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SYZ MIRROR SYMMETRY FOR DEL PEZZO SURFACES AND
AFFINE STRUCTURES
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ABSTRACT. We prove that the Landau—Ginzburg superpotential of del Pezzo surfaces can
be realized as a limit of their hyperKé&hler rotation toward the large complex structure limit
point. As a corollary, we compute the limit of the complex affine structure of the special
Lagrangian fibrations constructed by Collins—Jacob—Lin in P! x P! [17] and compare it
with the integral affine structures used in the work of Carl-Pumperla—Siebert [9]. We also
construct the Floer-theoretical Landau—Ginzburg mirrors of smoothing of A, -singularities
and monotone del Pezzo surfaces, by using the gluing method of Cho-Hong-Lau [12] and
Hong-Kim-Lau [40]. They agree with the result of limit of hyperKéahler rotations.
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1. INTRODUCTION

The Strominger—Yau—Zaslow conjecture [59] (SYZ conjecture) predicts that

(1) a Calabi-Yau manifold X near a large complex structure limit, where mirror sym-
metry is expected to happen, admits a special Lagrangian torus fibration;

(2) the mirror X of X can be constructed from the dual torus fibration of X, with the
complex structure receiving “quantum corrections” from the holomorphic discs with
boundaries on the special Lagrangian torus fibres in X.

For the purpose of mirror symmetry, the goal is to understand how the quantum corrections
affect the mirror construction.

However, the original conjecture is hard due to the difficulties from analysis: there is
very little known about the behavior of the Calabi—Yau metrics. To construct the special
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Lagrangian fibrations, one would need to first understand the Calabi—Yau metric. To
understand the Calabi—Yau metric, the conjecture leads us to the study of holomorphic discs
with boundaries on the special Lagrangian fibres. Thus, the problems of Calabi—Yau metrics,
existence of special Lagrangian fibrations and quantum corrections from holomorphic discs
are closely linked together.

To avoid the difficulties in analysis in the metric level and due to the interests from
mirror symmetry, there are replacements for the original proposal from algebraic geometry
and symplectic geometry. On the algebraic side, Kontsevich—-Soibelman [45] and Gross—
Siebert programs [31] introduced the notion of scattering diagrams for understanding the
quantum correction. On the symplectic side, Fukaya proposed the family Floer homology
[22] and later studied by Tu [62], Abouzaid [1-3], and Yuan [63]. There is another approach
using relative symplectic cohomology [28]. Both approaches are designed to capture the
quantum corrections in the mirror construction and both have big success in explaining
mirror symmetry in an intrinsic way. However, it is still unclear how the two approaches
are related to the original conjecture explicitly, again due to the lacking of the existence
of genuine SYZ fibrations. Until very recently, T. Collins, A. Jacob, and the third author
constructed the first non-trivial example! of genuine special Lagrangian fibrations [17]. In
this paper, we will study the complex affine structures on the base of the genuine special
Lagrangian fibrations in these examples and explain that there can be subtle differences
between the SYZ bases and the affine manifold with singularities used in the Gross—Siebert
program (in this case is worked out by Carl-Pumperla—Siebert), which is a long-termed
folklore conjecture. We refer the readers to [29, Section 7] and [11, Section 1] and references
therein.

Mirror symmetry has been extended to Fano manifolds [43]. In which case, the mirror
of a Fano manifold Y is a Landau—Ginzburg superpotential W. The superpotential W is
expected to recover the enumerative geometry of Y in various aspects. For instance, the
quantum cohomology QH*(Y") is isomorphic to the Jacobian ring Jac(WW) [8,23] and the
quantum periods of W give the generating function of the descendant Gromov—Witten
invariants [14,15,26,41]. Recently it is proved that superpotential agrees with the open
mirror map of the corresponding local Calabi—Yau threefold mirror symmetry in the case
of toric del Pezzo surfaces [27]. Auroux—Katzarkov—Orlov [6] proved homological mirror
symmetry, i.e., the Fukaya—Seidel category F'S(W) is Aso-equivalent to the derived category
of coherent sheaves DbCoh(Y). In particular, they showed that the superpotential of a del
Pezzo surface of degree d can be topologically compactified as a rational elliptic surface with
an I; fibre. Therefore, an important task is to derive the superpotential for a given Fano
manifold. In the case of toric del Pezzo surfaces, the superpotential can be read off from the
toric data [25,42], which is the generating function of a weighted count of Maslov index two
pseudo-holomorphic discs with boundary on SYZ fibres in Y [13]. The latter is called the
Lagrangian Floer-theoretic potential of the moment fibres. A folklore conjecture is that the
Lagrangian Floer-theoretic potentials of monotone Lagrangians in Y can be glued via the
wall-crossing formula and one obtains the Landau—Ginzburg superpotential of Y.

"p the sense that a priori without knowing the existence of elliptic fibration structure after hyperKéahler
rotation, which is a technical part in analysis.
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Let Y be a del Pezzo surface of degree d and D € |— Ky | be a smooth anti-canonical divsior.
There exists a meromorphic 2-form on Y with a simple pole on D unique up to C*-scaling
and restrict to a nowhere vanishing holomorphic 2-form on X =Y \ D. Tian—Yau proved
that X is equipped with an exact complete Calabi-Yau metric wyy such that 2w%y =QAQ
[61]. Throughout the paper, we will denote denote w = wry the exact Tian—Yau metric for
simplicity. It is crucial to note that we will use the exact Tian—Yau metric. Responding to
the SYZ conjecture [59] and conjectures of Auroux [5], Collins—Jacob-Lin proved that

Theorem 1.1 (cf. [17]). There exists a special Lagrangian fibration X — B = R? with
respect to (w, ).

Actually given any primitive homology class « € Hy(D,Z), the homology class & €
H2(X,Z) represented as a trivial S'-bundle over a geodesic in D in the class a can be
realized as the special Lagrangian torus fibre in Theorem 1.1. Due to the dimensional
coincidence, one has Sp(1) = SU(2) and thus X is hyperKahler. Let X be the hyperkéihler
rotation with the Calabi-Yau metric and holomorphic volume form given by

Q:w—i-ImQ,

1.1
1) w = Re(d

Then the special Lagrangian fibration X — B becomes an elliptic fibration X — C after
hyperKahler rotation. Collins—Jacob—Lin further proved that

Theorem 1.2 (cf. [17]). The fibration X — C admits a compactification to a rational elliptic
surface Y — P! by adding an 1, fibre over oo, where d = (—Ky)?. In other words, we have
the following commutative diagram.

HK rotation
X X —
R? C — (P}, 00)

Note that X = X as topological spaces. In particular, Hip(X;2Z) = Hk()?;Z). We also
remark that in the case of Y = P2, then X is exactly the fibrewise compactification of the
superpotential of P? and a special case of Theorem 1.4 below.

The third author in [16] introduced the notion of large complex structure limits for pairs
from the view point of the original SYZ conjecture. We say that (Y, Dy), t € (0,1], a
1-parameter family of pairs of del Pezzo surfaces Y; of degree d with a smooth anti-canonical
divisor Dy is converging to a large complex structure limit if the limit Y; — Yj is a del
Pezzo surface and Dy — Dy with Dy being an irreducible nodal curve. We will denote
oy € Hi(Dy,Z) the vanishing cycle. Let m; : X; = Y;\D; — By be the special Lagrangian
fibration in Theorem 1.1 with fibre class &;.

Here we explain why this is a reasonable definition of large complex structure limit.
Kontsevich-Soibelman [44] modified the original SYZ conjecture: the Calabi—Yau manifolds

approaching to a large complex structure limit will Gromov-Hausdorff converge to an affine
manifold with singularity. The conjecture is proved for the case of K3 surfaces [33, 54]
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and compact hyperKéhler manifolds with Lagrangian fibrations [32] and for Fermat type
Calabi-Yau hypersurfaces [49]2. Therefore, the collapsing of the SYZ fibration is usually
viewed as the characterization of the large complex structure limit from the SYZ point of
view. Now we compare the above SYZ collapsing picture with the semi-stable degenerations
of K3 surfaces [46] studied by Kulikov. The semi-stable degenerations of K3 surfaces
are classified into type I, II, III: the type I degenerations correspond to non-collapsing
degenerations with the non-compact version studied in [50]. In the type II and type III
degenerations, the metric K3 surfaces have collapsing limits and their Gromov—Hausdorff
limits are harder to analyze. On one hand, the type II degeneration would lead to an interval
as the Gromov—Hausdorff limits with respect to suitable scaling of the metrics [37,39]. On
the other hand, type III degenerations have their collapsing limits as an integral affine
spheres with singularities and is the conjectural description of large complex structure limit
[44,54]. The key distinguishing feature of the latter two cases is that the collapsing limits
have different dimensions. While the Tian—Yau spaces, are known as the bubbling limits of
K3 surfaces, intuitively can be viewed as non-compact analogues of K3 surfaces. From the
local model of the Tian—Yau spaces, one can see the geometry has a 2-dimensional collapsing
limit near infinity when D; degenerates [16]. Moreover, the third author and R. Takahashi
recently proved that there is a global collapsing, i.e. with suitable scaling of the metrics,
the Tian—Yau metrics Gromov-Hausdorff converge to a 2-dimensional affine manifold with
singularities [51]. Therefore, the authors believe that the above definition of large complex
structure limits of pairs is a reasonable one from the metric perspective.

With the above understanding and the motivation from the Gross—Siebert program, the
authors earlier conjectured that

Conjecture 1. The limiting complex affine manifold, i.e. the limit of complex affine
structure on By coincides with the affine manifold with singularity in the work of Carl-
Pumperla—Siebert [9].

In the previous work, the authors proved
Theorem 1.3. [47] Conjecture 1 holds in the case when d = 9.

In this paper, we will extend the SYZ mirror symmetry of [16] to its compactification:
providing the recipe for superpotentials of del Pezzo surfaces from the SYZ fibration
constructed in [17].

Theorem 1.4 (=Theorem 3.1). Let (Y:, Dy), t € [0,1], be a 1-parameter family of pairs of
del Pezzo surfaces Y; and smooth anti-canonical divisors Dy. Assume that Yy is a smooth del
Pezzo surface and Dy is an irreducible nodal anti-canonical divisor of Yy. Set X; =Y, \ Dy.
Then the rational elliptic surfaces Yy, % 0 from Theorem 1.2 converge to the distinguished
rational elliptic surface Yfe, which is the minimal smooth compactification of the Landau—
Ginzburg mirror superpotential of the del Pezzo surfaces, viewed as monotone symplectic
manifolds.

2However, there are no results in the literature of comparison between the collapsing limits with the affine
structures being used in the Gross—Siebert program to the authors knowledge. The result in [49] seems
pretty close to such a statement but one requires stronger regularity on the solutions of real Monge—Ampeére
equations.
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In particular, the limiting affine structure of the special Lagrangian fibration in the del
Pezzo surfaces can be computed from Y.. We further compute explicitly the limiting complex
affine manifolds for the case del Pezzo surfaces of degree eight in Section 4.2 and for degree
three and four in Section 5.

Remark 1.5. The slogan is “the mirror is given by the limit of the hyperKéhler rotations
towards the large complex structure limit.” This seems to be a new phenomenon and doesn’t
appear in the K3 cases with respect to the mirror map in Gross—Wilson [34].

Remark 1.6. Ruddat and Siebert proved that Friedman’s period points give monomial
functions in the canonical coordinates of the base of the large complex structure limit
degeneration [55], which may give another interpretation of Theorem 3.1. On the other
hand, we point out that the limit of complex affine structures of the SYZ fibrations towards
the large complex structure limit in the sense of [16] are different from the integral affine
structure used in [9] except for the P? case, which is a coincidence.

The above theorem provides an understanding of SYZ mirror symmetry from the perspec-
tive of the metrics and hyper-Kéhler rotation. An interesting feature of the result is the
following: the superpotentials (together with the correct complex structures) of the mirror
involves the enumeration of holomorphic discs and thus depends on the global geometry of
the del Pezzo surfaces. On the other hand, the Tian—Yau metric and the special Lagrangian
fibration only depend on the non-compact part. This is a weak evidence that the Tian—Yau
metric may detect some global geometry for some specific compactification. This kind of
statement may help to understand the behavior of the Calabi-Yau metrics and the authors
would pursue it in the future.

Now we explain why the limit Y, is indeed the correct mirror. Recall that from the Torelli
theorem of the Looijenga pairs [30], there exists a distinguished complex structure (}V/e, De)
which has trivial periods in the deformation family of Looijenga pairs. Hacking—Keating
[36] explains how to construct the mirror of a Lefschetz fibration w: M — C, where M
is a Weinstein manifold. Furthermore, various versions of homological mirror symmetry
are proved with A-side categories of M and B-side categories of (}vfe, De) In the case we
consider in this paper, Y, is a rational elliptic surface with D, being an I4-fibre, then M can
be realized as a complement of a smooth anti-canonical divisor in a del Pezzo surface. On
the other hand, T. Collins, A. Jacob, and the third author constructed special Lagrangian
fibrations on the complement of a smooth anti-canonical divisor in del Pezzo surfaces of
degree d and on the complement of an I;-fibre in rational elliptic surfaces. Moreover, the
special Lagrangian fibrations on the two geometries are dual to each other with respect to a
suitable mirror map when one chooses the exact Tian—Yau metric on the complement in the
del Pezzo surface and the distinguished complex structure on the rational elliptic surface
[16,17]. This is mirror symmetry incorporating both A and B models on both geometries.

