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On the complex affine structures of SYZ
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fibration of del Pezzo surfaces

S1U-CHEONG LAu, TSUNG-JU LEE, AND YU-SHEN LIN

Given any smooth cubic curve E C P2, we show that the complex
affine structure of the special Lagrangian fibration of P? \ E con-
structed by Collins—Jacob-Lin [12] coincides with the affine struc-
ture used in Carl-Pomperla—Siebert [15] for constructing mirror.
Moreover, we use the Floer-theoretical gluing method to construct
a mirror using immersed Lagrangians, which is shown to agree with
the mirror constructed by Carl-Pomperla—Siebert.
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Mirror symmetry is a duality between the symplectic geometry of a Calabi—
Yau manifold X and the complex geometry of its mirror X. With the help
of mirror symmetry, one can achieve a lot of enumerative invariants of
Calabi—Yau manifolds, which are a priori hard to compute.

To construct the mirror for a Calabi—Yau manifold, Strominger—Yau—

Zaslow proposed the following conjectures [39]: First of all, a Calabi—Yau
manifold X near the large complex structure limit admits a special Lagrangian
fibration. This is one of the very few geometric descriptions of Calabi—Yau
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manifolds. Second, the mirror X of X can be constructed as the dual torus
fibration of X. Third, the Ricci-flat metric on X is closed to the semi-flat
metric, with corrections coming from the holomorphic discs with boundaries
on special Lagrangian torus fibres.

For a long time, Strominger—Yau—Zaslow conjecture serves a guiding
principle for mirror symmetry. Many of its implications are proved as the
building blocks for understanding mirror symmetry. For instance, it provides a
geometric way of realizing the homological mirror functor [34]. However, there
is very few progress on the original conjecture itself. Only very few examples
of special Lagrangian fibrations are known due to technical difficulties of
knowing explicit form of Ricci-flat metric. From the conjecture, one need to
know the Ricci-flat metric for the existence of special Lagrangian fibration.
While the explicit form of the Ricci-flat metric would involve the correction
from the holomorphic discs. To retrieve such information, one need to know
the boundary conditions, which are provided by the special Lagrangian torus
fibres. Thus, the special Lagrangian fibration, the Ricci-flat metric and the
correction from holomorphic discs form an iron triangle and firmly linked to
each other. Actually, all the examples in the literature are either with respect
to the flat metric or the hyperKéhler rotation of the holomorphic Lagrangian
fibrations. Furthermore, one usually can only track the hyperKéahler manifold
via Torelli type theorem after hyperKéahler rotation rather than writing down
the explicit equation.

To get around the analytic difficulties, Kontsevich-Soibelman [29], Gross—
Siebert [25] developed the algebraic alternative to construct the mirror
families using rigid analytic spaces. One takes the dual intersection complex
B of the maximal degenerate Calabi—Yau varieties, there is a natural integral
affine structures with singularities on B. By studying the scattering diagrams
on B, one can reconstruct the Calabi—Yau family near the large complex
structure limit. It is a folklore theorem that the affine manifold B is the base
for the Strominger—Yau—Zaslow conjecture, while the support of the scattering
diagrams are the projection of the holomorphic discs with boundaries on
special Lagrangian torus fibres. There are many success of understanding
mirror symmetry via this algebraic approach.

On the other hand, one can use Lagrangian Floer theory to construct
mirrors and prove homological mirror symmetry. Fukaya [18] has proposed
family Floer homology which was further developed by Tu [40] and Abouzaid
[2,3]. The family Floer mirror is constructed as the set of Maurer-Cartan
elements for the A, structures of the Lagrangian torus fibres quotient by
certain equivalences. As Lagrangian torus fibres bound Maslov index zero
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holomorphic discs, the Maurer—Cartan elements will jump and induces non-
trivial gluing of charts. It is expected that such jumps behave the same way
as the cluster transformations associate to the ones in the scattering diagram.

A symplectic realization of the SYZ mirror construction was first illus-
trated in some inspiring examples by Auroux [1]. Using symplectic geometry,
the SYZ mirror construction was realized for toric Calabi-Yau manifolds [14]
by Chan, Leung and the first named author. They have interesting mirror
maps and Gromov-Witten theory. The mirror construction for blowing-up of
toric hypersurfaces was realized by Abouzaid-Auroux-Katzarkov [4]. Fukaya—
Oh-Ohta—Ono [20-22] developed the Floer-theoretical construction in great
detail for compact toric manifolds, which generalize and strengthen the result
of Cho—Oh [11] for toric Fano manifolds.

In all these cases, the mirrors constructed in symplectic geometry coincide
with the ones produced from Gross—Siebert program. The holomorphic discs
can be written down explicitly and no scattering of Maslov index zero discs
occur.

Singular SYZ fibers are the sources of Maslov index zero holomorphic
discs and quantum corrections. In [7, 8], Cho, Hong and the first named
author found a way to construct a localized mirror of a Lagrangian immersion
by solving the Maurer—Cartan equation for the formal deformations coming
from immersed sectors. Moreover, gluing between the local mirror charts
based on Fukaya isomorphisms was developed in [9]. Applying to singular
fibers, it gives a canonical (partial) compactification of the SYZ mirror by
gluing the local mirror charts of singular fibers with those of regular tori [27].

In general, it is difficult to explicitly compute the Floer theoretical mirror.
Maslov index zero discs can glue to new families of Maslov index zero discs,
which is analogue of scattering or wall-crossing in Gross—Siebert program. It
is in general complicated to control the scattering of Maslov index zero discs.

With the assumption that the Lagrangian fibration is special, one can have
extra control of the locus of torus fibres bounding holomorphic discs. They
form affine lines with respect to the complex affine structure. In particular,
this allows us to study a version of open Gromov—Witten invariants defined
by the third author and identified them with the tropical disc counting
[30,31,33].

It is reasonable to expect that the Gross—Siebert mirror and the Floer-
theoretical mirror are equivalent. The first step toward such statement is to
identify the affine manifolds with singularities of the SYZ fibration and the
one used in the Gross—Siebert program.
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Figure 1: The moment-map polytope of P? and its dual.

Conjecture 1.1. Let X; be a family of Calabi—Yau toric degeneration Xg
and Xy admits a special Lagrangian fibration. Then the limit of the complex
affine structures of the special Lagrangian fibration coincides with the affine
structures on the dual intersection complex of Xg.

In this paper, we will establish first such a statement for the case of P2.

Theorem 1.2 (=Theorem 3.11). Conjecture 1.1 holds for the SYZ fibra-
tion of X =P%\ E, where E is a smooth cubic curve.

