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Abstract

Satellite-based remote sensing and uncrewed aerial imagery play increasingly important
roles in the mapping of wildlife populations and wildlife habitat, but the availability of imagery
has been limited in remote areas. At the same time, ecotourism is a rapidly growing industry
and can yield a vast catalog of photographs that could be harnessed for monitoring pur-
poses, but the inherently ad-hoc and unstructured nature of these images make them diffi-
cult to use. To help address this, a subfield of computer vision known as phototourism has
been developed to leverage a diverse collection of unstructured photographs to reconstruct
a georeferenced three-dimensional scene capturing the environment at that location. Here
we demonstrate the use of phototourism in an application involving Antarctic penguins, sen-
tinel species whose dynamics are closely tracked as a measure of ecosystem functioning,
and introduce a semi-automated pipeline for aligning and registering ground photographs
using a digital elevation model (DEM) and satellite imagery. We employ the Segment Any-
thing Model (SAM) for the interactive identification and segmentation of penguin colonies in
these photographs. By creating a textured 3D mesh from the DEM and satellite imagery, we
estimate camera poses to align ground photographs with the mesh and register the seg-
mented penguin colony area to the mesh, achieving a detailed representation of the colony.
Our approach has demonstrated promising performance, though challenges persist due to
variations in image quality and the dynamic nature of natural landscapes. Nevertheless, our
method offers a straightforward and effective tool for the georegistration of ad-hoc photo-
graphs in natural landscapes, with additional applications such as monitoring glacial retreat.

Introduction

Phototourism [1-3] is an emerging concept that harnesses the power of unstructured collec-
tions of photographs, often sourced from online platforms. It includes not only professional
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photographs but also images taken by tourists, explorers, research scientists, and others. The
merit of this concept lies in its ability to pool together these disorganized images to reconstruct
the three-dimensional details of a given scene via Structure from Motion (SfM) [2, 4-6]. SEM
starts with feature extraction and matching key points across images, followed by geometric
verification. It then leverages these key points to estimate geometric relations (camera poses)
between images, and applies triangulation to determine the three-dimensional (3D) coordi-
nates of the points. SfM iteratively processes multiple images using the aforementioned steps
to build a detailed 3D scene model. The methodology of phototourism has been most well-
developed in the context of urban landscapes [3], since the defined edges of buildings and
streets provide firm markers with which to match points across images. Three-dimensional
reconstructions using ad-hoc photographs are far more difficult in natural contexts because
these natural landscapes are highly dynamic and often lack sharp features that easily match
across multiple images. Despite the computational challenges involved, the proliferation of
cameras coupled with the growing affordability of ecotourism generates a massive influx of
nature-based photography that might be harnessed for ecological monitoring [7].

While aerial imagery from remotely piloted aircraft systems (RPAS) is growing rapidly as a
tool for environmental monitoring [8-11], there are many scenarios in which aerial imagery is
unavailable. For one, an RPAS requires an experienced pilot and suitable conditions, which
unavoidably limits the use of such equipment in surveying large areas. Secondly, current con-
ditions are usually being compared against some measure of past conditions, and we cannot
rely on RPAS imagery to establish a historical baseline against which more recent changes can
be assessed. In these cases, historical photographs may be the only evidence available for past
conditions. In fact, historical photos have been critical to our understanding of processes like
glacial retreat, even when exact georeferencing of the photographs being compared is not pos-
sible [12, 13]. Our goal is to extend the utility of photographs for a wider suite of applications,
including those in which georeferencing of the images is required for interpretation. We use
photographs of Antarctic penguin colonies—appearing as clusters of nesting penguins—to
provide information on the abundance of these sentinel species from photographs that are
already being collected and thus involve no additional disturbance to the species being moni-
tored. In doing so we also demonstrate a general technique that may be employed for ecologi-
cal monitoring in contexts where the spatial expanse of a landscape feature is of interest but
where regular aerial mapping by RPAS is unavailable.

