PERIOD DOMAINS FOR GRAVITATIONAL INSTANTONS

TSUNG-JU LEE AND YU-SHEN LIN

ABSTRACT. Based on the uniformization theorems of gravitation instantons by Chen—Chen
[4], Chen—Viaclovsky [7], Collins-Jacob-Lin [13], and Hein—Sun—Viaclovsky—Zhang [25], we
prove that the period maps for the ALH*, ALG, and ALG™ gravitational instantons are
surjective. In particular, the period domains of these gravitational instantons are exactly
their moduli spaces.
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1. INTRODUCTION

Gravitational instantons, introduced by Hawking [22] for his Euclidean quantum gravity
theory, are defined as non-compact complete hyperKihler 4-manifolds with L? curvature
tensors. From the viewpoint of differential geometry, gravitational instantons arise naturally
as a bubbling limit of hyperKéahler metrics on K3 surfaces [8,17,24]. Therefore, they can
be viewed as the building blocks towards the understanding of 2-dimensional Calabi—Yau
metrics. The early discovered gravitational instantons are classified by their volume growths
r4, 73,72 r. Those with volume growth r* are called locally asymptotically Euclidean (ALE),
those with volume growth 73 are called locally asymptotically flat (ALF) and the rest two are

named ALG and ALH by induction. Later, Hein [23] found two new types of gravitational
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instantons named as ALG* and ALH*. The former has volume growth r2, as the ALG
gravitational instantons, but with a different curvature decay rate while the latter has volume
growth r4/3. Recently, Sun-Zhang [33] used the Cheeger—Fukaya—Gromov theory to prove
that any non-flat graviational instanton has a unique asymptotic cone and it must belong to
one of the above six types. As a summary, there are six types of gravitational instatons in
total: ALE, ALF, ALG, ALH, ALG*, and ALH"*.

To further classify the gravitational instantons within each type, people are interested in
the following questions:

(1) What are the possible diffeomorphism types of the gravitational instantons within
each type?

(2) What are the possible cohomology classes of the hyperKéhler triples for a fixed dif-
feomorphism type of gravitational instantons?

(3) Does the cohomology classes of the hyperKéhler triple uniquely determine the gravi-
tational instantons isometrically?

The set of possible cohomology classes supporting the hyperKéahler triples of gravitational
instantons within a fixed diffeomorphism type is usually known as the period domain. The
second question can be then rephrased as “how to characterize the period domain of gravita-
tional instantons within a fixed diffeomorphism type?” The third question is usually known
as the Torelli theorem of gravitational instantons.

Kronheimer first answered all these questions for ALE gravitational instantons [26,27]. In
which case, topologically, the underlying geometry always comes from the crepant resolution
of the quotient of C2 by a finite subgroup of SU(2). Any triple in H2(X,R) can be realized as
the cohomology classes of the hyperKéhler triples when they do not vanish simultaneously on
the (—2)-classes in Hy(X,Z). Moreover, Kronheimer established a Torelli-type theorem for
ALE gravitational instantons. The analogue theorem for ALF gravitational instantons has
been established by Chen—Chen [5]. For the rest of gravitational instantons, the first question
is answered by certain “uniformization theorems” (see Section 2): for any gravitational in-
stantons of types ALG, ALH, ALG*, ALH", up to a suitable hyperKéhler rotation they can be
compactified to rational elliptic surfaces by filling in a fibre with monodromy of finite order,
smooth fibre, an I}-fibre or an Ij-fibre respectively [4,11,13,23,25]. In particular, there are
finitely many diffeomorphism types of the gravitational instantons from the classification of
singular fibres of rational elliptic surfaces of Perrson [32]. The Torelli-type theorems for these
gravitational instantons are also established: the ALH case by Chen-Chen [6], the ALG
and ALG* cases by Chen—Viaclovsky—Zhang [9] and the ALH* case by the second author
with Collins and Jacob [13]. While the questions about characterizations of period domains
of gravitational instantons remain open, it is observed that not all the cohomology classes
can be realized as those of the hyperKéahler triples of gravitational instantons - there are
some obvious topological constraints: those homology classes with self-intersection —2 can
be realized as holomorphic curves after a suitable hyperKéhler rotation and particularly the
corresponding Kihler form can not vanish on it!. Subsequently, Chen-Viaclovsky-Zhang [9)]
conjectured that given a diffeomorphism type of ALG or ALG" gravitational instanton, any

f a (—2) class vanishes on the hyperkahler triple, then, up to a hyperkahler rotation, it can be realized a
(—2) curve. We can contract it to get an orbifold. In which case, the Calabi-Yau metric should be replaced
by the orbifold Calabi-Yau metric.
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cohomology classes of hyperkéhler triples which do not vanish simultaneously can be realized
by a gravitational instanton. One can make a similar conjectural statement for the ALH*
gravitational instantons.

The goal of this manuscript is to study these conjectures. Let us outline the organization of
this manuscript and, in the meanwhile, briefly explain the idea of the proof of the conjecture
for the ALH™ case since the ideas for the other two cases are pretty much similar. We treat
ALH* gravitational instantons in §2 and ALG as well as ALG" gravitational instantons in
§3. In §2.1, we recall some basics about pairs (Y, D) with Y a (weak) del Pezzo surface and
D € |- Ky| smooth, and the fact that for such a pair (Y, D) the complement Y\ D can support
ALH* gravitational instantons. In §2.2-§2.4, we construct pairs (Y, D) to realize cohomology
classes in H?(X,, C) of a reference ALH* gravitational instanton X, as the cohomology classes
of the (2,0)-form Q on X =Y \ D. We also show that any cohomology class which is positive
on every holomorphic curve in X supports a Ricci-flat metric asymptotic to Calabi ansatz and
thus gives an ALH™* gravitational instanton. In §2.5, we demonstrate how to use monodromy
transformations to reduce all the other cases to the previous one. Finally we give a complete
proof of the surjectivity of the period map in §2.6. In §3.1, we construct ALG and ALG*
pairs (Y, D) to realize cohomology classes in H?(X,,C) of the complement X, = Y; \ D,
of a reference ALG or ALG* pair (Y;, D;) as the cohomology classes of the (2,0)-form on
X =Y\ D. In §3.2, we recall some basics of ALG and ALG" gravitational instantons,
including the definition of the period maps as well as the uniformization theorem. Finally in
§3.3, we prove the surjectivity of the period maps. To sum up,

Theorem 1.1. (=Theorem 2.5 and Theorem 3.13) The period maps for ALH*/ALG/ALG*
gravitational instantons are all surjective.

At the moment when this manuscript was about to be finished, Chen—Viaclovsky—Zhang
had a different proof for the conjecture in the cases of ALG in the second version of their
preprint [9]. On the other hand, it is conjectured that certain gauge theory moduli spaces con-
structed in Biquard—Boalch [3] and Cherkis—Kapustin [10] will achieved all possible periods
and known as the modularity conjecture. We will refer the readers to Mazzeo—Fridrickson—
Swoboda—Weiss for the progress along this line, which would eventually lead to a different
proof of the surjectivity of period maps in the cases of ALG and ALG".
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2. PERIOD DOMAINS OF ALH* GRAVITATIONAL INSTANTONS

2.1. Weak del Pezzo surfaces. A rational surface Y is a weak del Pezzo surface if its anti-
canonical divisor — Ky is big and nef. From the classification of compact complex surfaces,
one has

Proposition 2.1. Weak del Pezzo surfaces are either blow-up of P? at genericb = 9 —d
points with 1 < d < 9 or Pt x P! or the Hirzebruch surface Fo. Here generic configuration
means

all points are proper (no multiplicity higher than 2);

no three points are on a line;

no six points are on a conic,

no cubic passes through the points with one of them being a singular point of that
cubic.

From the above proposition, any holomorphic curve in a weak del Pezzo surface has self-
intersection at least —2. The self-intersection number d = (—Ky)? is the degree of the weak
del Pezzo surface Y. Every weak del Pezzo surface admits a smooth anti-canonical divisor.
Thus, there are in total 10 deformation families of pairs consisting of a weak del Pezzo surface
and a smooth anti-canonical divisor: one deformation family for each d # 8 and two for d = 8.
Notice that the Hirzebruch surface Fy is in the deformation family of P! x P!. For notational
simplicity, we shall denote the degree of P! x P! or Fy by d = &'.

To describe the period domains of ALH* gravitational instantons, we need to compute
H2(X,Z) and H?(Y,Z). We use the long exact sequence of the pair (Y, D) (cf. [28, §1.5.1]),

0 — HYD,Z) - Hy(X,Z) — Hy(Y, Z) — H*(D, Z) — Hy(X,Z) — 0. (2.1)

Notice that Hy (X, Z) is torsion and in particular rankz Ho(X,Z) = 11—d is determined by the
degree of the weak del Pezzo surface Y. The connecting homomorphism Hy (Y, Z) — H?(D, Z)
in (2.1) is identified with the signed intersection

e): [Cl = ([D] = [C]-[D])
and we obtain a short exact
0 — HY(D,Z) — Hy(X,Z) — ker(p(p]) — 0 (2.2)

where ¢|p) denotes the signed intersection map. Via Poincaré duality, we can further identify
ker(p(p)) with [D]+, the subgroup of Pic(Y') with zero pairing with the Poincaré dual of [D].

It is known that the middle cohomology group of a smooth weak del Pezzo surface is
isomorphic to either Z9~? or U, (the hyperbolic lattice of rank two). Let Y be a weak
del Pezzo surface of degree d # 8 and let m: Y — P? be a blow-up (at b = 9 — d points)
realization of Y. Denote by E1, ..., Ej the exceptional divisors of m and by H the hyperplane
in P2, Then the assignments eq — [H] and e; ~ [E;] (the pullbacks are omitted) give rise
to an isomorphism of lattices Z'* — H?(Y,Z). The anti-canonical divisor of Y is linearly
equivalent to 3H — Fy — - -+ — Ep. Moreover,

(H—3E,E; — Eip1, i=1,...,b—1}
is a basis of [D]* with D € | — Ky|.
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If Y is such that d = &, it is straightforward to check that H?(Y,Z) = Uy under the basis
{[€1], [£2]} where £;’s are (parallel transport of) the rulings in P! x P!. The anti-canonical
divisor is linearly equivalent to 2[¢1] + 2[fs] and [D]* = (¢1 — £3) for D € | — Ky|.

2.2. Constructions of (Y, D) for ALH* gravitational instantons. The purpose of this
subsection is to construct reference marked log Calabi-Yau pairs coming from (weak) del
Pezzo surfaces. By a marked log Calabi-Yau pair we mean a log Calabi—Yau pair (Y, D)
together with a basis B of Ha(X,Z) with X :=Y \ D, called the distinguished basis. We will
treat the cases 1 < d < 9 and d = 8 separately.

We now construct a marked log Calabi-Yau pair (Y 4, Dyq) for each 1 < d <9 (d # &)
where Y; 4 is a smooth del Pezzo surface of degree d and D, 4 is a smooth anti-canonical
divisor.

For d =9, we simply take Y; g = P? and D, 9 to be a smooth elliptic curve. From the long
exact sequence of compactly supported cohomology

0 = H:(Dyo, Z) = H2(Xe 9, Z) — [Deo]* = {0}, (2.3)

we have an isomorphism

H(Deg, Z) % HY (X9, 2) (24)
which, under Poincaré duality, is identified with “taking an S'-bundle.” § is also known as
the Leray coboundary map.

Choose a symplectic basis {ax, Bc} of Hi(Dyg,Z) = H!(D,9,7Z) and denote their image in
Hy (X, 9,Z) by the same notation. Then (Y; 9, Dy9) and Brg = {a, i} form our reference
marked log Calabi—Yau pair in degree 9.

To continue, we pick 8 distinct points g 1,...,¢,8 € Drg. For the case d = 8, we take
Yig = Bl{qnl}P2 and D, g to be the proper transform of D.g. Notice that D.g € | — Ky, 4
since ¢y belongs to Dyg. Put X;g := Y; s\ D g as before. Since Dyg = D, g, we can still
(and should) use {ax, B} as our basis of HY(Dys,Z). Denote their image in Ha(X,g,Z) by
the same notation. Moreover, [Dt,g]L = [3H — Etyl]l = (H — 3E¢ 1)z (E, is the exceptional
divisor over g 1). We fix once for all a lifting v.; € Hao(X,g,Z) of H — 3E,; and therefore
we achieve a distinguished basis By g = {a, B, Ye,1} of Ho(X: 8, Z).