In the second part of this paper, we construct the mirrors for del Pezzo surfaces from the
perspective in symplectic geometry, using the gluing scheme of [12,40] based on immersed
Lagrangian Floer theory [4,23,24,57]. The immersed Lagrangians that we use are essentially
the nodal singular fibers of the SYZ fibration (up to Lagrangian isotopy), which form the
sources of quantum corrections and play a crucial role in (partial) compactification of the
incomplete SYZ mirror constructed from merely smooth SYZ fibers.
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In [12], Cho, Hong and the first author found a method of constructing mirrors by gluing
deformation spaces of immersed SYZ Lagrangian fibers. A key ingredient is to establish
and solve equations for Fukaya isomorphisms between the objects. The upshot is that there
exists a canonical Ay, functor from the Fukaya category to the matrix factorization category
of the resulting LG model. The method was applied to construct the mirrors of punctured
Riemann surfaces using Seidel’s immersed Lagrangians. In [40], Hong, Kim and the first
author studied the deformation and obstruction for nodal immersed spheres, and applied
the method to construct the mirrors of two-plane Grassmannians.

In this paper, we consider del Pezzo surfaces of degree > 3 which comes from smoothings
of toric Gorenstein Fano surfaces. These are smoothings of A, singularities, and we can
construct a collection of immersed Lagrangians using A, local models.

The case of n = 0 corresponds to C?, which has a special Lagrangian fibration with exactly
one nodal singular fiber. The fibration can be understood as ‘pushing in the corner’ of the
toric moment image of C2. Mirror construction using such a fibration for C? were found
by the celebrated work of Auroux [5] in the study of SYZ mirrors for various interesting
examples of toric surfaces.

As in [12,40], the mirror is constructed by gluing the unobstructed deformation spaces of
these immersed Lagrangians, which will be denoted as L; ; for certain indices 7, j. Due to the
nature of mirror construction from symplectic geometry, the result is a rigid analytic variety.
What is important is that such a mirror is exactly the analytification of X,. This is the
reverse direction of mirror symmetry statement comparing to the work of Hacking—Keating
[35]. More precisely, we prove the following theorem:

Theorem 1.7 (Theorem 6.19). Let X be a symplectic smoothing of a toric Gorenstein Fano
surface with a monotone symplectic form, and let D be a smooth anti-canonical divisor. Let
X be the complex surface constructed as follows. First, we take the (multiple) blowing up of
the toric variety X 5 at every special point z; = —1 in the i-th toric divisor for (n; +1)-times
(where n; + 1 is the multiplicity of the i-th toric fized point of XA ). We define X to be the
complement of the strict transform of all the toric divisors of Xx. Then there is an A
functor Fuk(X — D) — Db(X + A2%) that is injective on the morphism spaces of L ;.

Remark 1.8. The multiple blowing up of X above is a rational elliptic surface as in
Theorem 1.2. Thus, we have shown that the Lagrangian Floer construction agrees with
Theorem 3.1 for these cases.

The existence of the Ay functor and the injectivity on reference Lagrangians follow
from the general theory in [12]. The main additional ingredient here is the local mirror
construction for smoothings of A,, singularities (see Section 6.1) and blowing up over the
Novikov ring.
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The notations for the Novikov ring, its maximal ideal and the Novikov field are:

o
Ag = {Z a,iTAi | a; € C, A; > 0 and increases to + oo} ,
i=0

o0
Ay = {Z a; T4 | a; € C, A; > 0 and increases to + oo} ,
i=0

o
A= {Z a; T4 | a; € C, A; increases to + oo} .
i=0

The group of elements invertible in Ag will also be important:

o0
AJ = {ZaiTAi € Ao | Ao =0 and ag # 0}.
i=0

A Lagrangian torus is equipped with flat (A§)2—connections; a Lagrangian nodal sphere is
equipped with boundary deformations in {(u,v) € Ag : val (uv) > 0}, where u and v are
associated with the two immersed sectors at the nodal self-intersection. In general, the
gluing of these charts results in a variety defined over A. On the other hand, when the
immersed Lagrangians are constructed nicely so that they are in the same energy level, the
gluing between them that solves the isomorphism equations does not involve the formal T
parameter, and the resulting space is an Ag-extension of a variety over C. This is why we
have X + Ai in the above theorem.
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The third author is supported by the Simons Collaboration Grant # 635846 and NSF grant
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2. TORELLI THEOREM OF LOG CALABI-YAU SURFACES

In this section, we recall basic notions and properties of Looijenga pairs which will be
used throughout this paper.

Definition 2.1 (cf. [30,36]). A Looijenga pair (Y, D) is a pair consisting of a smooth
projective surface Y and a singular cycle D € | — Ky

. By adjunction, the arithmetic genus
pa(D) = 1, which implies that D is either an irreducible nodal P! or a cycle of smooth
rational curves. A log Calabi—Yau surface with mazimal boundary is a Looijenga pair ()v/, D)
where Y is a smooth rational projective surface.
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For a log Calabi-Yau pair (Y, D), it has been proven in [30, Lemma 1.3] that after
blowing up some nodes in D, the resulting pair (Z , F ), where F' is the reduced inverse image
of D, admits a toric model (thor; btor); namely, there is a birational morphism of pairs
(Z,F) = (Yior, Dior) such that

° fftor is a smooth projective toric variety and btor is the toric boundary;

e the pair (Z , F) is obtained by successive blowups at interior points of the components

of Dtor, and F is the strict transform of ﬁtor.

Definition 2.2. The data (Y, D) < (Z,F) = (Yior, Dior) is called a toric model of (Y, D).

2.1. Torelli theorem for log CY surfaces with maximal boundary. We begin by
recalling a standard cohomology computation. Let (Y, D) be a log Calabi—Yau surface with
maximal boundary. Put X := Y \ D. Consider the long exact sequence of the relative
homology for (Y, X)

(2.1) 0— H3(Y,X;Z) — Hy(X;Z) = Hy(Y; Z) — Ho (Y, X;Z) — Hy(X;Z) — 0.

Both sides in (2.1) are zero since H;(Y;Z) = H3(Y;Z) = 0. Via LefschetzPoincaré duality
H3(Y, X;Z) ~ HY(D;Z), we see that the sequence (2.1) is transformed into

(2.2) 0 — HY(D;Z) — Ho(X;Z) — Ho(Y; Z) — H2(D; Z) — Hy(X;Z) — 0.

Under the isomorphism H2(D; 7) = 74, the map HQ(Y;Z) — H2(D; Z) is identified with
taking the signed intersection

(2.3) Hy(Y52) = Z%, [yl = (1] - D)y

il
For cach 1 < i < d, let [D;]* = {[1] € Hy(V;Z) ] (] [Di] = 0}. Put [D]* == N [D]*-.
We then have a short exact sequence

(2.4) 0 — HY(D;Z) — Hy(X;Z) — [D]* — 0.

Since (}V/, V) is log Calabi—Yau, there exists a unique (up to a constant) holomorphic two
form €2 on X with a simple pole along D. We then fix a basis [§] € H;(D;Z) by demanding
(2.5) / Res Q = 1.

B

Following Friedman (see also the proof of Lemma 3.2), every cycle [y] € [D]* can be deformed
into a cycle [§] € Ha(X;Z). Moreover, if [§'] is an element in Hy(X;Z) whose image in [D]+
is equal to [7], then

(2.6) / a- [ ez
(%] (¥]
In particular, the map
(2.7) 6: [D]* = C*, 7] = exp <2m. / Q)
7

is well-defined.

Definition 2.3. For a log Calabi-Yau surface with maximal boundary (Y, D), the map
b,y € Hom([D]*, C*) obtained in (2.7) is called the period point associated with (Y, D).
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The period map has another incarnation. For each line bundle L on Y such that L b =
O -

b, l-e. L € [D]*, its restriction to D has Ly e Pic’(D) = C*. Therefore, one naturally

associate an element in Hom(DL, C*) for each pair (Y, D). From the discussion in [21, p.21],

the two notations of the periods actually coincide. Fix a deformation family of Looijenga
pairs and a reference Looijenga pair (Yp, Dg). We identify Hom(D+, C*) = Hom(Dg, C*)
via parallel transport for any Looijenga pair (}v/, b) within the same deformation family.
The weak Torelli theorem states that the periods classify the complex structure of the pairs
within its deformation family.

Theorem 2.4 (Torelli theorem [30]). The period b.p) € Hom([Do]*, C*) determines the
pair (Y/, D) uniquely within its deformation type.

From [21, Proposition 9.15 and Proposition 9.16], there are 10 deformation families of
rational elliptic surfaces with I; fibres, d = 1,...,9. More precisely, there is exactly one
family for each d # 8 and two for d = 8. These correspond to 10 families of del Pezzo surfaces.
Recall that the del Pezzo surfaces are either blowups of P? at d points with 0 < d < 8 in
general position or P! x P!. We will explain which deformation families of rational elliptic
surfaces with an Ig fibre correspond to Fy := P! x P! versus the Hirzebruch surface [ later.

Within each deformation family, there is a distinguished rational elliptic surface whose
period point is trivial by the Torelli theorem. The rational elliptic surface in each deformation
with trivial periods can be characterized as follows. Let (}v/,lv?) be a rational elliptic
surface with trivial period point. Let (Y, D) « (Z,F) = (Yior, Dior) be a toric model of
(Y, D). Notice that (Z, F) and (Y, D) have the same period point under the identification
Hom([D]+, C*) = Hom([F]*,C*). Then (Y, D) has trivial period point if and only if (Z, F)
does. Let Dtor’l, R lv?tor’p be the irreducible components of btor. (Z , F) has trivial period
point if and only if (Z, F) is obtained by blowing up the points —1 € C* = Dtom- \Ujzi Dtom
in the toric coordinates on (Yior, Dior) (cf. [30]).

This distinguished complex structure plays an essential role in the context of mirror
symmetry. Hacking—Keating proved the homological mirror symmetry: let X — C be the
Landau-Ginzburg mirror of the Looijenga pair (Y, D). When X is equipped with the exact
symplectic form and (Y, D) has the distinguished complex structure, then the wrapped
Fukaya category of X is isomorphic to the derived category of coherent sheaves on X [36].
Collins—Jacob—Lin also proved SYZ mirror symmetry between del Pezzo surfaces and rational
elliptic surfaces with such distinguished complex structures. Here in this paper, we will
explain how such distinguished complex structures arise naturally from the large complex
structure limit.

Recall that rational elliptic surface Y is extremal if its Modell-Weil group is finite. All
the extremal rational elliptic surfaces are classified (see [52, p.77]).

2.2. Periods of certain toric surfaces. In this subsection, we will compute the period
point of certain log Calabi-Yau surfaces with maximal boundary (Z, F') which arise naturally
from mirror symmetry. Let us fix the following notation.

e Let N = Z% and M = Hom(N, Z) be the dual lattice. Let Ng = N®R and Mg = M @R
be the scalar extension of N and M respectively.
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e Let A C Mg be a reflexive polytope. Denote by XA the normal fan of A and by Pa
the toric variety associated with ¥ A. Let V = AY C Ng be the dual polytope of A.
Note that Y5 is equivalent to the face fan of V.

e Let Ag (resp. Vo) be the set of vertices of A (resp. V).

We will tacitly assume that P is smooth; in other words, Vo = VN N \ {0}. Let ¢1,t be
the coordinate on (C*)2. Consider the superpotential
W:(C*)? = C, (t1,t2) = > t". (Here t" :=t'¢52.)
neVy

We may regard W as a section of the anti-canonical bundle on Py, that is, we compactify
the torus (C*)? into a projective toric surface Py in a way such that W extends to a section
of the anti-canonical bundle on Py. Let Yior — Py be the maximal projective crepant
partial desingularization. In the present case, the resolution is achieved by taking a sequence
of weighted blow ups at codimension two strata (which are torus invariant points) and Yior
is a smooth semi-Fano toric surface.

Lemma 2.5. {W = 0} does not meet any torus fized point on Py.

Proof. To simply the notation, put ¥ = ¥y. Denote by ¥(1) the set of 1-cones in X. For
p € X(1), by abuse of notation, we also denote its primitive generator (in the lattice M) by
the same symbol p. Consider the homogeneous coordinate ring Clw, : p € ¥(1)]. Then every
section t" € HY(Py, —Kp) can be identified with a monomial via

(2.8) " [ wimott

peEX(1)
Put p = |3(1)] and Uy, = CP \ Z(¥). Since Py is simplicial, Uy /G = Py is a geometric
quotient with G = Hom(Cl(Pv),C*) (cf. [19, Chapter 5]). The symbol w, can be thought
of as a coordinate function on Uy, and the monomial in the right hand side of (2.8) is a

G-equivariant function with respect to a certain character of G. The toric divisor D, is the
image of {w, = 0} under the projection

T UE — Uz]/G.

