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Abstract. Synthesizing high-resolution images from intricate, domain-
specific information remains a significant challenge in generative mod-
eling, particularly for applications in large-image domains such as dig-
ital histopathology and remote sensing. Existing methods face critical
limitations: conditional diffusion models in pixel or latent space cannot
exceed the resolution on which they were trained without losing fidelity,
and computational demands increase significantly for larger image sizes.
Patch-based methods offer computational efficiency but fail to capture
long-range spatial relationships due to their overreliance on local infor-
mation. In this paper, we introduce a novel conditional diffusion model
in infinite dimensions, ∞-Brush for controllable large image synthesis.
We propose a cross-attention neural operator to enable conditioning in
function space. Our model overcomes the constraints of traditional finite-
dimensional diffusion models and patch-based methods, offering scalabil-
ity and superior capability in preserving global image structures while
maintaining fine details. To our best knowledge, ∞-Brush is the first
conditional diffusion model in function space, that can controllably syn-
thesize images at arbitrary resolutions of up to 4096× 4096 pixels. The
code is available at https://github.com/cvlab-stonybrook/infinity-brush.

Keywords: Diffusion models · Function space models · Image synthesis

1 Introduction

Diffusion models are powerful generative models that have achieved remark-
able success in synthesizing diverse and complex data, such as images and au-
dio [23, 24]. Despite their success, it is still difficult to generate high-resolution
images, especially when it is necessary to condition them on intricate, domain-
specific information. Practical histopathology and satellite imagery applications
in medical diagnostics, environmental monitoring, and beyond require precise
and controllable very large image synthesis – well beyond 1024 × 1024 pixels,
which is impractical with the current state-of-the-art (SoTA) models such as
Stable Diffusion-XL (SDXL) [26].
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Fig. 1: ∞-Brush is able to controllably generate images at arbitrary resolutions of up
to 4096× 4096, conditioned on any available auxiliary information about the images.

The SoTA methods for controllable large image generation still exhibit sig-
nificant limitations. We can distinguish two broad categories; the first set of
approaches directly employs conditional diffusion models in finite latent or pixel
space and is inherently limited by its design to generate images only at the
resolution on which it was trained. Examples are SDXL [26] and Matryoshka
Diffusion [11] which can produce images at a resolution of up to 1024 × 1024
pixels. While impressive, such methods cannot generate images at resolutions
higher than those they were trained in, without a loss in quality or fidelity. Ad-
ditionally, as the resolution increases, the computational resources required to
train and run these models scale quadratically, making the process increasingly
inefficient for larger image sizes.

The second strategy, introduced by MultiDiffusion [1] and adapted by Graikos
et al . [10], involves a patch-based method that splits large image generation into
smaller segments. This technique involves training "local" diffusion models on
the patches from large images and performing large image synthesis using an
outpainting algorithm. While this approach is computationally more efficient
and produces sufficiently realistic larger images, it falls short of capturing long-
range spatial dependencies (as discussed in the supplementary). This limitation
stems from the heavy reliance on local information, as the generation of each
patch is predominantly influenced by the local conditioning and not affected by
the information of far away patches.

The previously mentioned methods operate in finite image or latent space
and cannot significantly exceed the training image sizes during generation. This
makes training the models directly on the entire large images a necessity, lead-
ing to insurmountable computational costs. Recently, Bond-Taylor et al . [2] have
demonstrated that by representing images as functions in Hilbert space H they
can synthesize arbitrarily-large images while training on fixed-size inputs. How-
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ever, their models can not be conditioned for controllable image generation,
which is necessary to efficiently utilize the model in downstream applications,
such as data augmentation.

In this work, we propose a novel conditional diffusion model, ∞-Brush, for
controllable large image synthesis in function space. Our model learns to synthe-
size images as continuous functions at arbitrarily sampled coordinates, enabling
the generation of images at any desired resolution.

To condition the infinite-dimensional diffusion models we propose a cross-
attention neural operator in function space. This operator is necessary since
naively trying to condition the diffusion process using existing cross-attention
operations on fixed pixel grids is inadequate. Similar to how synthesizing images
in finite dimensions cannot capture long-range and intricate details, applying
cross-attention on a fixed grid will result in the loss of fine detail. In our experi-
ments, we compare our proposed neural operator to conventional cross-attention
and show how we can better capture fine details across all image scales.

The ∞-Diff [2] model samples 25% of the image pixels during training. Di-
rectly applying it to large images is infeasible due to memory constraints. In-
stead, we show that we can train our single, conditional model on much smaller
subsets of pixels (0.4%) from each large image without loss in generation quality.
This enables us to apply the infinite-dimensional diffusion model on large image
datasets, where images can be up to 4096× 4096 pixels.

In our experiments, we first demonstrate our infinite-dimensional condition-
ing mechanism, the cross-attention neural operator, by performing conditional
image generation on CelebA-HQ [18]. We then showcase large image genera-
tion, where we train models on histopathology and satellite image datasets and
demonstrate how our method ∞-Brush outperforms patch-based generation [10]
in terms of maintaining global structure without sacrificing local fidelity. In these
large image domains, the 4096×4096 resolution that we achieve is not attainable
by any existing model [1, 10, 26]. Figure 1 illustrates that ∞-Brush is able to
controllably synthesize images at arbitrary resolutions of up to 4096× 4096.

In summary, our contributions are as follows:

– We propose a cross-attention neural operator in function space. This operator
allows for the incorporation of external information during image generation.

– We use this operator to build a conditional denoiser in function space as part
of ∞-Brush, the first conditional diffusion model in function space.

– We ensure tractable training of our model on very large images by only
training on 0.4% subsets of pixels while inferring at arbitrary resolutions.

– We show how our method generates images at the hencetofore infeasible size
of 4096×4096 pixels while maintaining both global structure and fine details.

2 Related Work

Controllable Generation with Diffusion Models. Diffusion models [14,21,
32] synthesize data by reversing a diffusion process. Latent Diffusion Models
(LDMs) [30] operate in a lower-dimensional latent space rather than pixel space,
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significantly reducing the computational load and enabling the generation of
high-quality images. Controllable generation is achieved by conditioning on de-
sired attributes, such as class-conditioning [24], gradient-based guidance [8], and
classifier-free guidance [15].
Large Image Generation. SDXL [26] makes a step towards large image gener-
ation with its ability to generate higher-resolution images. However, controllable
generation with SDXL cannot scale to large images because it is constrained to
synthesize images only at the resolution on which it was trained (1024× 1024),
leading to a quadratic increase in computational demands with resolution. Our
diffusion model, ∞-Brush, learns to controllably synthesize images in function
space which enables us to generate large images at any desired resolution of up
to 4096× 4096 by only training on subsets of 65536 pixels.