We can construct reference marked log Calabi-Yau pairs inductively. For the degree d
model (Y; g, Dy 4), we blow-up our degree d + 1 model Y; 4,1 at (the proper transform of) g,
and we set D, 4 to be the proper transform of D, 4,1. In the present case,

[Z)td]L = <H — 3Et’1, Et,l — Et,g, e 7Et,b—1 — Et,b>Z- (Recall that b = 9 — d) (25)

Here the pullback is omitted. We may choose the liftings v 1,...,%p € H? (X4, Z) in a such
way that they are identified with the corresponding elements in the distinguished basis By 441
in the degree d + 1 model under the blow-up Y; 4 — Y; 441. Then (Y; 4, D;4) and the basis
{ow, Be, Ye1s - - s} of Ha(X, g, Z) give our degree d model.

For d = 8§, we begin with P? and a smooth elliptic curve E C P2. Pick p, ¢ € E such
that L := peq, intersects F transversally and consider the blow-up

™

Bl{phqt}P2 — 5 P2
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Denote by E. ), and FE\, the exceptional divisors over p. and ¢.. The proper transform L of
L becomes a (—1) curve. We can contract L and obtain a blow-down p: Bly, ,3P? =Y to
a smooth projective surface Y;.

Bl{p“qt}P2 —I Pp?

le

Y,

By surface classification, we have Y; 2 P! x P! and p(E.,) and p(FE, ) are the rulings. Put
Y. s = Y;. The proper transform E of E projects down to a smooth elliptic curve D, g and
we put X, g = Y ¢\ Dy g. Again we fix a symplectic basis {a., 5c} of Hi (D, g, Z) and denote
their images in Hy(X, g, Z) by the same notation. In this case, [Dns/]L is generated by the
difference of the rulings and we shall again fix once for all a lifting . of p.([E,] — [Ep]) so
that {ax, Be, e} is our distinguished basis.

2.3. ALH* gravitational instantons. ALH* gravitational instantons intuitively are the
gravitational instantons which are asymptotics to Calabi ansatz. We first explain the con-
struction of Calabi ansatz. Let D be an elliptic curve and p: L — D be a positive line bundle
of degree d. Let Yg be the total space of L with projection 7¢: Yo — D. Let X¢ be the
complement of the zero section in Yy. Let h be the unique hermitian metric on L whose
curvature form is wp with the normalization f pwp = 2md. If z is the coordinate on D and &
is a local trivialization of L, we get coordinates on L via (z,w) + (z,w¢). The Calabi ansatz
is then given by
we = %65 (—loglf\%)%, Qc :CWéQD/\%U,

where c¢ is any positive real number and €p is a holomorphic volume form such that

i [ Qp [Qp
LD A (R Z o,
2 /D omi (2m‘> md

It is straightforward to check that (we, §2¢) is a hyperKéhler triple, i.e., 2w§ =Qc A Qe.

Definition 2.2. Given d € N,7 € §/SL(2,Z),c > 0. An ALH* gravitational instanton (of
type (d, 7, ¢)) is a triple (X, w, 2), where X is a non-compact complete hyperKéhler 4-manifold
with a Kéahler form w, and a holomorphic volume form {2 such that
(1) 2w? = QA Q and
(2) there exists a compact set K C X, an € > 0 and a diffeomorphism F: Xo = X \ K
such that

|F*w = wellge = O(r7F79), [IF*Q = Qellge = O(r~*7%),
where 7 is the distance to a fixed point in X¢.

Remark 2.3. (1) From (2.1), let o, 8 € Im(H'(D,Z) — Hy(X,Z)) be the image of an
oriented basis of H'(D,Z). Then
Q
{Q} = fﬁ— =7 mod SL(2,7)

[,Q
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is an invariant of the ALH* gravitational instanton.

(2) Any ALH* gravitational instanton can be compactified to a rational elliptic surface
by adding an I4-fibre at infinity [13,25]. From the classification of singular fibres of
rational elliptic surfaces [32], one has 1 < d < 9. We will use ALH}; gravitational
instanton to indicate the diffeomorphism type of an ALH* gravitational instanton,
with 1 <d <9 or d =28 See the discussion after [12, Proposition 5.4].

It is proven that any ALH™* gravitational instanton can be compactified to a weak del Pezzo
surface [14,25] by adding a smooth anti-canonical divisor at infinity with modulus 7. It is
natural to introduce the markings for ALH* gravitational instantons.

From now on, to ease the notation, we will omit d in the subscript most of the time and
only specify it when it plays a role in our discussion.

Definition 2.4. Fix a reference ALH* gravitational instanton of type (d,7,¢) with d €
{1,...,9}, 7 € b, and ¢ > 0 and an ambient space X;. A quadruple (X,w, Q, u) is called a
marked ALH* gravitational instanton of type (d, 7, c) if it satisfies

(1) (X,w,Q) is an ALH* gravitational instanton of type (d, T, ¢);

(2) p: X¢ — X is a diffeomorphism from the complement X, := Y; \ D, of our marked

log Calabi-Yau pair (Y;, D).

Two marked ALH* gravitational instantons (Xj;,wj, €2, p;) are isomorphic if there exists a
diffeomorphism f: Xy — X such that f*wi = wa, f*Q1 = Q9 and p] = p3 o f*. Denote
mALH*(d, 7, c) be the set of marked ALH* gravitational instantons of type (d, 7, c).

Now we fixed a reference ALH* gravitational instanton (X,wy, Q) for (d, ,c) as above.
We define the period domain of ALH* gravitational instanton PQ(d, 7, ¢) to be the subset of
H%(X,,R) x H3(X,, C) consisting of pairs ([w], [©2]) such that

(1) if [C] € Ha(X,,Z) and [C)? = —2, then |[w] - [C]|2 + ][] - [C]|? # 0.
(2) [w] vanishes on Im(H!(Dy, Z) — Ha(X+,7Z)).
(3) {2} =7 mod SL(2,7Z).
The period map for ALH* gravitational instantons is then defined to be
P(d,r,c): mALH*(d, ,¢) = PQ(d, T,c)
(X, w,Q, p) = (0 [w], p*[€2).

The goal of this section is to prove the following theorem.

Theorem 2.5. For each (d,T,c) with d € {1,...,9}, 7 € b, and ¢ > 0 as above, the period
map P(d, T,c) is surjective.

2.4. Period domains for holomorphic 2-forms. Adopting the construction of references
log Calabi—Yau pairs in §2.1, we can achieve the following theorem regarding the surjectivity
of the period map.

Theorem 2.6 (Surjectivity of the periods of the (2,0)-forms). Given complex numbers di,
dy satisfying di/ds € b (in particular, dy and dy are non-zero) and ¢; € C, 1 <i<b=9—d,
let

b
] = diPD(ax) + doPD(B:) + > e;PD(7e;) € HA(X:, C). (2.6)

=1
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There exists a marked log Calabi-Yau pair (Y,D) and a diffeomorphism p: X, — X with
X =Y\ D such that

pr(Q] =[], (2.7)
where ) is a holomorphic 2-form on X, that is, any cohomology class in H?(X,, C) satisfying
the condition (2.6) can be realized as a cohomology class of a holomorphic 2-form on some
log Calabi—Yau pair.

Proof. We will construct a marked log Calabi-Yau pair (Y, D) such that the complement
X :=Y \ D supports a holomorphic 2-form realizing the class [Q].
(a) We deal with the case d = 9. In this case, we have b = 0 and

('] = diPD(as) + d2PD(B:).

We will construct X as a complement of an elliptic curve in P2.
Put 7 = dy/ds € h and let X := P2\ D where D is an elliptic curve with modulus 7;

C/A+=DCP? A =Z@Zr.

Let € be a meromorphic 2-form on P? with a simple pole along D. Notice that € is unique
up to a constant. By the residue formula, we have

/ Q:/ResQ, and/ Q:/ReSQ
5(e) Y 3(8) B

where {«, 3} is a symplectic basis of H;(D,Z) and § is the connecting homomorphism in
(2.4). Rescaling € if necessary, we may assume

/ResQ:/ Q=1
o ()

/ResQ = / Q=7 mod SL(2,7). (2.8)
B 5(8)

We can lift the congruence in (2.8) to an equality in h. Indeed, we can find a path I' in
HO(P2,0(3))sm (the space of smooth sections) such that « (resp. 3) is the parallel transport
of ay (resp. ;) along I' since the monodromies for the family of elliptic curves in P? generate
SL(2,Z). Consequently, T' gives rise to a marking p: X, — X satisfying
1 (PD(0(a)) = PD(é(ax)) and p*(PD(6(8))) = PD(8(5))-
To ease the notation, we will drop d(—) and simply write @ € Ha(X,Z) instead of §(«).
Adapting our convention, the equalities are transformed into
#*(PD(a)) = PD(ac) and i* (PD(8)) = PD(5,)

when the context is clear. Then the marked log Calabi-Yau pair (X, D) together with the
basis {a, f} C Ha(X,Z) and p is what we want. Indeed, because

dQ—dQ/Q—dQ/ Q/\PD(CV) anddl—dg/ﬂ—dg/ Q/\PD(B),
« X B X

Then

we have

1[ds©)] = diPD(a) + daPD(Br) = [€]. (2.9)
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(b) We now deal with the case d = 8. Let
(€] = diPD(0x) + d2PD(B;) + c1PD(ym,1) € H* (X, C) (2.10)

with di/dy € h and ¢; € C. By the argument in (a), we can find a smooth cubic E C P?,
a symplectic basis {a, 3} C Ha(V,Z) with V = P2\ E, and a diffeomorphism v: X, 9 — V
along a curve I' such that

v*[Q] = d1PD(ay) + doPD(5,). (2.11)
Here © is a holomorphic 2-form on V' with the normalization
/ Res Q = da, (2.12)
(0%

and the cycles o, and f; in (2.10) are regarded as cycles in Ho(X.9,Z).
Let p1 € E be the parallel transport of ¢.1 € D9 along I' and consider the blow-up
7’1 Y’ = Bl,, P? — P?. We have
()" Qp2(E) = Qy(D')
where D’ is the proper transform of E. The path I' determines a marking v: X, 5 — X'
for X’ := Y’ \ D' such that v*(PD(«)) = PD(a) and v*(PD(3)) = PD(8:). Now let
71 € Ha(X', Z) such that PD(v}) = (v*)"}(PD(:,1)). We get by integration

V*[Q] = diPD(ax) + daPD(B:) + ¢,PD(r1), ¢} = / (7')*Q € C. (2.13)
m
Let p € E and I be a smooth curve joining p and p;. Then I gives rise to a diffeomorphism
p: X' — X' which takes p; to p. Consider the blow-up 7: Y = BL,P? — P2, The curve I”
also gives rise to a diffeomorphism p: X’ — X =Y \ D where D is the proper transform of
E under 7. Let 1 = p.(7]). We can achieve the coefficient ¢; in (2.10) by moving p around
in F. Indeed, by Lemma 2.7 below, we have

p
/ 0= —3/ ResQ) mod doA,
Y1 @]

where O is a flex point on E = D’ served as the additive identity element and A, = Z & Z1
with 7 = dy /dy. Now we choose p € E such that

P
c1 = —3/ ResQ mod doA.
o

We can lift the congruence to an equality by adding a loop in E passing through p and
deforming p accordingly. Then the pair (Y, D), the holomorphic top form 7*{) and the
diffeomorphism 1 = pov: X; g — X are what we are looking for, i.e.,

w*dom* Q) = diPD(a) + doaPD(Be) + c1PD(ym1) = [Q].

This proves the theorem when d = 8
(c) Now let us deal with the case d = 7. Let

[Q/] = d1PD(aw) + d2PD(B,) + CIPD(%,I) + C2PD(’Yt,2) € H? (Xt,77 C) (2.14)
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with dy /da € b and ¢1, ca € C. By our discussion in (b), we can find a marked log Calabi—Yau
pair (Y, D'), a symplectic basis {«, 8} of Hi(D’,Z), and a diffeomorphism v: X, g — X' with

v*[Q) = diPD(ay) + d2PD(B:) + c1PD(e.1). (2.15)

Here X’ = Y'\ D’. We remark that (Y’, D’) is constructed from a blow-up of P? and D’
is a proper transform of an elliptic curve in P2. Let po € D’ be the image of ¢;2 € Dyg
(see construction in §2.2) under v. Consider the blow-up ma: Bl,,Y' =: Y’ — Y’ and denote
by D’ the proper transform of D’. Let Ey (resp. E1) be the exceptional divisor of Y’ — Y’
(resp. the pullback of the exceptional divisor of Y/ — P2). We obtain a diffeomorphism
p: Xe7 — X' =Y'\ D'. Define a homology class 74 € Ha(X',Z) via

1" (PD(%3)) = PD(7:2). (2.16)
Let p € D’ and I” be a curve in D’ connecting p and py. Similar to the case (b), the curve

I gives rise to a diffeomorphism p: X’ — X = BL,Y’\ D where D is the proper transform
of D’ and put v2 = p«(75). Then it follows that

D
/W*QE/ ResQ mod doA.
2 p1

Here we recall that p; = v(g:,1). We can achieve ¢z in (2.14) by moving p around, i.e., we
can find an appropriate curve IV in D connecting p; and p such that

02:/ ResQ) = Q.