The Gross-Siebert type mirror construction of P? \ E is done by Carl-
Pomperla—Siebert [15] and has the following description. First, take the toric
variety P2 /Z3, whose moment-map polytope is dual to that of P2, see Figure 1.
We have the meromorphic function W = z 4+ w + 1/zw on P?/Z3. The pole
divisor of W is the sum of the three toric divisors. The zero divisor of W
intersects with the pole divisor at three points. We blow up P?/Zs3 at these
three points, so that W induces an elliptic fibration. (We can further blow up
the three orbifold points of P?/Z3 to make the total space smooth.) Finally
we delete the strict transform of the three toric divisors (which is the fiber at
o0) and this defines the mirror space. The Landau-Ginzburg superpotential
is the elliptic fibration map induced by W. It is also worth noticing that the
theorem is also achieved by Pierrick Beausseau with a different approach
[36]. We refer the readers for the inspiring heuristic discussion there about
such an expectation from a different point of view.

For the family Floer mirror, it is glued from torus charts, which are the
deformation spaces of Lagrangian torus fibers. Due to scattering of Maslov
zero holomorphic discs, there are infinitely many walls and chambers in this
case, and each chamber corresponds to a torus chart.
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On the other hand, in the Fano situation of this paper, we can use the
method in [9,27] to construct a C-valued mirror. The special Lagrangian
fibration on P? \ E [12] has three singular fibers which are nodal tori. Instead
of the (infinitely many) torus fibers, we take the monotone moment-map
torus together with three monotone Lagrangian immersions (in place of the
singular SYZ fibers), and glue their deformation spaces together to construct
the mirror.

Theorem 1.3. For P? — E, the Floer-theoretical mirror glued from the de-
formation spaces of the monotone moment-map torus and the three monotone
Lagrangian immersions coincides with the Carl-Pomperla—Siebert mirror
described above.

More precisely, the gluing construction has to be carried out over the

Novikov field

A= {i aiTAi
i=0

so that the Lagrangian deformation spaces have the correct topology and
dimension. See Remark 4.10. After we glue up a space over A using Lagrangian
Floer theory, we restrict to C to get a C-valued mirror.

a; € C, A; € R and increases to + oo}

Outline of the paper

In Section 2, we review the geometry of the special Lagrangian fibration on
P2\ E and the complex affine structure induced from the special Lagrangian
fibration in Section . We also describe the affine manifold which is used
to construct for mirror in [15]. In Section 3, we first explain how to use
hyperKéhler rotation to reduce the problem to relative periods of an extremal
rational elliptic surface, where the geometry can be very explicit. Then we
verified various properties of the relative periods for the proof of the main
theorem. In Section 4, we carry out the Floer theoretical construction and
show that it agrees with Carl-Pomperla—Siebert mirror.
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2. SYZ fibration on del Pezzo surfaces

We will first review the results in [12]: Let Y be a del Pezzo surface or a
rational elliptic surface, D € | — Ky| be a smooth anti-canonical divisor and
X =Y \D. There exists a meromorphic volume form €2 on with simple pole
along D which is unique up to a C*-scaling. Therefore, one can view X as a
log Calabi—Yau surface. Moreover, Tian—Yau proved the following theorem:

Theorem 2.1 ([41]). There exists an exact complete Ricci-flat metric wry
on X.

We will assume that 2w2,. = Q A Q after a suitable scaling of .

Definition 2.2. Let X be a complex manifold with a holomorphic volume
form Q and a Ricci-flat metric w. A half dimensional submanifold L is a
special Lagrangian with respect to (w, ) if w|, =0 and ImQ|; = 0.

It is conjectured by Yau and also Auroux [2] that there exists a special
Lagrangian fibration on X. The conjecture is proved by Colllins—Jacob—Lin
earlier.

Theorem 2.3 ([12]). The log Calabi—Yau surface X admits a special La-
grangian fibration w : X — Bgyz with respect to wry .

Although the proof of the existence of special Lagrangian fibration in
[12] still largely use the hyperKéhler structure, an important difference from
the earlier examples is that one knows which complex structure can support
the special Lagrangian fibration. Moreover, one can use algebraic geometry
to understand the complex structure after the hyperKéahler rotation.

Theorem 2.4 ([12]). With the above notation and d = (—Ky)?. Let X de-
notes the underlying topological space of X with Kdahler form and holomorphic
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volume form

= Re{
(2.1) Q=w—+v-1-ImQ.

&«

Then X admits an elliptic fibration and compactifiation to a rational elliptic
surface Y by adding an Iy singular fibre over oco.

X —— (V,I)
[
C

— (P!, c0)

From the asymptotic behavior of €, one has

Proposition 2.5. [13] The holomorphic 2-form Q on X coincide with the
meromorphic 2-form on Y with simply pole along the fibre over co.

In particular, the rational elliptic surface Y has singular configuration
IyI} for the case Y = P? [12]. The extremal rational elliptic surfaces have no
deformation and thus can be identified by explicit equation. In the case of
Y = P2, X can actually be realized as the fibrewise compactification of the
Landau-Ginzburg mirror

W: (C*)? —C
(2.2) 1
(ti,t2) = t1 +ta + —.
tito
It is straight-forward to check that W has three critical values Ag, A1, Ao
and the cross-ratio with oo is fixed. Thus, we may assume that \; = 3¢,
where ¢ = exp (27i/3). The fibres of W are three-punctured elliptic curves.

1
By computing the global monodromy which is conjugating to (0 ?), the

Lefschetz fibration W : (C*)2 — C can be compactified to such an extremal
rational elliptic surface by adding three sections and an Iy singular fibre at
infinity.

There is a Zs-action (x,y) — ((x,Cy) on (C*)? which induces a Zg-action
on the base P! permuting the three critical values. Let Ey be the fibre over
0 € P! which is fixed by the Zz-action.
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t1 =3¢

t, = 3¢?

Figure 2: The vanishing cycles in Fj.

Lemma 2.6 (cf. [5, Lemma 3.1]). We can choose a basis for Hy(Ey,Z) ~
72 and orientations for the vanishing cycles [Vo], [Vi], [Va] of Ao, A1, A2
such that [Vo], [Vi] and [Va] are represented by (—2,—1), (1,—1) and (1,2)
respectively and the vanishing cycle from oo along the curve coO in FIGURE 4
is represented by (0,1). In particular, we have [Vp] + [V1] + [V2] = 0.

We will describe the orientation explicitly in §3.3 (C).

