in [38].

10. The monotonicity of the Fisher information

In this section we complete the proof of Theorem 1.1 as a consequence of the results in

the previous sections.

Lemma 10.1. Let F :R6 (0,1) be a smooth function with rapid decay at infinity

such that F (v, w)=F (w, v). Let Dspherical and Rspherical be the quantities defined in (8.3)

and (8.4), respectively. Then, the following inequality holds :

Dspherical >
19

2
Rspherical.
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Proof. Let us parametrize v and w in the following way: we let z := 1
2 (v+w)2R3 and

we write 1
2 (v�w)=r� for r2[0,1) and �2S2. In these coordinates,

v= z+r� and w= z�r�. (10.1)

The Jacobian of this change of variables corresponds to

dv dw=8r2 d� dz dr.

Note that |v�w|=2r and bk(v�w)=2rbk(�). Moreover, for any vector b perpendic-

ular to �, we can think of b as a vector on the tangent space of S2 at � and we observe

that, for any function G:R6 R, one has

b·r�G= rb·(rv�rw)G.

In particular, with G=logF , it leads to

b̃k(v�w)·rlogF =2rbk(�)·(rv�rw)logF =2bk(�)·r�logF.

The symmetry condition F (v, w)=F (w, v) translates to F (z, r,�)=F (z, r,��) in

terms of the new variables.

We rewrite Dspherical and Rspherical in these coordinates:

Dspherical =
3X

i,j=1

Z

R3

Z 1

0

Z

S2

↵(2r)

8r2
16|bi(�)·r�(bj(�)·r�logF )|2F (8r2 d� dr dz)

= 16

Z

R3

Z 1

0
↵(2r)

✓ 3X

i,j=1

Z

S2

|bi(�)·r�(bj(�)·r�logF )|2F d�

◆
dr dz,

Rspherical =
3X

k=1

Z

R3

Z 1

0

Z

S2

↵(2r)

4r2
4(bk(�)·r�logF )2F (8r2 d� dr dz)

= 8

Z

R3

Z 1

0
↵(2r)

✓ 3X

k=1

Z

S2

(bk(�)·r�logF )2F d�

◆
dr dz.

For each value of z2R3 and r2(0,1), the inner integrals with respect to � (the ones

inside the parenthesis) satisfy the inequality of Lemma 9.1. Therefore, we conclude that
1
2Dspherical> 19

4 Rspherical. Equivalently, Dspherical> 19
2 Rspherical.

Proposition 10.2. If ↵(r)>0 is any interaction potential such that, for all r>0,

r|↵0(r)|
↵(r)

6
p
19,

then (3.5) holds for any smooth function F :R6 (0,1) with rapid decay at infinity such

that F (v, w)=F (w, v).
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Proof. Combine Lemma 8.4 with Lemma 10.1.

Theorem 1.1 is essentially proved already.

Proof of Theorem 1.1. Note that Proposition 10.2 tells us that (3.5) holds whenever

f :R3 (0,1) is smooth, well-behaved at infinity and strictly positive. Therefore, the

right-hand side in Lemma 3.4 is non-positive and Theorem 1.1 follows in that case.

If f has vacuum regions, or if its tails are not su�ciently well-behaved, we can

approximate F with a smooth and well-behaved function and pass to the limit. For

example, let ⌘:R6 [0, 1] be a smooth function such that

⌘⌘ 1 in B1 and ⌘⌘ 0 in R6\B2.

We set

F"(v, w)= (F (v, w)+")⌘("v, "w)+(1�⌘("v, "w))e�|v|2
.

This function F" converges to F as " 0. Moreover, for each ">0, F">0 and equals a

Maxwellian for large values of v and w. We thus know that (3.5) holds for F", and then

we deduce that it also holds for F . For a more thorough description of this technical

approximation argument, see Appendix B.

Remark 10.3. The operator Q has a very simple expression in terms of the variables

z, r and �. From the observation that

b̃i ·rF =2bi(�)·r�F

and (9.4), we see that

Q(F )= 4↵(2r) ��F.