Y2
This completes the proof when d = 7. The remaining cases 1 < d < 6 can be done by the
same procedure inductively.

(d) Let us deal with the last case d = 8'. Let

(V] = diPD(cw) + doPD(B:) + cPD(71) € H*(X, 5/, C)

with 7 := d1/dy € b and ¢ € C. Similar to the case d = 9, let E C P? be an elliptic curve
with modulus 7. Denote by {«, 5} a sympletic basis of Hy(E,Z). Let Q be a meromorphic
2-form on P? having a simple pole along E with the normalization

/ResQ: 1.

/Resﬂ =7 mod SL(2,Z).
B

Then we have

Now we can pick p,q € F and a curve I' connecting them such that

/ResQ = c¢/ds. (2.17)
r

Consider the blow-up 7: Bl{p,q}P2 — P2. Let L be the line passing through p and ¢. Denote
by E, (resp. E,) the exceptional divisor over p (resp. q) and by L (resp. E) the proper
transform of L (resp. E). If it happens p = ¢ (i.e., c =0 mod A;), we shall take L to be the
tangent of F/ at p and consider the blow-up at infinitely near points p and the intersection of
the proper transform of L and E. In any case, we have 7L = L + E, + E, and L becomes a
(—1) curve. Let p: Bl{p7q}P2 — Y be the blow-down of L. When p # ¢, we have Y = P! x P!
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(61 = p(Ep) and ¢ = p(E,) give the rulings). When p = ¢, we have Y = Fy and p.([E,]—[E)])
represents the homology class of the unique (—2) curve. Put D = p(E). Then E = E = D.
In any case, v := p«([E4] — [Ep]) gives a homology class in the complement X :=Y \ D. We
can prove that

/Q =% mod A, (2.18)
Y dy

Here € is the unique meromorphic 2-form on Y having a simple pole along D such that
p*Q = 7*Q. As in the case (a), by choosing a path in H°(P?, O(3)) appropriately and
deforming p, ¢ on E suitably, we can find a diffeomorphism p: X, g — X such that

p*(PD()) = PD(az), p*(PD(B)) = PD(B), and p*(PD(v)) = PD ().
Then Q' = d5() is what we need. d

Lemma 2.7. Adapt the notation in the proof of Theorem 2.6. We have

p
/ Q= —3/ ResQ  mod doA,
7 o

where O is a flex point served as the additive identity element on D and A, = Z © Z1 with
T =dg/dy. From the expression, it is independent of the choice of the flex point.

Proof. Choose a hyperplane H in P? passing through p and intersecting D at three distinct
points, say D N H = {p, s,t}, and transversally at p. Recall that [D]* = (H — 3E;), where
FE is the exceptional divisor of 7y.

Choose a smooth curve o1 (resp. o2) from p and s (resp. p and t). We may assume that the
relative interior of o; are disjoint. By the construction in [18], we can lift the cycle [H — 3E1]
to a cycle § in X by gluing S'-bundles over o1 and ¢3. Again the lifting is not unique; any
two liftings differ by an element in H'(D,Z). Therefore,

/QE/Q mod doA .
7 g

Now,
/Q:/ ResQ+/ Res
é o1
= / ResQ+/ Res ()
P
P t s D
:/ ResQ—i—/ ResQ+/ ResQ—3/ Res 2
0] @] O 0]
P
= —3/ ResQ mod doA.
o
The last equation holds since p, t, and s are collinear. ]

2.5. Monodromy of the moduli of pairs. For a smooth projective surface S, denote by
Hilbb(S ) the Hilbert scheme of length b subscheme on S; it is a smooth algebraic variety of
dimension 2b equipped with a universal family 2/ — Hilb%(S). There exists also a birational
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morphism (a.k.a. Hilbert—-Chow morphism)
Hilb®(S) — Sym®(S), p~ Zmulti(p) -z,
z€S

where the right hand side is understood as a formal sum. Note that p € Symb(S ) represents
a set of unlabelled b points on S and labeling them is equivalent to choosing a preimage
under the canonical surjection S® — Sym®(S). Moreover, fixing a labeling and deforming p
around gives rise to a well-defined section of S® — Sym®(S) as long as | Supp(p)| = b remains
constant in the deformation.

Regard U as a subscheme in S x Hilb®(S) and let ) be the blow-up of S x Hilb?(S) along
U. Then the general fiber of the family J — Hilbb(S) is the blow-up of S along distinct b
points. We consider a codimension two closed subscheme

T = {p e Hilb"(S) | |Supp(p)| < b— 1}.
We can choose a curve C' in Hilb?(S) such that

e (' meets T transversely and smooth at p;
e (' maps isomorphically onto its image under the Hilbert—Chow morphism;
e any g € C'\ {p} near p represents a set of points in almost general position.

Let & — C be the pullback of the universal family J — Hilb?(S). We may regard U as a
(reducible) subscheme of S x C. Let Z be the blow-up of S x C along U and Z — C be the
associated family. Note that Z is not smooth; it acquires an ordinary double point singularity
over p € C.

Remark 2.8. One can construct the local model in the following way. Consider C3 with
coordinate (x,v,t). The ideals (y,z —t) and (y,x +t) give two lines in C* whose union is
defined by (y, z? — t2).
Denote by X the blow-up of C? along the ideal (y, 2% — t2);
X = Proj Cla, y, t)[¢,n]/(€y — n(a? — 7))

where Proj is taken with respect to the Z-grading on £, n with deg(§) = deg(n) = 1. On the
affine chart £ # 0, X is isomorphic to

Spec Cla,y, t,7]/(y — 1 («® = %)), 0’ = n/¢,
which is smooth, while on the affine chart n # 0, X is isomorphic to
SpecClz,y,t,&1/(€'y — (2 =), & = ¢/n,
which is singular and has a ODP singularity. Introduce an Zs-action on t via
p-t:=1t?, where pu is the generator of Zs,

and denote by s = t? the Zs-invariant coordinate. Then the quotient defines local model of
a smoothing of an ordinary double point (at the origin on the affine chart n # 0)

Spec Clz, y, 5, €'/ (€'y — (% — 5)) — Spec C[s].

This is the only affine chart of the local model of Y — C containing the singularity of the
singular fiber with p identifying with s = 0.
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We can compute the monodromy of Z — C' around p by Picard—Lefschetz formula. Pick a
smooth reference fibre Z, of Z — C and denote by F1, ..., E} the exceptional divisors in the
blow-up Z, — S such that z; and x3 (the images of E; and E on S) collides when ¢ — p.
Then we have

H?*(Z,,Z) = H*(S,Z) ® Z(E, ..., Ep).
As before, the pullback is omitted. Note that E; — Fs is a generator of the vanishing cohomol-
ogy. Then Picard—Lefschetz formula says that the monodromy transformation HZ(Zq, Z) —
H%(Z,,Z) is given by

w(y) =+ (v, E1 — E2)(Ey — E»), v € H2(Zq,Z).

This is on the nose the reflection on H?(Z,,Z) generated by the root E1 — Es.
Recall that rational elliptic surfaces are rational surfaces with an elliptic fibration structure
admitting a section. We will need the following proposition.

Proposition 2.9. Let (Y, D) be either a pair of a weak del Pezzo surface and a smooth anti-
canonical divisor or a rational elliptic surface and an anti-canonical divisor with configuration
II, II1, IV, IV*, III*, II*, or I} with k = 0,...,4. Let C' be a smooth holomorphic curve in
X =Y \ D with [C]?> = —2. Then the root reflection associated with [C] on H2(X,Z) can be
realized as a monodromy transformation of some deformation of (Y, D).

Proof. Let Y be a weak del Pezzo surface of degree d and D € | — Ky| be smooth; (Y, D) is
a blowup of P? along b = 9 — d points on a smooth cubic in P2. Denote by Ei, ..., Ep the
pullback of the exceptional divisors, x1, ...,z the corresponding points on P? and by H the
pullback of the hyperplane class on P2. By [29, Lemma 2.8], C is given by

(1) the proper transform of E; over which there exists exactly one Ej; lying over;

(2) the proper transform of a line in P? passing through exactly three points in {x1, ..., };
(3) the proper transform of a conic in P? passing through exactly six points in {z1, ...,z };
(4) the proper transform of a cubic in P? passing through exactly eight points in {x1,...,z}

such that one of them is the singular point of the cubic.

Case (1) occurs when b > 2, Case (2) occurs when b > 3, Case (3) occurs when b > 6 and
Case (4) appears only when b = 8.

The root reflection from (1) can be realized by collapsing x; and z;. For (2), we begin with
P? and pick a line H joining z; and xj. Consider F' := H — E; — E; (the proper transform of
H inY). Then F is a (—1) curve on the smooth surface Y. By Castelnuovo’s theorem, we
can contract F' to x € Y’ for a smooth surface Y'. Since xy ¢ H, x is mapped to a point
z), € Y'. Note that the class H — E; — E; — E}, is equal to F — Ej, in H*(Y, Z). Regarding E},
as the exceptional divisor over x}, we see that the associated root reflection can be realized as
the monodromy transformation of the degeneration by collapsing z} and z. The remaining
cases can be treated in a similar way.

Let Y be a rational elliptic surface and D an anti-canonical divisor with configuration
described in the Proposition. It is known that Y is a blow-up of the base locus of a pencil of
cubics on P? with a smooth member. Let 7: Y — P! be the associated elliptic fibration. We
also assume that D is the fiber at oo € P!. Let C be as in the proposition. Then C' must be
an irreducible component of a fiber of 7. There exists a sequence of blow-downs (—1) curves

Y=0C4y—>2Z1— > Zp =7
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satisfying the following properties

o the image of C' in Zj_5 (still denoted by C) remains a (—2) curve;

o Zi_o — Zp_1 is a contraction of a (—1) curve F with F N C # (), and therefore C
becomes a (—1) curve in Zj_1;

e 7.1 — Z is given by contracting C.

Moreover, by Castelnuovo’s theorem, Z; is a smooth projective variety for each ¢ =0, ..., k.
(Indeed, one can begin with contracting a section of 7. Since any section must meet the fiber
containing C' and every fiber is connected, one can continue the process to reach C.) Using
Hilb?(Z) the Hilbert scheme of length 2 subscheme on Z, from the discussion right before
Proposition 2.9, we can find a suitable degeneration whose monodromy transformation equals
the root reflection constructed from [C]. This completes the proof. O

2.6. Surjectivity of period maps of ALH" gravitational instantons. Any holomorphic
curve in X is a (—2)-curve in Y by adjuction formula. We first recall a theorem of Tian—Yau
[34]. We say a cohomology class [w] € H?(X, R) satisfies the condition () if [w] is positive on
every (—2)-curve of Y contained in X and there exists a Kéhler class [wy] on Y such that
[w] = [wy]|x-

Theorem 2.10. Given ¢ > 0 and [w] € H2(X, R) satisfies the condition (1), then there exists
a Ricci-flat metric w in the given cohomology class on X with 2w? = Q A Q, where Q is a
meromorphic volume form on'Y with a simple pole along D such that Resp = ¢Qp.

Proof of Theorem 2.5. From Theorem 2.6, there exists a del Pezzo surface Y of degree d and
a smooth anti-canonical divisor D with modulus 7 and a meromorphic volume form €2 on
Y with a simple pole along D and Resp 2 = ¢Q2p such that there exists a diffeomorphism
w: Xo — X with p*[Q] = [Qo], where X =Y \ D.