The patch-based approach for controllable generation, exemplified by Mul-
tiDiffusion [1] and adapted in [10], efficiently generates large images by syn-
thesizing individual patches that are later combined. Despite its computational
efficiency and ability to produce realistic images, this method struggles to cap-
ture long-range spatial dependencies due to its use of only local information. In
contrast, our model operates on the entirety of the image, as represented by a
function, maintaining large-scale structures and long-range dependencies.
Diffusion Models in Infinite Dimensions. Kerrigan et al . [19] introduced the
concept of applying diffusion models to functional data, pioneering the idea that
generative models can operate beyond the confines of finite-dimensional spaces.
Building on the ideas of infinite-dimensional diffusion, Lim et al . [22] and ∞-Diff
[2] specifically address the generation of images represented in function space.
However, the methods cannot be conditioned for controllable image generation.
To the best of our knowledge, our ∞-Brush with a novel cross-attention neural
operator is the first conditional diffusion model in infinite dimensions designed
for controllable large image synthesis.

3 Preliminaries

3.1 Notation and Data

Let (X ,A, µ) be a measure space where X ¦ Rdx , A is a σ-algebra on the set X
and µ is a measure on (X ,A). Let H be a separable Hilbert space over the domain
X , equipped with its Borel σ-algebra B(H). For simplicity, we consider the case
where H is the space of L2 functions H = L2(X , µ), which is equipped with its
inner product ïf ,gðL2(X ,µ) =

∫

X fgdµ. It is worth noting that our method is
agnostic to the choice of H and can be applied to other spaces.

Assuming that we have a dataset of the form D = {(uk, ek)}1≤k≤D, where
each uj ∈ H is an i.i.d. draw from an unknown probability measure Qdata on H
and ej is a control component of the corresponding function uj . In our experi-
ment settings, ej can be a label or an embedding vector (from vision-language
or self-supervised models) with finite dimensions.

In practice, it is difficult to represent the function directly and instead, for

an input function uj , we discretize it on the mesh xj = {x(i)
j }1≤i≤N ¢ X ,
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which is a discrete subset on X with corresponding discretized observations
{
uj

(
x
(i)
j

)}

1≤i≤N
, being the output of function uj at the i-th observation point.

3.2 Gaussian Measures on Hilbert Spaces

Let Q be a probability measure on (H,B(H)). If Q is Gaussian, then there exists
a mean element m ∈ H and a covariance operator C : H → H, such that

∫

H
ïu,xðQ(dx) = ïm,uð, ∀u ∈ H, (1)

∫

H
ïu1,x−mðïu2,x−mðQ(dx) = ïCu1,u2ð, ∀u1,u2 ∈ H. (2)

The covariance operator C is symmetric, positive semi-definite, compact, and
has finite trace Tr(C) < +∞. Conversely, let C be a positive, symmetric, trace
class operator in H and let m ∈ H, then there exists a Gaussian measure in H
with mean m and covariance C [6]. From now on, we will denote Q = N (m,C)
for such a Gaussian measure.

3.3 Diffusion Models in Function Space

Here we briefly describe diffusion probabilistic models in function space H [2,19,
22], which is constructed similarly to that of DDPMs [14]. Note that the key dif-
ference is that diffusion models in function space operate in infinite dimensions.
Forward process. The forward process of a diffusion model in function space is
defined as a discrete-time Markov chain that incrementally perturbs probability
measure Qdata towards a Gaussian measure N (m,C) with a zero mean and a
specified covariance operator C. It is a time-indexed process where each step
ut is obtained by applying a transformation to the previous step ut−1, which
involves a scaling factor

√
1− βtut−1 related to the variance schedule β, and

adding scaled Gaussian noise
√
βtξt with ξt ∼ N (0,C):

ut =
√

1− βtut−1 +
√

βtξt t = 1, 2, . . . , T. (3)

Similar to diffusion models in finite dimensions, the forward process in function
space also admits sampling ut at an arbitrary timestep t in closed form. For
ᾱt =

∏t
i=1(1− βt), we have:

Q (ut|u0) = N
(
ut;

√
ᾱtu0, (1− ᾱt)C

)
. (4)

Reverse process. The reverse process in the diffusion model iteratively denoises
from the Gaussian measure N (m,C) back to the probability measure Q0 =
Qdata. This is achieved by sampling from the reverse-time transition measures
Q (ut−1|ut), approximated by a Gaussian measure with parameters θ due to the
intractable normalization constant of the Bayes’ rule:

P¹ (ut−1|ut) = N (ut−1;m¹(ut, t),C¹(ut, t)) (5)
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Likewise, we are able to derive a closed-form representation of the forward pro-
cess posteriors, which are tractable when conditioned on u0:

Q (ut−1|ut,u0) = N
(

ut−1; m̃t(ut,u0), β̃tC
)

, (6)

where m̃t(ut,u0) =
√
³̄t−1´t

1−³̄t

u0 +
√
1−´t(1−³̄t−1)

1−³̄t

ut and β̃t =
1−³̄t−1

1−³̄t

βt.
Training objective. Similar to DDPM in finite dimensions, the reparameteri-
zation is used to achieve better training, which results in a simplified loss:

Lsimple =
∣
∣
∣

∣
∣
∣C−1/2 (ξt − ξ¹(ut, t))

∣
∣
∣

∣
∣
∣

2

H
. (7)

3.4 Neural Operators

Neural operators [4,12,20] are a type of neural network tailored to learn mappings
between infinite-dimensional function spaces. In the context of diffusion models
in infinite dimensions, a denoiser is parameterized by a neural operator G¹ :
U∗ → U , which learns to map from noisy function space U∗ to denoised function
space U . With u ∈ U∗ and s ∈ U , we access their pointwise evaluations by
discretizing them on the mesh x = {x(i)}1≤i≤N ¢ X . Neural operators include
multiple operator layers akin to those in a finite-dimensional neural network
v0 7→ v1 7→ · · · 7→ vL, where layer vl 7→ vl+1 is built upon a local linear
operator, a non-local integral kernel operator, and a bias function:

vl+1(x
(i)) = σl+1

(

Wlvl(x
(i)) + (Kl(u;φ)vl)(x

(i)) + bl(x
(i))
)

, (8)

with Kl(u;φ) being an integral kernel operator aggregating information spatially.