Here, �� is the Laplace-Beltrami operator with respect to � on S
2.

11. The global existence theorem

In this section we explain how Theorem 1.1 is used to obtain Theorem 1.2.

Proof of Theorem 1.2. We recall that the result is already well known in the case

�2[0, 1] from [54], [19]. It is also easy to derive for �2[�2, 0], as a consequence of the

upper bound in [46]. We focus on the case �<�2.

Given any initial data as in Theorem 1.2, we construct a solution for a short period

of time [0, T ), with T>0, using Theorem 2.1. This solution becomes immediately smooth

and rapidly decaying. Applying Lemma 2.6, we observe that the Fisher information i(f)

also becomes finite for any small t>0.
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The continuation criteria in Theorem 2.1 tells us that the solution can be extended

for as long as kf(t)kL1
k0

is bounded. In other words, the solution may blow up at time T

only if

lim
t T

kfkL1
k0

=+1.

Also, from Theorem 2.1, during the interval [0, T ) the solution is C1, strictly positive

and bounded by C(t)hvi�k0 (here, C(t)=kf(t)kL1
k0

might be blowing up as t T ). Under

these conditions, we are able to apply Theorem 1.1 and deduce that its Fisher information

is monotone decreasing on the time interval (0, T ). In particular, for t0>0 small, the

Fisher information will remain smaller or equal to i(f(t0)) in the interval [t0, T ]. It

implies the uniform boundedness of kf(t)kL3 . Indeed,

kfkL3 = k
p
fk2

L6 6Ck
p
fk2

Ḣ1 =
Ci(f)

4
.

From Theorem 2.4, we also know that kf(t)kL1
q
remains bounded in [0, T ] for all q>0.

Interpolating between kf(t)kL1
q
and kfkL3 , we deduce that kf(t)kLp

k
is bounded for any

p in the range (1, 3) and any large exponent k. We can thus apply Theorem 2.2, since

3/(5+�)<3. We deduce that

kf(t)kL1 6C3(1+(t�t0)
�3/2p),

for a constant C3 that depends only on p and the mass, energy and Fisher information

of f0. Since the function f is certainly bounded in some short time interval [0, �] (from

Theorem 2.1), we deduce that

kf(t)kL1 6C4 for t2 [0, T ), (11.1)

for a constant C4.

We want to apply Theorem 2.3. It propagates a Maxwellian upper bound when the

exponent �>0 is su�ciently small depending on the mass, energy and entropy of f . This

is not a restriction for us because, if f0(v)6C0e
��|v|2 for some C0 and �>0, then the

same inequality also holds with a smaller value of �. We can therefore assume without

loss of generality that �>0 is small.

Using the upper bound (11.1) and the moment bounds together with Theorem 2.3,

we deduce the following uniform Maxwellian upper bound for t2[0, T ):

f(t, v)6C5e
��|v|2

.

But this means that kfkL1
k

is uniformly bounded in [0, T ) for any exponent k. Thus,

the solution can never blow up according to the continuation criteria in Theorem 2.1.

The uniqueness of the solution follows from Theorem 2.5.

Remark 11.1. Note that the only a-priori estimate on [0, T ] used in the proof of

Theorem 1.2 that may deteriorate as T 1 is the moment estimate from Theorem 2.4,

in the case �60.
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Appendix A. The 2-dimensional case

It is slightly simpler to prove a version of Theorem 1.1 in two dimensions, following

approximately the same steps in the proof. We state the result here.

Theorem A.1. Let f : [0, T ]⇥R2 [0,1) be a classical solution to the space-homo-

geneous Landau equation (1.1). Assume that the interaction potential ↵ satisfies

r|↵0(r)|
↵(r)

6 4 for all r > 0.

Then, the Fisher information i(f) is monotone decreasing as a function of time.

The proof of Theorem A.1 follows the same steps as the proof of Theorem 1.1. We

sketch the di↵erences here. We only need one vector field b1 to write Q(F ), for a function

F :R4 [0,1). We write

b1(v�w)=

✓
v2�w2

w1�v1

◆
and b̃1 =

✓
b1

�b1

◆
.