If (u~1')*[wo] satisfies the condition (1), then the theorem follows from Theorem 2.10 di-
rectly. Otherwise, from Proposition 2.9 and [16, Theorem 2.1] there exists a diffeomorphism
g: X — X such that g*(u~!)*[wo] satisfies the condition (1). Thus, there exists a Ricci-flat
metric w in the cohomology class g*(u~1)*[wo] by Theorem 2.10. Notice that the diffeomor-
phism is induced by the compositions of monodromies in the moduli space of pairs (Y, D).
In particular, the Picard-Lefchetz formula implies that ¢*[Q] = [Q] since [Q] vanishes on
every (—2)-curve in X. Then (X,w,Q,g ! op) is the marked ALHY gravitational instantons
realizing the given cohomology classes and this finishes the proof of the theorem.

0

3. PERIOD DOMAINS FOR ALG AND ALG* GRAVITATIONAL INSTANTONS

Recall that rational elliptic surfaces are rational surfaces with an elliptic fibration struc-
ture?. It is well known that any rational elliptic surface is a blow up of the base points of a
pencil of cubics with a smooth member in P2, i.e., given a rational elliptic surface Y and a
fibre D, the pair (Y, D) can be derived from blow-ups of P2 on a possibly singular cubic D
and D contains the proper transform of D.

2Here we use the definition that an elliptic fibration admits a section.



PERIOD DOMAINS 15

Definition 3.1. An ALG pair is a log Calabi-Yau pair (Y, D) with ¥ a smooth rational
elliptic surface and D € | — Ky| a divisor of type II, III, IV, IV* IIT*, II*, or I§. An ALG pair
of type Z is an ALG pair (Y, D) such that D is of type Z. A marked ALG pair is an ALG
pair (Y, D) together with a basis B of Ha(X,Z). Finally, a marked ALG pair of type Z is a
marked ALG pair of type Z with a basis B of Ha(X,Z).

Similarly, we can define the notions for ALG* pairs. In which case, the configurations of
D can be Ij, I3, I3, and Ij.

3.1. Constructions of (Y,D) for ALG and ALG" gravitational instantons. In this
subsection, we will give constructions of families of marked ALG and ALG™ pairs of various
types and study their period maps.

We begin with a general discussion. Let (Y, D) be either an ALG pair or an ALG* pair
and X = Y\ D be the complement. In any case, we have H!(D,C) = 0. Let i: D — Y be the
closed embedding and j: X — Y be the open embedding. We have the short exact sequence

0— 5 10— Q=i 'Q—o. (3.1)
Taking compactly supported cohomology yields the long exact sequence
o= 0=He(D,Q) » HY(X,Q) » HZ(Y.Q) » HI(D, Q) — -+ (3.2)

It then follows that the homology group Ha(X,Q) = H2(X,Q) can be identified with the
kernel of the signed intersection map

v (v D) (3.3)
where D = Zle m;D; and D;’s are irreducible components. By the vanishing of H! (D, C),
any v € Hao(Y, C) satisfying v - D; = 0 for all ¢ can be lifted uniquely to Ha(X, C).
To construct a basis B, we can therefore pick any basis of

{’YEHZ(sz)|’7D2:07 iZl,...,kﬁ}

and lift it to Ho(X, Z).

Let w: (V, D) — M be a deformation family of a marked ALG pair (Y, D) and ¢t € M be a
reference pair. We denote the reference pair by (Y;, D;) and its complement by X, := Y; \ D;.
Let Q be a section of w*Qi) M (D). Assuming M is simply connected, we can define the
period integrals of (Y, D) to be the function

M>t— Q (3.4)
()«

where ¢r: Xy — X is the diffeomorphism induced by a path I' connecting ¢ and t in M,
v € Ha(X¢,Z), and Q; is the restriction of Q to the fibre (Y;, D;). This is well-defined since
M is simply connected. When 71(M) is non-trivial, the period integrals above form a local
system on M and in general have non-trivial monodromies.

To define period integrals in general cases, we must keep track of the trivialization, i.e.,
the trivialization from the curve T.

Definition 3.2. Let 7: (), D) — M be a deformation family of a marked ALG or or ALG*
pair (Y, D) and v € M be a reference pair. Let Q be a section of TI'*Q:%}/M (D). Fort € M,
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the period integral is defined to be the multi-valued function

M>St— Q (35)
(r) vy

where ¢r: X — X is the diffeomorphism induced by a path I' connecting ¢ and ¢ in M,
v € Ha(X¢,Z), and € is the restriction of Q to the fibre (Y3, Dy). Let By := {ve1,---sY%m}
be a basis of Ha(X:,Z). The period map Pg,(§2) is a multi-vector-valued function

Mat'—></ Qt,...,/ Qt>€(Cm. (36)
(@F)*'Yt,l (SOF)*'Yt,m

For simplicity, when the context is clear, we drop B, and € in the notation.

Note that Im(P) always lies in a hyperplane in C™ determined by the fibre class. More
precisely, let By = {V.1,...,7%,m} and assume that

[f] = Z QiVe i
i=1

where [f] is the homology class of a fibre in the rational elliptic surface Y;. Then

m
Z a; Qt =0.
i=1

Ye,i

That is, if (y1,...,Ym) denotes the coordinates on C™, we have

Im(P) C {(yh..-,ym) ‘ > aw 20}.
i=1

The main result in this subsection is the following theorem.

Theorem 3.3. Let notation be as above. Let (Y,D) be an ALG or an ALG* pair. Then

there exist a family w: (¥, D) — M of deformation of (Y, D) and 2 € Qil/M (D) such that

Im(P) = {(yl,...,ym) } Zaiyi:()}. (3.7)
i=1

The rest of the subsection is devoted to proving Theorem 3.3. To achieve this, we will

e construct for each type a reference marked ALG or ALG* pair (Y;, D,), i.e.,

— a pencil of cubics in P? giving the ALG or ALG* pair (Y;, D;) of the desired
type after resolving the base locus;

— a basis B, of Ha(X,,Z) where X, :=Y; \ D, is the complement;
— a choice of a section () € W*ng/M (D);

e analyze Im(P) the image of the period map defined by the data in the first bullet and

argue that the equality (3.7) holds.

To achieve these, one also needs to verify that the pencil constructed in various situations
contains a smooth member. The following two classical results will be useful. First, we recall
Bertini’s theorem.

Theorem 3.4 (Bertini’s Theorem [20, p. 137]). Assume the ambient variety is smooth. Then
general elements of a pencil are smooth away from its base locus.
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Assume that the pencil is spanned by C and D. Suppose that CND € Cgy U Dy, that is,
the intersection points C'N D are either a smooth point of C' or a smooth point of D. Then the
linear system |uC' +vD| contains a smooth member. Indeed, by Bertini’s theorem, one could
pick a general member A which is smooth outside the base locus. Since C'N D € Cgy U Dgpy,
we can perturb the defining equation of A to eliminate the singularities of A by adding the
defining equation of C' or D.

Second, we recall the adjunction formula and the residue formalism which will be crucial in
our calculation of periods. Let Y be a smooth algebraic variety over C and D € |— Ky | be an
anti-canonical divisor. We will be interested in the case when D is singular. More precisely,
assume that D =37, m;D; € | — Ky| is anti-canonical such that each D; is smooth but the
intersections are allowed to be non-transversal (e.g. three lines meet at one point in P?).

Let Qf (D) be the sheaf of meromorphic differentials on Y whose pole divisor is equal to D
where n = dim¢ Y. (This is indeed a trivial bundle owing to our assumption D € | — Ky |.)
Then if my; = 1, from the adjunction formula, we have

Proposition 3.5.
O3 (D)|p, = Q%(D1)|p, ® Oy (D — D1)|p, — Qf (D = D1)|p,)- (3.8)

This isomorphism is realized by the Poincaré residue.

We will construct the pencil for each singular configuration (cf. FIGURE 1 and FIGURE 2).

3.1.1. Type II. A type II fibre is a rational curve with a cusp singularity. In this case, D is a
cuspidal rational curve in P? with the cusp at p and Y is the blow up of P? at nine points on
D\ {p}. Tt is well-known that the cuspidal rational curve in P? is unique up to PGL(3)-action
[19, p. 55]. We may assume that D is given by the equation {y?z — 23 = 0}. Recall that the
Cayley-Bacharach theorem states that any distinct eight points in P? without four on a line
or seven points on a non-degenerate conic would determine uniquely a pencil of cubics; in
other words, any such eight points in D \ {p} determines a pencil of cubics. Since the other
members in the pencil avoid p, the pencil must contain at least one smooth member and thus
determines a rational elliptic surface. We also remark that D \ {p} is an affine group variety
which is isomorphic to C (the additive group).

To construct a marked reference ALG pair of type II, we simply pick a smooth cubic C
which meets D\ {p} at nine points. Denote by p; 1,. .., P9 the intersections DNC. Let Y; be
the blow-ups of P2 at those nine points and D, be the proper transform of D. Then (Y, D) is
an ALG pair of type II (cf. figure (a) in FIGURE 1). Let E¢ 1, ..., E; g be exceptional divisors.
Then

B :i={H = 3Ec1} | JUo{Eer — Eei} (3.9)
is a basis of Ha(X,,C). For simplicity, we denote the elements in B by v 1,...,%,9. The
fibre class is represented by

9
3’%,1 + Z 'Yt,j-
=2
Let
xdy ANdz —ydx Adz + zdx A dy

Q=
Y2z — 13

(3.10)
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It follows that
9
Im(P) € 4 (y1,---,99) ‘ 3y1 + Zyj =0,. (3.11)
j=2

Under the affine coordinates u = x/y and v = z/y, we have

and the residue around {v — u® = 0} is —du.
Now we prove that the inclusion above is indeed an equality. Let (y1,...,%9) be a vector
satisfying the condition 3y + E?:g y; = 0. We will need a few computational results.

Lemma 3.6. Let D = {y?2 — 23 =0} C P? and p = [0:0: 1] be the unique singular point on
D. Let Q be the meromorphic two form defined in (3.10). Let x1,...,x9 € D\ {p} = C and
Y is the blow-up of P? at x1,...,x9. Denote by E; the exceptional divisor over x;. Then

a) Let H be the hyperplane class in P?. We have
(a) y

/ Q= —3$1.
H-3E,

/ Q= Ti — Xj.
E;—E;

Proof. This follows from the residue calculations. O

(b)

By Lemma 3.6, the vector (yi,...,y9) uniquely determines the points xi,...,x9 on D.
Moreover, the constraint 3y + 2?22 y; = 0 implies that x1 + --- 4+ 29 = O in the additive
group scheme D \ {p} and it turns out that this condition is sufficient by Max Noether’s
fundamental theorem [19, p. 61], i.e., given any 9 points x1,...,z9 € D\ {p} (not necessarily
distinct) with x1+---4+x9 = O, there exists a cubic C passing through all the z;’s. According
to Theorem 3.4 and the discussion after it, the pencil spanned by C' and D contains a smooth
member. This shows that ¥ = Bl{gcl,w:,sg}P2 is a smooth rational elliptic surface.

3.1.2. Type III. A type III fibre is a union of three smooth rational curves intersecting at a
single point. In this case, D can be three lines L1 U Lo U Ly or C' U L, where L is a line and
C is a conic tangent to L at p. In the former case, each L; contains three points of the blow
up loci. In the latter case, Y is the blow up of five points on C'\ {p}, two points on L\ {p}
and p then blow up a point on the exceptional curve corresponding to p avoiding the proper
transform of C.

To construct a marked reference ALG pair of type III, we pick a smooth cubic C' which
meets D = L; U Ly U L3 at nine points. Denote by pe1,...,pe9 the intersections DN C in a
way such that p,; € L; if and only if i = j mod 3. Let Y; be the blow-ups of P? at those
nine points and D, be the proper transform of D. Then (Y;, D) is an ALG pair of type III
(cf. figure (b) in FIGURE 1). Let E.1,..., E;9 be exceptional divisors. Then

B :={H.— E:1 — E.2 — E;3} U Uiza,7{Ee1 — Eci}
U Ui=s,8{Fr2 — Fei} U Ui=6,9{Fr3 — Eei}
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is a basis of Ha(X,,C). For simplicity, we denote the elements in B. by %1,...,%,7. The
fibre class is represented by

7
3'71‘,1 + Z ’Yt,j-
j=2

Let D = {zy(x + y) = 0}. This can be always achieved using the PGL(3,C) action. Let
xdy ANdz —ydx Adz + zdx A dy
ry(x +y) '

Q= (3.12)

It follows that

7
j=2

Under the affine coordinates u = y/x and v = z/x, we have
_dundy
o ou(l4u)

We will need the following computational results.