4 The Proposed Method

We propose a novel conditional diffusion model in function space H. Based on the
background provided, we now formulate the forward and reverse process and the
training objective of our conditional diffusion model in infinite dimensions. Fur-
thermore, we present a novel architecture to parameterize the denoising process
with a conditional denoiser equipped with cross-attention neural operators.

4.1 Conditional Diffusion Models in Function Space

In the context of image generation, we discretize the function uj on the mesh

xj = {x(i)
j }1≤i≤N ¢ X by sampling N coordinates of each image, which results

in non-smooth input space. To achieve a smoother function representation, a
smoothing operator [16, 28] A : H → H, e.g . a truncated Gaussian kernel, is
applied to approximate the rough inputs within the function space H.
Forward process. The forward process of our conditional diffusion model in
infinite dimensions is equivalent to that of an unconditional diffusion model in
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function space, which gradually perturbs the probability measure Q0 = Qdata

towards a Gaussian measure N (m,C) and enables sampling at any arbitrary
timestep t with ᾱt =

∏t
i=1(1− βt):

Q (ut|u0) = N
(
ut;

√
ᾱtAu0, (1− ᾱt)ACAT

)
. (9)

Reverse process. We use a variational approach to approximate posterior mea-
sures with a variational family of measures on H and incorporate the conditional
embedding e to control the generation process. We model the underlying poste-
rior measure Q(ut−1|ut) with a conditional Gaussian measure:

P¹(ut−1|ut, e) = N
(
ut−1;m¹(ut, e, t),AC¹(ut, e, t)A

T
)
. (10)

Proposition 1 (Learning Objective). The cross-entropy of conditional dif-
fusion models in function space has a variational upper bound of

LCE = −EQ logP¹(u0|e) f EQ

[

KL(Q(uT |u0) ∥ P¹(uT ))
︸ ︷︷ ︸

LT

− logP¹(u0|u1, e)
︸ ︷︷ ︸

L0

+

T∑

t=2

KL(Q(ut−1|ut,u0) ∥ P¹(ut−1|ut, e)
︸ ︷︷ ︸

Lt−1

]

. (11)

Proof. Please refer to the Appendix A for the full proof. ⊓⊔

To compute the KL divergence between probability measures KL(Q ∥ P),
we need to utilize a measure-theoretic definition of the KL divergence, which is
stated in the following lemmas [6].

Lemma 1 (Measure Equivalence - The Feldman-Hájek Theorem). Let
Q = N (m1,C1) and P = N (m2,C2) be Gaussian measures on H. They are

equivalent if and only if (i) : C
1/2
1 (H) = C

1/2
2 (H) = H0, (ii) : m1−m2 ∈ H0, and

(iii) : The operator (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is a Hilbert-Schmidt operator

on the closure H0.

Lemma 2 (The Radon-Nikodym Derivative). Let Q = N (m1,C1) and
P = N (m2,C2) be Gaussian measures on H. If P and Q are equivalent and
C1 = C2 = C, then P-a.s. the Radon-Nikodym derivative dQ/dP is given by

dQ
dP (f) = exp

[〈
C−1/2 (m1 −m2) ,C

−1/2 (f −m2)
〉
− 1

2∥C−1/2(m1 −m2)∥2
]
∀f ∈ H.

(12)

Proof. The proof of both lemmas is in the Appendix A. ⊓⊔



8 M.-Q. Le et al.

Lemma 1 states the three conditions for the equivalence of two Gaussian
measures. Lemma 2, a consequence of the Feldman-Hájek theorem, provides the
Radon-Nikodym derivative formula for Gaussian measures on H.

To train the diffusion model in functional space we have to minimize the
upper bound of Proposition 1, which requires us to compute the KL divergence
between the measures Q,P. In order to satisfy Lemma 1, which will enable us to
use Lemma 2 to compute the KL divergence, we make the following assumption:

Assumption 1 Let Q = N (m̃t(ut,u0), β̃tC) and P¹ = N (m¹(ut, e, t), β̃tC)
be Gaussian measures on H. With a conditional component e, which can be
an element of finite-dimensional space Rd or Hilbert space H, there exists a
parameter set θ such that the difference in mean elements of the two measures
falls within the scaled covariance space:

m̃t(ut,u0)−m¹(ut, e, t) ∈ (β̃tC)1/2(H). (13)

By making this assumption we satisfy all three conditions of Lemma 1: (i) :

C
1/2
1 (H) = C

1/2
2 (H) = (β̃tC)1/2(H) = H0; (ii) : m1 − m2 ∈ H0 is directly

satisfied from Assumption 1; (iii) : (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I = I − I is

the zero operator, which is trivially a Hilbert-Schmidt operator as its Hilbert-
Schmidt norm is 0. As a consequence, Q and P are equivalent, allowing us to
utilize the Radon-Nikodym derivative from Lemma 2.

Theorem 1 (Conditional Diffusion Optimality in Function Space).
Given the specified conditions in Assumption 1, the minimization of the learning
objective in Proposition 1 is equivalent to obtaining the parameter set θ∗ that is
the solution to the problem

θ
∗ = argmin

θ
E

u0∼Qdata,t∼[1,T ]λt

∣

∣

∣

∣

∣

∣
C

−1/2 (
Aξ − ξθ(

√
ᾱtAu0 +

√
1− ᾱtAξ, e, t)

)

∣

∣

∣

∣

∣

∣

2

H
,

(14)

where ξ ∼ N (0,C), A : H → H denotes a smoothing operator, e ∈ (Rd∪H) is a
conditional component, ξ¹ : {1, 2, . . . , T}× (Rd∪H)×H → H is a parameterized
mapping, λt = β2

t /2β̃t(1− βt)(1− ᾱt) ∈ R is a time-dependent constant.

Proof. Please refer to the Appendix A for the full proof. ⊓⊔

4.2 Conditional Denoiser with Cross-Attention Neural Operators

Our ∞-Brush utilizes a hierarchical denoiser architecture including a sparse level
for efficiently capturing fine-grained details and a grid level for global information
(Fig. 2). We discretize the noisy functions u ∈ H and denoised functions s ∈ H
by randomly selecting a subset of coordinates x = {x(i)}1≤i≤N ¢ X . At the
sparse level, we successively apply a sparse neural operator, our cross-attention
neural operator, and self-attention on pointwise evaluations of the function.

The computational complexity of the vanilla attention is quadratic O(N2d)
w.r.t. the sequence length, or number of function samples (in this case N), and
linear w.r.t. their dimension d. For learning operators in infinite dimensions, N



∞-Brush 9

		+

		+

� * =! � * =! � * ="×!