Since Py is simplicial, each torus invariant point is an intersection of two toric divisors.
D,N D, # 0 if and only if p and p span a 2-cone in X. Recall that

V={neNg|(np =-1 Vpe )}

It follows that n € Vj if and only if there are exactly two 1-cones, say p and pu, such that
(n,p) = (n,p) = —1 (since Py is Fano). Fix n € V( and pick p and p as above. Now in the

superpotential
_ (n,p")+1
we YT i
neVonNN pEZ(l)
there exists a unique monomial which contains neither w, nor w,. Consequently

9 / +1
W|wp:wM:O - H wf;b g :

pex(l)
o' ¢{pu}
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If there is a point w € CP such that w, = w, = w, = 0 with & # p and k # p, then {x, p, u}
contains a primitive collection of ¥ which implies that w € Z(X). We thus conclude that
W(w) # 0 for any w € 7= (D, N D,,). O

Let ¥y (1) = {p1,...,pp}. Write p; = [ali agi]T. The matrix

ailr aie -+ a1
A= p
a1 G2 - Qp

gives rise to a map A: ZP — M, e; — p; whose cokernel is finite. The dual AT: N — Z?
induces for each i an injection

Clp; N N] — Clef N ZP], s; — Hwn“pj

where n; is a primitive generator of p;- N N 2 Z and s; is the corresponding coordinate
function on C* = Spec(C[p;- N N]).

Fix ¢ from now on. We will write a point in C? as (w,,, W), where w is a vector indexed
by 3(1) \ {ps}. Let us compute the intersection {WW =0} N D,,. As in the proof of Lemma
2.5, we write

p
(2.9) w= 3 JJwst

neVoNN j=1

and regard W as a function on Us. Restricting W to w,, = 0, we see that only two terms in
(2.9) survive: the monomials ¢" with (n, p;) = —1. We denote them by t? and t?2. Then
{W =0}nD,, is equal to

{(0 w) € Us | H fpitl H opiltl 0} /G

By our assumption, the face fan of V is smooth. It follows that ¢; — ¢o is a primitive
generator of p;- N N and therefore

ﬁ Q1aPJ + H ‘127/)1 =0

7j=1
PN qul @P) _ 4
<:>8i:—1.

We summarize this into the following proposition.

Proposition 2.6. Assume that Pa is smooth. {W = 0} and D,, can only meet at
—1 € C* = Spec(C[p;: N N]) C D,,.

Let us focus on the MPCP desingularization now. Let Dior be the union of toric divisors
on Yior. Since Y — Py is crepant, W can be thought of as a section of — Ky as well. One
immediately obtains the following corollary.
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Corollary 2.7. Assume that Pa is smooth as before and regard W as a section of the
anti-canonical bundle on Yior. Let (Z, F) be the blow up of (Yior, Dior) at {W = 0} N Dyor
and let F' be the reduced inverse image of Dior. Then (Z, F) has trivial period point.

Proof. Since {W = 0} contains no torus fix points in Py, the maximal projective crepant
partial desingularization Y — Py induces an isomorphism in a neighborhood of {W = 0},
because {W = 0} only can intersect btor at interior points of each irreducible component of
Dior. Combined with Proposition 2.6, we deduce that if they intersect, they must meet at
—1 € C*. Since Z is obtained by a sequence of blow ups at those intersections, we conclude
that (Z, F') must have trivial period point (cf. [30, Lemma 2.8 and Proposition 2.9]). [

3. FrRoOM SYZ FIBRATIONS TO LG SUPERPOTENTIALS

In this section, we will prove the slogan “the limit of hyperK&ahler rotations towards the
large complex structure limit gives the mirror.” Recall that del Pezzo surfaces are either
P! x P! or blow up of P? at d generic points, where 0 < d < 8. Now given a holomorphic
family of del Pezzo surfaces p : Y — C, there is a natural polarization £ coming from
the anti-canonical divisors. From the Riemann—Roch theorem, one gets that h°(Y, —Ky)
doesn’t depend on the complex structure of the del Pezzo surface Y and H' (Y, —Ky) always
vanishes. One deduces that R%p,L is a vector bundle over C' with fibre HO(Y,, —Ky,) over
c with Y, := p~1(c). Then the total space of Rp,L parametrizes the pairs of del pezzo
surfaces with anti-canonical divisors. Outside a complex codimension one subset, a point in
the total space of R%p,L corresponds to a pair with smooth anti-canonical divisors. Now
choosing a path [0, 1] in the total space R’p,L induces a 1-parameter family of pairs of del
Pezzo surfaces Y; of degree d with anti-canonical divisors D;. Through out this section, we
will assume that D, are smooth for ¢ # 0 and Dy is irreducible and nodal®.

Assume that Dy degenerates to an irreducible nodal curve Dy. Let oy € Hy(Dy,Z) be the
vanishing cycle. Let m;: X; = Y; \ Dy — By be the special Lagrangian fibration produced in
Theorem 1.2 with fibre class @;. Applying hyperkéhler rotation to X; yields another family
X, » C. By Theorem 1.2, we obtain a 1-parameter family of rational elliptic surfaces }V/t,
t € (0,1]. This section is devoted to proving that

Theorem 3.1. Assume that Yy is a generic del Pezzo surface. Then the rational elliptic
surface Yy converges to the distinguished rational elliptic surface Y in its deformation family,
ast — 0.

From the Torelli theorem in the previous section, it suffices to prove that:

() The period point ¢Y’t converges to the trivial homomorphism e as ¢t — 0.

In other words, the pair (Y;, D;) converges to (Y, D.), the log Calabi-Yau surface with
trivial period point.
Recall the following construction in [21, §3]

Lemma 3.2. Let Y be a del Pezzo surface. Let D € | — Ky| be an irreducible nodal curve
or smooth curve. Then for each v € [D]*, there exists a 2-cycle ¥ of Y such that [3] = v in
Y and yN D = (.

3Notice that generic del Pezzo surfaces admits an irreducible nodal anti-canonical divisor.



SYZ MIRROR SYMMETRY FOR DEL PEZZO SURFACES AND AFFINE STRUCTURES 13

Proof. One can write v = Y, a;[C;] with a; = £1 and C; being smooth curves intersecting
transversally at distinct points on D™. We can rearrange the signed intersections as
> (pj — q;). Let o be a smooth curve in D"® going from ¢; to p; and 7(o;) be a tube over
o; in Y. We can glue 7(0;) with v\ {p;, ¢;} inductively and obtain 7. O

One can find a 1-parameter family of diffeomorphisms f;: Yy = Y; with ¢ € [0,1]. Fix
a neighborhood N C Yj of Dy. There exists an € > 0 such that D; C f;(N) for t < e.
Let {y1,...,7s} be a basis of [Do]* € Ha(Y;Z) and {71,...,7s} be the corresponding
deformed cycles in Xy := Yy \ Do. We can also regard #; as a cycle in X;. By shrinking the
neighborhood N if necessary, we may assume that f;(%;) N Dy =0 for t < e.

Lemma 3.3. Let D, be the degeneration as above and X; :=Y; \ Dy. Let oy € Hy(Dy; Z)
be the homology class of the vanishing cycle. Let 3, € Hi(Dy;Z) such that {oy, B} is a

symplectic basis of Hy(Dy; Z). Then {[as), [, [f:(G1)]s -, [f:(5s)]} is a basis of Ha(Xy; Q)
for allt € [0, €.

Proof. Adapting the discussion in §2.1 to (Y, D;), we obtain an exact sequence
(3.1) 0 — H'(Dy; Z) — Ha(Xi; Z) — [Di]F — 0.
Notice that [Dy] = [Dg] in H%(Y;; Z). The result follows immediately. O

We will now study the period point associated with (}V/t, D,) as t approaches zero. From
the setup of (Y, D;), there is a smooth family of holomorphic 2-forms € on X; for ¢ € [0, 1].
Notice that f;Q¢|y,\n converges to Q. In particular, this implies that the period integrals
fft* 3) Q to fft* 3) Qo as t — 0. In particular, ff{‘(‘*t) Q; is bounded. Recall that

Qt = Wt —1ImQt
The exactness of the Tian—Yau metric w; implies that

(32) /Qt:/wt—lflmﬁt:—llm/ﬁt
0 0 0 0

for all § € Ha(X+;Z). Hence it suffices to compute the integrals

[ o€ ma(xi2),
[

on the Tian—Yau space.

Lemma 3.4. Let y; := Resp,;. We have

(1) i/ pe A fig — 00 ast — 0;
2 Jp,

(2) e s bounded.
ot

Proof. Let p € D(S)ing. Choose a coordinate chart V' of Y around p such that the degeneration

D; — Dy is given by 2y =t in C2. Set E; = {wy =t + O(t)}. For t # 0, we may write
deAndy  d(zy —t)
zy —1t N xzy —t

A ng.
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We see that

dz Ad d d
) g =5 +ow=E| +on.
! T g, Y g

Let € > 0 be small and set
Epe:={(z,y) | [z + [y < e} N E;.

Since lim;_,0 0 = Qg exists, there is a holomorphic function f(z,y) with f(0,0) # 0 such
that
x,y)dx Ad
xzy —1t
It follows that

i _ i _
*/ ,Ut/\,utZ*/ e A iy 4 O(t)
2 Jp, 2 Ey e

dz A dz
2

t
2/t6 e+ o0

27
zc/ / 4rdf o) -
0 r=t/\Je T

as t — 0. This proves the item (1).
Now we prove the item (2). For € > 0, we fix a point (2o, yo) € Et.. Then

Tt(e) = (5506197?/06_10)’ NS [Oa 27‘-)7

is a closed curve in E; . representing a;. We can compute

[ " F(r(0))d0

and conclude that it is bounded for € < 1 since f is continuous at (0,0). O
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. One first observe that
: Qt:27r/ e — 00,
Bt t

where the first equality comes from residue calculation and Lemma 3.4 implies the asymptotics.
Normalize € to Q := ([ 5 Q)71 for t # 0 and rescale the Tian—Yau metric accordingly,
which does not change the complex structure of the hyperKéhler rotation X, and thus does
not change Y;. Notice that f3; is the generator of the image of Hl(Dt, Z) in (2.2), and thus
the normalization here is exactly the one in (2.5). Therefore, all the periods of Y; converge
to zero as t — 0 under the normalization. In fact, note that the cycle fi(%;) is only defined
up to an element in Im(H'(Dy, C) — Hy(Xy,C)) = Spanc{dy, 5;}. Under the normalization,
we see that

exp<27ri~/ Qt>—>1ast—>0
(%)
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due to the fact that

/ Qt/ ~Qt—>0,ast—>0.
fe(&) fe(B)

We conclude by Lemma 3.4 and the observation above that all periods converge to zero
under the normalization. This also implies that Y; converges to the unique rational elliptic
surface Y, with trivial periods from Theorem 2.4. ]

The following is proved in Appendix A

Theorem 3.5. Consider a del Pezzo surface of degree d as a monotone symplectic man-
ifold and let W: (C*)?2 — C be the mirror Landau—Ginzburg superpotential. Then it
can be compactified to a rational elliptic surface Y with an 14-fibre and with trivial pe-
riods. In particular, Y is extremal when d = 9,8,6,3,2,1 with singular configuration
I3, Is1o12, TI3Ioly, IsTV* Iy, IoIIT* Ty, T, IT*T4 .

4. LIMITING COMPLEX AFFINE STRUCTURE OF SPECIAL LAGRANGIAN FIBRATION IN
P! x P!

We first review the definition of complex affine structures [38]. With the notation in
Section 1, recall that X C Y is a Calabi—Yau surface with a holomorphic volume form €2
and let m,: X — B be a special Lagrangian fibration constructed in [17] with a choice of
a € Hi(D,Z). Denote by By the complement of the discriminant locus. Fix a reference
point ug € By and v € Hi(Ly,,Z). Let u € By and ¢: [0,1] — By be a path with ¢(0) = ug
and ¢(1) = u. Denote by C, 4 the (n — 1)-cycle fibration over ¢([0,1]) such that fibre over
#(t) is the 1-cycle in Ly which is the parallel transport of v along ¢. We define

xy(u) = Im Q.
Cy
If {~;} is a basis of Hi(Ly,,Z), then z.,(u), ¢ = 1,2, form a coordinate system near the
reference point ug. It is straightforward to check that the transition functions fall in
GL(2,Z) x R?, and thus they define an integral affine structure on By. It is worth noticing
that given an affine line (with rational slope) passing through u € By, its tangent vector
determines a cycle v € Hy(Ly, R) (or Hi(Ly,Z)) and vice versa. Therefore, we will denote
such an affine line by [, or simply by [, if no confusion occurs.

Remark 4.1. If one chooses a sequence of points u; — us from a sector, where u, falls
in the discriminant locus, then lim;_,o 2., (u;) exists. Therefore, one may take u, as the
reference point as well.

Remark 4.2. The germ of affine structures on a punctured disc is determined by the affine
monodromy around the puncture. In particular, if the affine structure comes from a special
Lagrangian fibration as above, the germ only depends on the monodromy of the fibration.

For the case Y = P2, the suitable hyperKihler rotation X of X can always be compactified
to an extremal rational elliptic surface [16]. In particular, the base B with the complex affine
structure of the special Lagrangian fibration 7, as an affine manifold with singularities is
independent of the choice of v € Hy(D,Z). Actually, this is true in a more general setting.
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Proposition 4.3. Fiz a pair (Y, D) and o,/ € Hi(D,Z). The bases B, B’ of the special
Lagrangian fibrations w,, 7o with their complexr affine coordinates are isomorphic as affine
manifolds with singularities.