Lemma 3.7. Let D = {xy(x +y) = 0} C P2 and p = [0:0:1] be the unique singular point
on D. Let Q be the meromorphic two form defined in (3.12). Let x1,...,x9 € D\ {p} such
that z; € L; if and only if i = j mod 3 and Y be the blow-up of P? at x1,...,29. Denote by
E; the exceptional divisor over x; as before. Let x; = [0:a;:b;] for i =1,4,7, x; = [a;:0: b;]
fori=2,538, and x; = [a;: —a;: b;] for i =3,6,9. Then

(a) The line T1T3 intersects x +y = 0 at [araz: —ajaz: a1be — agbi] # p. (Note that a; # 0
for all i by our assumption.) Let H be the hyperplane class in P2. Then we have

/Q:/ Q:albg—agbl_bj
71 H—-FE1—E>—FE3 a1a2 as
(b) We have

/ q— beys bk and / O_ brkie b
== ZF — k6 Tk
Ejy3—Ey ak+3 Ak Eii6—Ep ak+6 Ak

fork=1,2,3.

Proof. This follows from a direct calculation on residues and hence the proof is omitted. [

By Lemma 3.7, the vector (y1,...,y7) € C” determines x1,...,29 on D\ {p}. Indeed, we
can put 1 = pr1 and x2 = p;2 and the results in (a) and (b) in Lemma 3.7 would determine
the location of all the rest x;’s. The only thing we have to show is that ¥ = Bl{a;l,_._,gcg}P2 is
a rational elliptic surface, i.e., there is a smooth cubic passing through z1, ..., zg.

Again it suffices to construct a cubic passing through the points x1,...,29. This can be

done directly. Indeed, suppose the coordinate of z; is given as in Lemma 3.7. The cubic
defined by

H (biy — a;z) + z - (az® + by? + c2® + doy + eyz + fzz) =0 (3.14)
i=1,4,7
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passing through =1, z4, 7. Now set y = 0 in the above equation. We obtain

—araqarz® + ax® + cxZ® + falz=0= a1aady H (bix — a;z). (3.15)
420508 ; 255 8

This equation uniquely determines the coefficients a, ¢, and f. We are left with b, d and e,

i.e., the coefficient of zy?, 2%y, and zyz. Now set y = —z in the above equation. We see that
- H (bix + a;z) + o - (ax® + ba® + c2® — da? — exz + frz) =0
i=1,4,7
ajaqay
= — D
asagay H (CLzZ Zx)

i=3,6,9
from which e and b—d are uniquely determined. This shows that there exists a one parameter

family of cubics passing through z1,...,x9 and therefore implies the existence of the cubic
D other than zy(z + y).

3.1.3. Type IV. A type IV fibre consists of two smooth rational curves tangent at a point.
In this case, D is union of a line L and a conic @) tangent at p. Then Y is blow up of six
points on C'\ {p} and three points on L\ {p}.

To construct a reference marked ALG pair of type IV, we simply fix a smooth cubic C
which intersects D \ {p} at 9 distinct points. Denote by py 1, pr 2, pr,3 the intersection L N C
and pe4,...,pr9 € Q N C. Consider the blow-up Y; = Blptyl,,,,,pt’gP2 and D, the proper
transform of D. Let E; be the exceptional divisor over p.;. In which case, we can choose

B’C = {H - Et,4 - Et,7 - Et,l} U U {Et,l - Et,i} U U {Et,4 - Et,i} U U {Et,7 - Et,i}
1=2,3 1=5,6 1=8,9

to be our basis of Hy(X:,Z). For simplicity, we denote the elements in B; by Ve 1,...,%s-
The fibre class is represented by

8
3'71‘,1 + Z ’Vt,j-
j=2

We may assume D = {y(x? + yz) = 0}; we can achieve this using the PGL(3, C) action. Let
xdy ANdz — ydx Adz + zdx A dy

Q= 3.16
y(@? +yz) (316)
It follows that
8
(P) < { (1, o0s) | 3+ >y =07 (3.17)
j=2
Under the affine coordinates u = z/z and v = y/z, we have
- JQuAde (3.18)
v(u? +v)
One can easily check that
du du
Resy, Q) = w2 and Resg ) = 2

We need the following computational results.
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Lemma 3.8. Let D = {y(z% +yz) = 0} C P? and p = [0:0: 1] be the unique singular point
on D. Let Q be the meromorphic two form defined in (3.16). Let x1,...,x9 € D\ {p} such
that r1,x9,x3 € L and x4,...,29 € Q. Let Y = Bl{m,_._’IQ}PZ. Denote by E; the exceptional
divisor over x;. Let x; = [a;:0:¢;] for i =1,2,3 and x; = [a;: bz ¢;] fori=4,...,9. Then
(a) Assume that x4 # x7. Then the line Tyx7 intersects y = 0 at [c7by — c4b7:0: agby —
arby) # p. Let H be the hyperplane class in P2. Then we have

" H—Fy,—FE4—FEnr crby —c4br aq
(b) We have for k =1,4,7

Chk+j Ck .
/ Q= +]——f0rj:1,2.
Ep—Eryj Qf+j Ak

Proof. This follows from the formulae

du du
esy, 2 an esQ 2
and the residue theorem. The proof is hence omitted. ]

By Lemma 3.8, the vector (y1,...,ys) € C® determines x1,...,29 on D\ {p}. Indeed, we
can put x4 = pr4 and x7 = p, 7 and the results in (a) and (b) in Lemma 3.8 would determine
the location of all the rest x;’s. The only thing we have to show is that ¥ = Bl{ﬂ:l,_._ﬂcg}P2 is
a rational elliptic surface, i.e., there is a smooth cubic passing through z1, ..., zg.

Again it suffices to construct a cubic passing through the points x1,...,x9. This can be
done directly. Indeed, suppose the coordinate of z; is given as in Lemma 3.8. The cubic

defined by

H (cix — aiz) +y - (ax® + by? + c2® + doy + eyz + fzz) =0 (3.19)
i=1,2,3

passing through x1,xs, z3. Note that the rational curve @) is parameterized by
[ B] = [afB: a?: 37).
Now set yz = —z? in the above equation. It follows that b, ¢, d, f and a — e are uniquely

determined. This shows that there exists a one parameter family of cubics passing through
T1,...,29 and therefore implies the existence of the cubic D other than y(z? + yz).

3.1.4. Type IT*. A type II* fibre is the Fg configuration. Assume that Y is a rational elliptic
surface with an type IT* fibre D. The section of Y can only intersect the unique component
of D with multiplicity one. One can then iteratively contracts the section, the component
with multiplicity 1,2,3,4,5,6,4,2 (in total nine curves) and end up with a smooth projective
surface of Picard number one, that is, P?. The only non-contracted component of D in the
process has multiplicity three. In other words, any rational elliptic surface with a type II*
fibre can be realized as blow up on the base points of the cubic pencil containing a triple line
which is tri-tangent to any other smooth element in the pencil. If the pencil contains a cusp
curve, then the singular configuration of Y is IT*II. Otherwise, the pencil contains a nodal
curve and the singular configuration of Y is IT*I2. From the long exact sequence (2.1), we have
Ha(X) is of rank one and generated by the fibre class of Y. Thus, the periods all vanish in
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both cases. Depending on whether the pencil contains a cusp cubic or not, there are exactly
two different rational elliptic surfaces with an II* fibre. Both of them are extremal rational
elliptic surfaces (rational elliptic surfaces whose relative automorphism group is finite, cf. [31])
and their singular configuration is IT*IT or IT*I3. One can have an isotrivial deformation of
the latter which degenerates to the former. In particular, the periods won’t distinguish these
two cases.

3.1.5. Type III*. A type IIT* fibre is the E7 configuration. Assume that Y is a rational
elliptic surface with a type III* fibre D. Sections of Y must intersect a component of D with
multiplicity one. One can then iteratively contracts the section, followed by the components
with multiplicity 1,2,3,4, 2 (six curves in total) and end up with a smooth projective surface
Y’ of Picard group rank four. Denote by C7, Cy, C3 the image of the remaining components of
D with multiplicity 1,2, 3 respectively. Recall that P! x P! contains no curve with negative
self-intersection and Fy contains a unique one such curve. We can conclude that the minimal
model of Y’ must be P? since C? = C3 = —2. Then the (—1)-curve must intersect C;
otherwise the image of C3 to P? would have self-intersection 2 which is absurd. One may
iteratively contracts the sections and the components with multiplicity 1,2,3,4,3,2 (seven
curves in total) from Y. Denote the resulting smooth projective surface by Y and the image
of the remaining components of D with multiplicity i by D; C Y” for ¢ = 1,2. From the earlier
discussion D7 must intersect a (—1)-curve. We claim that Y then becomes the Hirzebruch
surface 1. Indeed, any irreducible curve in Y has self-intersection at least —2, so we may
exclude the possibility of F,,, n > 3. Notice that D3 = 1 and the self-intersection pairing
in P! x P! or Fy are even. So the claim is established. From D} = 0 and Riemann-Roch
theorem, D; must be a fibre. In particular, D; intersects a (—1)-curve. Therefore, after
contracting this (—1)-curve to P2, the image of D is a union of a double line and a line.

To sum up, any rational elliptic surface with an III* fibre can be realized as a blow-up of
the base locus of the pencil spanned by a smooth cubic D and a union of a double line M
and a line N, with the double line intersecting the smooth cubic at its flex point and the
other line N also passes through the flex point of the cubic.

There is another way to construct a rational elliptic surface with an I1T*-fibre which is
easier to calculate the periods. Consider a triple line D = 3L in P?. Take C to be a smooth
cubic which is tangent at p € D and intersects transversally at another point ¢ € D. Blowing
up p and ¢ yields a rational elliptic surface with an III* fibre. Explicitly, if we denote by
[z:y: 2] the coordinate on P2, we can take D, = {z = 0} and C to be the plane curve
defined by

vz + 2(22 + zy + d'yz), d € C*.
In which case, p = [0:0: 1] and ¢ = [0: 1: 0] One checks that this is smooth whenever ¢* # —27.
Using change of variables, the equation displayed above can be transformed into

v2z + (2% + axy + yz), a € C*. (3.20)

We see that (3.20) is smooth for general a. If it happens that (3.20) is singular, we can always
add a multiple of 23 to the equation to make it smooth. In any case, we obtain a rational
elliptic surface with singular fibre configuration IIT* at infinity.

To obtain cycles in Hy(X,Z), let T” be the tangent line of C at [0:1:0], i.e., T/ = {z = 0}.
After blowing-ups, the proper transform 7" of 7" becomes a (—1) curve and therefore it is a
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section. Then v, := [T] — [E], where E is the section obtained in the last step of blow-ups
of P2 at [0:1:0], gives an element in Hy(X,Z). The fibre class [f] gives another element in
H(X,Z). One can check B := {vy1,[f]} is a basis of Ha(X,Z). As before, we shall pick a
smooth cubic and a basis of the homology of its complement (after blow-ups) as above to
serve our marked ALG pair of type III*. We denote the pair by (Y, D;) and the basis by B;.
We now choose a section of Qp2(D)
xdy ANdz —ydz Adz + zdx A dy
a3 ‘
We shall compute the periods using the two form €.
Let us investigate the blow-ups over [0:1:0] first. Using the affine coordinates u := z/y

Q=

(3.21)

and v := z/y, the form Q is transformed into

du A dv
and C' is defined by
{v+ u(v® + au +v) = 0}. (3.23)
Now we compute the blow-up. Set v = us (here s is the coordinate on P'). We then have
du A ds
Q=-——. (3.24)

Here {u = 0} corresponds to the expectional divisor (with multiplicity two as expected). In
the meanwhile, the proper transform of C' is

{s +u?s* + au +us = 0} (3.25)

and the proper transform of 7" is {s = 0}. We blow up at (u, s) = (0,0) one more time. Let
s = ut. Then the meromorphic two form becomes

0_ du A dt.
u
The proper transform of C is
{t + *t* + a + ut = 0} (3.26)

and the proper transform of 7" is defined by {t = 0}. Denote by E’ the exceptional divisor of
the second blow-up. By our convention, ¢ serves as an affine coordinate on E’ = P!, In order
to achieve Y, we need one more blow up at (u,t) = (0, —a), the intersection of the proper
transform of C' and E’. Denote by E the exceptional divisor and by T' the proper transform
of T”. Then 7 := [E] — [T] represents a homology cycle in X := Y \ D. The cycle 7; together
with the fibre class [f] form a basis B of Ha(X,Z). One can compute