�$ �$ �" �" �% �%

		+

	+

	+

	+

�

		+ 		+

		+
		+

� * � � * �

Fig. 2: Given a noisy function u ∈ H, we discretize it by randomly selecting a subset of
coordinates x = {x(i)}1≤i≤N ⊂ X then feed it into our conditional denoiser returning a
denoised function s ∈ H. The conditional denoiser architecture of ∞-Brush includes a
sparse level and a grid level. The sparse level (in blue) utilizes a sparse neural operator,
a cross-attention neural operator, and a self-attention neural operator, focusing on
capturing fine-grained details. The grid level (in pink) targets global information. We
use k-NN linear interpolation to transform the sparse points to a regularly spaced grid.

could go up to millions of points (e.g . when generating 4096 × 4096 images,
N ≈ 16 million points). We address that problem by proposing a cross-attention
neural operator of linear complexity with respect to N .

Specifically in the cross-attention neural operator, suppose we have L condi-
tional embeddings {Yl ∈ RNl×d}1≤l≤L. In our ∞-Brush, L = 3 representing the
diffusion timestep embedding t, condition embedding e, and coordinate embed-
ding c. First, we compute the queries Q = (qi), keys Kl = (kl

i) = YlWk, and
values Vl = (vl

i) = YlWv, then normalize all qi and ki to be q̃i = softmax(qi)
and k̃i = softmax(ki). Finally, cross-attention is

zl = q̃t +
1

L

L∑

l=1

Nl∑

i=1

αl
t

(

q̃t · k̃l
i

)

vl
i = q̃t +

1

L

L∑

l=1

αl
tq̃t ·

(
Nl∑

i=1

k̃l
i » vl

i

)

, (15)

where αl
t = 1/

∑Nl

j=1 q̃t · k̃j is the normalization coefficient. The key difference

with vanilla attention is that we first multiply pointwise vectors k̃l
i and vl

i, and
compute the dot product with q̃t afterward. Hence, the complexity of Eq. 15 is
O((N +

∑

l Nl)d
2), which is linear w.r.t. the number of points N .

The output of the sparse level is linearly interpolated to a regularly spaced
grid using k-Nearest Neighbors, which is the input to the grid-level model. The
grid data points are passed to a grid-based, finite-dimensional UNO architecture
[2,22] that is utilized to aggregate global information. The UNO architecture is
based on the widespread UNet model, which has been widely studied to condition
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finite-dimensional diffusion models [30]. Following that literature, we use the
vanilla cross-attention at the bottleneck of the UNet denoiser to integrate the
conditional information at the grid level. In the experiments, we show that since
the coarse interpolation at the grid level is not a complete representation of the
function, the conditioning needs to be applied to both finite-dimensional (grid)
and infinite-dimensional (sparse) levels to attain high-quality results.

5 Experiments

5.1 Experimental Settings

Datasets. We utilize the CelebA-HQ dataset [18] as a testbed for our cross-
attention neural operator. We use 30, 000 images at 1024×1024 resolution along
with the facial attribute blonde/non-blonde hair to train our conditional diffusion
model and compare with the unconditional version [2].

For large image datasets, following the evaluation of [10], we utilize digital
histopathology images from The Genome Cancer Atlas (TCGA) [3] and satellite
imagery from the National Agriculture Imagery Program (NAIP) [34]. We use
the BRCA subset of TCGA which contains breast cancer histopathology images.
We select 20× patches of sizes 4096×4096 and 1024×1024, equivalent in scope to
patches from 1.25× and 5× magnifications, respectively. To provide conditioning,
we resize these images to 256× 256 and extract embeddings from Quilt [17].

We utilize the NAIP images from the Chesapeake Land Cover dataset [29],
by extracting 1024× 1024 non-overlapping patches, resulting in 35, 000 satellite
images. We train a Vision Transformer (ViT-B/16) [9] on the resized 224× 224
pixel versions of these images using the self-supervised DINO algorithm [5]. We
extract the learned DINO embeddings to train our conditional diffusion model
on pairs of 1024× 1024 images and corresponding SSL embeddings.
Evaluation metrics. Following the standard evaluation metrics of MultiDiffu-
sion [1] and [10] for large image synthesis, we evaluate our method’s image quality
on both global structure and fine detail via FID scores [13] using the Clean-FID
implementation [25]. For global structure, we calculate CLIP FID [27] between
the resized version of generated large images and real images. For fine detail, we
randomly take 256× 256 crops from both synthesized and real large images and
measure FID (Crop FID) between the two sets of patches.

5.2 Implementation Details

We train our ∞-Brush from scratch for all experiments. At each training it-
eration, we randomly select a subset of 256∗256 = 65536 pixels from the im-
age. Regarding the denoiser architecture, we leverage the implementation of the
Sparse Neural Operator [20], the unconditional UNO [2], and the general neural
operator [12]. For faster runtime and memory efficiency, we implement our cross-
attention neural operator using FlashAttention-2 [7]. The model is trained using
the Adam optimizer with a learning rate of 5e−5 and β1 = 0.9, β2 = 0.99, along
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Fig. 3: Large images (1024× 1024) generated from our ∞-Brush, conditioned on the
facial attribute blonde/non-blonde hair.

Table 1: The CLIP FID scores of our ∞-Brush model against ∞-Diff showcases our
model’s capability in conditionally generating celebrity faces on the CelebA-HQ dataset
based on the facial attribute of hair color (blonde vs. non-blonde).

Dataset # Images Method Training Config. CLIP FID

CelebA-HQ
(1024× 1024)

30k
∞-Diff [2] Unconditional 9.44

∞-Brush blonde vs. non-blonde hair 8.38

with an exponential moving average (EMA) rate of 0.995. During inference, we
apply DDIM [33] with 50 steps for all experiments. All ∞-Brush models were
trained on 4 NVIDIA A100 GPUs, with a batch size of 20 per GPU.

5.3 Experimental Results

Facial Attribute Conditional Generation. We first validate our cross-attention
neural operator as an efficient conditioning mechanism for infinite-dimensional
diffusion models by adding control to the generation of CelebA-HQ images.

We synthesize 3, 000 images, maintaining the same ratio of blonde/non-
blonde as in the entire dataset, and calculate the CLIP FID to assess quality.
We compare between our conditional ∞-Brush and the unconditional ∞-Diff [2].
As shown in Table 1, our method outperforms the unconditional model, while
also allowing us to control the attribute used as conditioning. Figure 3 shows
examples of large images (1024 × 1024) generated from ∞-Brush, conditioned
on the blonde/non-blonde attribute.
Controllable (Very) Large Image Generation. We provide experimental re-
sults of controllable generation of large (1024×1024) and very large (4096×4096)
images and compare to conditional diffusion models in finite dimensions [26] and
a patch-based approach [10]. In addition, we perform an ablation study to eval-
uate the significance of our cross-attention neural operator. We further compare
the computing resources required for the three different model categories.