Proof. 1t suffices to prove that there exists a diffeomorphism : X — X such that o, =
o © 1. Then the induced map of 1) gives a diffeomorphism B = B’ identifying the complex
affine structures. In particular, this answers a question of Hacking—Keating [35, §7.4].

For any o,/ € Hy(D,Z), there exists 1-parameter family of pairs (Y, D;),t € [0,1]
such that (Yp, Do) = (Y1,D1) = (Y, D) and the parallel transport sends o’ to . Such a
1-parameter family induces a diffeomorphism ¢ of (X,wry) for the exact Tian-Yau metric
wry, sending the [&] to [@/]. Let Q (and Q') be the meromorphic 2-form on Y with simple
pole along D and f[ a2 eER, (and f[a'} Y € R, respectively). Then ¢*Q is a closed 2-form
with vanishing self-wedge and thus defines an integrable complex structure. Moreover, the
same underlying space X as X with Kahler form ¢*wry and holomorphic volume form
¢*Q is an ALH* gravitational instanton since the volume growth is still r3. Now we have
two ALH* gravitational instantons (X, wry,2) and (X, wry, ¢*Q) as well as a morphism
¢: X — X satisfying ¢*[wry]| = [wry| and ¢*[Q] = [©']. From the Torelli theorem of the
ALH* gravitational instantons [18, Theorem 3.9], there exists a diffeomorphism ¢' : X — X
such that ¢*¢*wry = wry and ¢*¢*Q = Q. Taking ¢ = ¢ o ¢/, then 1, [a] = [@']. Any
special Lagrangian torus of class [@] (and [@]) must be a fibre of the special Lagrangian
fibration with fibre class [@] (and [@’] respectively). Thus, ¢ sends the special Lagrangian
fibration in X with fibre class [&] to the special Lagrangian fibration in X with fibre class

[@] as claimed.
U

4.1. The integral affine structure from Carl-Pumperla—Siebert. Let Y be a del
Pezzo surface and D be a smooth anti-canonical divisor. Carl-Pumperla—Siebert [9] construct
the mirror for the pair (Y, D). We now describe the integral affine manifold with singularities,
denoted as Bcpg, used in their construction when Y = P! x P1.

We first start with R? with the standard integral affine structure. There are four
singularities located at (+£1/2,41/2) with the monodromy around each of the singularities
1
0 1)

To cooperate with the standard affine structure on R?, the branch cuts for the singularities
are put at the following locations:

conjugate to
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Beps is constructed by discarding the sectors bounded by l;t in R and gluing the branch
cuts lii with the affine transformations shown in Figure 1. However, this will not be

FIGURE 1. The affine structure on Bopg and its limit Bfpg.

the limit of the base of the special Lagrangians constructed in [17]. We will compare
the latter to a degeneration of Beopg, denoted by B pg. Roughly speaking, Bppg is
the integral affine manifold obtained by collapsing two of the singularities together. Let
Al (-1/2,1/2),0" = (0,0), A", = (1/2,—1/2) be the three singularities. We will choose the
branch cuts as

—
\‘PF
@)
=
Y
@)
——
o~
=
I
—~
—~
=
~
~—
~
v
o
——

w

I = (t,0] go}, l_:{(O,t)‘tSO},

1 1 1

Then B{pg is defined similarly as the complement of the sectors bounded by l?E in R?
with the standard integral affine structure, where we glue the branch cuts ZZ?JE with respect
to the affine structures as in Figure 1. Notice that it is not clear that Bops and By pg are
related by moving worms introduced in [45].

t
(—1,1+t>‘t20}, 52:{<—1+t,1)]t§0},
279 279
)|t
1

4.2. Explicit calculation of the complex affine structure. In this section, we will
compute the limit of the complex affine structure of the special Lagrangian fibration of
X; =P! x P! \ Dy, where D; are smooth anti-canonical divisors degenerating to a nodal

curve Dy.

Lemma 4.4. Assume that o is a fibrewise involution on X. Then o induces an involution o
on B. If furthermore o*(Im Q) = —ImQ, then the fized locus Fix(a) C B defines an affine
line with a rational slope.
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Proof. The first part of the lemma is straightforward. Notice that Fix(g) is a manifold. Let
p € Fix(o) and take p as the reference point of the local affine coordinate chart. Let [, be
the affine line tangent to p € Fix(g) with v € Hi(Ly,R). Then one has [, (1) = a(ly) = I,.
In particular, I, C Fix(¢), and thus the fixed locus of ¢ is simply the affine line I,. It is
worth noticing that the induced action of o on H;(L,,R) is defined over Z. In particular, if
n = 2 and o # id, then [, has a rational slope. O

The hyperKahler rotation X, can be compactified into a rational elliptic surface Y; and
lim;_0 }V/} =Y converges in the moduli. Together with the hyperKéahler rotation relation
(1.1) and the fact that the Tian—Yau metric is exact, it is sufficient to compute the affine
structure induced by Im Q.

For the case Y = P! x P! and D; a family of smooth elliptic curves degenerating to a
nodal curve Dy, as we have explained, Y = lim;_o th is the extremal rational elliptic surface
with singular configuration Igl>I? with D being the Ig fibre at infinity. The toric model
(}V/tor, Dtor) of ()V/, D) is given by the maximal projective crepant partial desingularization
lv/tor — Py, where

V = Conv{(1,0),(0,1),(—1,0),(0,—1)}.
The superpotential in this case is

(4.1) Wi (T2 = C, (fts) 11+ to + — +t12
Regarding W as an element in Ho(f/tor, —Kﬁor) = H(Py, —Kp,), we see that Y = 7 is
obtained by blowing up at {WW =0} N Dior.

The critical values of the superpotential W are 0,+4 € B := C, which will be denoted by
O, AL respectively in the sequel Note that the fibre over O is an Is fibre, while the fibres
over Ay are I fibres. Let € be the unique (up to a constant) meromorphic (2,0)-form on Y
with a simple pole along D such that the complex conjugation on Y is a fibre- preservmg
involution and thus the fixed locus of the induced action on B is an affine line. Explicitly, Q
is the pullback of a meromorphic top form under Y — Yio, which comes from a sequence of
blowups at smooth points in Dior. In what follows, we will compute integrations of Q over
certain Lefschetz thimbles which are not contained in the exceptional locus of Y — Yior. We
thus can compute these integrals on the maximal torus (C*)2. In the sequel, we shall omit
the pullback and simply write

dt dt
dty | dt

4.2 O—ji.
(4.2) A

if no confusion occurs. Here (t1,t2) stands for the coordinates on (C*)2 C iftor.
Denote by g the coordinate on B. Look at the diagram

(t1,t2)  (C*)? > .

(4.3) I lpr2

to Cc*

For general ¢ € C, the pre-image W™!(q) is an elliptic curve with four points removed.
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Lemma 4.5. The ramification points ta of the double cover W~1(q) — C* induced from the
vertical arrow in (4.3) satisfy (t3 +1 — qt2)? — 43 = 0.
Proof. Compute

1 1
bttot—+--q9=0 & 3ty 4 tit3 +to + 1 — qtita =0
1 2

& tott + (2 4+ 1 — qta)ty +t2 = 0.
We see that t5 is a ramification point if and only if (t3 + 1 — gt2)? — 4¢3 = 0. O

Making use of (4.1), we can write (4.2) as
dg A dto
1 .
2t1to + t% +1—qts

(4.4)

whenever 7 # 1. Moreover, from W (t1,t3) — ¢ = 0, we can solve

—(t3+1—qhr) + \/(755 +1—qtz)? —4t3
2ty '

Here we have chosen the branch cut to be the non-positive real axis to define the square
root. For a nonzero complex number z ¢ R_, we define

1
Vz = exp (2 log z) ,

(4.5) t1 = f1(to) :=

where

logz =log|z| +1i6, 0 € (—m, 7).
Substituting ¢1, we may rewrite (4.4) and get
dg A dts

(4.6) Q=i-

/(13 +1— qta)? — 483

FIGURE 2. The ts-plane at ¢ = —2. There are four ramification points:
to = +1iand ty = —2 ++/3. The green dashed line segments indicate the
branch cuts we chose, i.e., the loci where (t3 + 1 — qt)? — 4t3 < 0.
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Each line segment of {¢ € R} between O, Ay is an affine line. Notice that due to the
monodromy the corresponding 1-cycles in the fibres for each of the affine line segments
o00A_,A_O,0A,, ALoco are not the same after parallel transport.

A_(~4,0)

A, (4,0) [y
N b
{ 2 1}‘!5 A J

0 1

FIGURE 3. Base of the SYZ fibration in coordinate ¢ and B pg.

For the rest of this section, we will take O as the reference point of the affine structure
(see Remark 4.1). We will restrict ourselves to the region Imgq > 0. Let a(q),b(q) be the
vanishing thimbles from O, A_ up to parallel transport via a path contained in the region
Im(g) > 0 into a fibre over ¢ with the orientation such that

(1) [y Re<0,if g€ A~0 and
(2) Joo) Re € > 0, if Im(g) > 0 near A_.

Let us describe the cycles a(q) and b(q) explicitly. Let 7;: [0,1] — C* be a parametrization
of the oriented smooth curve drawn in FIGURE 2. The cycle da can be parameterized by

(11(2s), f+((25)), 0<s<1/2,
(m(2-2s), f-(m(2-2s)), 1/2<s<1,

where fi(t) is defined in (4.5). We equip da with the orientation induced from this
parametrization to achieve the item (1) above.

(4'7) '78a(8) = {

Lemma 4.6. Under the parametrization (4.7), the item (1) above holds; namely

Re) <0, forqe A_O.
a(q)

Proof. Note that

v v q v
Q:—/ LaaQ/\dq:—// (LaaQ)dq.
/a<q> at@) 0 Jota) "

Since ¢ < 0, the result will follow if we can show that

Re / Ly/d. Q) < 0.
(aa(q) /o
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Deforming the curve, we may assume 7, (6) = exp(if), 6 € [—b6p, 6] C [—m, 7], with the
counterclockwise orientation. By (4.6),

/ L Q —9 fo — exp(l@)d@
da(q) 1P —9o \/exp(2i0)((2cosf — q)2 — 4)

Note that (2cosf — q)? —4 > 0 for all § € (=6, 0y). We deduce that

\/exp(2i6) (2 cos B — )2 — 4) = exp(i6)/(2cos § — g) — 4

and therefore
%o — exp(if)do [t —de
—60 /exp(2i0)((2cos 0 — q)2 —4)  J-g, \/(2cos0 — q)% — 4

< 0.

0

Likewise, we can equip 0b with an orientation through 2 to achieve item (2). Starting
from ty = —i, we parameterize 0b via

Yon(s) = (72(8), f+(12(8)), 0 <s < 1.

Let {v2(s;) | 0 < s1 < --- < s < 1} be the intersection of 75 and the branch cut. When ~,
meets the branch cut, the curve vy, enters a different sheet and we shall exchange fi(t). In
other words, db can be parameterized by

(72(28), f+(72(2)), 0<s<s/2
(72(28), - (72(2s)), 51/2 < 5 < 59/2
(72(25), fr(72(25)), sk/2 <5 <1/2,

Yon(s) = (72(2 = 25), fe(72(2 = 2s)), 1/2<s<1—5;/2,

(72(2 = 25), f+(12(2=25)), 1-s2/2<s5<1-51/2,
(72(2 = 25), f-(12(2—-25)), 1—-s1/2<s<1L
and we equip 9b with the induced orientation of this parametrization. Here the sign depends

on the parity of k. For instance, if kK = 1, then we shall pick f_ for s;/2 <s<1/2 and f;
for 1/2 < s <1 —s1/2. Similar to the proof of Lemma 4.6, we can prove the follow lemma,

which shows that the orientation fulfills the requirement.

Lemma 4.7. For g € A_O, we have

/ ReQ =0 and / Im¢) < 0.
b(q) b(q)

Lemma 4.8. If the reference point is changed to a point near O, then (Ja,db) = —2, where
(,) s the natural pairing of the fibre torus.

Proof. Since the intersection number is topological, we can compute (Ja, db) at gy near A_.
It is clear that (Oa,0b) = £2. To pin down the sign, we notice that if £, (resp. £gp) denotes
the curve starting from ¢o with the direction such that
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QeR <resp. Qe R)
da ob

and increases, then we have

(4.8) (V9a, vap) > 0

with respect to the orientation on the base C, where vy, (resp. vgp) is the tangent vector
of Ly, (resp. Lagp) at go pointing in the direction in which the symplectic area is increasing.
Since (Ja, 0b) and (vy,, vap) differ by a sign, this completes the proof. O

Now define another set of affine coordinates by = := zg(,_p) and y := Zg(q4p).-

FIGURE 4. When ¢ moves from —4 to 0 in R, two of the ramifications (red
marks in figure (a)) collapse to t2 = —1 in figure (b) along the real axis
ts € R. Note that to = —1 in figure (a) is a double ramification. One can
also check that the ramifications marked in blue travel along the semicircles
to = (2+ q £ v/¢* + 4q) /2 when ¢ moves from —4 to 0.

Lemma 4.9. The affine line Im g = 0 between O and A_ satisfies x +y = 0. The same is
true for the affine line Imq = 0 between O and Ay.