Given a special Lagrangian fibration X — Bgy 7z with respect to (w, (),
we will denote L, for the fibre over ¢ € Bgyz. Let By be the complement
of discriminant locus, then there exists an integral affine structure on By
[26] which we will now explain below: Choose a reference fibre L,, and basis
e; € Hi(Lg,). For a nearby torus fibre L, and a path ¢ connecting ¢ and o,
let C; be the union of the parallel transport of e; along ¢. Then the complex
affine coordinate f;(q) of ¢ is defined to be

(2.3) fila) = /C mo

which is well-defined since L4, Ly, are special Lagrangians. It is straight-
forward to check that for a different choice of the basis and paths, the
transition function falls in GL(n,Z) x R™, where n = dimgrL,. Thus, By is
an integral affine manifold and we say Bgy 7z is an integral affine manifold with
singularities A = Bgy z\By. The above integral affine structure is usually
known as the complex affine structure of the special Lagrangian fibration in
the context of mirror symmetry.
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3. Equivalence of the two affine structures

From now on, we concentrate on the case Y = P? with the Landau-Ginzburg
potential function (2.2). Recall that P? is defined by the polytope A =
Conv{(—1,-1),(2,-1),(-1,2)}. Let V=AY be the dual polytope. We
denote by Py the toric variety defined by V and by Py — Py the maximal
projective crepant partial resolution of Py, which is a resolution in the
present case.

We denote by ¢ the coordinate of the target space of the potential
function W in (2.2) and regard (W —q-1) as a holomorphic section of
the anti-canonical bundle over Py . Precisely, the monomials %1, to, tl_ltz_ !
correspond to the integral points (1,0), (0,1), (=1, —1) in V and the monomial
t(l)tg = 1 corresponds to the integral point (0,0). The subvariety {W —¢q-1 =
0} C Py gives the desired compactification of our fiber W~1(q). The family
{W —¢q-1=0} is a pencil spanned by the section 1 and t1 + to + t]'t; ",
and can be extended to a family over P!. It is straightforward to check that
the sections 1 and ¢ + to + tl_lt; ! intersect at three points. Blowing-up the
base locus gives a morphism Y — IP’1~. The fiber at oo € P! is a union of
proper transforms of toric divisors in Py, which is a Iy fiber. For simplicity,
the proper transform of the Ig fiber in Y is also denoted by Iy.

Let X := Y \ Iy. First of all, it is clear that

Hy(Y,Z) 27, Hy(Y,Z) = 7', and Hy(Y,Z) = Z.
Secondly, from the Poincaré duality for orientable manifolds, we have
H,(X,Z) =~ H¥K(X,2) =2 HNX,Z), YV E.

Finally, let U be the preimage of a small neighborhood around oo € P! under
Y — P, Iy is a retract of U. Utilizing the Mayer—Vietoris resolution for
simple normal crossing varieties, one can easily derive

H?(Iy,Z) = 7°, H'(Iy,Z) = Z, and H°(Iy,Z) = Z.

Consider the Mayer—Vietoris sequence assicoated to the pair (U, X ), we can
show that
H?(X,C) = Hy(X,C) = C?

We put B, = {W —¢q-1=0} C Y. It follows that Hy(X,Z) is generated by
the class of S! x S! C (C*)? and the class of E,.
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From the construction, the standard toric form

dt;  dt
dty | dip
t1 to

on (C*)? extends to a meromorphic form on Py with simple poles along
the union of toric divisors. Via the pullback further to Y, we obtain a
meromorphic 2-form which has simple poles along Ig.

In what follows, we set

dt dt
a2
t1 to

Q=v-1-
The meromorphic top form  has the property that
Re Q‘HQ(X,Z) =0.

We can represent ) in a different way, which turns out to be useful in the
sequel. It follows from (2.2) that

t1dto + todt;
(t1t2)?

1 1
=[1——)dt 1 — —= | dis.
( t%t2> 1+< m%) ?

A direct calculation gives

dg = dt; + dity —

1-— tlt% Q
dg Adt] = —
q 1 t —
and therefore
~ t
(3.1) Q=—v—1-—2 _dgndh

14t
provided that 1 —t;¢3 # 0.
3.1. The affine structure of Carl-Pumperla—Siebert
The construction of the mirror of a del Pezzo surface relative to a smooth

anti-canonical divisor is studied in [15]. We will describe the affine manifold
with singularities used in [15] below: The underlying space is R? topologically.
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0 1
locating at A’ = (0, —1), B’ = (3, 3) and C’ = (—3,0). To cooperate with the
standard affine structure of R? for computation convenience, they introduce
cuts and the affine transformation as follows: let

. . . . 1 1
There are three singularities with local monodromy conjugate to ( >

Iy = 1 :L'>1
t "2 ~ 2
I = x—l x>0
2 = 72 =
1
;=2 (-t,—=—t)|t>0
s {(ea o) =}
= (=) [ezo0
3 = 9 ’ =
1
Iy = —— >0
s={(2) [v2}
Disgard the sector bounded

by lf,li_, then glue the cuts by the affine
‘ . 2 1 1 4 -1 1 el L
transformations <_ 1 0) <_ 1 3>, <_ 4 3> respectively and one reaches
the affine manifold in [15]. See FIGURE 3 above.

3.2. A hyperKihler rotation trick

To compute the complex affine coordinates, generally one needs to compute
the relative periods for the imaginary part of the holomorphic volume form
on X. Technically, it is not computable generally due to the fact that the
special Lagrangian fibration is never explicit. The advantage of the work of
Collins-Jacob-Lin is that one knows both the explicit equation of X and X.
From (2.3) and Theorem 2.4, one can compute the complex affine coordinates
via the geometry on X with a particular phase for Q. From Mayer—Vietoris
sequence, one has Hy(X,Z) = Hy(X,Z) = Z2. Since wry is exact, we have
wry |y, (x,2) = 0. Because of the existence of the compact special Lagrangian
tori, we have Q|H2( X,2) # 0. Therefore, the phase of  need to be chosen
such that

Re Q!HQ( =0

X, 7)
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Figure 3: The affine plane given in [15].

from (2.1). To sum up, we have the following lemma:

Lemma 3.1. We resume the notation introduced in the last paragraph
in §2. The complex affine structure of the special Lagrangian fibration in
Theorem 2.3 for P? can be computed via

filg) = /c Im Q2

on the extremal rational elliptic surface Y with singular configuration IhI3.
Here § is the meromorphic volume form on Y with simple pole along the Iqg
fibre and Re Q|y, x 7y = 0.
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3.3. Relative periods on Y

We analyze the relative periods on Y in more detail in this subsection. The
fiber over ¢ in Y — P! is denoted by E,.

(A) Vanishing cycles. Note that F3, E3- and Esc are all the singular
fibers in X — C and each of which is of type I;. According to [5], after a
parallel transport to Ep, the vanishing cycle for E3¢ can be represented by
a cycle V; in Ey such that the image of V; under the projection (t1,t2) — 1
is given by the arcs §; drawn in FIGURE 2.

Note that the cycle class [V;] € Hi(Ep,Z) is only defined up to sign at
this moment because we have not fixed the orientation yet. However, once
the orientation of Vj is determined, the Z/37Z-action will uniquely determine
the orientations for V7 and V5.