/ Q= /_ dt = —a. (3.27)
[B]-[T] 0

By varying a, we have proven that

Im(P) = {(y1,42) | y2 = 0} (3.28)

where y; (resp. y2) is the coordinate corresponding to

A 1 Q,  (resp. /mQ =0.) (3.29)
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Let us now describe the moduli space of rational elliptic surfaces with a III*-fibre. From
the classification of the singular configuration of a rational elliptic surface Y containing a
type III*-fibre, Y must contain an I;-fibre unless its singular configuration is ITT*ITI. We have

the following two cases:

(a)

The pencil contains a nodal curve C. Up to the PGL(3)-action on P2, we may assume
that the nodal curve C is of the form z3 4 y3 4+ zyz = 0 with a node at p = [0:0: 1].
Indeed, if C is a nodal curve with a node at p, we can always move p to [0:0:1]. Let
F(z,y,z) be the defining equation of C' and f(z,y) = F(x,y,1) be the equation of C
on the affine chart {z # 0}. We may further use the PGL(3)-action to assume that

flx,y) = 2y + g(z,y) (3.30)

where g(z,y) is homogeneous of degree 3. In other words, F(x,y, z) = zyz + g(x,y).
Now we can use the remaining symmetries to eliminate the 2%y and zy? terms in g
as well as adjust the coefficients of 23 and y®. As a result, we achieve the equation
x3 + 1% + zyz = 0. It is known that there is an isomorphism

C*=C\{p}, trs [t:—t>1 -1

The flex points are located at [1: —1:0], [w: —w?:0], and [w?: —w:0] where w is the
primitive 3'¢ root of unity. Moreover, these three flex points are equivalent under
the PGL(3)-action. One can easily check that if A € PGL(3,C) leaves 23 + y3 + zyz
invariant and fixes [1: —1: 0], then either A =idor A: x — y, y — z, 2+~ z. Then M
is the tangent line of C' at [1: —1: 0] and N can be any line passing through [1: —1:0].
In particular, by rotating N, we obtain a P!-family of rational elliptic surfaces with
a III*-fibre. If N meets the node of C, then the rational elliptic surface contains an
Io-fibre. If N is tangent to a smooth point of C, then the rational elliptic surface
contains an II-fibre. To sum up, the moduli space of rational elliptic surfaces with
singular fibes of III* and I is C* C P!. The boundary points parameterize the
rational elliptic surfaces with singular configuration IT*12 and IIT*IoI;.

The pencil contains a cuspidal curve C'. One can use the PGL(3)-action to assume
that C = {y*2 = 23} and p = [0:0: 1] is the cusp. It is known that C the complement
C'\ {p} is isomorphic to C as an additive group via

C=C\{p}, tr [t:1:17

and C \ {p} admits a unique flex point. (Recall that the group law on C\ {p} is
defined in the same manner as the one defined on elliptic curves. For P and () on
C\ {p}, P+ Q is the point R € C'\ {p} such that P, @), and R are colinear.) Let M
be the tangent of C at the flex point and N be a line passing through it. As in the
previous case, rotating N gives rise to a P!'-family of rational elliptic surfaces. If N
passes through smooth points of C, we obtain a rational elliptic surface with singular
configuration III*II Iy. Moreover, any such two lines determine the same rational
elliptic surface. When N passes through the cusp of C, then the resulting rational
elliptic surface has the singular configuration IIT*III. When N is also tangent to C,
the corresponding rational elliptic surface has the singular configuration IT*II. As a
summary, the parameter space of rational elliptic surface with a type III* fibre is a P'.
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The generic point of P! parametrizes those with singular configuration IIT*I3 which
admits degenerations to IIT*II I; and to IT*II.

In particular, there are three rational elliptic surfaces with trivial periods, with singular
configuration ITI*III, TIT*IT Iy, and TIT*I>1;.

3.1.6. Type IV*. A type IV* is the Fg configuration.
To construct the model, we consider D = {23 = 0}. Let C be a cubic of the form

yz(y — z) + z(cxy + xz + dyz) with ¢,d € C.

Then C intersects D,.q at [0:0:1], [0:1:1], [0: 1: 0] with all multiplicity one. Moreover, one
can check that for any ¢,d € C, the linear system spanned by C and D contains a smooth
member. As before, we pick a smooth cubic C' (with constants ¢, and d, in the equation) to
build our marked reference ALG pair of type IV*.

Recall that in the present situation, one can achieve a desired pair (Y;, D) by blowing up
at those intersections C'N D (we blow up three times at each intersection point and there are
nine blow-ups needed in total). Denote by E. ¢ and E:  the exceptional divisor over [0:0: 1]
and [0:1: 0] from the last (the third) blow-up. Let T}, (resp. T{ ;) be the tangent line of C'
at [0:0:1] (resp. [0:1:0]) and Ty (resp. Tt o0) be the proper transform on Y. It is easy to
check that

B := {[Exo] — [Tro], [Erool = [Teools [f1} (3.31)
is a basis of Ha(X¢,Z) where X, = Y; \ D, as before.

Like in the previous case, we take

xdy ANdz —ydx Adz + zdx A dy

Q= 3 (3.32)
For arbitrary ¢,d € C, we can compute (as in the case of type IIT*)
/ Q= —¢, and / O = —d.
[Eo]—([To] [Eoo]—[To]
This shows that
Im(P) = {(y1,y2,y3) | y3 = 0} (3.33)

3.1.7. Type Ij. A type I} fibre is the Dy configuration. We begin with D = {z%y = 0} and
consider a cubic C' intersecting with D at three distinct points on each irreducible component.
Using the PGL(3, C)-action on P2, we may assume that

e CN{x=0}=1{[0:1:0],[0:1: 1], [0: 1: a]};
e OCN{y=0}={[1:0:0],[1:0: 5], [1: 0: ¢|} with b,c € C* distinct;

It follows that C' is defined by the following equation
2(y —2)(ay — z) + z (dy* — (b+ ¢)2® + fay + bexz + hyz) = 0.

We may as well assume that f = 0 by adding the defining equation of D. To summarize, we
may assume that C' is given by

2(y—2)(ay — 2z) + x (dy2 — (b+¢)2? + bexz + hyz) = 0.
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(e) Type IIT* (f) Type IT*

F1GURE 1. The constructions of ALG pairs of type II, III, IV, IV*, III*, and
IT*. The black lines stand for the singular divisor D, the green curves stand
for the cubic C' in the corresponding pencil, and the red lines are the image
of the (—1) curves under Y — P2,
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Picking a smooth cubic C of the form above and blowing-up at those points yield a ALG
pair (Y, D) of type Ij. We need to construct a basis of Ha(X,Z), i.e., we need to construct
five cycles lying in [D]* under the identification.

e Consider the tangent of C' at [0:1: 0]. Explicitly, it is given by
dr+az=0

which intersects {y = 0} at [a: 0: —d]. Denote by L, its proper transform on Y;
e Consider the tangent of C' at [0: 1: 1]. Explicitly, it is given by

(d+h—-b—cz—(1—a)y+(1—a)z=0.
It intersects {y = 0} at
1—a:0:b+c—d—h].
Denote by Lg its proper transform on Y
e Consider the tangent of C' at [0: 1:a]. Explicitly, it is given by
(—a*(b+c¢) +d+ah)x —a(l —a)(z —ay) =0
It intersects {y = 0} at
[a(1 = a):0: —a®(b+ ¢) + d + ah)] .

Denote by Lo its proper transform on Y
e Let E7 be the exceptional divisor over [1:0: 8] in the second blow-up;
e Let Eg be the exceptional divisor over [1:0: c];
e Let Eg be the exceptional divisor over [1:0:0].

Now we can construct our cycles via

One can easily check that each of them lies in [D]* and they form a basis of Ha(X,Z). Also
the fibre class [f] is given by Z?Zl[%-]. In the present case, we take
xdy ANdz — ydz Adz + zdz A dy

0=
x3y

It is also straightforward to check (parallel to the computation in previous sections) that the

set of period vectors
{(ylv"wa’))‘yi::/ 971217’5}
[vi]

is equal to {(y1,---,ys5) | Y2o_, v = 0}. Indeed, one can check that
—d b+c—d—h —a%(b+c) +d+ah /Q
Y4

0="2 [ =""""2"0 [ o=

a’ /), l1—a - a(l —a)

= —b, and / Q=—c
V5

71
This proves the surjectivity of the period map in this case.
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3.1.8. Type I}. A type I} fibre is the Dg configuration. We begin with D = {2?y = 0} and
consider a cubic C intersecting with D at three distinct points on {y = 0} but tangent to
{z = 0}. Using the PGL(3, C)-action on P?, we may assume that

e CN{zx=0}={[0:1:0],[0:1:a]} and C is tangent to {x = 0} at [0:1:0].
e CN{y=0}={[1:0:0],[1:0:],[1: 0: ¢]} with b# ¢;

It follows that C' is defined by the following equation
2Z(ay — z) + 2 (dy® + (b+ ¢)2® + fay — bexz + hyz) = 0.

We may as well assume that f = 0 by adding the defining equation of D. To summarize, we
may assume that C' is given by

2(ay — 2) + z (dy® + (b+ ¢)2* — bexz + hyz) = 0.

Picking a smooth cubic C' of the form above and blowing-up at those points yield an ALG
pair (Y, D) of type Ij. Note that C' is smooth implies d # 0. We need to construct a basis of
Hy(X,Z), i.e., we need to construct four cycles lying in [D]* under the identification.

e Consider the tangent of C' at [0: 1: a]. Explicitly, it is given by
(a®(b+¢) + d+ ah)x — a*(z — ay) = 0.
which intersects {y = 0} at
[a2: 0:a*(b+c)+d+ ah .
Denote by L its proper transform on Y
e Consider a conic passing through [1:0: 0] and tangent to {z = 0} at [0:1:0] such that
the intersection at [0: 1: 0] with C' has multiplicity 3. Explicitly, when d # 0, we could
take for example
az? + dxy — abzz = 0.
It intersects {y = 0} at
[1:0:0] and [1:0:5].
Denote by @ its proper transform on Y; @ is a (—1) curve on Y and therefore it is a
section.

e Let E; be the exceptional divisor over [1:0: b];
e Let Eg be the exceptional divisor over [1:0: ¢];

Let Eg be the exceptional divisor over [1:0: ¢] and Eg be the exceptional divisor over [1:0:0].
Now we can construct our cycles via

(1) m=L—Ey~H— E5 — Eg — E;
(2) ’}/2:Q—E4N2H—(E1+"'+E4)—E7—Eg;
(3) 73 = Er — Ey;
(4) 74 = Es — Ey;
One can easily check that each of them lies in [D]* and they form a basis of Ha(X,Z). Also
the fibre class [f] is given by [y1] + [y2] — [74]. In the present case, we take
xdy ANdz —ydx Adz + zdx A dy
2y )

Q=
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It is also straightforward to check (parallel to the computation in previous sections) that the

set of period vectors
{(y1,...,y4) ‘ Yi :=/ Q, izl,...,4}
[i]

is equal to {(y1,...,v4) | y1 + y2 — y4a = 0}. More accurately, one can check

2
/Q:a(b+c)+d+ah7/Q:_al_h_b7 and/Q:c.
T ¥o a Ya

a? a?

This proves the surjectivity of the period map in this case.

3.1.9. Type Ij. A type I} fibre is the D7 configuration. We begin with D = {2?y = 0} and
consider a cubic C' intersecting with D at three distinct points on {y = 0} but tangent to
{z = 0}. Moreover, we require that C' passes through the unique singularity in D, 4. Using
the PGL(3, C)-action on P?, we may assume that

e CN{x=0}=1{[0:1:0],[0:0: 1]} and C is tangent to {x = 0} at [0: 1:0].
e CN{y=0}={[1:0:0],[1:0: 5], [0: 0: 1] };
It follows that C' is defined by the following equation
2y+x (cy2 +dz? + exy — bdzz + gyz) =0.
We may as well assume that e = 0 as before by adding the defining equation of D.
22y +a (cy? + dz® — bdzz + gyz) = 0.

Choosing a smooth cubic C of the form above and blowing-up at those points yield an ALG
pair (Y, D) of type I. Now we need to construct a basis of Ho(X, Z), i.e., we need to construct
four cycles lying in [D]* under the identification [D]* C H2(Y,Z) = Hy(Y, Z).

e Consider a conic tangent to {z = 0} at [0:1:0] and meeting C at [0:1: 0] with multi-
plicity four and passing through [1:0:0]. Explicitly, it is given by
22 + cay + grz = 0.
which intersects {y = 0} at
[1:0:0] and [1:0: —g].