Proof. We will prove the former statement. The proof of the latter statement is similar. It
suffices to prove that x5, = 0; in other words, we have to show that

(4.9) / QeR
a(q)

where a(q) is the vanishing thimble from O to ¢ € OA_. From the proof of Lemma 4.6, one
can directly see that (4.9) holds. However, we shall give a more conceptual proof which will
be useful later.

We can choose a such that the image of da (over ¢ € OA_) under the projection pry in
diagram (4.3) is given by a path 7 connecting two ramification points (2 4+ ¢ + /¢ + 4q)/2
and passing through the positive real axis {t2 € R;}. We may also assume that - is invariant
under complex conjugation as well (cf. FIGURE 5). Now we have

(4.10) / L0t = 2 / i dz .
da T (B4 1 qta)? 483
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to=0124+q¢++q>+4q9)/2

~

FIGURE 5. The image of da(q) under the projection pr,.

Let v4+ :=yN{Imty > 0} and v_ := v N {Im¢a < 0}. Notice that 7, = —y_ (orientation
reversing). We can write

/ dty
7 (3 + 1 — qta)? — 483
dtg dt2
| y
(B 1-qh)2—43 - (B +1 - qhr)? - 413

i-R.

/ dty / dty
= - . €
B+ 1—qh)2— 413 (B 41— gha)? - 453

It follows from (4.10) that
/ La/an eR
Oa

v q v
/ Q= */ / (La/an)dq eR
a(q) 0 Joa

Let us examine the branch cut when ¢ = i§ € i-R;. We observe that the set {t5 €
C* | (12 + 1 — i€t9)? — 4t3 < 0} is invariant under t5 + —t5. Moreover, {to € C* | (13 4+ 1 —
it9)? — 4t3 <0} Ni-Ry = (. Indeed, if to = iz with x € R,

(t2 4+ 1 —i€ty)? — 4t3 = (—2® + 14 &x)® + 422 > 0.

which implies

as desired. n

The following lemma shows that i- Ry is an affine ray.
Lemma 4.10. Recall that the reference point is the origin O. We have
To(—atb)(q) =0 for g €1-Ry.

Proof. Denote by 71 and ~, the image of da and 9b under the projection pr, in (4.3). For
g=1-& € i-R4, we may assume the 7; are smooth curves connecting two out of four
ramifications that collapse to one point when ¢ — 0 (cf. FIGURE 6). By our choice of
orientations, we see that the image of y5 — 1 is a closed curve on C*. As in the proof of
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Lemma 4.9, we shall compute an integral of a holomorphic function over v9 — ;. We can
deform 2 a bit and assume that o — 71 is symmetric with respect to the imaginary axis.
Write v2 — v1 = 74 Uy~ where

Y+ ={p€r—m| Rep>0}and 7_ :={p €2 — 7 | Rep <0}.

We see that v_ and —744 are set-theoretically symmetric with respect to the imaginary axis,
but the orientation is reversed.
The integrand is given by

dts
VB +1— qtn)? — 413

with ¢ € i-Ry. Since the branch cut does not intersect i- Ry, the integrand F'(t2) satisfies
F(—ty) = —F(t2). Now for such a function F(t3),

Lia/agQ ==+ =: F(t2)

F(t2)+ F(tQ) = F(t2)+/ F(t_g) eR
T+ v- Y+ Y+

which implies the result. [l

FIGURE 6

Next we will choose the branch cut of A4 to be the affine line segments coA+ contained
in {Im(q) = 0} as in FIGURE 3. If we move g across coA_ from Im(q) > 0 to Im(q) < 0,
then the counter-clockwise monodromy around A. is given by

Oa — Oa + 20b
0b — 0b.

Therefore, the corresponding clockwise affine transformation is My (cf. FIGURE 3).

Lemma 4.11. zy(_q44)(q) — To(—atp)(A-) =0 for ¢ < —4.
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Proof. The argument used in Lemma 4.10 applies to this case. Denote again by ~1 and v
the image of da and 0b on the ta-plane under the projection pr, in (4.3). For ¢ < —4, we
may assume the ; are smooth curves connecting two out of four ramifications that collapse

to one point when ¢ — —4 (cf. FIGURE 7). We can deform 7 a bit and assume that vo —
is symmetric with respect to the real axis.

Write v2 —v1 = 74+ U~_ where
Y+ ={p €2 —m | Imp >0}, and
Y- ={p€ry2—m| Imp <0}.

We see that in the present case v_ and 74 are set-theoretically symmetric with respect to
the real axis, but the orientation is reversed.

Since 2 —; does not intersect the branch cut on the real axis, it follows that the integrand
F(t2) obeys the rule F(t3) = —F(t2), and we have

[Y+ F(t2) +L_ F(ty) = L+ F(ts) +/ F(ts) € R.

Y+

FIGURE 7. 1 (the blue solid curve) is the image of da, and 72 (the red solid

curve) is the image of 9b. We can deform the upper part of v; into the union
of the blue dashed curve and ~,.

The proof of the following lemma is deferred to Appendix B.

Lemma 4.12. The affine line l4_ gy intersects lo g(—q+b)-

Now we will choose coA, which is an affine ray by Lemma 4.11, to be the branch cuts
from Ay. The monodromy My coincides with the gluing transformation of cuts around A’,
in Bipg. Thus, there exists an affine isomorphism ¥ between a punctured neighborhood of
A. in B and a punctured neighborhood of A, € Bf,pg by Remark 4.2. With the scaling of
the affine coordinates chosen appropriately, the affine isomorphism ¥ can be chosen such that
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it can be extended to a neighborhood of OA_ in B. Moreover, by Lemma 4.9, the extended
isomorphism will identify a neighborhood of OA_ in B with a that of O’A” in B pg with
U(0OA_) = O'A"_. Let My, Ms be as in FIGURE 3. Then M = M;M> is the monodromy
around O. We will choose two branch cuts from O to be iRy with the gluing transformation

My, Ms. From Lemma 4.10 and Remark 4.2, we can again extend the affine isomorphism ¥
to an affine isomorphism identifying a neighborhood of O with a neighborhood of O’ such
that W(iR,) is the branch cut from O’ in FIGURE 3.

Next let us denote the intersection of the affine lines l4_ gy and lp g(—a+p) by C. Then
C" = ¥(C) = (0,1). Moreover, ¥ extends to an affine isomorphism from the triangle
OA_C C Bto OA_C' C Beps by Lemma 4.9, Lemma 4.10, and Lemma 4.12. Again
Lemma 4.10, Lemma 4.11, and Lemma 4.12 imply that such an affine isomorphism can be
extended from the unbounded region in B surrounded by l4_ g(—a+b)sl0,~8as l0,8(~a+b) tO
the corresponding unbounded region in Bopg as shown in FIGURE 3. By the symmetry
q — ¢ and ¢ — —¢, the affine isomorphism extends to U: B = B{pg.

Remark 4.13. Although the integral affine structures with singularities on B and Bcpg
are different (even up to moving worms), the authors expect that the corresponding tropical
counting of the Al-curves and the product structures of the algebra generated by theta
functions are the same. The authors will leave it for future work.

Remark 4.14. It is worth noticing that the Mordell-Weil group of Y, is Z4 [53] (see also
[56, p.102]) and thus gives a Z4-action on Y, which descends to the identity on the base of
the elliptic fibration.

5. LIMITING COMPLEX AFFINE STRUCTURE FOR DEL PEZZO SURFACE OF DEGREE 3 AND
4

In this section, we will describe the limiting complex affine structure for del Pezzo surface
of degree 3 and 4.

We first deal the the case of del Pezzo surface of degree 3 and recall the geometric setup:
let Y = P2, D is a smooth cubic surface and X be the complement X = Y \ D. Then
X admits a special Lagrangian fibration with respect to wry, {2 from Theorem 1.1 and a
suitable hyperKéhler rotation X with hyperKihler triple (o, ) can be compactified to a
rational elliptic surface Yy with an Ig-fibre from Theorem 1.2. It is known that there exists
a unique rational elliptic surface with an Ig-fibre with singular configuration IgI$. The
authors then use the geometry of }V/E) to computed the complex affine structure of the special
Lagrangian fibration on X. It is given by the affine subspace of R? as shown in Figure 8 and
then glue the corresponding edges with the prescribed linear transformations. It is proved
that there exists an Zs & Zs-action on X preserving (¢, €2) in [16, Corollary 5.11] and the
proof therein. Denote 1,9 be the local complex coordinates of }79, where t; is the fibre
coordinate and ¢ is the base coordinate on P!. The first copy of Z3 is the Mordell-Weil
group of Yy and acts as translation by holomorphic sections. In other words, it is of the form

t1— t1 + O'(tQ),tQ — tQ,

where o is the holomorphic section. The second copy of Zs preserves a holomorphic section
of Yy and sends fibres to fibres. Thus, the second Zs-action descends to the base P! of Yy
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FiGURE 8. The limiting complex affine structure of special Lagrangian
fibration in P?

and acts simply as the rotation
t1 — 11,12 — 62m/3t2.

In particular, the fibres over t3 = 0,00 are fixed. Let r = (1,1) € Zs @ Zs and denote
(ry = Zs be the subgroup generated by r. Since both Zs-action is fibration preserving,
Yo /(r) still admits an elliptic fibration structure. The Ig-fibre of Yy reduces to an I5-fibre
after the quotient. The three I;-fibres are identified to a single I;-fibre. The fibre over
ty = 0 is set-wisely fixed by the action of (r) and after the quotient becomes an orbifold P
with three orbifold singularities locally modeled by C2?/Z3. Thus, the minimal resolution Y
of Yy /(r) is a crepant resolution. From the formula of anti-canonical divisor for ramified
cover, for instance [7, Lemma 1.17.1], we have Y isa again a rational elliptic surface and its
singular configuration is IV*I3I;. We then have the following observations:

e consider the del Pezzo surface of degree 3 as a monotone symplectic manifold, then its
mirror Landau-Ginzburg potential can be compactified to Y from Theorem 3.5.

e The (r)-action preserves (,€) on X implies that the (r)-action preserves (w,{2) on
X and descends to a Zs-action on the complex affine structure of X. Therefore, the
underlying space of X \{t2 = 0}, viewed as a subspace of X, admits a special Lagrangian
fibration with respect to (w,(2). Moreover, the complex affine structure of this special
Lagrangian fibration is the Zs-quotient of the complex affine structure of the special
Lagrangian fibration in X.
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e Recall that the complex affine structure of the the limiting special Lagrangian fibration
of del Pezzo surfaces of degree 3 is determined by ¥ by Theorem 3.1. Since Y — Y/9/ (r)
is a crepant resolution, the complex affine structure from the limiting special Lagrangian
fibration in del Pezzo surface of degree 3 is exactly the same as that of the special
Lagrangian fibration in X \ {ty = 0}.

Now the Zs-action on the complex affine structure of the special Lagrangian fibration in P2

. . . 0 1 I
can be described as the linear transformation | 1 1 restricting to the affine subspace

in Figure 8. It is straight-forward to check that the transformation preserves the gluings
listed Figure 8. Altogether, we reach the following conclusion:

Theorem 5.1. The limiting complex affine structure for del Pezzo surface of degree 3 is a
Z3 quotient of the complex affine structure of the special Lagrangian in P?. The Zs-action is

-1
below with OB’ identified with OC" and two vertical boundaries identified.

B

generated by (1) ) Explicitly, it is given by the shaded affine subset of R? in Figure 9

B =(1/2,1/2)

C' = (~1/2,0)

FI1GURE 9. The limiting affine structure for del Pezzo surfaces of degree 3.

Next we will use a similar argument to derive the limiting complex affine structure for the
special Lagrangian fibration of del Pezzo surface of degree 4. We will start from Y = P! x P!,
D, smooth anti-canonical divisors of Y converging to an irreducible nodal anti-canonical
divisor and X; = Y \ D;. Following the similar argument above, a suitable hyperKéahler
rotation X; can be compactified to a rational elliptic surface Y, and Y, converging to a
rational elliptic surface }V/g/ with singular configuration Iglol 12 There exists a Zo P Zg-action
on Yy . The first copy of the Zs is the fibrewise negation and the second copy descends to the
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base of the fibration. Again let r = (1,1) C Zy @ Zs and consider the elliptic fibration Yy /(r).
The Is-fibre of Yy reduces to an 14-fibre, the two I;-fibres are identified under the quotient
and the two components of the Io-fibre are set-wisely fixed, each with two fixed points.
The minimal resolution Y of Yy /(r) is the unique rational elliptic surface with singular
configuration I7 141y, which is the compactification of the mirror Landau-Ginzburg potential
of del Pezzo surface of degree 4, viewed as a monotone symplectic manifold. Slightly different
from the previous case, r*Q) = —). From the definition of the complex affine structure and
the hyperKéhler rotation relation (1.1), this still implies that r sends affine line to affine
line with respect to the limiting complex affine structure of the special Lagrangian fibration
in P! x P!. This leads the following theorem.

Theorem 5.2. The limiting complex affine structure for del Pezzo surface of degree 4 is
a Zo quotient of the limiting complex affine structure of the special Lagrangian in P! x P!,
Euplicitly, it is given by the shaded affine subset of R? in Figure 10 below with I identified
with I3 and I} identified with I} .

FI1GURE 10. The limiting affine structure for del Pezzo surfaces of degree 4.