2D segmentation

Advances in computer vision have led to the development of sophisticated segmentation tech-
niques [14-18]. These techniques include semantic segmentation, which assigns labels to each
pixel based on semantic class [19-22], and instance segmentation, which goes further by
grouping pixels into separate object instances [23-25]. Recently, models like detection trans-
former (DETR) [26] have shown significant progress in 2D segmentation [21, 25, 27-33],
leveraging the Transformer architecture [34] for enhanced performance. In the realm of inter-
active segmentation [35-40], where user input guides the segmentation process, a variety of
innovations have emerged. A notable example is the Segment Anything Model (SAM) [37],
which has a prompt-based approach. SAM operates by receiving an input image and a collec-
tion of prompts, the latter of which is optional and could be comprised of single points, bound-
ing boxes, textual descriptions, or even entire masks [37]. SAM capitalizes on its object
recognition capabilities, developed through rigorous training on the extensive SA-1B dataset
with 1 billion masks and 11 million images; this extensive training provides an intricate under-
standing of object structures and boundaries, allowing SAM to generate a predicted
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segmentation mask based on minimal prompts. This adeptness allows SAM to segment objects
it has never encountered in its training, showcasing its zero-shot learning and ability to gener-
alize beyond its training examples. It supports various forms of user interaction (prompts) like
clicks or boxes. Segment-Everything-Everywhere-All-at-Once (SEEM) [41] further expands
SAM’s scope by incorporating visual and audio prompts into a joint visual-semantic space,
allowing for diverse prompt compositions.

In our endeavor, we have strategically adopted SAM for its ease of use since our goal was
to develop a pipeline for georeferencing ground photographs that could be adopted by the
ecological community. SAM’s inherent flexibility and user-friendly interface have proven to
be particularly well-suited for dealing with unstructured images, a common challenge for
phototourism-based projects. The segmentation of the colonies from satellite images is a
long-standing challenge; initial efforts required labor-intensive manual annotations [42],
and efforts to accelerate the process with convolutional neural networks (CNNs) have been
challenged by the limited availability of training data [43]. Le et al. [44] were able to achieve
good performance for penguin colony semantic segmentation using a weakly-supervised
deep learning framework, but did so by leveraging segmentation annotations in the form of
medium-resolution Landsat imagery [42] and commercial satellite imagery from prior years
(e.g., from [45]), the latter of which can harness the fact that penguins are highly site faithful
and colony shape changes only slowly in time. Here we seek a solution to the segmentation
of penguin colonies in ground-based photography, which offers the same challenges faced in
interpreting satellite imagery, most notably that the boundary between the colony and the
surrounding landscape can be fuzzy. Our use of SAM in the task of penguin colony segmen-
tation is novel, but we anticipate that its ease of use could make it an attractive option for a
variety of segmentation tasks in ecological applications, such as environmental monitoring
[46] and ecotope segmentation (the classification of habitat types into distinct ecological
zones) [47].

Visual localization

In the domain of visual localization (camera pose estimation), state-of-the-art methods usually
require the use of local features to represent scenes [48-61]. These methods typically involve
creating SfM point clouds where each 3D point is linked with 2D image features from database
images. The pose of a query image is estimated by matching its features to the 3D points in the
scene model, often employing a random sample consensus (RANSAC) scheme for optimiza-
tion [62-69]. To enhance scalability and performance, hierarchical localization approaches
have been employed, incorporating an initial image retrieval phase [49, 59, 60, 70-72]. This
step narrows down the search area for 2D-3D matching, allowing for more focused and effi-
cient processing. While sparse SfM point clouds are common, some methods also explore the
use of dense meshes as a scene representation [48, 73-75], potentially providing a more
detailed view of the environment.

Our work diverges significantly from existing approaches by focusing on localizing 2D
ground photographs to a 3D mesh at the scale of satellite images, presenting a challenge far
greater than the day-night variations considered challenging in the prior studies. The resolu-
tion discrepancy between the mesh and the 2D ground photograph is vast, diminishing the
comparability with previous methods. We experimented with local feature matching using
SuperGlue [53] and the dense feature matching algorithm GLU-Net [76], but these methods
proved to be inadequate due to the exceptionally challenging nature of our problem. Instead,
our approach relies on manual alignment for camera pose estimation, navigating through chal-
lenges scarcely addressed in conventional visual localization frameworks.
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Materials and methods