Our very large image experiments on the TCGA-BRCA dataset, which has
57k image patches at a resolution of 4096 × 4096 pixels, reveal that ∞-Brush

excels at capturing the global structure of images, as indicated by the better
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Fig. 4: Very large (4096 × 4096) and large (1024 × 1024) images generated from
∞-Brush, and the corresponding reference real images used to generate them. Given a
single embedding vector of a downsampled 256×256 real image, ∞-Brush can synthe-
size images of up to 4096× 4096 and preserve global structures of the reference image.

Table 2: Performance on controllable very large image synthesis on TCGA-BRCA
dataset at 4096×4096 resolution. ∞-Brush outperforms the patch-based approach [10]
in terms of global structure (CLIP FID) while achieving acceptable local details (Crop
FID). SDXL [26] cannot be trained directly on images of 4096 × 4096 images. Addi-
tionally, an ablation study on the cross-attention neural operator shows improvement
in FID metrics when the proposed mechanism is used. This emphasizes its critical role
in the model’s ability to synthesize high-resolution images effectively.

Dataset # Images Method Training Config. CLIP FID Crop FID

BRCA 1.25×
(4096× 4096)

57k

Graikos et al . [10]
976k patches of
1024× 1024

2.75 11.30

∞-Brush
256∗256 pixels of

57k full-size images

2.63 14.76

∞-Brush
3.81 16.28

: Cross-attention neural operator

CLIP FID score (Table 2). The model’s performance in finer details, reflected
in the Crop FID, is slightly worse than the patch-based approach. ∞-Brush is
trained on batches of just 65536 ≈ 0.4% of the pixels from the full images, offering
a substantial reduction in complexity, while maintaining both global structure
and finer details; see Fig. 4 for qualitative results of generated 4096×4096 images.

We can also partially attribute our better CLIP FID and worse Crop FID
to the different conditioning provided to our model. The 4096 × 4096 images
are first downsampled to 256 × 256 and a single embedding vector is extracted
to capture information from the entire image. In comparison, the patch-based
approach of [10] employs 16 local conditions that describe each of the 16 patches
that form the image, helping the model to focus more on the local appearance.

SDXL [26] would need to be trained on 4096× 4096 images which is infeasi-
ble with most current hardware setups. Thus, we resort to smaller patches from
TCGA-BRCA and NAIP, at 1024×1024 resolution, to compare with SDXL and
the patch-based method of [10]. Table 3 shows that our model attains strong
global structure fidelity with superior CLIP FID scores, particularly on the
BRCA dataset (3.74 vs. 6.64). Despite this, our approach results in higher Crop



∞-Brush 13

Table 3: Performance on controllable large image synthesis on BRCA 5× and NAIP
dataset at 1024×1024 resolution. ∞-Brush outperforms other methods in global struc-
ture accuracy, with a marginal trade-off in fine detail as reflected in Crop FID.

Dataset # Images Method Training Config. CLIP FID Crop FID

BRCA 5×
(1024× 1024)

976k

SDXL [26] 976k full-size images 6.64 6.98

Graikos et al . [10]
15M patches of

256× 256
7.43 15.51

∞-Brush
256∗256 pixels of

976k full-size images
3.74 17.87

NAIP
(1024× 1024)

35k

SDXL [26] 35k full-size images 10.90 11.50

Graikos et al . [10]
667k patches of

256× 256
6.86 43.76

∞-Brush
256∗256 pixels of

35k full-size images
6.32 48.65

FID scores, suggesting a trade-off in capturing fine details. While SDXL is able
to train at this resolution, it is important to note that ∞-Brush achieves similar
performance with only a subset of the pixels, because of its highly efficient train-
ing process. Fig. 4 showcases qualitative results of generated 1024×1024 images
from our model. Note that SDXL was pre-trained on LAION-5B, a 5 billion
image caption pair dataset [31], whereas our model was trained from scratch.
Effectiveness of the Cross-Attention Neural Operator. We evaluate the
cross-attention neural operator’s advantage in the ∞-Brush model by comparing
its performance on the TCGA-BRCA 4096×4096 dataset with and without this
operator. When the neural operator is removed, we use vanilla cross-attention
between the conditioning vector and the UNet’s bottleneck layer. In Table 2,
we observe a significant improvement in both CLIP FID and Crop FID scores
when the cross-attention neural operator is employed. The improved scores affirm
the operator’s usefulness in synthesizing high-resolution 4096×4096 images. The
vanilla cross-attention only applies conditioning on a regular grid of coordinates,
which cannot capture fine details between coarse grid points.
Computing Resource Evaluation. We analyze the computing resources needed
for training various image generation models on a single NVIDIA A100 40GB
GPU. As detailed in Table 4, the training time and memory requirements for
diffusion models in finite dimensions, such as SDXL, increase substantially when
scaling from 1024 × 1024 to 4096 × 4096, making training infeasible on stan-
dard hardware. Conversely, the patch-based approach, while able to train at
higher resolutions by dividing images into smaller patches, exhibits a parame-
ter increase and reduced batch size. Our conditional diffusion model in function
space maintains a consistent maximum batch size, significantly lower parameter
count, and per epoch training time across resolutions (12 hours vs. 300 hours
and 140 hours), demonstrating our method’s superior scalability to sizes beyond
the reach of existing methods.
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Table 4: Computing resources requirements for different diffusion models. our
∞-Brush maintains a constant parameter count and batch size across resolutions,
highlighting its efficiency and scalability for controllable large image generation.

Method # Params. Training at 1024× 1024 Training at 4096× 4096
Max batch size Epoch time Max batch size Epoch time

SDXL [26] 3.5B 4 140 hr O.O.M
1000 hr (estimated)
currently infeasible

Graikos et al . [10] 860M 100 45 hr 4 300 hr

∞-Brush 450M 20 12 hr 20 12 hr

6 Limitations

Although ∞-Brush images exhibit better global structure consistency and main-
tain a degree of fine detail, they are not better than other methods in terms
of local details. We highlight a few key reasons which we hypothesize hinder
our model’s performance. Our model has the smallest parameter count, with
just half the parameters of the model of [10]. We expect model sizes to scale
as more works focus on infinite-dimensional diffusion models and performance
to increase, as was observed in regular, finite diffusion models. Additionally,
both SDXL and [10] utilize pre-trained models as initialization, whereas, ours is
trained from scratch as no infinite-dimensional pre-trained models are available,
leading to worse performance in smaller datasets.