6. MIRROR CONSTRUCTION FOR DEL PEZZO SURFACES USING IMMERSED LAGRANGIANS

6.1. Smoothing of A, singularities. Smoothings and resolutions of A, singularities
provide excellent examples of local Calabi-Yau manifolds. The symplectic geometry of A,
smoothings has been well studied by the early work of [58,60]. SYZ mirror symmetry for
A, singularities was studied in [10,48]. Rigorously speaking, the previous construction
concerns only about Floer theory of smooth SYZ fibers, and points that are mirror to the
singular SYZ fibers are missing. In this section, we use the method of [12,40] to glue in the
deformation spaces of immersed nodal spheres in a smoothing of an A,-singularity. This
fills in the corresponding punctures and completes the SYZ mirrors.
Consider a smoothing of A,, surface singularities

n+1
S =5m = {(X,Y,Z) eC?: XY = H(Z—ei)}

=1
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where €] < €9 < ... < €p41 are taken to be real numbers for simplicity. It has a Kéhler form
restricted from C3.

We construct Lagrangians in S using symplectic reduction. The S'-action (X,Y,Z)
(e X,eY, Z) is Hamiltonian and has the moment map p = |X|> — |Y|? : C3 — R. The
coordinate Z is S'-invariant and descends to the reduced space S /, S'. This gives an
identification S //, S* = C. We will take the level to be a = 0. By virtue of the dimension,
any curve in C corresponds to a Lagrangian in S.

Consider a simple loop C' in C which winds around all the points €1,...,€e,41 € R, and is
invariant under complex conjugation. It corresponds to a Lagrangian torus

Lo:=2ZYC)np o} cCS.

For simplicity, let’s apply a diffeomorphism p on the base C that commutes with complex
conjugation (and in particular preserves the real line) and is equal to identity outside a
compact subset, such that p(C) is a circle with center lying in the real line.

For each i = 1,...,n + 1, we take a circle C/ that satisfies the following requirements.
(1) C! passes through the point €, = p(e;).
(2) The center of C lies in the real line.
(3) C! and p(C) intersect at two points.
(4) The two strips bounded by p(C) and C! have the same symplectic area with respect

to (p™1)*wreq (Where wreq denotes the reduced symplectic form).

See Figure 11.

F1GURE 11. The images of the Lagrangians in the reduced space.

Lemma 6.1. For each i = 1,...,n+ 1, there exists a unique circle C} that satisfies the
above requirements.
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Proof. Given Condition (1) and (2), the only remaining freedom is the choice of the radius
R (in usual Euclidean sense) of C!. There exists a > 0 such that Condition (3) is satisfied
if and only if R > a. For R < R’, the left strip bounded by (C%,,C) is a subset of that
bounded by (C%, C). Similarly the right strip bounded by (C’%, C')is a subset of that bounded
by (C/, C). This implies the symplectic area of the left (or right) strip strictly decreases
(or increases resp.) as R increases. At the limit R = a (at which C} and C touch at a
point), the symplectic area of the right strip is equal to 0; At the limit R = 400 (at which
C! is a straight line), the right strip contains an unbounded right half plane, and so has
+o00 symplectic area since (p~!)*wreq = Wred (as p = Id outside a compact subset). As a
consequence, there exists a unique intermediate value R of the radius such that Condition
(4) is satisfied. O

In the above choice, C and C; := p~!(C!) intersect at two points and bound two strips
with the same area under wyeq.

Corollary 6.2. In this setting, each pair of C; and C; for i # j also intersects at two points
and bounds two strips, where the two strips have areas equal to each other under Wyeq.

Proof. Without loss of generality, let ¢; < ¢’ in the real line. We want to show that C} does
not entirely lie in the disc bounded by Cj, and hence C}, C} intersect at two points and
bound two strips. We consider the area form (p‘l)*wred below.

Suppose this is not true. Let A be the area of each of the two strips bounded by C’, C!.
In this situation, the area of the left strip bounded by C’, CJ'» is greater than A, and the
area of the right strip bounded by C’, C]’- is less than A. See the left figure below. This
contradicts that the strips bounded by C’, C} have equal area A.

Thus, we are in the situation of the right two figures below. Then

A-A=B-D=PB

and hence the strips bounded by C] and C} have equal area B = B’ + D under the area
form (p™1)*wred. Applying p~1, conclusion follows for C; = p~1(C!) and C; = p_l(C]’.). O

D

QD (@

FIGURE 12

We fix a point p € R C C in the reduced base, which lies in the common intersection
of the discs bounded by the circles C' and Cj for j = 1,...,n + 1. This corresponds to an
anti-canonical divisor Z~'{p} € S. We denote the complement by

S° =8 -7z HYp}.

All the Lagrangians we have constructed lie in S°.
It easily follows from the symplectic reduction that:
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Lemma 6.3. Foreachi=1,...,n+1,
L= ZYC)nup o} c S°
is a Lagrangian immersed sphere with a single nodal point at X =Y = 0,7 =¢;.

The Lagrangian immersions L; are graded by the holomorphic volume form dX AdY/(Z —p)
on S°. Thus, the Maslov index formula of [5, Lemma 3.1] can be applied.

We decorate the Lagrangian torus Ly with flat Aj-connections. To write them down
explicitly, we proceed as follows. First, the fibration Z : S — C is trivialized after restricting
to the open subset {Y # 0} C S. Then we take a basis {e1,es} of (L) = Z2, where
e1 is along the Hamiltonian S'-action, and es is clockwise along the base circle C'. Then
the flat connections are parametrized by z,w € AJ, where z,w are the holonomies along
e1,es € m (L) respectively. z is the monodromy-invariant direction. We denote these flat
connections by V%Zo:(zw),

For the immersed spheres L;, i = 1,...,n + 1, the self-nodal point gives two immersed
generators denoted by U; and V;, which correspond to the two branch jumps ¢; — g2 and
g2 — q1, where {q1, g2} C L; is the preimage of the nodal point in the normalization L; = S?
of L;. Using the grading in Lemma 6.3, these generators have degree 1. We shall consider
the deformations b; = w;U; + v;V; € CFY(L;, L;).

Below, we shall follow the construction in [40]. Note that the immersed Lagrangians L;
are invariant under complex conjugation, and so the argument for weakly unobstructedness
still applies. Readers are referred to there for detail.

Lemma 6.4 (Lemma 3.3 of [40]). Consider L; C S° and let b; = w;U; + v;V; € CFY(L;, L;)
with u;,v; € Ao and val (uv;) > 0. We have mOLi’bi =0.

For i« = 1,...,n, the immersed spheres L; and L;;; cleanly intersect at two circles
(projecting to the two intersection points between C; and Cj41 in the base). Fix a perfect
Morse function on each of these circles. The critical points in one of the circles give Floer
generators of degree 0 and 1 in CF(L;, L;iy1) (or degree 2 and 1 in CF(L;1, L;)); the critical
points in the other circle give Floer generators of degree 1 and 2 in CF(L;, L;11) (or degree
1 and 0 in CF(L;41, L;)). Denote by «;, 8; the degree zero generators in CF(L;, L;11) and
CF(Ljyt1, L;) respectively. We find transition between b; and b;y; such that («;, 5;) forms
an isomorphism pair:

bib; bis1,bi bibis1 b bis1,bibs
(6.1) my"" (ag) = 0,my T (B) = 0ymy ™ T (ay, Bi) = 1, mg T (au, Bi) = 11,4,

where 17, denotes the unit of L. Similarly, let cg and Sy denote the degree zero generators
in CF(L(), Ll) and CF(Ll, Lo).

Theorem 6.5. Fori=1,...,n, a; is an isomorphism between (L;,b;) and (L;11,bi+1) if
v; = U;+11 and u; = ufﬂviH. Moreover, ag is an isomorphism between (Lg,bg) and (L1,by)
ifw=wu and z =ujvy — 1.

Proof. The assertion that ag is an isomorphism under the given transition map was proved
in [40, Theorem 3.7]. The key ingredient is that

ml{O’bl (ap) = (1 — wu{l)X + h(u1v1)(z + 1 —ugv1)Y
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for a certain series h, where X and Y denote the degree one Floer generators over the base
intersection points of 5y and «q respectively. Then mlfo’bl (cg) = 0 gives the gluing formula.

Take a circle of the same radius as C; and Cjy1, whose center lies in the real line, and that
passes through a point between ¢; and €;11, see Figure 13. This corresponds to a Lagrangian
torus L; ;1. As in the previous paragraph, we have isomorphisms alioliivi gnd aliviLiit

under the gluing maps

v, = whiitt = uijrll, uv; =1+ it = Uit 1Vit1-

Moreover, we have ma(a;, ali+tliit1) = qolioliit1: consider the triangle bounded by
L;,Lit1, Lii+1 shaded in Figure 13. The conic fibration trivializes over a neighborhood of
this triangle. In particular, it lifts uniquely to a holomorphic triangle in S° with corners
passing through the maximum points corresponding to «; and al+t-Lii+1. This is the only
holomorphic polygon with input corners being a; and ali+1Lii+1,

Thus, a1 is an isomorphism under the same gluing equation. This gives the claimed
transition map. O

FIGURE 13. The isomorphisms between L;, L;11, and the torus L; ;4.

Note that the above gluing equations are the transition maps for a toric resolution of an
A, singularity.

6.2. Blowing-up over the Novikov field. To have a better geometric understanding of
the above moduli of Lagrangians, we define the following analog of blowing-up over the
Novikov ring.

Definition 6.6.
P} i= (A% - {0}) /A%
The blowing up of A% at a point (ug,vg) € A? is defined as
{((u,v),a:b) € A2 x P} : b(u — ug) = a(v — vp)}.
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The blowing-down map 7 to A? is given by forgetting the component P}. Given a subset
S C A? that contains (ug,vo) € U+ A% C S for some open subset U C C?, the blowing up
of S at (ug,vp) is defined as 7~1(S).

We also have the toric resolution of the orbifold singularity at the origin

(6.2) Ap_1:={(u,v,2) € A3 : uv = 2"}
over A, which is given as a toric surface glued from charts A%zuz by the transitions v; = u;, +11,
u; = vipuZ,, for i =1,...,n and n > 1. (Note that when n = 1, it is simply A%.) The

blowing down map 7 is given by u; = u, v, = v,v;u; = Z for all i. We also have the map
f: A,_1 — A? forgetting the Z-coordinate. For a subset S C A% with U + Ai C S for some
open U C C? containing 0, the blowing up of f~1(S) C A,_; at the origin is defined as
T (fH(S)).

Remark 6.7. We have used the notation Z for a coordinate in the above definition, to
distinguish from the previous holonomy variable z for the torus. They are related by
Z=1+4z.

Then we have:

Corollary 6.8. The space X glued by the unobstructed deformation spaces of the immersed
Lagrangians Lo, ..., Lyy1 C S°, where the transition is taken as the solutions to the isomor-
phism equations for (o, 5;) € CFY(L;, Liy1) x CFY(Liy1, Ly), is equal to the resolution of
An N (A% x (1+AF)) at 0 when n > 0, where A, is given by Definition 6.6. When n =0, it
is equal to Ag N (A3 x (14 A])).

Proof. Note that (1 +AJ)% = 1+ AX and 1+ AJ = Usrec—13(A + A4). Consider an

element in 1+ Aj. Its n-th power lies in A + Ay where \" # 1. Thus (1 + Ag)% D1+Af.
Conversely, consider the n-th root of an element in A + Ay for A # 1. If A =0, its n-th root
still belongs to Ay C 14 Aj; if A # 0, its n-th root is of the form A/ AL where AV/™ #£1
(since A # 1). Thus (1 —i—Ag)% C 1+ Ag.

Then A, N (A2 x (14 Af)) = £71(S), where S = {(u,v) € A3 :uv € 1 +AJ} C A% Tt
makes sense to talk about the blowing up of f~!(S) by using the above definition.

By Theorem 6.5, the gluing equations for the blowup in Definition 6.6 are satisfied. What
remains to show is that the preimage 7—1(AZ x (14 AJ)) (where 7 is the blowing down
map) is equal to the union of the charts (AJ)? of Ly and {(u;,v;) € A3 : val (u;v;) > 0} of
Lifori=1,....,n+1.

First, we show that the union of charts is a subset of 771(A3 x (1+ Ag)). It is easy to see
that for (u,v,2) € m((Ag)2, 1) (where (Ag)Z - is the chart for Lo), u = u1 € A§ C Ao,
Ze€1+Af,and v =u"13" € Ag. Also for (u,v,2) € 7({(us,v;) € A3 : val (uv;) > 0}),
Z=wv; € AL C 1+ Ag; moreover, since both u = u; and v = v, are of the form ] v}
for r,s € Z>p, we have u,v € Ag. Thus we see that the union of charts is a subset of
LA x (1+ AY)).

To show the converse, first we prove the statement for n = 0. Namely, the union of
the chart (Ag)2, s ; of Lo with the chart {(u1,v1) € A§ : val (uyv1) > 0} of Ly is equal to
{(uy,v1,2) € A3 x (1 4+ AJ) : wyv; = Z}. The subset relation is known from the previous
paragraph. Conversely, val (ujv7) is either positive or zero. If it is positive, the point belongs
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to the chart of L;. If it is zero, then u; € A, and hence the point belongs to the chart of
Ly.