In this paper, we present a semi-automated pipeline that leverages a 2-meter digital elevation
model (DEM) from the Reference Elevation Model of Antarctica (REMA) [77, 78] and
medium-resolution (10-meter) satellite imagery (Sentinel Hub services, Sentinel-2 L2A)

[79] to align and georegister ground photographs. Ground photographs were collected from
our collection of photographs taken in the field as well as photographs that were posted
online. To find photographs available online, we used an online image search engine (Goo-
gle Image) and downloaded photographs that we could confirm based on personal experi-
ence were taken at the target location. Importantly, we did not require that the photograph
contain geographic metadata as to the location where the photo was taken. In our experience
(see, for example, [7]), geographic metadata are often extracted from photographs posted
online even when the camera is capable of recording location and geographic data retained
is often inaccurate in the Antarctic. Moreover, as our goal was to develop a pipeline that
could work equally well for historic imagery, we did not want to rely only on photographs
for which location data were available. Photographs used in this study were collected on sev-
eral expeditions permitted by the US National Science Foundation under the Antarctic Con-
servation Act (Permit ACA 2005-005, 2009-015, 2014-0001, 2019-001). All research was
conducted with approval from Stony Brook University’s Institutional Animal Care and Use
Committee (237420). Links to all data sources including licenses for internet photos are
available in S1 Appendix.

Our goal is to develop a method that detects and segments the penguin colony in each
high-resolution ground photograph and georegisters it to a textured 3D mesh derived from
the DEM and satellite imagery, as depicted in Fig 1. Initially, human operators provide mini-
mal input through a few key annotations to guide SAM [37], which then proceeds to identify
and segment penguin colonies in ground photographs. This minimal intervention significantly
enhances processing speed and ensures accuracy that is comparable to manual human annota-
tions. Following this, the pipeline autonomously generates a textured 3D mesh by overlaying
the satellite image on the DEM. Human experts align the rendering of the 3D model with the
ground photograph to obtain the camera pose. Finally, our automated process registers the
segmented penguin area to the 3D mesh, offering a highly detailed view of the colony’s loca-
tion and an estimate of its area.

Segmentation Rendered Image Registered Colony

Fig 1. Overview of penguin colony registration on Devil Island, Antarctica. First (panel a), we segment the penguin colony area in the ground
photograph. The green dots represent prompts provided by a human annotator and the red polygons represent the segmentation results of the Segment
Anything Model (SAM) [37]. Next (panel b), we estimate the ground photo’s camera pose by matching it with a rendered image from the colorized 3D
mesh derived from the digital elevation map (DEM) and satellite imagery from Sentinel Hub [79]. Finally (panel c), we register the penguin colony to
the 3D mesh and visualize it from an aerial view.

https://doi.org/10.1371/journal.pone.0311038.g001
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Semi-automated georegistration

Our proposed semi-automated pipeline for accurate ground photograph alignment and geore-
gistration encompasses the following steps.

Step 1: Segmentation of the penguin colony. We use SAM with the human annotator provid-

ing prompts in the form of positive pixels (colony) and negative pixels (non-colony). These
annotations harness the potential of prompt engineering for the segmentation task [80],
enabling precise delineation of the penguin colony in the ground photograph. The entire
process of segmentation for a single image, including the creation of 10-to-15-pixel
prompts, is accomplished in approximately 5 to 10 seconds. This showcases the efficiency
of SAM in handling this task, particularly given that manual segmentation requires consid-
erably more time (at least 1-2 minutes and potentially much longer) given the intricate and
highly crenulated structure of a penguin colony.

Step 2: Colored 3D mesh generation. Integrating the texture from a 10-meter satellite image

with a 2-meter DEM, which can be perceived as a depth map, we generate an RGB-Depth
image. This essentially transforms the elevation data and satellite imagery into a colorized
point cloud. We then linked adjacent pixels based on their depth values to construct a col-
ored 3D triangle mesh using Trimesh [81], which is used in later steps to render images
from different camera poses.

Step 3: Camera pose estimation for ground photograph. In order to determine the camera

pose for a high-resolution ground photograph, we use a manual annotation process with
the aid of Meshlab software [82], an open-source tool for processing and editing 3D trian-
gular meshes. We begin by importing both the 3D mesh and the high-resolution ground
photograph into Meshlab, which then renders a 2D image based on the 3D mesh. By care-
fully examining the differences between this rendered image and the original ground pho-
tograph, human annotators continuously adjust the camera pose of the 3D mesh until the
two images roughly align.