One checks the conic intersects C' at [0:1: 0] with multiplicity four. Indeed, we can
solve = ~ 22 in the local ring at [0: 1: 0]. Denote by @ its proper transform on Y’
e Consider the tangent of C' at [0:0: 1]. Explicitly, we have

y+dx = 0.
Denote by L the proper transform on Y.

Let Eg be the exceptional divisor over [1:0: b] and E9 be the exceptional divisor over [1:0:0].
Now we can construct our cycles via

(1) m=L—-E;~H—Es — Eg— Er;
(2) %2=Q — Eyg ~2H — (E1 + - + Ey) — 2Ey;
(3) 13 = Eg — Ey;
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One can easily check that each of them lies in [D]* and they form a basis of Ha(X,Z). Also
the fibre class [f] is given by [y1] + [y2] — [y3]. In the present case, we take
xdy ANdz —ydx Adz + zdx A dy

0=
3y

Lemma 3.9. We have

/ Q=—(b+yg), / Q=g, and/ Q= -b.
(1] [v2] [v3]

Proof. Using the affine coordinates u = x/z and v = y/z, we may re-write

and the equation of C' and the tangent line are given by
v + du — bdu® + guv 4 cuv? and v + du.

Let (u,v = au) be the coordinates on (an affine chart of) the blow-up (« is the affine
coordinate on the exceptional divisor). Then (2 is transformed into

and the proper transform of C' and the tangent line are given by
a4+ d — bdu + gau + ca’u? and o + d.
Now we have to blow-up at u = 0 and o = —d. Let o/ = a+d. The equations above become
o —bdu+ g(o/ — d)u + c(a/ — d)*u? and o’

Moreover, we have
_duAdd
Cw?(of —d)
Now we perform the blow-up via o = o/ and u = o/f3.
ds A da/
B — d)
Taking the residue around {o/ = 0}, we obtain a one-form
1dg
“iP
on P! with a double pole at 3 = 0. The proper transform of C' becomes

Q=

1 — (bd + gd) + higher order terms.

/ Q=—(b+g).
(1]

The other cases are similar. O

Therefore, we have
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It is also straightforward to check (parallel to the computation in previous sections) that

the set of period vectors
{<y17y27y3> ‘ Yi = [ ]Q7 1= 17273}
Vi

is equal to {(y1,v2,93) | y1 +y2 — y3 = 0}. This proves the surjectivity of the period map in
this case.

3.1.10. Type I5. A type I} fibre is the D7 configuration. We again begin with D = {z?y = 0}
and consider a cubic C' intersecting with D as follows.
o CN{zx=0}=/{[0:1:0],[0:0: 1]} and C is tangent to {x = 0} at [0: 1:0].
e OCN{y=0}={[1:0:0],][0:0: 1]} and C is tangent to {y = 0} at [0: 0: 1];
It follows that C' is defined by the following equation
22y + @ (ay® + doz + eyz) = 0.

Picking a smooth cubic C of the form above and blowing-up at those points yield a ALG pair
(Y, D) of type I5. We need to construct a basis of Ha(X,Z), i.e., we need to construct two
cycles lying in [D]* under the identification.
e Consider a conic intersecting C' at [0: 1: 0] with multiplicity four. Explicitly, we may
pick
ary + 22+ exz=0.
which intersects {y = 0} at [1:0:0] and [1:0: —e].
Denote by @1 its proper transform on Y
e Consider another conic intersecting C' at [0: 0: 1] with multiplicity greater than or equal
to four and passing through [0: 1: 0]. Explicitly, we can take

dz? + zy + exy = 0.
Denote by @2 its proper transform on Y
e Let L be the proper transform of the line connecting [1:0: 0] and [0:0: 1].

Let F9 be the exceptional divisor over [1:0:0]. Now we can construct our cycles via

(1) m=Q1—Ey~2H — (E1+ -+ Ey) — 2Ey;

(2) ’)/2:QQ—LNQH—(E5+~--—|—E8)—E1—(H—El—Eg);
One can easily check that each of them lies in [D]* and they form a basis of Ha(X,Z). Also
the fibre class [f] is given by [y1] + [y2]. In the present case, we take

xdy ANdz —ydx Adz + zdx A dy

0=
2y

It is also straightforward to check (parallel to the computation in previous sections) that the

{(?Jh?/?) ‘ Yi :=/ Q,i= 1,2}
[v4]

is equal to the set {(y1,y2) | y1 + y2 = 0}. This proves the surjectivity of the period map in
this case.

set of period vectors
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3.1.11. Type I). A type I} fibre is the Dg configuration. Suppose (Y, D) is an ALG* pair
of type Ij. One easily checks that Ho(X,Z) = Z is generated by the homology class of a
fibre, which is represented by a holomorphic curve. Consequently, similar to the case II*, the
period map must be constant (in fact the zero map). To make the treatment comprehensive,
we will outline the construction of an ALG* pair of type I.

We begin with a line and a conic tangent at a point p. Again we may assume that the line
is given by {x = 0} and p = [0: 0: 1]. Consider a smooth cubic which intersects the conic with
multiplicity five. In which case, the cubic intersects both the line and the conic at a point
other than p. Explicity, we can take for instance the conic to be

{zz —y* =0}
and the cubic to be
{22? — 29® — yx* = 0}.
We can blow-up all the intersection points (nine points in total) to achieve a rational elliptic
surface with an I} configuration.

Remark 3.10. Let (Y, D) be an ALG or ALG™ pair. In each case above, our construction
gives a deformation family 7: (), D) — M of (Y, D) together with a section of F*Qi/M (D)
with a fixed normalization; it is the pullback of a fixed section

Q € H(P%, 0%, (D)) = H(Y, 03 (D)). (3.34)

This normalization will become essential in the later subsection when we discuss the ALG or
ALG* gravitational instantons, i.e., when metrics are involved.

3.2. ALG and ALG* gravitational instantons. We will start with introducing the models
for ALG and ALG" gravitational instantons. A model for ALG gravitational instantons is
determined by (8,7, L, R), where R, L > 0 and 3,7 is chosen from Table 3.1 below.

oo | I II IIr | Iv ve | Ir- | Irr

B |1/2| 1/6 |1/4] 1/3 | 2/3 |3/4| 5/6

02m1/3 e2mi/3 | p2mi/3 02mi/3

T | any

TABLE 3.1

For each triple (8,7, L) chosen, denote by X,,0q4 = Xmoa(5, 7, L, R) the complex manifold
{(u,v) e CeC | Arg(u) € [0,2n3] and |u| > R}/ ~,
where the equivalence relation is given by
(u,v) ~ (u,v + (m +n7)), for (m,n) € Z2,

(u,v) ~ (eQﬂi’Bu, 672”51)).
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(a) Type I (b) Type I}

(e) Type I}

FIGURE 2. The constructions of ALG™ pairs of type I to I} and ALG pair
of type Ij. Here again the black lines stand for the singular divisor D, the
green lines stand for the cubic C in the corresponding pencil, and the red lines
(solid/dashed) indicate the cycles we use to construct (—1) curves on Y.
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The hyperKéahler triple is given by

V—1L?

5 (duAdi+doAdD),  Qpoq = L*du A dv.

Wmod =

By definition, there is a natural elliptic fibration structure nE Xmod — {2 | |2] > R%} cC

with torus fibres of area L?Im(7). Moreover, one can fill in the fibre at infinity to partially

compactify X,,,q and the singular configuration of the fibre at infinity is described in Table
3.1 and always with monodromy of finite order.

On the other hand, a model of ALG" gravitational instanton is determined by v € N

and R,e > 0. For each pair (v,¢), we denote model by X* =~ = X*

¥ od(Vs€, R) as a complex

manifold is given by
{(u,v) eCHC | u#0,ul <R}/ ~,
where the equivalence equation is given by
(u,v) ~ (u?, uw)
(u,v) ~ (u,v +m+ n% logu), for (m,n) € Z*.
The Ricci-flat metric and the corresponding holomorphic volume form is given by

11 d 11 d
e (dv — m(v) u)/\(dv_fm(v)u,
7 ulTog [u]

« _ .v|loglul|duAdu

1
mod = 1T |ul4 2

v|log [ul| i u| log Jul]

QF g = u2du A do.

There is also an natural elliptic fibration structure u2 : X oa—={0< ]u|% < R%} C C and
one can extends the fibration over the puncture by adding an I}-fibre.

Definition 3.11. We say that a gravitational instanton (X, w, Q) is of type ALG(S, 7, L) (or
ALG for simplicity) if the Calabi ansatz (X¢,we, Q¢) in Definition 2.2 is replaced by

(Xmod (B, 7, L, R), Winod, mod) for some R > 0.

We also define marked ALG gravitational instanton similar to Definition 2.4. We will denote
the set of marked ALG(S, 7, L) gravitational instantons by mALG(S, 7, L). We will define
(marked) ALG*(v, ¢) gravitational instantons and mALG™* (v, ¢) similarly.

Remark 3.12. Here the definition seems different from the one in [9] a priori. However, the
definitions of ALG gravitational instantons are equivalent from [23, (3.10)] and different type
of D corresponds to different value of choice of 3 in [9], which is a discrete parameter. The
definitions of ALG* gravitational instantons are equivalent by [7, Proposition 2.3].

With the above definition, there are natural invariants of the ALG gravitational instantons
given by the cohomology classes of the hyperKéhler triple. The set of possible cohomology
classes are called the period domain of the gravitational instantons. In the cases of ALG
and ALG" gravitational instantons, the period domains are described by Chen—Viaclovsky—
Zhang [9]. For the ALG case, we first fixed (3, 7, L and a reference ALG(S, 7, L) gravitational
instanton (Xo,wo, Qo). The period domain PSS, 7, L) is a subset of H2(X(, R) x H?(Xj, C)
consisting of pairs ([w], [?]) satisfying the following conditions:

(1) if [C] € Ha(Xo,Z), [C]* = ~2, then |[w] - [C]|* +[[2] - [C]|* # 0;
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(2) [Q] - [F] = 0, where [F] € Ha(Xy, Z) is the homology class of the elliptic fibre;

(3) [w]- [F] = L?Im().
The period domain PQ(v,e) of ALG*(v,e) gravitational instantons are defined similarly
except the last condition is replaced by [w] - [F] = €. Then the period map of marked
ALG(B, 1, L) gravitational instanton is defined by

P(B,7,L): mALG(8,1,L) — PQ(B, T, L) (3.35)
(X,w,Q,a) — (a*[w], a*[€)]). (3.36)
We define the period map P(v,¢) for ALG*(v, ) gravitational instantons similarly.

The goal of the section is to prove the surjectivity of the period maps of ALG and ALG*
gravitational instantons, conjectured by Chen—Viaclovsky-Zhang [9, Conjecture 7.8].

Theorem 3.13. The period maps P(5,7,L) and P(v,e) are surjective.

Similar to the ALH* gravitational instantons, we have the following uniformization results
for ALG and ALG* gravitational instantons.

Theorem 3.14 ([4, Theorem 1.2] and [7, Theorem 1.5]). Any ALG (or ALG*) gravitational
istanton can be compactified to a rational elliptic surfaces by adding a singular fibre of finite
monodromy (or of type IY, ).

Remark 3.15. From the Persson’s classification of singular configurations in rational elliptic
surfaces [32], one can only have v < 4 for ALG* gravitational instantons [7].

Therefore, we will follow the method similar to the proof of the surjectivity of the pe-
riod map for ALH* gravitational instantons to prove Theorem 3.13. We already proved the
surjectivity of the (2,0)-form for rational elliptic surfaces with a prescribed fibre with finite
monodromy or of type I’ in Theorem 3.3, and we will later prove that every cohomology
class of the complement of the prescribed fibre in the rational elliptic surface can support a
Ricci-flat metric up to monodromy (see Theorem 3.16 and Lemma 3.17).

3.3. Surjectivity of the period maps for ALG and ALG* gravitational instantons.
We next modify a theorem of Hein [23, Theorem 1.3]. Let Y be a rational elliptic surface
with a fibre D of finite order monodromy. Denote by X =Y \ D and by p: X — B = C the
restriction of the elliptic fibration structure from Y. We fix a holomorphic coordinate u on
a neighborhood of the base such that the singular fibre D is located at v = 0. Finally, let
U={ueB|u<r}

Theorem 3.16. Let wy be any Kdihler metric on X =Y \ D such that [ wg < o0®. Given
a > 0, there erists a Ricci-flat metric w such that [w] = [wo] and w? = aQ A Q for a fized
meromorphic volume form Q with a simple pole along D. Moreover, one has

IV (@ = wmod)llgmoa S O 2)
for any k € N.
Proof. From [23, Eq. (3.25)], Hein constructed a background Kéhler form w, on X such that
(1) [wa] = [wo] € H*(X,R).