With this notation, we have

Q(F )=↵b̃1 ·r(b̃1 ·rF ).

Since we have only one vector b1 instead of the three vectors b1, b2 and b3, the resulting

formulas are simpler and involve no summation. Following the same line of thought as

for the 3-dimensional case, we end up with

1

2
hI 0(F )Q(F ), Q(F )i6�Dparallel�Dradial�Dspherical+sup

r>0

✓
r
2
↵
0(r)2

2↵(r)2

◆
Rspherical,

where

Dparallel :=
1

2

Z
↵(|v�w|)F |(@vi+@wi)b̃1 ·rlogF |2 dw dv (A.1)

Dradial :=

Z
F |a·r(

p
↵ b̃1 ·rlogF )|2 dw dv (A.2)

Dspherical :=

Z
↵

2|v�w|2F |b̃1 ·r(b̃1 ·rlogF )|2 dw dv (A.3)

Rspherical :=

Z
↵

|v�w|2F (b̃1 ·rlogF )2 dw dv. (A.4)

We still want to control Rspherical with Dspherical. It is achieved after the following

lemma.
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Lemma A.2. Let f :S1 (0,1) be a C
2 function on the circle such that f(�)=f(��)

for all �2S1. Then, the following inequality holds :

Z

S1

f(b1 ·r(b1 ·rlogf))2 d�> 4

Z

S1

f(b1 ·rlogf)2 d�.

In this case, the factor 4 on the right-hand side is optimal. It is achieved asymptoti-

cally for a function f=1+"g as " 0, when g is the third eigenfunction of the Laplacian

on S
1.

The proof of Lemma A.2 is significantly easier than Lemma 9.1. Since there is only

one direction b1, we apply Lemma 9.7 and obtain right away

Z

S1

f(b1 ·r(b1 ·rlogf))2 d�> 4

Z

S1

(b1 ·r(b1 ·r
p
f))2 d�

Since f(�)=f(��), then b1 ·rf is orthogonal to the first two eigenspaces. The third

eigenvalue of �@2
�
in S

1 is equal to 4. Then, we get

Z

S1

f(b1 ·r(b1 ·rlogf))2 d�> 16

Z

S1

(b1 ·r
p
f)2 d�=4

Z

S1

f(b1 ·rlogf)2 d�.

We conclude that Dspherical>8Rspherical, and use it to finish the proof of Theorem A.1.

If we want to carry out the analysis in this paper in Rd for d>3, we would have to

consider 1
2d(d�1) vectors bi’s. For example, in four dimensions, the six vectors would be

b1 =

0

BBB@

v2�w2

w1�v1

0

0

1

CCCA
, b2 =

0

BBB@

w3�v3

0

v1�w1

0

1

CCCA
, b3 =

0

BBB@

v4�w4

0

0

w1�v2

1

CCCA
,

b4 =

0

BBB@

0

v3�w3

w2�v2

0

1

CCCA
, b5 =

0

BBB@

0

w4�v4

0

v2�w2

1

CCCA
, b6 =

0

BBB@

0

0

v4�w4

w3�v3

1

CCCA
.

There is a result similar to Lemma 9.1 in any dimension. However, the constant

factor on the right-hand side depends on the dimension, as well as the range of admissible

values of |r↵0(r)/↵(r)| for the higher-dimensional counterpart of Theorem 1.1. The values

we computed in this paper for the 3-dimensional case are probably not optimal. It would

require some work to compute the sharp range in arbitrary dimension.
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Appendix B. On the decay of the tails of our integrals

Throughout this paper, we work with solutions f that are C1 and decay as |v| 1 faster

than any algebraic rate. The equation (1.1) is understood in the classical sense. There

are several instances where we consider the derivative of the Fisher information and we

end up with integrals in R6 involving two or three derivatives of logf . All the integrands

are homogeneous of degree 1 in f . It is natural to expect them to decay rapidly as

|v| 1. However, some justification is required, since logf and its derivatives have some

growth as |v| 1. It is not completely inappropriate (even if admittedly pedantic) to

provide a justification that all the integrals in this paper make sense. We describe it in

this appendix, so that the reader is not distracted through the main text of the article.