7 Conclusion

In conclusion, ∞-Brush presents a necessary leap forward in the domain of con-
ditional large image generation, particularly for applications demanding high-
resolution and domain-specific conditional generation. This paper has demon-
strated that our approach effectively addresses the scalability limitations inher-
ent in previous diffusion models while retaining a high degree of control over the
generated output. By proposing a novel conditional diffusion model in function
space, complemented by a cross-attention neural operator, we achieve not only
state-of-the-art fidelity in the global structure of the images but also maintain
acceptable detail in higher-resolution images without the excessive computa-
tional costs typically associated with such tasks. In future work, we plan to
design local neural operators to capture fine details and transfer knowledge from
finite-dimensional diffusion models for powerful initialization.
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A Conditional Diffusion Models in Function Space

Forward process. The forward process of a conditional diffusion model in
function space is defined as a discrete-time Markov chain that incrementally
perturbs probability measure Qdata towards a Gaussian measure N (m,C) with
a zero mean and a specified covariance operator C. It is a time-indexed process
where each step ut is obtained by applying a transformation to the previous
step ut−1, which involves a scaling factor

√
1− βtut−1 related to the variance

schedule β, and adding scaled Gaussian noise
√
βtξt with ξt ∼ N (0,C):

ut =
√

1− βtut−1 +
√

βtξt t = 1, 2, . . . , T. (16)

Similar to diffusion models in finite dimensions, the forward process in function
space also admits sampling ut at an arbitrary timestep t in closed form. For
ᾱt =

∏t
i=1(1− βt), we have:

ut =
√

1− βtut−1 +
√

βtξt ;where ξt, ξt−1, · · · ∼ N (0,C)

=
√

(1− βt)(1− βt−1)ut−2 +
√

(1− βt)βt−1ξt−1 +
√

βtξt

=
√

(1− βt)(1− βt−1)ut−2 +
√

1− αtαt−1ξ̄t−1

= . . .

=
√
ᾱtu0 +

√
1− ᾱtξ

(17)

Based on the above analysis, we obtain:

Q (ut|u0) = N
(
ut;

√
ᾱtu0, (1− ᾱt)C

)
. (18)

In the context of image generation, we discretize the function uj on the mesh

xj = {x(i)
j }1≤i≤N ¢ X by sampling N coordinates of each image, which results

in a non-smooth input space. To achieve a smoother function representation, a
smoothing operator [16, 28] A : H → H, e.g . a truncated Gaussian kernel, is
applied to approximate the rough inputs within the function space H:

Q (ut|u0) = N
(
ut;

√
ᾱtAu0, (1− ᾱt)ACAT

)
. (19)

Reverse process. The reverse process in the diffusion model framework is
achieved by iteratively denoising from the Gaussian measure N (m,C) back to-
wards the probability measure Q0 = Qdata. We use a variational approach to
approximate posterior measures with a variational family of measures on H and
incorporate the conditional embedding e to control the generation process. We
model the underlying posterior measure Q(ut−1|ut) with a conditional Gaussian
measure:

P¹(ut−1|ut, e) = N
(
ut−1;m¹(ut, e, t),AC¹(ut, e, t)A

T
)
. (20)

Likewise, we are able to derive a closed-form representation of the forward
process posteriors, which are tractable when conditioned on u0:

Q (ut−1|ut,u0) = N
(

ut−1; m̃t(ut,u0), β̃tC
)

. (21)
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Using Bayes’ rule, we obtain:

Q(ut−1|ut,u0) = Q(ut|ut−1,u0)
Q(ut−1|u0)

Q(ut|u0)

∝ exp
(

− 1

2

( ïC−1(ut −
√
αtut−1),ut −

√
αtut−1ð

βt
+

ïC−1(ut−1 −
√
ᾱt−1Au0),ut−1 −

√
ᾱt−1Au0ð

1− ᾱt−1

− ïC−1(ut −
√
ᾱtAu0),ut −

√
ᾱtAu0ð

1− ᾱt

))

= exp
(

− 1

2

(
(
αt

βt
+

1

1− ᾱt−1
)ïC−1ut−1,ut−1ð − 2ïC−1(

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0),ut−1ð+ C(ut,u0)

))

,

(22)
where C(ut,u0) is some function not involving ut−1 and details are omitted.
Following the standard Gaussian density function, the mean and covariance of
Q(ut−1|ut,u0) can be parameterized as follows (recall that αt = 1 − βt and

ᾱt =
∏T

i=1 αi):

m̃t(ut,u0) = (

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0)/(

αt

βt
+

1

1− ᾱt−1
)

= (

√
αt

βt
ut +

√
ᾱt−1

1− ᾱt−1
Au0)

1− ᾱt−1

1− ᾱt
· βt

=

√
ᾱt−1βt

1− ᾱt
Au0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
ut.

(23)

β̃t = 1/(
αt

βt
+

1

1− ᾱt−1
) = 1/(

αt − ᾱt + βt

βt(1− ᾱt−1)
) =

1− ᾱt−1

1− ᾱt
· βt. (24)

Proposition 2 (Learning Objective). The cross-entropy of conditional dif-
fusion models in function space has a variational upper bound of

LCE = −EQ logP¹(u0|e) f EQ

[

KL(Q(uT |u0) ∥ P¹(uT ))
︸ ︷︷ ︸

LT

− logP¹(u0|u1, e)
︸ ︷︷ ︸

L0

+

T∑

t=2

KL(Q(ut−1|ut,u0) ∥ P¹(ut−1|ut, e)
︸ ︷︷ ︸

Lt−1

]

. (25)

Proof. The conditional diffusion model in function space is trained to minimize
the cross entropy as the learning objective, which is equivalent to minimizing
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variational upper bound (VUB):

LCE = −EQ(u0|e) logP¹(u0|e)

= −EQ(u0|e) log
(∫

P¹(u0:T |e)du1:T

)

= −EQ(u0|e) log
(∫

Q(u1:T |u0, e)
P¹(u0:T |e)

Q(u1:T |u0, e)
du1:T

)

= −EQ(u0|e) log
(

EQ(u1:T |u0,e)
P¹(u0:T |e)

Q(u1:T |u0, e)

)

f −EQ(u0:T |e) log
P¹(u0:T |e)

Q(u1:T |u0, e)

= EQ(u0:T |e)
[

log
Q(u1:T |u0, e)

P¹(u0:T |e)
]

= EQ(u0:T |e)
[

log
Q(u1:T |u0)

P¹(u0:T |e)
]

= LVUB.