Note that the above statement is symmetric with respect to u; and v;. This means
the union of (AJ)2 . ; with {(u1,v1) € A3 : val (u1v1) > 0} is equal to {(u1,v1,%) €

v1,2—
A3 x (1 +AY) : wyvy = 2}. Note that by up = v;!, we have (Ag)z 1 = (A$)2, 50
Proceeding in the same way, the union of (Ag)Z, - | and {(ug,v2) € A§ : val (ugva) > 0}

gives {(uz2,v2,2) € A x (1+A) : uavy = z}. Inductively, we conclude that the union of the
charts of L; for i = 0,...,n+1 is equal to the union of {(uj,vj, ) € A3x (1+AJ) : ujv; = 2}
forj=1,....,n+1.

Now we are ready to show the converse for general n. Given (u,v, 2) € 7~ (A3 x (14+Af)),
we need to show that it belongs to the union of {(u;,v;,2) € A% x (1 + AJ) : ujv; = z} for
j=1,...,n+ 1. We already know that uy = u € Ay. If v; € Ay, we are done. Otherwise,
Ug = vy e Ag. If vy € Ag, then we are done. Inductively, either we get that the point
belongs to {(u;,v;,2) € A3 x (1+A) : ujv; = Z} for some j = 1,...,n, or we get u,+1 € Ag.
Since v,11 = v € Ag, the point belongs to {(uny1,vns1,2) € A2 x (1 + AJ) : upgp1Vn1 = 2}
in this case. O

In the above, the local charts are {(u,v,%) € A3 x (14 AJ) : uv = zZ}. They turn out to
have a very nice relation with an open subset over C:

Proposition 6.9. {(u,v,2) € A3 x (1 +AJ) :uv =2} = (C? — {uv = 1}) + A%.

Proof. The proof is by stratifying both sides into two pieces: the left hand side is equal to
{valuv > 0} U {valu = valv = 0,uv € (C —{0,1}) + A4}

and the right hand side is equal to

({uv =0} + Ai) L ({uv #0,1} + Ai) .
To verify that {valuv > 0} = ({uv =0} + A%), we can further stratify to three pieces
{valu and valv > 0} U {valu > 0 and valv = 0} U {valv > 0 and valu = 0}
and
({u=v=0}+22)U({u=0and v e C}+A2) U ({v=0and uc C*} +A2)
respectively. Then it is easy to see that they are equal to each other.
To verify that {valu = valv = 0,uv € (C — {0,1}) + Ay} = ({uv # 0,1} + A2%), one can

check that both sides consist of elements (u,v) of the form v = ug + u4,v = vg + v4, where
up, vg € C* with ugvg # 1, and uq, vy € Ay O

Remark 6.10. The proof shows that the glued mirror from (L;,b;) for : = 0,...,n+ 1
in the smoothing S is equal to the union of these charts ((C2 — {uv = 1}) + A%) C AZ.
Taking the intersection of each chart with C? C A%, we get the complex surface {(u;, v}, 2) €
C? x ({1} 4+ C*) : ujv; = z}, which is equal to the usual C-valued A,-resolution minus the
anti-canonical divisor with local description u;v; = 1.

The C-valued mirror is glued from the Clifford torus Lo with flat C*-connections (for
Z €14 C* and u; € C*), and the immersed sphere L; (for i = 1,...,n) with boundary
deformations w;U; + v;V; with w;v; = 0.
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As a result, resolutions of an A, -singularity are mirror to smoothings of the A,-singularity.
By the construction in [12], there exists an A, functor from the Fukaya category of S°
to the category of twisted complexes over X,. In this sense, the local A,-singularity is
self-mirror.

The relationship between Ay and C can be formulated more systematically by defining
the following.

Definition 6.11. Given a complex manifold M, its extension over the Novikov ring, denoted
by M+ A, is defined as the union of charts U + A"} glued by the same transition functions of
M, where U are charts of M. For an analytic subset Z C M, its extension over the Novikov
ring, denoted by Z + A’t, is the union of Z, + A", where Z,, C U, is the neighborhood of p
in Z lying in a local chart U, C C" of M and is given as the zero locus of a (finite) set of
complex analytic functions.

The above is well-defined since for an analytic function f, f(z) € f(z0) + A+ where
z €29+ Ay and zg € C.
Using the above definition, Proposition 6.9, and Corollary 6.8, we get the following.

Corollary 6.12. The resolution of An, N (AZ x (1 + AJ)) is equal to A, + Ai, where A, is
the resolution of {(u,v,%) € C% x (C —{1}) : uv = 2"} over C.

Similarly,

Proposition 6.13. For an open subset U C C? with (ug, vo) € U, the blowing up of U + A%

(over A) at (up,vo) is equal to U+A3_ where U denotes the blowing up of U at (ug, vo) (over
C).

For the purpose of the next section, it is useful to have another description of the above
total space of an A,-resolution in terms of the usual repeated blowing-up at a point.

Proposition 6.14. The resolution Xa of A, N (A2 x (1 4+ AY)) (where the resolution
does nothing for n = 0) is equal to M' constructed as follows. Take the blowing-up of
Ao x (1+AF)=(C2; —{2=1})+ A% at (u,Z) € (0,0), and repeatedly take the blowing-up
again at a point in the new exceptional curve n times, so that we have (n + 1) exceptional
curves in total. M’ is defined to be the complement of (Z' + A%), where Z' (over C) is the
strict transform of the Z-azis {u =0} C C2 ; — {Z = 1}.

Remark 6.15. We have a global analytic function z : Xy — A — {1}. By taking Z =0
(that is, the holonomy variable z = —1 + Z = —1) and gluing the valuation images of
(val (u;), val (v;)) in all the charts, we get the ‘skeleton’ as shown in Figure 14.

6.3. Application to Del Pezzo surfaces of degree higher than two. Let’s consider
toric Gorenstein Fano surfaces. Their smoothings give del Pezzo surfaces of degree > 3. A,
singularities occur at the toric fixed points. The gluing method using Fukaya isomorphisms
from the last subsection can be used to construct their Landau—Ginzburg mirrors. The
mirror pairs we construct in this way are summarized by Figure 15.

Take a toric Gorenstein Fano surface My equipped with a toric Kahler form, such that its
moment-map polytope is integral and contains the origin as the unique interior lattice point.
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valu; =0
Uy

valu; = valv) = 4@
v

valv; = valuy =0

valug = valvg = +o00

valu,41 =0
Upi1

vala, 1 = valv, | = +oo
Upt1

valv, g =0

FIGURE 14. A skeleton of X obtained by taking valuation image.

Let Lo be the moment map torus fibre over the origin. Then My is a monotone symplectic
manifold, and Lg is a monotone Lagrangian torus.

Let’s denote by F' the set of toric fixed points. Each p € F' corresponds to a maximal
cone of the fan, whose dual cone gives a toric chart containing the fixed point. The toric
chart is given by

So:={(X,Y,Z) e C*: Xy =z}
when the toric fixed point 0 is an A,, singularity (and n = 0 if it is a smooth point).

If necessary (when n > 1), we take a smoothing family S, := {(X,Y,Z) € C? : XY =
[1M11(Z — €;)} as in the last subsection. This is a family over C"!, where e lives. Such
a smoothing is S'-equivariant, where S' acts by (X,Y, Z) — (¢?X,e~Y, Z). This can be
understood as an S'-equivariant symplectic fibration over C"*! (where S, is equipped with
the restricted standard symplectic form of C3). By symplectic parallel transport, U, —J; S;
is symplectomorphic to Uy — {0}, where S; are the vanishing spheres whose images in the
reduced base are line segments in the real line joining Z = ¢; and Z = €;41; U and Uy are
certain S'-invariant neighborhoods of J_; S; C S and 0 € Sy respectively. Moreover, by the
Moser argument, (Sp,war,) — {0} is symplectomorphic to an open subset of (Sy,wes) — {0}.
Combining these, we have an S!-equivariant symplectomorphism between (U, — U™ S;, wes)
and (So — {0}, way,) for some neighborhoods U, C S..

By gluing the patches U, and My — {0} using the above symplectomorphism, we obtain
a (partial) symplectic smoothing of Mj. Repeating the surgery at all singular toric fixed
points, we obtain a symplectic del Pezzo surface which is denoted by X.

Similarly to the S'-equivariance, we also have Zs-equivariance for the anti-symplectic
involution on S¢: (X,Y,Z) +— (Y, X, Z), and the above symplectomorphisms are made to
be Zs-equivariant.

In particular, the monotone Lagrangian torus Lo C (So,was,) — {0} is sent via the
symplectomorphism to a corresponding Lagrangian torus, which is denoted by Lg, in
U — U1 Si € X . Lo is invariant under S' and the anti-symplectic involution. This
matches the setting for Lo in the last subsection. Thus for the i-th toric fixed point (ordered
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counterclockwise around the moment-map polytope), which is an A, -singularity for n; > 0,
the construction gives Lagrangian immersed spheres L; , for k =1,...,n; +1 in X.

Lemma 6.16. X and Ly C X are monotone.

Proof. The curve classes in m(Mp) have symplectic areas and Maslov indices unchanged
under smoothing. Moreover, the matching spheres in the smoothing have both Maslov index
and area being zero. Thus X is still monotone.

Similarly, the basic disc classes in mo(My, Lg) have areas and Maslov indices unchanged
after smoothing, and hence Ly remains monotone. (Il

Lemma 6.17. Lo and the immersed Lagrangians L; ; have minimal Maslov index two. In

particular mg is proportional to the unit.

Proof. We have a symplectomorphism My — {toric fixed points} = X — {vanishing spheres}.
In My — {toric fixed points}, we already know that Ly has minimal Maslov index two, since
it is special with respect to the toric meromorphic volume form. In the smoothing of each
toric chart around a singular fixed point, the non-constant holomorphic discs bounded by
Ly have Maslov indices greater than zero. Since any disc class bounded by Lg is a linear
combination of disc classes in the charts, Ly has minimal Maslov index two.

Holomorphic polygon classes bounded by the immersed Lagrangian L;; is a sum of
non-constant holomorphic disc classes corresponding to those of Ly with constant polygon
classes that has Maslov index zero. Thus L; ; also has minimal Maslov index two.

mg has degree two. Since the minimal Maslov index is two, the degree of an output in

mg cannot be bigger than zero, which can only be the unit. O

By the isomorphisms between the Lagrangian objects Lo and L;; for p € F and j =
1,...,n; + 1 given in the last subsection, we obtain a manifold glued from the formal
deformation spaces of the Lagrangians. We call it the Floer-theoretical mirror space.

Let A be the polar dual polytope of A, and X 5 be the corresponding toric variety over
C. For each toric chart corresponding to a fixed point of X5, we have the points (—1,0)
and (0,—1) lying in the toric divisors, which are invariant under toric change of coordinates.
We call these special points in X . It is easy to see that there is a natural one-to-one
correspondence between the collection of special points in X5 and the toric fixed points of
XA

We consider the toric variety over A, Xz 4+ A% (see Definition 6.11).

Remark 6.18. A toric variety over A can also be defined as a GIT quotient of A™ over A*
(like P} in Definition 6.6). When the corresponding fan picture is complete, it agrees with
the extension of the toric variety over the Novikov ring.

To make notations precise, recall that the toric fixed points of X are labeled by i. Toric
fixed points of XA correspond to toric prime divisors of X ;. We denote the toric coordinates
on these toric divisors by z;. The special points in the divisors are z; = —1.

Theorem 6.19. The Floer-theoretical mirror space is equal to X'A = X + A2 , where X
is given as follows. First, we take the (multiple) blowing up of the toric variety X at
every special point z; = —1 in the i-th toric divisor for (n; + 1)-times (where n; + 1 is the
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multiplicity of the i-th toric fixed point of Xa ). Then we define X to be the complement of
the strict transform of all the toric divisors of X .

Proof. By Corollary 6.8 and Proposition 6.14, fixing i, the deformation spaces of Lo and L; ;
for j =1,...,n;+1 glue up to the Novikov extension of a multiple blowing up of C; x C,, at
(us, z;) = (0, —1), with the strict transform of the z;-axis removed, where z; is the holonomy
variable corresponding to the vanishing cycles of L; ;. (In the notation of the previous
section, z; = Z; — 1.) The direction of z; determines the toric compactification (szi x Cy, of
(C*)? (which corresponds to adding a ray dual to z; in the fan picture). These holonomy
directions are obtained by taking the orthogonal complement of &; + 7;, where &; and n; are
the edge directions of the i-th corner of the moment-map polytope of My. From this, we
see that the charts C} x C,, glue to the toric variety X 3 — {toric fixed points of X }. It
follows that the entire space glued from Lo and L; ; for all 4, j is equal to X + A2+. O

Remark 6.20. X, can also be constructed by taking the (multiple) blowing up of X 1 + A%
using Definition 6.6, and then taking the complement of D + A2 for all the toric divisors
D C X4 (where D denotes the strict transform).

The coordinates z; form analytic maps X A — ]P’Il\ (since the strict transform of the toric
divisors, and in particular the toric fixed points, have been removed). The union of the
valuation images of (u; j,v; ;) on z; = —1 form a skeleton. See Figure 16 for an example.

By Theorem 6.19, the space )/(Z — D is obtained by gluing according to isomorphisms
of Lagrangians. Thus the disc potential Wr,, of Ly must extend as a well-defined function
to the whole Xz — Dg.

Corollary 6.21. The disc potential Wy, extends as a well-defined function over )/(Z — Dg.