Step 4 (Optional): Camera pose refinement using feature matching. Similar to the man-

ual annotation process in the second step, we use the feature matching algorithm GLU-
Net [76] to estimate pixel-wise correspondences between the rendered 2D image and the
ground photograph. Using the rendered depth map alongside the pixel correspondences
in the rendered 2D image, we derive corresponding points in the 3D space. This forms a
set of 2D-3D correspondences between the 3D mesh and the ground photograph. Then,
we solve the Perspective-n-Point (PnP) problem [67] using the Levenberg-Marquardt
optimization method [83, 84] to obtain a more precise camera pose. This algorithm
determines the camera pose by minimizing the re-projection error between the observed
2D points in the image and the projected 3D points using a non-linear least squares
method.

Step 5: Registration of the penguin colony to the 3D model. Based on the estimated camera

pose of the ground photograph, we register the segmented area of the penguin colony to the
3D mesh. Specifically, using the camera pose, we project the segmented area into the view
of the medium-resolution satellite image, effectively giving us a 3D reconstruction of the
penguin colony area. It is important to note that the projected penguin colony area still
maintains its high-resolution shape, as shown in Fig 1.
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Table 1. Photograph sources for Devil Island and Brown Bluff Antarctic penguin colonies. This table enumerates
the selected photographs from an initial pool of over 70 images, filtered based on criteria detailed in the discussion of
‘the appropriateness of ground photos’ (see Results and discussion section).

Colonies Sources

Devil Our team, and Dreamstime (www.dreamstime.com)

Island

Brown Our team, Flickr users Outward_bound and Delphinidaesy, Alek Komarnitsky (www.komar.org), and
Bluff Antarctic Treaty Secretariat (www.ats.aq)

https://doi.org/10.1371/journal.pone.0311038.t001

Experimental evaluation

We demonstrated our pipeline using data at two penguin colonies on the Antarctic Peninsula
—Devil Island, which contains an Adélie penguin (Pygoscelis adeliae) colony, and Brown
Bluff, which contains a mixed Adélie and gentoo penguin (P. papua) colony. We georegistered
eight ground-level photographs from Devil Island and nine ground-level photographs from
Brown Bluff (details in Table 1). The dates on which these photos were taken were not
available.

For evaluating our penguin colony segmentation results, we employed the following met-
rics: mean intersection-over-union (mean IoU), pixel accuracy, perimeter-area ratio, and area
error. Mean IoU, a common metric for segmentation tasks, is calculated as:

True Positives

IoU = 1
mean 1o False Negatives + True & False Positives (v

This metric specifically measures the overlap between our predicted segmentation (colony
or non-colony) and the ground truth.

Pixel accuracy is a simpler and more intuitive metric defined as the ratio of correctly pre-
dicted pixels to the total number of pixels:

True Positives 4 True Negatives
Total Number of Pixels

Pixel Accuracy = (2)

Perimeter-area ratio (PAR)—a region’s perimeter divided by its area—is a simple shape
complexity metric, often used in studying landscapes and wilderness areas [85]. Here, we use
PAR to estimate the level of shape complexity captured by our colony registration procedure,
as colonies with excessive perimeter extents can imply a greater risk of predation to nesting
penguins [86]. For a shape with multiple components, we calculate PAR as the total perimeter
divided by the total area. Note that for a shape with holes (i.e. areas within a colony that do
contain nesting penguins), we take the perimeter to be the combined perimeters of the bound-
ary and holes.

Area prediction error is a measure comparing the predicted area (in this case, the penguin
colony) to its actual area, expressed as the ratio of the absolute error in the predicted area to
the actual area. Formally, it is expressed as:

|Predicted Area — Actual Area]
Actual Area

(3)

Area Error =

This metric is vital in our application because the area of these segmented penguin colonies
is directly related to the number of penguins estimated to be breeding within each colony [87],
but may be valuable for a range of ecological applications (e.g., patch area for vegetation moni-
toring, herd area in a study of grazers, pond area in hydrology, etc.).
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Results and discussion

Our method, illustrated schematically in Fig 2, successfully segments and georegisters penguin
colonies in complex environments, solving the challenge of the heterogeneous nature of
assembling preexisting photos and the highly dynamic surface dominated by shifting snow
(Figs 3 and 4, Tables 2 and 3).