Remark 3.2. Suppose the orientation of V; is given with respect to the
7.)3Z-action. We can accordingly choose an integral basis {c,d} C Hi(Ey,Z)
such that the vanishing cycles Vo], [Vi] and [Va] are represented by —2c — d,
c—d and ¢+ 2d, respectively. Also note that the presentations are chosen
with respect to the Z/37Z-action on the g-plane C,,.

(B) Lefschetz thimbles. For each j, we define a simply connected domain
(3.2) W; := C\ Upsj{q: ¢ = r¢* with r > 3}.

For g € Wj, let v be a smooth curve joint ¢ and 3¢’ contained in W;. Let
Vj C Ey be the representatives described in (A). Then the Lefschetz thimble
of V; along -, which is denoted by F}(q), is the union of the parallel transport
of V; along the cycle «. Precisely,

(3.3) I7(q) == Uger V7,

where Vj(q,) is the parallel transport of V; along any curve in W) connecting
0 and ¢ and then from ¢ to ¢’ along .

We shall mention that different representatives V] give different Lefschetz
thimbles f](q) and also that the Lefschetz thimble does depend on the choice
of the curve connecting 0 and g. One proves that in any case their difference
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U3

c—2d

U2

Figure 4: The orientation of the cycles. The oriented line segments 7y, 71,
and 7> defined in (3.6) are the oriented line segments @, BO and CO. For
other notation, see the paragraph (D).

is a coboundary. Consequently, by Stokes’ theorem, the integral

(3.4) / Q
'Y ()

is independent of the choice of the representatives and the curve connecting
0 and q. However, it is defined only up to a sign at this moment because of
the orientation.

(C) Orientations. Recall that d; is an oriented arc with orientation drawn
in FIGURE 2. From (2.2), we can solve

(3.5) t5 = ((a— 1) £Vl — 1) —4/0) /2

The orientation of Vj is chosen in the following manner. First we note that
Vo is set-theoretically equal to the union of the graph of the holomorphic
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functions ¢ and ¢, along the arc dy defined in (3.5). For the graph of ¢;,
we take the induced orientation from dg. For the graph of ¢, , we shall take
the induced orientation from —dp. This pins down an orientation of V.

For each j, let

(3.6) Y ::{q:q:rcj,()grg?)}

be an oriented (from 3¢ towards 0) line segment (consult FIGURE 4).

We denote by f;“ (0) the Lefschetz thimble F;“(O) with the induced
orientation from the S'-bundle structure. Precisely, when restricting on
{q: q=7r¢, 0<r <3}, F;“(O) becomes an S'-bundle whose fibers are
equipped with an orientation coming from V;. Therefore, it has an induced
orientation which can be extended to the whole F}j (0).

Remark 3.3. It follows from the construction that the orientations for
F}j(O) are compatible with the Z/3Z-action.

Proposition 3.4. We have, for all j,

(3.7) ﬁ ImQ € R,.
' (0)

J

Corollary 3.5. We have

(3.8) lim Im Q) = .
a==ee 5% (q)
Proof. We defer the proofs of Proposition 3.4 and Corollary 3.5 in Appendix A.
O

Once we pin down the orientation of Vg, the orientations of V; are also
uniquely determined. We then pick an integral basis {c,d} C H;(FEy,Z) such
that the vanishing cycles [Vp], [Vi], and [Va] are represented by —2c¢ —d,
c—d, and ¢ + 2d, respectively.

(D) Affine structures. We describe the affine structure on C using the
elliptic fibration X — C. Consider the set

7 @ curve contained in C\ {4, C'} joining B and q}.
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The condition that the imaginary part is equal to zero is independent of the
choice of the curve v since the monodromy matrices are real. The set Z; is
well-defined. Notice that the set Z; \ {B} has two connected components.

Working on the simply connected domain V = W; N Wy N W3, we can
define the locus

l_eyqg = { / Q) € R, for any parameterized curve
'l (9)

v C V joining B and q}.
Similarly we can define another curve l.424 C =3 by requiring that

leqod := { / Q) € R_ for any parameterized curve
I'3(q)

~ C V joining C' and q}.

Remark 3.6. The above definition explains the notation in FIGURE 4.
However, we have not verified the validity of the intersection point vy in
FIGURE 4. We will prove that the curves Oco, |_.yq and l.ioq intersect at
one point, where Occo denotes the negative real axis.

We resume the notation given in this subsection and in FIGURE 4 and
FIGURE 2 without recalling it. To describe the affine structure a little bit
more, we need to study the integration over the Lefschetz thimbles.

Definition 3.7. Let ¢ € Ooco. We denote by 3y(q) the oriented curve OA U
Oq from A toward q, &1(q) the oriented curve OB U Oq from A toward q
and by &3(q) the oriented curve OC U Ogq from A toward q (cf. FIGURE 5).

For simplicity, we will write T'j(q) := I’;j(q)(q) (see (3.3)), i.e., I'o(q)
is the Lefschetz thimble of the cycle Vi along d0(q), T'1(q) is the Lefschetz
thimble of the cycle Vi along &1(q) and T'y(q) is the Lefschetz thimble of the
cycle Vo along d2(q).

Lemma 3.8. The map ¢o(q) = q fixzing O and A but exchanging B and C
is an automorphism of the affine structure.

Proof. The affine lines are mapped to affine lines via ¢q. O
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Figure 5: The curves o;(q).

In particular, the lemma implies that the fixed locus of ¢g, an arc from A
to infinity passing through O and another arc from A to infinity without
passing through O, are affine lines.

Corollary 3.9. The induced map (¢o)«: Hi(Eo,Z) — Hi(Eo, Z) under the
basis {c,d} is given by

Proof. Note that ¢¢ is the complex conjugation. We have (¢g)«(—2¢ — d) =
2¢+ d and (¢p)«(c — d) = —c — 2d by our choice of orientations, which yields
the corollary. d

Lemma 3.10. We have

/ QeR, Vqge Ox.
I'i(g)-T2(q)

Proof. The lemma is proved by using the Z/2Z-symmetry ¢q. Since I'1(q) —
I'y(q) is invariant under ¢, we have

/ Q= / P = / Q
I’ (q)-T(q) (65 1)+ (I (@) -T2 (a)) I’ (q)-T(q)

and the conclusion holds. O
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We conclude this paragraph by proving the validity of the existence of the
triple intersection point v in FIGURE 4. Let us write

Fi(q) : :/ Im
T'i(q)
(3.9) :/ ImQ—i—/ ImQ
I'1(g)—T'1(0) I (0)

:/ ImQ—I—/ Im Q).
T1(q)—T1(0) To(0)

The last equality in (3.9) holds by the Z/37Z-symmetry on the g-plane.
For ¢ <0,

(3.10) I'i(q) ~ T1(0) = Uyeio

Consequently, utilizing Lemma 3.10 and the relation 2V} = =V — (Vo — V1),
we get

/ ImQ = / Im
T'1(q)-T1(0) Uyezo VO

(3.11) = —1/ Im¢) — / Im Q
2 To(q)—T0(0) 2 T2(q)-T1(q)

= —1/ Im €2,
2 Jro(g)—To(0)

where the last equality comes from (3.10). Then (3.9) is transformed into

1 - .
Fl(Q):—Q/F()ImQ—i—g/F(O)ImQ, for ¢ < 0.
olq 0

From Corollary 3.5, we see that Fi(q) - —oo when ¢ — —oo. Together with
F1(0) > 0, there exists some v; € Ooco such that

F1 (1)1) =0.
Then vy is the triple intersection point we are looking for.
3.4. Proof of the Main Theorem

We will prove the main theorem
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Theorem 3.11. There exists an affine isomorphism between Bgyyz and
Beps.