Let vy, ..., v, be the primitive inward normal vectors to the facets of the moment-map
polytope of the toric variety My, which are ordered counterclockwisely. (Thus (v, viy1)
agrees with the standard orientation of the plane.) The multiplicities at toric fixed points
are equal to m; = det(v;,vi41). The toric fixed points are A,,_i-singularities. Then
wi; = (jvi + (ny — j)vig1)/n; for j € [2,n; — 1] N Z are integral vectors.

Proposition 6.22. The disc potential Wy,, is equal to
ni—l s
WLO — szi + Z Z ( ‘z> Zui,j.
. — =\ j
% i J=2

Proof. The disc potential for Lg in the A,,,-smoothing of the i-th toric chart corresponding
to (vi, vi+1) is equal to

n;—1 ]
vy Vit1 T\
AL i/ + R A

i=2 \J

2Vi(1 4 2M2 vy
Since Lo is monotone, the disc potential is invariant under deformation of complex
structures [20]. We show below that a Maslov-two holomorphic disc bounded by Ly must be
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entirely contained in one of the charts. Then it follows that the disc potential of Lg in X is
a sum of the potentials in the various charts.

Let’s choose an embedding of the open torus orbit (C*)? of the toric degeneration to
X, whose complement C' is a union of Lagrangian vanishing spheres together with chosen
branches of degenerate conics in the charts. In dimension two, C represents the anti-canonical
class. This can be easily seen by deforming X to a resolution of singularities in which the
vanishing spheres become holomorphic. It follows that a holomorphic disc of Maslov-index
two intersects the anti-canonical class C' once. Thus it is contained in a chart. g

Explicit expressions of Wp,, are given in Table 1. Comparing to Figure 15, for each dFP,,
we only write down the disc potential for the monotone torus associated to the toric variety
shown as the first figure, since the others can be obtained via wall-crossing. They give
different realizations of the same mirror space as the complement of a (non-toric) blowing-up
of a toric variety.

Example 6.23. Consider dP; obtained as smoothings of the two toric varieties shown in
Figure 15. The disc potential associated to the first one is equal to

Wo=ay+ay '+ ly+ay ' +2@+y+2+y ).

It is related to the disc potential associated to the second one by wall-crossing

/

Y =ylx+a ' +2); 2 ==

The potential becomes

(z+zt+2yt+22 22ty 4271 +2)

(@ + (@) +22%)  + 22 422+

=@ W)+ @) 2T 20 4 2(e) T A (P )T @) )T 6

The coordinate change between y' and y is composed of crossing two parallel walls in the Ay
configuration. Namely, y = yz '(1+2)?> =y(z + 271 +2).

dPy | Wy =24y + (.I‘y)fl

dPs [ Wo=x+y+y 1 +27 1y !

dP, [ Wo=ax+y+a ! +y71

dP; | Wo =z +y+a 4y 4oy !

dPs | Wo =z +y+ay+at +y 1+ o7yt

dPs | Wo=ay+axly+ay '+t +y 1 42042y

dPy | Wo=ay+ay ' +y ' +2 2y +20+ 22 +3y+ 3271y

dP) | Wo =y +ay '+ ly+aoy 1+ 2@ +y+at+y )

dPs | Wo =y +a 2y +ay?+3x+ay ' +y+aly+at+y

TABLE 1. The disc potentials of toric monotone tori in del Pezzo surfaces.



SYZ MIRROR SYMMETRY FOR DEL PEZZO SURFACES AND AFFINE STRUCTURES 41

APPENDIX A. CONSTRUCTION OF RATIONAL ELLIPTIC SURFACES WITH AN [; FIBRE AND
TRIVIAL PERIODS

In the appendix, by reverse engineering the algorithm in proof of [30, Proposition 1.3], we
construct the rational surface with an I; fibre and trivial period explicitly below.

The del Pezzo surfaces dP, of degree d = 6,7, 8,9 are toric varieties. Applying Batyrev’s
toric mirror construction and taking a further blow-up yield the desired rational elliptic
surfaces. We thus focus on the case 1 < d < 5.

A.1. d =5. Recall that the del Pezzo surface of degree seven dP7 is a toric surface whose
fan is generated by (—1,0),(0,—-1),(1,0),(1,1),(0,1). Denote by D;, i = 1,...5, the
corresponding toric divisors. Then the del Pezzo surface of degree five Y5 can be realized
as the blow-up of dP7 at the point “—1” on the toric divisors D; and Dy. Then lv/e is the
blow-up along the preimage of “—1” on each of D; in Y; and D, is the proper transform of

>P . D

A.2. d =4. We start with the toric variety P! x P!, Let D;, i = 1,...4, be the irreducible
toric boundaries. Let Y] be the blow up of P! x P! at “—1” on each D;. Then }V/e is the blow
up of the intersection of the exceptional divisors with the proper transform of D;. Then Y
is a blow-up of P! x P! at eight points and thus a rational elliptic surface. The I, fibre is
the proper transform of ), D;. In this case the singular configuration is I7141;.

A.3. d = 3. We begin with P? and irreducible toric boundaries D;, i = 1,2,3. Let Yy be
the blow-up of P? along “—1” on each toric boundary. Let Y4’ be the blow-up of Y along
the intersection of the exceptional divisors with the proper transform of D;. Then Y, is the
blow-up of Y3’ along the intersections of the exceptional divisors of Y3 — Y4 and the proper
transform of D;. The boundary divisor is then the proper transform of D; to }V/e Then Ye
is the blow up of P? at nine points and thus a rational elliptic surface. In this case, the
singular configuration is IV*I3l;.

A.4. d = 2. Recall that the rays in the fan of P! x P! are generated by (1,0), (0,1), (—1,0),
(0,—1). Denote by D;, i = 1,...,4, the corresponding toric divisor. Let Yy be obtained
from blowing up P! x P! at “—1” on Dy and D, respectively and then contract the proper
transform of Do, D4. Then Yy is a minimal rational surface of second Betti number 2. Since
the proper transform of {—1} x P! C P! x P! (which is homologous to Dy or Dj3) is a
(—2)-curve, we have YJ = Fy. Then Y3 is the four-time iterated blow up at (—1) of Dy, Ds.
Then Y, is the blow up of YJ at the points corresponding to —1 on the proper transform of
Dy, Dy. De is the proper transform of Di, D3. Then }V/g is a rational elliptic surface with
singular configuration IIT*I5I;, where the component of the IIT* fibre with multiplicity 4 is
the proper transform of P! x {—1} from P! x P!, which is homologous to Dy, Dy.

A5. d=1. Let (z,t) and (z, s) be two charts of Op1(3) such that z = 1/z,t = 23s. Let L
be the compactification of the curve locally defined by {t + (x + 1)3 = 0} in the Hirzebruch
surface F3 =2 P(O@® Op1(3)). Then L intersect two toric boundary fibres at —1 and is tangent
to the (+3)-toric boundary divisor at —1 with multiplicity 3. Blowing up the intersection of
L with the two toric boundary fibres and blow down the two fibres and the original unique
—3 curve leads to P2. The proper transform of the original (+3)-toric boundary divisor is a
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nodal cubic C' and is tangent to the proper transform of L with multiplicity 3 at p. Then Y:
is the nine-times successive blow up at the point corresponding to p on the proper transform
of C. The proper transform of L on ¥; is the component of the IT* fibre with multiplicity 3
and adjacent to the unique component of multiplicity 6.

APPENDIX B. PROOF OF LEMMA 4.12

We retain the notation in §4. We can compute

Im (/ La/an> < 0 for g € (—4,0).
9b(q)

To prove the lemma, it suffices to show that there exists a constant x > 0 such that

(B.1) Im (/ Lia/an> > i, for all ¢ large.
~da(q) |4l

Let p; and py be ramification points such that Rep; > 0, Imp; > 0 and Repy > 0,
Impy < 0. (p1 and ps are roots of > — (2 + )t + 1 = 0.) We may write p; = Rexp(ifp) and
p2 = eexp(—ify) where R = |p1| and € = |p2|. Note that R, €, and 0y indeed depend on ¢
but we shall drop out ¢ in the notation for simplicity. Let 71,1 be a circular arc of radius R
connecting p; and the positive real axis, 712 be the line segment connecting € and R on the
positive real axis, and 71 3 be a circular arc of radius e connecting ps and the positive real
axis (cf. FIGURE 18). We can deform ~; into 11 U512 U~1,3. Note that

\/(t%+1—qtz)2 — 4t3 :tz-\/(t2+t2—1 —q)? — 4.
on y1,1 Uy 2 U,3. We shall compute
dt? 1 dtg

/m- \/(tg +1—qtg)? — 413 /%f \/(tz iyt —q)2—4 f2

Lemma B.1. For j =1,2,3, we have

1
Im / @ > 0.
M. \/(t2+t2_1 —q)2—4 b2
Proof. We claim that

(B.2) Im ((ta + 15" = g)* = 4) <0, for t5 € 7.

The lemma immediately follows from the claim.

For j =2, (B.2) is true since to € Ry and ¢ € i-Ry. Let us consider the case j = 1. The
case j = 3 is completely parallel. For j = 1, substituting to = Rexp(if) and ¢ = iz, we see
that

to+1t, —q)" —4=(Rexp(if) + R exp(—if) — ix)” —
;P—q?—-4=(R )+ R 0 24

=((R+R Ycosh+i((R— R ')sinf — x))® — 4.
Therefore,

Im ((t2 +tyt —q) — 4) =2(R+ R 1)cost ((R — R Y)sinf — x)
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and Im ((tg +tyt —q)? - 4) < 0 if and only if
(R— R Y)sinf —z <0.

Recall that p; = Rexp(iflp). Since (R— R™!)sinfy—x = 0, we deduce that (R—R~1)sin§ —
x < 0 for all 0 € [0, 0] as desired. O

By virtue of Lemma B.1, we see that

Im / Lig /o Q)
(—w@ /o
3
1 dis
= ZIm / —
> Im / ! %
CJlta+t" - -4 2

where C is the counterclockwise oriented contour Rexp(if) with 6 € [0, 7 /4] for all |¢| large.
This can be done since 6y > 7/4 for all ¢ with |g| > 0.
The third inequality holds as one can see in the above proof. Notice that

@ = 1id# on C.

to

Thus it suffices to compute the real part of the integrand.
Put ¢ = iz. We can easily compute p; = ((¢ + 2) + 1/q(¢ +4))/2 and

lim @: lim E:I.
T—00 |q’ T—00

For to = Rexp(if), we see that
|(t2 + 15" — q)? — 4> = |(Rexp(i6) + R~ exp(—if) — q)° — 4[?
1 2
<(R+R'+]gl) +4
< rk1lql?
for some constant 1 > 0 and for all |¢| large. On the other hand,
(ts+ 15" — q)? —4 = (Rexp(if) + R exp(—if) — iz)? — 4
2
= [(R + R Ycosh +i ((R — R Y)sing — x)} —4.
Let n=(R+ R ) cosf +i((R— R ')sinf — z). Here we remind the reader that R, and

hence 71, depends on = = |q|. Since 6 € [0,7/4], it follows that (R — R7!)sinf —x < 0.

Moreover, there exists a positive constant C' > 0 such that

(R— R Y)sinf—x R—-R! x
B.4 = tanf — > -C
(B-4) (R+RVcosd  R+R 1" (RyR 1)cosh =

for all § € [0, 7/4] and all |g| > 0.
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Our goal is to estimate
Re <1> = Re <172_4> = Re <772_4> .
Vn? —4 n? — 4] n? — 4
Lemma B.2. For any 6 € [0,7/4], there exists a constant k3 > 0 such that
In| > ksx, for all x> 0.
Proof. We can compute
> =(R+R "?cos?0 + (R — R ')?sin?0 — 22(R — R~ ') sin 6 +

= R>4+ R% 4 2c0s20 — 22(R — R 1) sin 6 + 22

> R?2 — 22Rsin 0 + 22

> R? — V2zR + 2*.
There exists a constant x3 > 0 such that

In|> > R? — 2zRsin @ + 2% > kza?

for all x > 0. g

In particular, the lemma above implies

2 _ 4 2 _ 4
i VA g, |
Z—00 ’77‘ 00 772

The first equality holds since n lies in the fourth quadrant. Together with (B.4), it then
follows that there exist constants k4 > 0 and k5 > 0 such that

Re(y/n? —4) = k4 Re(n) = £sq|

for all > 0; in other words, we have

1 _ Vn? —4 Kslgl ke o
Re | —=—— | =Re | 1 > 5= o, KG = K5k
V2 —4 In? — 4 k1lql? gl

for all z > 0. Thus,
I / 1 dtg
m 22
¢ttty —q2-at

= [ Re ! )d9
I (¢<t2+t21—q>2—4

> / 76 10 > i
c g lq|

for some constant x > 0 and for all large |g|. This proves (B.1).
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(X.D) Mirror
" dF, @ >
3 R
dP. L
dP; ]
dP; ;
dFs AP,

FIGURE 15. Del Pezzo surfaces that come from smoothings of toric Gorenstein

surfaces and their mirrors.
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valuy) = valug) = valugy =0

FIGURE 16. A skeleton of mirror of dP; — ¥ formed by the valuation image.
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FIGURE 17. Wall crossing for dPj.
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FIGURE 18. p; and p9 are ramification points.
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