(26)

To convert each term in the equation to be analytically computable, the
objective can be further rewritten to be a combination of several KL-divergence
and entropy terms:

LVUB = EQ(u0:T |e)
[

log
Q(u1:T |u0)

P¹(u0:T |e)
]

= EQ

[

log

∏T
t=1 Q(ut|ut−1)

P¹(uT )
∏T

t=1 P¹(ut−1|ut, e)

]

= EQ

[

− logP¹(uT ) +
T∑

t=1

log
Q(ut|ut−1)

P¹(ut−1|ut, e)

]

= EQ

[

− logP¹(uT ) +

T∑

t=2

log
Q(ut|ut−1)

P¹(ut−1|ut, e)
+ log

Q(u1|u0)

P¹(u0|u1, e)

]

= EQ

[

− logP¹(uT ) +

T∑

t=2

log
(Q(ut−1|ut,u0)

P¹(ut−1|ut, e)
· Q(ut|u0)

Q(ut−1|u0)

)

+ log
Q(u1|u0)

P¹(u0|u1, e)

]

= EQ

[

− logP¹(uT ) +

T∑

t=2

log
Q(ut−1|ut,u0)

P¹(ut−1|ut, e)
+

T∑

t=2

log
Q(ut|u0)

Q(ut−1|u0)
+ log

Q(u1|u0)

P¹(u0|u1, e)

]

= EQ

[

− logP¹(uT ) +

T∑

t=2

log
Q(ut−1|ut,u0)

P¹(ut−1|ut, e)
+ log

Q(uT |u0)

Q(u1|u0)
+ log

Q(u1|u0)

P¹(u0|u1, e)

]

= EQ

[

log
Q(uT |u0)

P¹(uT )
+

T∑

t=2

log
Q(ut−1|ut,u0)

P¹(ut−1|ut, e)
− logP¹(u0|u1, e)

]

= EQ[KL(Q(uT |u0) ∥ P¹(uT ))
︸ ︷︷ ︸

LT

+

T∑

t=2

KL(Q(ut−1|ut,u0) ∥ P¹(ut−1|ut, e))
︸ ︷︷ ︸

Lt−1

− logP¹(u0|u1, e)
︸ ︷︷ ︸

L0

]

(27)
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Combine Eq. 26 and Eq. 27, we obtain:

LCE = −EQ logP¹(u0|e) f EQ

[

KL(Q(uT |u0) ∥ P¹(uT ))
︸ ︷︷ ︸

LT

− logP¹(u0|u1, e)
︸ ︷︷ ︸

L0

+

T∑

t=2

KL(Q(ut−1|ut,u0) ∥ P¹(ut−1|ut, e)
︸ ︷︷ ︸

Lt−1

]

. (28)

⊓⊔

To compute the KL divergence between probability measures KL(Q ∥ P), we
need to utilize a measure-theoretic definition of the KL divergence, which is
stated in the following lemmas [6].

Lemma 3 (Measure Equivalence - The Feldman-Hájek Theorem). Let
Q = N (m1,C1) and P = N (m2,C2) be Gaussian measures on H. They are

equivalent if and only if (i) : C
1/2
1 (H) = C

1/2
2 (H) = H0, (ii) : m1−m2 ∈ H0, and

(iii) : The operator (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is a Hilbert-Schmidt operator

on the closure H0.

Proof. Refer to the proof of Theorem 2.25 of Da Prato and Zabczyk [6]. ⊓⊔

Lemma 4 (The Radon-Nikodym Derivative). Let Q = N (m1,C1) and
P = N (m2,C2) be Gaussian measures on H. If P and Q are equivalent and
C1 = C2 = C, then P-a.s. the Radon-Nikodym derivative dQ/dP is given by

dQ
dP (f) = exp

[〈
C−1/2 (m1 −m2) ,C

−1/2 (f −m2)
〉
− 1

2∥C−1/2(m1 −m2)∥2
]
∀f ∈ H.

(29)

Proof. Refer to the proof of Theorem 2.23 of Da Prato and Zabczyk [6]. ⊓⊔

Lemma 3 states the three conditions under which two Gaussian measures
are equivalent. Lemma 4 is the consequence of the Feldman-Hájek theorem,
providing the Radon-Nikodym derivative formula when dealing with Gaussian
measures on H.

To train the diffusion model in functional space we have to minimize the
upper bound of Proposition 2, which requires us to compute the KL divergence
between the measures Q,P. In order to satisfy Lemma 3, which will enable us to
use Lemma 4 to compute the KL divergence, we make the following assumption:

Assumption 2 Let Q = N (m̃t(ut,u0), β̃tC) and P¹ = N (m¹(ut, e, t), β̃tC)
be Gaussian measures on H. With a conditional component e, which can be
an element of finite-dimensional space Rd or Hilbert space H, there exists a
parameter set θ such that the difference in mean elements of the two measures
falls within the scaled covariance space:

m̃t(ut,u0)−m¹(ut, e, t) ∈ (β̃tC)1/2(H). (30)
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By making this assumption we satisfy all three conditions of Lemma 3: (i) :

C
1/2
1 (H) = C

1/2
2 (H) = (β̃tC)1/2(H) = H0; (ii) : m1 − m2 ∈ H0 is directly

satisfied from Assumption 2; (iii) : (C
−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I = I − I is

the zero operator, which is trivially a Hilbert-Schmidt operator as its Hilbert-
Schmidt norm is 0. As a consequence, Q and P are equivalent, allowing us to
utilize the Radon-Nikodym derivative from Lemma 4.

Theorem 2 (Conditional Diffusion Optimality in Function Space).
Given the specified conditions in Assumption 2, the minimization of the learning
objective in Proposition 2 is equivalent to obtaining the parameter set θ∗ that is
the solution to the problem

θ
∗ = argmin

θ
E

u0∼Qdata,t∼[1,T ]λt

∣

∣

∣

∣

∣

∣
C

−1/2 (
Aξ − ξθ(

√
ᾱtAu0 +

√
1− ᾱtAξ, e, t)

)

∣

∣

∣

∣

∣

∣

2

H
,

(31)

where ξ ∼ N (0,C), A : H → H denotes a smoothing operator, e ∈ (Rd∪H) is a
conditional component, ξ¹ : {1, 2, . . . , T}× (Rd∪H)×H → H is a parameterized
mapping, λt = β2

t /2β̃t(1− βt)(1− ᾱt) ∈ R is a time-dependent constant.