In the proof of Theorem 1.1, we argued that a generic function F can be approxi-

mated with a strictly positive function which agrees with a Maxwellian for large veloc-

ities. This approximation can be used, whenever necessary, to justify that the lemmas

and inequalities throughout this paper apply to a much wider class of functions. In

this appendix, we show that the upper and lower Maxwellian bounds introduced in this

approximation are propagated in time by the Landau equation. Thus, we show that

these solutions to the Landau equation (1.1) will always be well-behaved, C1 smooth,

strictly positive, and with well-behaved tails for |v| 1. Theorem 2.1 justifies the ma-

jority of these statements. The only condition that remains to be justified is that the

derivatives of logF are appropriately bounded for large velocities, so that the tails of

the integrals throughout this paper are convergent. In this appendix, we describe the

procedure to approximate the whole solution to (1.1) with solutions f
" for which we

verify these bounds.

One su�cient condition that would easily validate all the integral expressions in this

article would be when

f . e
��|v|2

,

(1+|rlogf |+|D2logf |). e
"|v|2 for "⌧�.

We will show that this condition is satisfied for a general class of initial data f0. If f0 is

bounded below and above by a multiple of the same Maxwellian, that is

f0 ⇡ e
��|v|2

,

then these bounds can be propagated in time following the ideas in [14] for as long as

there is a classical solution to the equation. Bounds on the derivatives of logf follow

applying standard parabolic estimates.
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Below, we briefly review the propagation of Gaussian bounds following techniques

from the literature. It is a completely standard technique, so we only sketch the proofs

here.

We explain the propagation of Gaussian bounds in the case ↵(r)=r
� with �2[�3, 0].

In the case �2[0, 1], upper and lower bounds of the same kind are obtained in [19].

Proposition B.1. Let f : [0, T ]⇥R3 [0,1) be a solution of (1.1) with ↵(r)=r
� ,

�2[�3, 0] and initial data f0. Assume that, for some �>0, �0>0 and C0, one has

f0(v)> �0e
��|v|2

,

f(t, v)6C0e
��|v|2

.

Then, for any ">0, there is a �1>0 such that

f(t, v)> �1e
�(�+")|v|2

,

for all t2[0, T ] and all v2R3.

Sketch of proof. We write the Landau collision operator in non-divergence form:

q(f)= āij@f+c̄f,

where

āij =

Z
↵(|v�w|)aij(v�w)f(w) dw, c̄=�@ij āij > 0.

We follow the same idea as in [14, Theorem 4.3], but with a Maxwellian bound from

below. We must find a function  (t, v) which is a subsolution to

@t 6 āij@ij +c̄ .

Following [14], we know that, if  (0, v)6f(0, v), then we will also have  (t, v)6f(t, v)

for all t2[0, T ] and all v2R3. We claim that the function

 (t, v)= �0e
�C1t�"t|v|2

e
��|v|2

satisfies this di↵erential inequality.

It is well known that the coe�cients āij satisfy certain ellipticity bounds. We have,

for some constants ⇤>�>0,

{āij}>�hvi�((|v|2I�(v⌦v))+hvi�2(v⌦v)),

{āij}6⇤hvi�((|v|2I�(v⌦v))+hvi�2(v⌦v)).
(B.1)
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The constant �>0 in the lower bound depends only on the mass, energy and entropy

of f0. The proof is the same for any value of �2[�3, 1]. It can be found in [46, Lemma 3.1]

and [19, Proposition 4]. For a proof of the upper bound, see [14, Lemma 2.1] and the

proof of Theorem 2.3 in §2.
Plugging these estimates on our function  , we see that

@t =�(C1+"|v|2) ,

āij@ij +c̄ > āij@ij &�⇤hvi�+2
 .

We pick C1 su�ciently large so that for all v2R3 we have

C1+"|v|2 &⇤hvi�+2
,

and we finish the proof.