Sementation Pose Estimation Georegistration Final Result

Fig 2. Diagram with results of each step. We show the sequential outputs for our pipeline: penguin colony segmentation (panels a, d), camera pose
estimation for ground photographs (panels b, e), georegistrations via projection (panels c, f), and the final combined georegistration result (panel g).

https://doi.org/10.1371/journal.pone.0311038.9002

Registration

Fig 3. Segmentation and registration. Visualization of segmentation (a-c) and registration (d-f) of penguin colonies at Devil Island and Brown Bluff in

Antarctica.

https://doi.org/10.1371/journal.pone.0311038.g003
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Registration

Fig 4. Segmentation and registration at Devil Island. Additional visualization of segmentation (a-c) and registration (d-f) of penguin colonies at Devil
Island, Antarctica.

https://doi.org/10.1371/journal.pone.0311038.9004

Inside our pipeline, SAM does an excellent job tracing the irregular contours of the colony
(Table 2, Figs 3 and 4), and it can represent the detailed and high-resolution structures of the
penguin nesting area. Notably, when compared with the ground truth segmentation, our
method achieves a mean IoU of over 70%, an area error of approximately 7-12%, and per-
forms well in terms of the perimeter-area ratio difference and accuracy for both the Devil
Island and Brown Bluff colonies.

In Table 3 and Fig 5, we show the final georegistration results, including a composite of the
segmented areas of penguin colonies from an aerial view (Fig 5). The availability of high-reso-
lution satellite image annotations for Devil Island provide the opportunity to directly compare
the georegistered composite to high-resolution satellite imagery (Table 3). Compared with a
fully manual approach, we show good mean IoU and even better area error. Although the
accuracy of the composite colony area leaves room for improvement, in this particular applica-
tion where inter-annual variability in abundance is substantial and greater than 20%, estimates
of area with this level of precision can be highly informative when modelling population
change through time (see Fig 3d in [88]). The precision is limited by the challenges of project-
ing ground photographs to an aerial view using a DEM, particularly because the 2-meter

Table 2. Segmentation evaluation. Evaluation of the the Segment Anything Model (SAM) for penguin colony segmentation using mean intersection over union (mlIoU),
difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. panels a-c in Figs 3 and 4 vs. ground truth). 95% confidence intervals are shown. An up (down)
arrow indicates a measure where a larger (smaller) number is preferred.

Colonies mloU (%) 1 PAR Difference | Area Error (%) | Accuracy (%) T
Devil Island 76.8 £0.4 0.004 £0.001 7.8 £0.6 98.2 +0.1
Brown Bluff 76.1 £0.8 0.012 £0.001 12.6 £0.7 97.1 £0.1

https://doi.org/10.1371/journal.pone.0311038.t002
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Table 3. Model evaluation. Evaluation of final predicted penguin colony areas at Devil Island using mean intersection
over union (mIoU), difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. Fig 5 vs. ground truth).
95% confidence intervals are shown. We also show the evaluation of a fully manual approach. An up (down) arrow
indicates a measure where a larger (smaller) number is preferred.

mloU (%) 1 PAR Difference | Area Error (%) |
Ours 45.3 +0.1 0.017 £0.001 20.4 £0.3
Manual Method 45.6 0.015 20.5

https://doi.org/10.1371/journal.pone.0311038.t003

resolution of the DEM available is at least 10 times coarser in resolution than the photographs

(typically 4K) taken by tourists. In other words, there may be over 100 pixels in the photograph
that get mapped to a single pixel in the DEM. Despite these challenges, our overall results illus-
trate the effectiveness of the method even under challenging environmental conditions (Fig 5).