Proof. Under Assumption 2, we are now able to use the Radon-Nikodym deriva-
tive to compute the KL divergence:

KL [Q ∥ P] =

∫

H
log

dQ

dP
(f) dQ(f)

= −1

2
∥C−1/2(m1 −m2)∥2H +

∫

H

〈

C−1/2 (m1 −m2) ,C
−1/2 (f −m2)

〉

dQ(f).

(32)
We now use spectral decomposition to compute the integral term. Let {λj , ej}∞j=1

be the eigenvalues and eigenvectors of C. The eigenvector of C form an orthonor-
mal basis for H by the spectral theorem, as C is a self-adjoint compact operator.
Hence, the second integral is:

∫

H

〈

C−1/2 (m1 −m2) ,C
−1/2 (f −m2) dQ(f)

=

∫

H

∞∑

j=1

ïm1 −m2, ejð ïf −m2, ejðλ−1
j dQ(f)

=

∞∑

j=1

λ−1
j ïm1 −m2, ejð

∫

H
ïf −m2, ejð dQ(f)

=
∞∑

j=1

λ−1
j ïm1 −m2, ejð2

=
〈

C−1/2 (m1 −m2) ,C
−1/2 (m1 −m2)

〉

.

(33)

Combine Eq. 32 and Eq. 33, we obtain:

KL [Q ∥ P] =
1

2
∥C−1/2(m1 −m2)∥2H (34)
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From Proposition 2, the KL divergence between Gaussian measures Q and P

now becomes:

Lt−1 = KL [Q(ut−1|ut,u0) ∥ P¹(ut−1|ut, e)]

=
1

2
∥(β̃tC)−1/2(m̃t(ut,u0)−m¹(ut, e, t))∥2H

(35)

Our model must predict the mean function m̃t(ut,u0). Recall that we got the
expression of m̃t(ut,u0) and u0 depending on ut:

m̃t(ut,u0) =

√
ᾱt−1βt

1− ᾱt
Au0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
ut. (36)

Au0 =
1√
ᾱt

(
ut −

√
1− ᾱtAξ

)
;where ξ ∼ N (0,C) (37)

Combine these two expressions, we have:

m̃t(ut,u0) =
1√

1− βt

(

ut −
βt√
1− ᾱt

Aξ

)

(38)

Thus, we parameterize the variational mean via:

m¹(ut, e, t) =
1√

1− βt

(

ut −
βt√
1− ᾱt

ξ¹(ut, e, t)

)

(39)

Finally, plugging Eq. 38 and Eq. 39 into Lt−1, we obtain:

Lt−1 =
1

2

∥
∥
∥
∥
(β̃tC)−1/2

(
1√

1− βt

βt√
1− ᾱt

Aξ − 1√
1− βt

βt√
1− ᾱt

ξ¹(ut, e, t)

)∥
∥
∥
∥

2

H

=
β2
t

2β̃t(1− βt)(1− ᾱt)

∥
∥
∥C−1/2 (Aξ − ξ¹(ut, e, t))

∥
∥
∥

2

H

=
β2
t

2β̃t(1− βt)(1− ᾱt)

∥
∥
∥C−1/2

(
Aξ − ξ¹(

√
ᾱtAu0 +

√
1− ᾱtAξ, e, t)

)
∥
∥
∥

2

H
(40)

⊓⊔

B Experiments

B.1 Long-range dependencies

We obtained the patch-based large-image model of Graikos et al. [10] directly
from the authors and tried to apply it to synthesize images larger than 1024 ×
1024 pixels. The overreliance of the patch-based model on the local descriptors
(patch SSL embeddings) leads to the loss of large-scale structures and fails to
capture long-range dependencies across the image. As a qualitative example
(Figure 5), we get a reference image of size 2048 × 2048 pixels from TCGA-
BRCA and extract embeddings in an attempt to generate a variation of it using
our model and the patch-based model of [10]. As illustrated, ∞-Brush retains
large-scale structures (such as clearly-separated clusters of cells) that can span
multiple patches, in comparison to the image generated from [10].
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>

Fig. 5: Long-range dependencies comparison between our ∞-Brush and patched-based
method [10]. ∞-Brush retains large-scale structures (such as clearly-separated clusters
of cells) that can span multiple patches in comparison to the image generated from [10].
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Fig. 6: Confusion matrix of zero-shot classification of generated images.

B.2 Zero-shot classification

Following the experiment of [10], we generate images from a pre-defined set of
four classes: benign tissue, in-situ, invasive carcinoma, and normal tissue. We
use a VLM (Quilt) as a zero-shot classifier and compute the confusion matrix
(CM). Figure 6 shows that ∞-Brush generates images semantically aligned with
the text prompts.
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Table 5: Synthetic data improves the accuracy significantly on the BACH test set.

Training Data Test Acc

Real 79 %
Real + synthetic 83 %

0.4% 1.6%

Fig. 7: Ablation on % pixels for training and zoomed-in views.

B.3 Application of synthetic data on downstream task

As a practical application, we double the number of training images of the BACH
dataset by synthesizing images using real data embedding and evaluating the test
set. Table 5 shows a significant accuracy boost from these synthetic images.

B.4 Ablation study on % of pixels for training

We compare our model when training on 256∗256 (0.4%) vs. 512∗512 pixels
(1.6%). Figure 7 shows that training with more pixels improves performance.
Our model efficiently uses 0.4% of pixels compared to 25% of ∞-Diff’s due to
the incorporation of coordinate embedding in CANO, functioning as positional
embedding.

B.5 Qualitative results

In Figure 8 and Figure 9, we illustrate the generated very large (4096 × 4096)
and large (1024× 1024) images of TCGA-BRCA [3] dataset. We also show syn-
thesized satellite images at 2048×2048 and 1024×1024 resolutions in Figure 10.
Qualitative results show that given a single embedding vector of a downsampled
256 × 256 real image, ∞-Brush can synthesize images of arbitrary resolutions
up to 4096× 4096 and preserve global structures of the reference image.

Figure 11 shows examples where the model did not successfully capture spa-
tial structures and details from the reference images. This can be attributed to
both the model and the conditioning used to represent the images.
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Fig. 8: Very large (4096×4096) images generated from ∞-Brush, and the correspond-
ing reference real images used to generate them. Given a single embedding vector of a
downsampled 256×256 real image, ∞-Brush can synthesize images of up to 4096×4096
and preserve global structures of the reference image.
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