Recall that the base Bsyz of the special Lagrangian fibration for P?\ E
can be topologically identified with C. There are with three singularities of
affine structures.

Lemma 3.12. Assume that the vanishing cycle has class (p,q), then the
1— 2
monodromy across the branch cut is < gq b .
—q°  1l+pg

Proof. From Picard—Lefschetz formula, the monodromy is conjugate to

0 1

To write down the affine structure, one needs to introduce one branch cut
from each of the three singularities to infinity. From Lemma 2.6 and Lemma

3.12, the affine transformations along the cuts are <_21 (1)>, <:1 ;1),

(1 1> and the vanishing cycle is invariant under the monodromy. O

-1 1Y\, .
<_ 1 3> in counter-clockwise order. To compare to Bcops, we have further

requirements on the branch cuts.

Lemma 3.13. There exists an affine ray emanating from each of the three
singularities such that its tangent is in the monodromy invariant direction at
nfinity.

Proof. We will explain the cut emanating from A and the other two are
similar. From Lemma 3.8 and Corollary 3.9, the set {3 < ¢ < oo} is an affine
line defined by d = (Va2 — V1)/3, the cycle invariant under ¢, which is the
vanishing cycle at the infinity by Lemma 2.6. 0

Proof. (of the main theorem) To match the affine structure with Beopg, we
will take the branch cuts to be the affine rays in Lemma 3.13. Recall that
the orientations of vanishing cycles Vg, Vi1, Va are chosen as in Lemma 2.6 so
that they respect the Zs-symmetry on the g-plane. O

Recall we have the identification Ha(X, Ep) = Z? from Lemma 2.6.
We identify A, B,C € Bgyz with A, B',C’ € Bcps and vy, vs,v3 € B with
v}, vh, vh, there is an induced affine isomorphism from the affine triangle
V10203 in Bgy z to vjvhvh in Bopg. Since the affine transformation across-
ing the cut in Bgyz and Bopg are the same from Lemma 3.12, the affine
isomorphisms glue to an affine isomorphism Bgyz = Bops.
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4. Floer-theoretical gluing construction of mirror geometry

In the previous section, we have well understood the affine structure associated
to the special Lagrangian fibration on P? — E, where E is a smooth elliptic
curve. In this section, we construct the Floer theoretical mirror of P? relative
to E, which is a direct application of the gluing method developed in [9,27].

The strategy is the following. The special Lagrangian fibration has
exactly three singular fibers. Each of these is a nodal torus pinched at one
point. However, these singular fibers are located in different energy levels, in
the sense that the pseudo-isomorphisms between their formal deformations
involve Novikov parameter. The resulting mirror would be defined over A.

To simplify the situation, we take the following Lagrangians instead of
the special Lagrangian fibers. We take a monotone moment-map fiber of P2,
and use symplectic reduction by S! to construct three monotone immersed
Lagrangians, which play the role of the above three singular fibers. We
consider the weakly unobstructed deformation spaces of these Lagrangians,
and glue them together via quasi-isomorphisms in the Fukaya category.

Using these monotone Lagrangians, the gluing relations will be defined
over C, and hence we can reduce to a C-valued mirror. Moreover, the
construction of [9] produces a mirror functor from the Fukaya category to the
mirror matrix factorization category Fuk(P?) — MF(X¢, W), which induces
a derived equivalence [10].

4.1. The Lagrangian objects

Let Lo be the monotone moment-map torus fiber of P? equipped with the
toric Kéhler form, whose fan is generated by ey, es and e3 = —e; — eo, where
{e1,e2} C t=m(Lp) is the standard basis. Consider flat connections on
Ly, whose holonomies along the loops e1,es € m1(Lg) are given by z1, 22
respectively. Let z3 = 1/z129 which is the holonomy along e3. Denote these
flat connections by V(1:22)

The flat connections over a Lagrangian are taken over Ag, with holonomies
z € AJ, where

AO = {i aiTAi

1=0

a; € C, A; > 0 and increases to + oo}

is the Novikov ring, and

AJ = {ZaiTA"’ € Ao | Ao =0 and ag #0}

1=0
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is the group of invertible elements. This ensures the Floer theory for the
Lagrangian decorated by a flat connection is convergent over A.

Following [1], we can ‘push in’ one of the corners of the moment map
polytope. Namely, let C%i) be the standard coordinate charts and X @,y (?)

the corresponding inhomogeneous coordinates for ¢ = 0,1,2. Denote the
T?-moment map by

p:P? — ¢ with = 1({0}) = L.

Here the toric Kéahler form is taken such that the moment map image is the
triangle with vertices (—1,—1),(—1,2), (2, —1) (in the basis {e{,e3} C t*).

Consider the S!'-action in each direction e;;2 — e;41 (where the subscript
is mod 3). The corresponding moment map is (y, €;42 — €;+1). Moreover, the
function X @ . Y is invariant under this S'-action and gives a complex coor-
dinate ¢ = ¢ on the reduced space C%i) / S}Zi“,em. Using this symplectic
reduction, one obtains the following Lagrangian torus fibration.

Proposition 4.1 ([23,24]). For any ¢ € C, (1, €is2 — €ip1), | X@ - YO —
c|) defines a Lagrangian fibration on (C%Z.) = P2 — DT where D} is the toric
divisor corresponding to e;.

When ¢ = 0, this is just isomorphic to the Lagrangian fibration given by
the moment map.

We shall take the following Lagrangian objects. In the reduced space
(C%Z.) / Séiﬂ_em, Lg is given by a circle of radius r > 0 centered at { = 0.
Moreover (ju, e;4+2 — e;+1) = 0 for Lg. For each i = 1,2, 3, we take

Li = {| XD .Y®D —p| = ¢ (1, €142 — €i11) = 0} C P?
which is the singular fiber of the above Lagrangian fibration (for ¢ = r > 0).
L; is an immersed two-sphere with a single nodal point. We denote the
immersion by ¢; : S> — P? whose image is L;.
For each i = 1,2, 3, we also have the Chekanov torus
L= {|XD .Y — 3r/2)| =1, (1, €542 — €i11) = 0} C P2

See FIGURE 6.