In Tables 2 and 3, we also present 95% confidence intervals for all metrics, calculated by
repeatedly running our method 30 times. Our method yields only small variance across differ-
ent experimental runs. In Table 4, we perform a sensitivity analysis on the Devil Island dataset
to determine the optimal number of pixel prompts for an image. Our evaluation shows that
using only 3 pixel prompts is inadequate. In contrast, using 9-to-15-pixel prompts yields com-
parable results, indicating a plateau in performance. This confirms that our approach is robust
with a reasonably small number of pixel prompts. In practice, we use 10-15 pixel prompts per
image.

Citizen science is a growing area of interest for ecologists looking to study large or remote
areas, and photographs have been harnessed in a large number of these citizen scientist appli-
cations [89]. However, the vast majority of these photograph-based projects have actively solic-
ited photographs from tourists or have set up dedicated portals for image submission. The
alternative approach, to gather images placed online for other purposes, is less common. Some
examples of this ‘passive’ approach to citizen science include studies of whale sharks (Rhinco-
don typus) [90, 91] and Weddell seals (Leptonychotes weddellii) [7], two species that can be
individually identified in photographs by their spotted coloration. Though most cameras now
capture geographic metadata, our experience has been that such data are typically unavailable
by the time an image is posted online. Here we present an alternative approach for geolocating

Devil Island Brown Bluff

Fig 5. Final composite. The final composite penguin colony areas at Devil Island (a) and Brown Bluff (b) in Antarctica from an aerial view.

https://doi.org/10.1371/journal.pone.0311038.9g005
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Table 4. Sensitivity analysis. We use the Devil Island dataset to conduct a sensitivity analysis for the number of pixel
prompts needed using mean intersection over union (mIoU), difference in perimeter to area ratio (PAR), and area
error. An up (down) arrow indicates a measure where a larger (smaller) number is preferred.

Number of Pixel Prompts mloU (%) 7 PAR Difference | Area Error (%) |
3 37.0 0.044 36.1
9 46.2 0.022 19.1
12 45.6 0.023 20.4
15 45.3 0.017 20.4
Manual Method 45.6 0.015 20.5

https://doi.org/10.1371/journal.pone.0311038.t004

photographs sourced from the internet that does not require the camera to record its location.
This method greatly expands the possible applications of passively sourced photographs for
monitoring environmental conditions or, as we have demonstrated in our application, popula-
tions of wildlife. Antarctica is difficult to survey because of its remoteness, so harnessing tour-
ists’ photos of penguin colonies can appreciably add to the robustness of datasets of population
size, colony shape, and phenology.

We found GLU-Net [76] was capable of successfully feature matching in the pose refine-
ment process (step 4 in method section; Fig 6) whereas the correspondences across images
were found to be too sparse for SuperGlue [53] and this led to unsuccessful pose refinement
(Fig 6). While pose refinement offers improved results in some cases, the relatively coarse reso-
lution of the satellite imagery we were using limited its benefit for our application. Conse-
quently, the segmentation results used for computing our metrics omit the pose refinement
step. Though we anticipate that future developments in the area of feature matching may help
mitigate this issue, the use of the highest resolution satellite imagery for a given location is
likely to provide the best opportunities for feature matching.

When considering the appropriateness of ground photographs for alignment with 3D
mesh, it is essential to prioritize those captured from a relatively distant viewpoint, as shown in
the bottom row of Fig 7. Images that provide sufficient context for georegistration offer clear
and easily recognizable features that can be used for alignment. In contrast, close-up images or
images that do not provide any sense of the larger landscape do not provide enough context
for the alignment procedure that we have developed and tested. The use of telephoto lenses,
while impacting the determination of the camera’s location due to their parallel projection
characteristics, should not be overly concerning. This is because the primary limitations in the
accuracy of our method currently stem from the resolution constraints of available satellite
imagery and DEM. Though our primary goal was to develop the tools needed to georeference
‘found’ images, there are contexts in which photographs might be explicitly solicited for a sci-
entific purpose. In particular, photography provides a straightforward way for travelers to
remote regions to get involved as ‘citizen scientists’ and in that light, Fig 7 provides some guid-
ance for photographers.