3For our purpose, we will only take those Kéhler forms on Y and restrict to X.



36 T.-J. LEE AND Y.-S. LIN

(2) There exists 0 < r; < 7o such that
® w, =wp in Uy,.
o wg =T"wsfc(a) on Uy, , where T is the fibrewise translation by a holomorphic
section over U,,. In particular, w? = aQ A Q on p~1(U,,).

We will modify w, such that it satisfies the integrability condition

/wg—aQ/\Q:O.
X

For 0 < r < s < ry, we define 3, to be a 2-form on B such that 8,,s = x(|ul) f(Ju|)du A da,
where x: Ry — Ry is a cut-off function with x(¢) € [0, 1] such that x(¢) =1 on Us \ U, and

logt
VI8 it i of type I, v > 0,
2metd
ft) =
1/ t4, if D is of finite monodromy.

By a direct calculation, we have w, + 8, which is again a Kéhler form. Notice that by
another straightforward calculation, f x Wa A Brs — 00 as T — 0. Thus we have

/(wa+ﬁr,s)2—a9/\ﬂ—>oo, for r — 0,
X

/ (Wg —5r,s)2—a§2/\§_2 — —o0, for r — 0.
X

Then there exists t' € [—1,1] such that w, + ¢/, s achieves the integrability condition for
some r by intermediate value theorem.

With the integrability condition, the existence of the Ricci-flat metric in the same cohomol-
ogy class (actually in the same Bott—Chern cohomology class) is guaranteed by [34, Theorem
1.1]. Then [23, Proposition 2.9] provides the decay to the model metrics

Hvk(w - med)”gmod 5 O(/r*kfn)

for any k € N. Here n can be taken to be 2 if D is of type II, III, IV, or I} and the theorem
is proved. For the case when D is of the type II*, IIT*, or IV*, [7, Proposition 5.1] showed
that there exists a gravitational instanton with hyperKé&hler triple of the same cohomology
class and the required asymptotic. ]

To prove the surjectivity of the period map (Theorem 3.13), we also need the following
lemma.

Lemma 3.17. Given [w] € H2(X,R) such that [w] is positive on every holomorphic curve in
X, then there exists a Kdihler class [wy] € H2(Y,R) such that [wy]|x = [w].

Proof. From the dual of (3.2), any two liftings of [w] in H%(Y,R) are differed by a linear
combination of PD([D;]). Recall that a cohomology class [wy] € H2(Y,R) is Kahler if it is
positive on every holomorphic curve in Y by [15, Theorem 0.1]. Holomorphic curves in Y are
either those that avoid D, those that has positive intersection with D or the components of
D. Choose any lifting [w}] € H?(Y,R) of [w] which is positive on the holomorphic curves of
the first kind.
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For the case D is not of type IV, the dual intersection complex of D is a tree. We choose a
root and label the components of D with respect to the partial ordering given by the distance
to the root, say D1, ..., D,. In the case when D is of type IV, we will simply choose arbitrary
labeling. Then we can inductive solve a; such that ([w}] + >, a;PD([D;])).[D,] = € > 0 for
j=1,...,n—1. Since [w}].[D] > 0, we have ([w}]+ >, a;PD([D;])).[Dy] > 0 by choosing &
small enough.

From [2, Proposition 6.2], the cone of effective curves of Y is the convex hull of a set
of extremal rays given by rational curves and possibly [D], accumulating at most to R [D].
Since [w} ]+, a;PD([D;]) is positive on [D], we have [wy] = [w}/]+>_,; a;PD([D;])+tPD([D])
is also positive on the curves of the second kind for ¢t > 0. Thus, [wy] is a Kéhler class we
are looking for. O

Proof of Theorem 8.13. The proof is similar to the proof of Theorem 2.5, where Theorem
3.3, and Theorem 3.16 are the replacements for Theorem 2.6, and Theorem 2.10 [34]. O

Finally, we comment on a Torelli theorem of the pairs (Y, D). It is known that the periods
of the holomorphic (2,0)-form on X =Y \ D determined the isomorphism class of the pair
(Y, D) when D is an I-fibre [21] and when D is smooth [1] (see also Appendix A). However,
it seems that there is less study when D has components with multiplicities. Here we take
the advantage of the Torelli theorem of gravitational instantons of ALG or ALG* [9] and give
an optimal result when D is not reduced.

Proposition 3.18. Assume that D is of type 11, 111, IV or I}, with v € {0,1,2,3,4}. Let
(Y1, D) and (Yo, D) be two pairs of rational elliptic surfaces with prescribed singular fibres.
Let Q; be the meromorphic (2,0)-form on'Y; with a simple pole along D with the residue of €;
being fixed and there exists a diffeomorphism f: Xo — X1 such that f*Q1, Qo have the same
periods on X. For v = 0, we further require that the limits of j-invariants are the same.
Then there exists an isomorphism (Y1, D) = (Y2, D) as pairs.

Proof. From Theorem 3.16 and Lemma 3.17, there exists Ricci-flat metrics w; on X; such
that f*[w;i] = [w2]. Then by Torelli theorem of ALG (or ALG") gravitational instantons [9],
one may modify the diffeomorphism f such that f*w; = wo and f*Q; = Q. In particular,
f is a biholomorphism and thus Y; and Y3 are birational to each other. Therefore, there
exist a compact complex surface Y and birational morphisms fi: Y — Y; and fo: Y — Y5
such that f; are compositions of sequences of simple blow-ups. Since Y7 \ X7 = Y5 \ X2 both
biholomorphic to D, fi; and f» must undo each other. In other words, f: Xo — X can be
extended to a biholomorphism Y> — Y7, sending the one boundary divisor isomorphically to
another. g

Remark 3.19. (1) Here the condition fixing the residue of €); is the substitution of the
normalization condition in [18, p. 22].

(2) The injectivity of the period map is only true when the metric is asymptotic to the
model of order 2 when D is of type II*, IIT*, or IV* [6,7] and thus the argument of
the proof for Proposition 3.18 breaks down in these cases. This is because that there
are isotrivial degenerations of rational elliptic surfaces with such prescribed fibres.
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APPENDIX A. TORELLI THEOREM FOR LOG CALABI-YAU SURFACES

The following Torelli theorem is implicitly hidden in the work of [18,30] and is known to
experts. However, the authors cannot find the exact statement in the literature and so we
include the proof here to make the article self-contained.

Theorem A.l. Consider two pairs consisting of a weak del Pezzo surface* and a smooth
anti-canonical divisor (Y, D) and (Y', D'). Assume that there exists a deformation family of
pairs (¥, D) — B such that both (Y, D) and (Y',D') are fibres. Denote by u: H*(X,C) —
H2(X',C) the isomorphism via some parallel transport, where X =Y \ D and X' =Y'\ D'.
If there exist meromorphic volume forms Q on'Y and ' on Y', with simple poles along
D and D’ (respectively) such that u([Q2]) =[], then there exists an isomorphism of pairs
f: (Y',D") = (Y,D)®

First we review some lattice theory. Denote by Z" the lattice generated by h,e1,...,ep
with the pairing h2 = 1, h-e; = 0, and ei-ej = —0;5. Set f =3h—), e, ap = eg—e1 —ea —es,
and a; = e; —e;41. Let L, C 7Y™ be the sublattice generated by «o;’s. If Y is a blow-up of
P2 at n points, then Pic(Y) = Z%™. If D is a smooth irreducible anti-canonical divisor of Y’
and A(Y, D) denotes the sublattice of Pic(Y) with zero pairing with [D], then A(Y, D) = L,,.

Consider the data (Y, D), Q, and a homology class § € Hy(Y,Z) such that § - D = 0. From

the long exact sequence (2.1), we can find a representative § of § contained in X and thus
J5 2 is defined. Again from (2.1) and the residue theorem, we have

/Q::/QE(C
5 5

is well-defined. In particular, the complex structure of D is determined by [€]|im (D z))
from the residue formula. The meromorphic volume form €2 then determines the period map

wa : A(Y,D) = Hy(X,Z)/ImHY(D,Z) — D = Pic®(D),

which is similar to the period map of K3 surfaces. Notice that ¢q is independent of the C*-
scaling of (2. On the other hand, one can have another notion of period ¢(y,p) in algebraic
geometry similar to the one introduced in Gross—Hacking—Keel [21],

¢w.p): AY,D) — Pic’(D)
L— L|D.
Lemma A.2. The two notions of periods coincide, i.e., o0 = ¢(y,p)-

Proof. We first consider the case when Y is obtained by blowing up of a smooth cubic D
at distinct points z1,...,2, Let Y — P? be the blow-up and E; the exceptional divisors.
Denote by D the proper transform of D and H the pullback of the hyperplane class on P2.
Then A(Y, D) is spanned by elements of the form E; — E; for and H — E; — Ej — Ej,. It is
easy to see that both o and ¢(y,p) are linear and thus it suffices to prove the two coincide
on the generators. Let p = F; N D,q = E; N D. Then ¢y py(E; — E;) = Op(q —p). On the
other hand, one can find a smooth curve « in D connecting ¢ and p and denote by C, C X
the S'-bundle over 4. One can glue C, into the complement in E; — E; of small discs around

More generally it is true for successive blow-ups of P? on a smooth irreducible anti-canonical divisor.
SIn general, f* and p may differ by reflection of (—2)-curves and might not coincide.
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p,q to obtain a 2-cycle in X which is homologous to E; — F;. Denote the 2-cycle by Cj;.
Then one has

SOQ(EjEi):/C Q:/dZZQPZSO(Y,D)(EjEi),
i v

where the second equality comes from the residue and the last equality holds via the identifica-
tion D = Pic’(D). Now we consider the case Y is successive blow up (possibly infinitely near)
points on P2 at the smooth cubic. Notice that given a family of pairs (Y;, D;) of successive
blow up (possibly infinitely near) points on P? at the smooth cubic over a parameter space
T, the two periods ¢q and ¢y p) are both continuous with respect to ¢ € T'. Since one can
take T such that generic points correspond to blow up of P? at distinct points on a smooth
cubic, this proves the lemma for the case when Y is a blow up of P2. When Y = P! x P!,
A(Y, D) is generated by F; — Fy, where F; are the fibres of different rulings. By choosing
the generic fibre representative, we may assume that F; intersect D at p;, ;. Choose smooth
curves 7, (and ~y,) connecting pi,p2 (and ¢, g2 respectively) without intersection. Then the
proof is reduced to the above case. When Y = [y, then A(Y, D) is generated by the unique
(—2)-curve and both periods simply vanish. d

Proof of Theorem A.1. We will first prove the case when Y is not isomorphic P! x P! nor F.
The marking p and the period ¢y, p) determines a homomorphism L,, — Pic’(D). Corollary
4.4 [30] implies that it uniquely determines a homomorphism Z!"™ — Pic(D). Theorem 6.4
[30] says that such a homomorphism recovers the blow up loci of ¥ — P? up to the Weyl
group action and thus uniquely determines the pair (Y, D) up to isomorphism.

Now we will consider the case Y = Y’ = P! x P! and [Fy], [F] are the homology classes
of two rulings. Assume that D, D’ are smooth anti-canonical divisors in Y = Y’ = P! x P!
such that

ev.p)([F1] = [F2]) = ¢ o ([F1] — [F2]).
From the group law on elliptic curves D and D’, there exist p € Y, p’ € Y’ such that
P.py = P, by, Where Y = BLY, Y = Bl, Y’ and D, D’ are the corresponding proper
transforms. Notice that ¥ = Y’ are isomorphic to del Pezzo surface of degree 7. From the
previous part of the proof, we have the isomorphism of the pairs (Y, D) = (Y, D’). In a del
Pezzo surface of degree 7 there are three (—1)-curves and exactly one of them intersects the
other two. Therefore, such (—1)-curve in Y is identified with a corresponding (—1)-curve in
Y’ via the isomorphism of the pairs (Y, D) = (Y’, D). Blowing down such (—1)-curves leads
to the isomorphism of the pair (Y, D) 2 (Y’, D). The proof of the case Fs is similar. O
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