Proposition 4.2. For t sufficiently small, the Lagrangians L; and L, lie in
P? — E;, where Ey = {zyz + t(z3 + y* + 23) = 0} C P2,
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Figure 6: The images of the Lagrangians in the reduced space.

Proof. E, lies in a neighborhood of the union of toric divisors xyz = 0. After
intersecting with the moment-map level set {(u,eit2 —ei+1) =0}, it is a
compact set whose image in C U {oo} = P! under X® - Y consists of two
connected components, one is a compact simply connected region near 0 (but
does not contain 0), and one is a compact neighborhood of co. For ¢ small,
these two regions are disjoint from the base circles of L; and L. O

As explained above, we have the flat connections V(#*:%2) on Lg. Now
we parametrize the flat connections on the Chekanov tori L by fixing the
following trivialization of the conic fibrations.

The conic fibration of X .Y restricted to C%i) —{Y® =0} is trivial,

and Y@ € C* serves as the fiber coordinate. The map
((XOYO = 37/2)/|XOYO 31 /a], Oy )

gives an identification of Lo and L} with T2. Thus ey, e2, e3 € 71 (L) can be
identified as elements in 71 (LY).

Let’s denote the holonomy of a flat connection over L] along e;11 by 2},
and that along the monodromy invariant direction (e;42 — e;41) by wi, ;. We
shall consider the objects (L;, V(zéﬂvwéﬂ)). For Lg, the holonomy of a flat
connection along (e;12 — €;41) is denoted by w;1, which equals to ZZ'+22:Z~_+11.

In conclusion, we shall consider the objects (Lo, V(zl’Z2)), (Lfi, V(Zéﬂ’wiﬂ))
, and the Lagrangian immersions L; for i = 1,2, 3.
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4.2. The Floer theoretical mirror

We construct a mirror out of the objects Ly and L;. This gives a nice
application of the gluing method in [7,27].

We take a Morse model for the Lagrangian Floer theory. Pearl trajec-
tories, which are formed by holomorphic discs components together with
gradient flow lines of a fixed Morse function, were developed in [6, 35] for
the deformation theory of monotone Lagrangians. In [19], the Morse model
was developed to general situations using a homotopy between the Morse
complex and the singular chain complex. There is also a slightly different
formulation in [16]. Such a Morse model was further developed to apply to a
G-equivariant setting in [28,32]. Fixing the choice of a Morse function f on a
Lagrangian L and perturbation datum for the pearl trajectories, an A, struc-
ture {my, : k € Z>o} is constructed on the space of chains F (L) generated by
critical points of f. Moreover, given a degree-one chain b € F'(L), one has
the deformed Ao structure {m? : k € Z>o} [20]. L can also be decorated by
flat connections V, which produce {m,(f’v) 1k € Z>o}.

The holomorphic discs bounded by the torus Ly C P? were known due
to the classification by [11]. Moreover, (Lg, V(*1%2)) are weakly unobstructed

[20], namely,

(Lo, V122))
my =W 1y,

where 11, is the unit. The disc potential is given by

1
W =T4/3 <z1 + 22+ ) = T4 (21 + 20 + 23)
Z1%29

where A is the area of the line class in P2,
For the grading of the Lagrangians, for each ¢ = 1,2, 3, we consider the
anti-canonical divisor

D; = {XOY® = 37/4} U {2 = 0}

(where z(? is the homogeneous coordinate that defines the toric divisor
DT = {00 = 0}).

Lemma 4.3. Ly, L; and L] are graded Lagrangians in the complement
P? — D;.

Proof. Ly, L; and L} are isotopic to special Lagrangian fibers with respect
to the holomorphic volume form dX® A dY® /(X®Y (®) — 3r/4) defined on
P2 — D;, and hence they are graded. O
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Then the Maslov index formula of [1,11] can be applied and one has the
following.

Proposition 4.4 ([1,11]). The Maslov index of a disc 3 bounded by
Lo, L;, L, equals to p(8) =24 - D;.

Now we fix a choice of Morse functions on the Lagrangians. In above we
have fixed an identification of Ly and L} with the standard T2. Let’s take
a perfect Morse function on T2 such that the unstable circles of the two
degree-one critical points are dual to the S'-orbits in the directions of e; and
eo respectively. By abuse of notation, we also denote these two degree-one
critical points by e, e2. The maximum and minimum points are denoted by
1 and eqs respectively.

For the immersed Lagrangians L;, the choice of Morse functions is more
subtle and we proceed as follows. First, consider the immersed generators
for the Floer theory. The domain of the immersion is S?. The inverse image
of the transverse self-nodal point consists of two points qi,¢2 € S2. The
branch jumps ¢; — ¢2 and g2 — ¢1 are denoted by U; and V; respectively.
See FIGURE 6. By using the grading in Lemma 4.3, it is easy to see the
following.

Lemma 4.5. Both U;,V; € CF(L;,L;) have deg = 1.

We use U;, V; for the Maurer-Cartan deformations of L;. By using a
Zo-symmetry, they can be shown to be unobstructed:

Lemma 4.6 ([27, Lemma 3.3]). w;U; +v;V; € CF(L;,L;) are bounding

cochains for L; C P2 — D;, namely, mgiUﬁ”"V" =0, where

(u,v;) € A3 — {wal (ujv;) = 0}.

It is important to take val (u;v;) > 0, since there are constant polygons
at the nodal point (whose number of U; corners must equal to the number of
V; corners to go back to the same branch) contributing to the Floer theory
of L;. This ensures Novikov convergence of mg’iU’iJr”’iV".

We construct isomorphisms between (L, V(zl"z?)) and (L;, u;U; + v;V;)
under suitable gluing relations between (z1,z2) and (u;,v;). Observe that
L; intersects cleanly with Lo (or L) at two circle fibers (o, 8) (or (o/, "))
over the two intersection points of the base loci |(| =7 and |[( —r| =7
(or |¢ —3r/2| =r) in the (-plane. Similarly, Ly intersects with L} at two
circles (a, 3"). We fix a perfect Morse function on each of these circles. The
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maximum and minimum points are denoted by a ® 1, & ® m respectively
(and similar for 3, o/, f',a”, 8", where m stands for ‘minimum’).