For 2D to 3D colony registration, working within entirely natural environments presents
distinct challenges. One predominant issue is the lack of stable landmarks like buildings
which, with their well-defined shapes, straight edges, and 90-degree angles, provide clear refer-
ence points that facilitate the alignment process [92]. Moreover, there exists an abundance of
training data specifically designed to identify such man-made structures, making them even
more advantageous for registration tasks [93-95]. In contrast, natural environments lack these
distinct, consistent features, complicating the alignment process. Furthermore, changing snow
conditions can introduce additional complexities; as snow accumulates, melts, or shifts, the
physical terrain and its visual representation can change substantially. Though not all
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Fig 6. Feature matching. Comparative visualization of feature matching: (a) Dense pixel-wise correspondences between the rendered and ground
photographs using GLU-Net [76], indicating successful matching; (b) Sparse and incorrect pixel-wise correspondences using SuperGlue [53], reflecting
poor matching performance in the challenging scenario.

https://doi.org/10.1371/journal.pone.0311038.9006

applications will be as heavily impacted by snow accumulation, more dynamic landscapes are
unavoidably challenging and represent an area for continued technical development.

Our general schema for using georeferencing ground photos for ecological monitoring is
not specific to penguins. In fact, this technique could be used anytime there is a feature of
interest on the landscape that can be segmented and where the landscape contains enough
topography for a digital elevation model to be useful for alignment. Though its utility in any
specific application would need to be rigorously tested, potential applications include the
tracking of marsh grasses through time [96], flowering phenology [97], and the mapping of
vernal pools [98]. Though it was not the focus of our study, one natural application for this
technique would be in the study of glacial retreat, since glaciers are a natural focus for
ground photography and changes in their size and shape are of interest for studying the
impacts of climate change. Though 3D data are now commonly available to researchers
through techniques such as lidar and photogrammetry, our approach offers an alternative
that can incorporate older images and those taken without special equipment or a specific
monitoring aim in mind. It proves particularly valuable in scenarios where manual data
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Fig 7. A visual guide for selecting appropriate ground photographs. Photos by Heather Lynch / Creative Commons CC-BY, Liam Quinn / Creative
Commons CC-BY-SA, and Flickr user Outward_bound / Creative Commons CC-BY-NC-ND.
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annotation might otherwise be required, providing a more intuitive solution through the use
of colored mesh rendering.

One limitation of our method is the dependency on a DEM to generate images that can be
used to align with ground photographs. Obtaining high-precision DEMs, especially those finer
than 2-meter resolution, can be particularly challenging. Such granular DEMs are essential for
accurate alignment, yet they are not always readily available or accessible for every location of
interest. Another limitation of our approach is the requirement of manual alignment, which
can introduce errors. It is worth noting that while some landscapes are inherently more
straightforward to align, thereby reducing the propensity for alignment errors, the complexity
of the landscape remains a significant factor in alignment quality. Drawing upon literature in
computational anatomy [99, 100], certain geometric primitives, including spheres, cylinders,
and rectangular prisms, are more readily identifiable by the human eye, facilitating easier reg-
istration and matching. Artificial structures or prominent landmarks, like architectural fea-
tures in satellite images, can act as useful reference points during the alignment process.
However, manual interventions from human operators not only introduce potential inaccura-
cies but also result in increased time and cost implications.

While we explored state-of-the-art deep learning and feature matching algorithms for cam-
era pose estimation, such as SuperGlue [53] and GLU-Net [76], these methods demonstrated
sub-optimal performance in identifying correspondences between images. The difference
between high-resolution ground photographs and medium-resolution images rendered from
3D mesh is substantial, posing significant challenges even for human experts. Future advance-
ments, such as feature enhancement techniques, may help address these challenges. Addition-
ally, incorporating machine learning models to predict and adapt to dynamic changes in
colony boundaries could complement feature-matching processes, potentially improving geor-
egistration accuracy over time.
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Conclusion

Though satellites and uncrewed aerial vehicles are now routinely used for tracking changes on
the landscape through time, there are many applications in which neither type of data are read-
ily available. The proliferation of cameras in mobile phones now greatly expands the volume of
data potentially available for long-term environmental monitoring. Thus, creative approaches
for georeferencing these photos are essential to fully harness their value. Our proposed pipeline
combines state-of-the-art segmentation tools with an alignment technique that does not
require a priori information on the position of the camera, and paves the way for expanded

use of crowd-sourced or historical photography.
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