The derivatives of f can be bounded using standard parabolic estimates.

Proposition B.2. Let f : [0, T ]⇥R3 [0,1) be a solution of (1.1) with ↵(r)=r
� ,

�2[�3, 0]. Assume that, for some �>0 and C0,

f(t, v)6C0e
��|v|2

.

Then, for any ">0, there is a constant C1 (depending on T and C0) such that

|rvf(t, v)|6C1e
�(��")|v|2

,

|D2
v
f(t, v)|6C1e

�(��")|v|2
.

for all t2
⇥
1
2T, T

⇤
and all v2R3.

Sketch of proof. The function f satisfies the equation

ft = āij@ijf+c̄f.

The coe�cients aij satisfy the ellipticity bounds (B.1). Moreover, from the Gaussian

upper bound on f , we can deduce that both āij and c̄ are Hölder continuous in v.

In order to overcome the di�culty that the ellipticity condition degenerates as |v| 1,

for every t0>0 and every v02R3 we use the change of variables Tv0 described in [14,

§4]. It maps a parabolic ellipsoid around (t0, v0) into (�1, 0]⇥B1, and the function f

into a function f̃ that satisfies a linear parabolic equation whose coe�cients are elliptic

with parameters uniform with respect to v0. We may further rescale it to make the
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Hölder norm of the coe�cients less than one. Applying the Schauder estimates to this

function f̃ , we obtain

|D2
v
f̃(0)|6Ckf̃kL1((�1,0]⇥B1) . e

��|v0|2 .

Rewriting the estimate above in terms of the original function f , we obtain, for some

computable exponent m2N,

|D2
v
f(t0, v0)|6Chv0ime

��|v0|2 6C1e
�(��")|v0|2 .

Some early references to the Schauder estimates depending on the Hölder norm of the

coe�cients in space only are [11], [40].

Combining the upper bound from Theorem 2.3, the lower bound of Proposition B.1

and the bounds for the derivatives of Proposition B.2, we see that, whenever f is a

solution of (1.1) with initial data f0 such that

�0e
��|v|2 6 f0(v)6C0e

��|v|2
,

then for any ">0 and t>0 there exists a constant C2 such that

|rvlogf(t, v)|6C2e
"|v|2

,

|D2
v
logf(t, v)|6C2e

"|v|2
.

Not only do the solutions of the Landau equation decay at large velocities, but so

do their derivatives. We can use that to deduce that the coe�cients āij are also C
1,

and deduce estimates like those of Proposition B.2 for higher-order derivatives of f .

The potential growth of rlogf and D
2logf is of lower order than the decay of f ,

as |v| 1. This is enough to conclude that every integrand considered in this paper

decays faster than some Gaussian rate as |v| 1. It shows that all our integrals are well

defined, and our manipulations (such as integration by parts) are fully justified at least

when the initial data f0 satisfies these Gaussian bounds.

If f0 is a generic function with arbitrary decay and perhaps some vacuum regions,

we may approximate f0 following the same rule as in the proof of Theorem 1.1. More

precisely, let f" be the solution to (1.1) with initial data

f
"(0, v)= (f0(v)+")⌘("v)+(1�⌘("v))e�|v|2

.

Here, ⌘:R3 [0, 1] is a smooth function supported in B2 such that ⌘⌘1 in B1.

As we discussed above, this solution f
" propagates in time the Gaussian bounds

from above and below. For this approximate solution, all our computations are justified
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and Theorems 1.1 and 1.2 hold. We deduce that, for every ">0, there exists a global-

in-time smooth solution whose Fisher information is monotone decreasing. As " 0, f"

converges to f , which is the unique (from Theorem 2.5) solution to (1.1) with initial

data f0. The convergence holds for example in L
1,k for f , for any exponent k, and

in L
1([0, T ], H1(R3)) for

p
f . We conclude that the Fisher information of an arbitrary

solution f of (1.1) is monotone decreasing in time, assuming only that f02L1,k for k as

in Theorem 2.1 and
p
f02H1.
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