CF(Li, Lo) = Spany{a®1,a®m, f® 1, ® m}

which have degrees 0, 1, 1, 2 respectively. We can also regard them as genera-
tors of CF (Lo, L;), and they have degrees 1, 2,0, 1 respectively.
By the projection to the complex (-plane, one can deduce the following
(see [27, Section 3.3]), which is important for computing m{""’LO(a ® 1) and
L,L.,
my (o ®1).

Lemma 4.7. InP? — D;, L; and Lo (or similarly L; and L) bound ezactly
two non-constant Maslov-two holomorphic polygons that have output to 8 ® 1
(or B’ ®1). One of them has corners at v, B (or o', B'). The other has corners
at o, B,V (or a5 ,U).

The Morse function on L; that we choose is the following. The boundaries
of the above two holomorphic polygons in L; give two curved segments. We
take a perfect Morse function on the domain S? of L; such that the two
critical points lie in S? — {q1, g2}, and the two flow lines connecting g1, g2
to the minimum are distinct and do not intersect with any of these curve
segments.

Then we have the following isomorphisms between the Lagrangian branes.

Theorem 4.8. a® 1 € CF((Lg, V#22)) (L;, w;U; + v;V;)) is an isomor-
phism if and only if v; = z;fl and ujv; =1+ zl-_lzifl where the subscripts

are mod 3.

Proof. Fix i=1,2,3. First we consider o ® 1 € CF((Lg, VZi+1:wit1)),
(L}, VE+1wi))) between the tori. my,(a” ® 1) has degree deg(a” @ 1) +
1 — p(u) > 0 where p(u) is the Chern-Weil Maslov index of the strip class
u. Since o’ ® 1 has degree zero and the minimal Maslov index for Ly and
L; is zero, mi(a” ® 1) is merely contributed by strips with Chern-Weil
Maslov index zero. We have p(u) = 2u - D;. Thus any « which contributes
to mi(a” ® 1) does not intersect with D;. We have

mi(a” ®1) = (1 - wiyw e’ @m+ (14 wip1 — z/112,55)8" @1

where the first term is contributed by the two flow lines from o” ® 1 to
o’ ® m, and the second term is contributed from the holomorphic strips
from o’ ®1 to 8" ® 1 [27,37,38]. Hence the cocycle condition m;(a” ®
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1) = 0 implies wj ; = wiy1 = z;_lleg = z;lz;_zl and zj ;= ziy1(1 4+ wiy1).
Moreover, the strips also give ma(8” x 1, x 1) = 1r,, and ma(a”’ x 1, 8" %
1) = 1r,. Thus o” x 1 is an isomorphism if and only if the above relations

hold.
Now we consider m1(a ® 1) and m1(a/ ® 1). We have

mi(e®1) =(u; — 211)B ® 1+ (wir1 — f(uvi))a @ m
mi(a ®@1) =(v; — Z;rll)ﬁl @1+ (wiq — g(uwi))a @ m

for some series f and g. Requiring them to be zero implies u; = 2, |, v; = z;_ll,
wit1 = f(uiv), wi = g(uiv;). It easily follows that o and o are isomor-
phisms under the above relations.

Since ma(a, ') = a”, o’ ® 1 is also an isomorphism under the above
relations. Thus wj | = wi11 = z;lz;fl and z{,; = zi+1(1 + wiy1), implying
fuvy) = g(uv;) and wv; = 1+ w;q1. Result follows. O

According to the above theorem, the formal deformation spaces of Ly and
L; for i = 1,2, 3 are glued by the transitions v; = z;rll and u;v; = 1+ zizizﬂ.
We denote the resulting space by X. It consists of the chart (A)? coming
from the torus Lo, and the charts (A§)(;) — {val (w;v;) = 0} coming from the
immersed sphere L; for ¢ = 1,2, 3.

X is defined over A. On the other hand, note that the transition functions
do not involve the Novikov parameter T. This is because the base circles of
Lo, L; and L, in the reduced space are taken to be the same size, so that the
symplectic areas of strips are the same. The C-valued part of X is denoted
by X, which is the union of the C-valued parts of the charts of X.

Remark 4.9. The C-valued part of the chart (A%)(i) — {wal (uv;) = 0} of
the immersed Lagrangian L; is the singular conic

{(ui,vi) € Cc?. UV = 0} = {(ui,O) Tu; € (CX} U {(O,UZ') TV € CX} U {(0,0)}

whose valuation is {(0,+00)} U {(400,0)} U{(4+00,+00)}. Note that this
subset is disconnected under the non-Archimedian topology. Moreover, the
C-valued part of the gluing region with the torus chart (C*)? C (AJ)? is
{(0,v;) : v; € C*}. This is not of the correct complex dimension. Thus we
first work over A to construct the mirror, and then we can restrict to C to
get the C-valued mirror.

Remark 4.10. In the above Floer theoretical construction, the mirror is
simply glued from one torus chart (C*)? and three charts coming from
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immersed spheres. On the other hand, the corresponding cluster variety
consists of infinitely many torus charts.

4.3. Identification with the Carl-Pomperla—Siebert mirror

Now we show that the resulting geometry from the above construction agrees
with the Carl-Pomperla—Siebert mirror. This gives Theorem 1.3.

Proposition 4.11. X¢ is the blowing up at three points in the three toric
divisors of the toric variety whose fan has the rays generated by (2,—1),(—1,2)
and (—1,—1), with the strict transform of the toric divisors removed. W =
z1 + 29 + lezQ on (C*)? extends to be a proper elliptic fibration on Xc with
three I singular fibers.

Proof. The blowing up of the toric chart Cy-y x (C(XZ) at (V,Z) = (0,-1) has

local charts (C%U"f)j {UV = 1~} and (C?le— {Z = 1} with the change of
coordinates V =V Z and U = V! (where Z = Z + 1). The strict transform
of the toric divisor {V = 0} C Cyy x C(XZ) is given by V = 0, and its com-
plement in the blowing-up is identified with the chart u;v; =14 2~ lzifl of
XeviaZ=1+ z;lzifl, U = u;, V = v;. The open torus orbit C(XV) X (C(XZ)
is identified with the torus chart vof Lo by V = z;_ll and Z = 2, 1zi_+21. This
gives the identification between X¢ and the blowing-up.

We already know that W on (CX)?zl,@) gives a fibration whose generic
fibers are three-punctured elliptic curves. W has three critical values, whose
fibers are 3-punctured A; singular fibers. Below, we see that the partial
compactification by the immersed charts C%i) — {u;v; = 1} exactly fill in the
punctures in all elliptic fibers.

Consider a fiber W = ¢ for ¢ € C. For the chart C%i) —{wv; = 1}, wv; =
1+ zijrlleg. Thus 219 = (wjv; — 1)ziy1 = (uv; — 1)0;1 = u; — Uz-_l. Then

1
2 1
W =ziy1 + ziga + ——— = u; + 05 (wjv; — 1)
2i41%i42

in the chart. The fiber is given by
wi(uiv; — 1) + v? = c(uv; — 1).

The partial compactification coming from this chart is v; = 0. Thus it adds
the point (u;, v;) = (¢,0) to the fiber. In other words, the coordinate axes
v; = 0 are sections of the fibration of W. The partial compactification adds
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in these three sections which are exactly the union of three punctures of the
elliptic fibers. O

We note that the meromorphic functions u; for i = 1,2,3 satisfy the
following explicit equation.

Proposition 4.12.

3
(U 4 us 4 u3) + 2uyugus — Z(u%uz + uud) = 0.
i=1
Proof. We have
(4.1) 2021722 = 1.
Moreover,
(4.2) i = zip1(1+ Z;,_llziJrZ) = Zi+1 + Zit2-

We compute u?, U?Ui+1,ul‘u22+1 and ujugus using (4.2). It turns out the
variables zg, 21, 22 can all be eliminated and we obtain the resulting equation.
O

Appendix A. The proof of Proposition 3.4

We resume the notation introduced in §3. Abusing the notation, for ¢ € {r¢7 :
r < 3}, let y; be the line segment connecting ¢ and 3¢’ and I‘;-” (q) to denote
the set-theoretic union

(A.1) U v
q'€v;

We also denote by #; the line segment ~y; equipped with an orientation from
3¢’ towards to ¢ and by Fj-j (q) the set I‘j-j (¢) with the induced orientation
as in . The integral

(A.2) ﬁ 0
I (q)

J

becomes a function in ¢ € W;. For simplicity, we put

(A.3) G(q) ::ﬁ Q, where q € (—00,3] C C.
Lo (q)
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Proposition 3.4 is an immediate consequence of the following lemma.

Lemma A.1.

[ Q e V=IR, for q € (—o0,3].
I3 (q)

Proof. Using  is d-closed and independent of ¢, we compute

dG@:/ L6,
dq o (q) 7

From the construction, 8fg°(q) is equal to VE)(Q) as oriented cycles.
Recall that E, N (C*)? := {(t1,t2) € (C*)?: t1 + t2 + (t1ta) ' = ¢}. Let
d0(q) be the image of VO(Q) under the projection

(A.4) ((C*)2 — (C*, (tl,tg) — 1.

For q € (—0,3], E,N (C*)? — C* admits three ramifications: only one of
them lies on the real axis and the other two are symmetric with respect to
the real axis, denoted by x and z. Here we assume that Im(z) > 0. z and =
are connected through do(g). We equip do(g) with an orientation going from
x to z. Note that dp(0) = ¢ as oriented cycles.

We can write 9T (¢) = Vo(q) = 9" (q) UAT'~(q), union of the graph of
t; and the graph of t; along do(g) as in the paragraph (C). Then

dG(g) _ / .0
dq oF(q) 7

:/ LaQ+/ Lo
or+(q) %1 ar-(q)

V=1 dt | dt
(A.5) :/ 1+/ ty
o) V0a—t1)2 =4/t 1 Josyq) V(g —t1)> =4/t 1

We explain the third equality above. Restricting on dI'"(q) or OI'~(q) and
making use of the equation t%tz + tlt% + 1 = qt1t9, we obtain

. t+
= —v/—1- 2 dt
a0 lars(q) g it — 2t — o ()2
(A.6) 1 aty

1l — .
q—t1—2t§t t1
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Figure Al: The deformed contour d;(q).

Also from (3.5), we see that

(A7) U+t —q=TF(q—t1)2 — 4/t;.

Together with the induced orientation on d'*(q), we arrive at the desired
equality. Note that the branched cut of \/z in (A.7) is chosen such that

1
V7 = exp <2logz> , logz =r++/—10 with 6 € [0, 27).

Since both of the integrands in (A.5) are holomorphic, we can deform
the cycle dp(q) a little bit. We have the following two cases: (a) 0 < ¢ < 3
and (b) ¢ < 0.

For the case (a), we can deform dy(q) into a circular arc dy(q) joining the
end points x and T without touching the third ramification point y, where
the integrands have a pole (cf. FIGURE Al).

Moreover, on the circular arc, we have

(A.8) Im+/(q —t1)2 —4/t; > 0.

Therefore,
[
s(a) V(g — 1) =4/t t
has negative imaginary part and so does (A.5). This implies that the imagi-
nary part of G(q) decreases.




Affine structures and SYZ fibrations 951

Figure A2: The deformed contour 4((g), which is the union of (I) ~ (III)
and (I)' ~ (III)".

For the case (b), we can deform dy(g) into the contour ¢ (g) (cf. FIGURE
A2). By symmetry, it suffices to compute the integral over (I) ~ (III). The
equation (A.8) still holds for (I) and (III). On the contour (II), with the
parameterization t; = /—1 -7,

(q_\/jlr)2+4\/?:q2—2qr\/jl—r2+4{nj
:(q2_r2)+ﬁ<j_2qr>

has positive imaginary part if » > 0, which guarantees that \/ (g—t1)? — 4/t
has positive real part if r > 0. Also we have dt;/t; = dr/r. These implies

again that
J—E —
an /(g —t1)2 -4/t t

has negative imaginary part.

We deduce from above that in both cases, (A.5) has negative imaginary
parts. Together with the fact G(3) = 0, it follows that G(¢) € vV/—1- Ry for
q < 3. O

Corollary A.2. We have G(0) € v/—1-Ry.
Proof. This immediately follows from Lemma A.1. U

Corollary A.3. limg, o G(¢) = v—1"- 0.
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Proof. Assume ¢ < 0. We adapt the notation in FIGURE A2. To compute
the integral (A.5), as in the proof of Lemma A.1, we can deform the path
do(q) to 6((q). We put r := |z|.
Note that
—v/—1 dty

Vig—t)?2—4/6 tr

has negative imaginary part on the whole (II). In particular, we have

V-1 b _ / V-1 dty
2 e m .
st V(g —t)?—4/tp b cv(@g—t)2 -4/t 1

where C is the (clockwise oriented) contour

(A9) Im

re? with 0 ¢ [37T ﬂl .

472

It suffices to estimate the right hand side of (A.9). On C, we have
oo\’

(A.10) (q—t1)? —4/ty ~ (¢ —t1)* = ¢* <1 — qew)

provided |g| is large enough. In the meanwhile, r/|g| ~ 1. It is not hard to
see that

1 K
Im > T
(\/(q—t1)2—4/t1> 4]

for some positive constant . Since C is clockwise oriented, we have

(A.11) Im V-1 dt; _ _w-length(C) =«
sy V(@ —t)? =4/t i [ lq|
This shows that
I /
(A.12) d(nifq;(q» < % for all ¢ < 0
and therefore lim,—,_ o Im G(q) = oo. O
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