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Abstract

Satellite-based remote sensing and uncrewed aerial imagery play increasingly important

roles in the mapping of wildlife populations and wildlife habitat, but the availability of imagery

has been limited in remote areas. At the same time, ecotourism is a rapidly growing industry

and can yield a vast catalog of photographs that could be harnessed for monitoring pur-

poses, but the inherently ad-hoc and unstructured nature of these images make them diffi-

cult to use. To help address this, a subfield of computer vision known as phototourism has

been developed to leverage a diverse collection of unstructured photographs to reconstruct

a georeferenced three-dimensional scene capturing the environment at that location. Here

we demonstrate the use of phototourism in an application involving Antarctic penguins, sen-

tinel species whose dynamics are closely tracked as a measure of ecosystem functioning,

and introduce a semi-automated pipeline for aligning and registering ground photographs

using a digital elevation model (DEM) and satellite imagery. We employ the Segment Any-

thing Model (SAM) for the interactive identification and segmentation of penguin colonies in

these photographs. By creating a textured 3D mesh from the DEM and satellite imagery, we

estimate camera poses to align ground photographs with the mesh and register the seg-

mented penguin colony area to the mesh, achieving a detailed representation of the colony.

Our approach has demonstrated promising performance, though challenges persist due to

variations in image quality and the dynamic nature of natural landscapes. Nevertheless, our

method offers a straightforward and effective tool for the georegistration of ad-hoc photo-

graphs in natural landscapes, with additional applications such as monitoring glacial retreat.

Introduction

Phototourism [1–3] is an emerging concept that harnesses the power of unstructured collec-

tions of photographs, often sourced from online platforms. It includes not only professional
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photographs but also images taken by tourists, explorers, research scientists, and others. The

merit of this concept lies in its ability to pool together these disorganized images to reconstruct

the three-dimensional details of a given scene via Structure fromMotion (SfM) [2, 4–6]. SfM

starts with feature extraction and matching key points across images, followed by geometric

verification. It then leverages these key points to estimate geometric relations (camera poses)

between images, and applies triangulation to determine the three-dimensional (3D) coordi-

nates of the points. SfM iteratively processes multiple images using the aforementioned steps

to build a detailed 3D scene model. The methodology of phototourism has been most well-

developed in the context of urban landscapes [3], since the defined edges of buildings and

streets provide firm markers with which to match points across images. Three-dimensional

reconstructions using ad-hoc photographs are far more difficult in natural contexts because

these natural landscapes are highly dynamic and often lack sharp features that easily match

across multiple images. Despite the computational challenges involved, the proliferation of

cameras coupled with the growing affordability of ecotourism generates a massive influx of

nature-based photography that might be harnessed for ecological monitoring [7].

While aerial imagery from remotely piloted aircraft systems (RPAS) is growing rapidly as a

tool for environmental monitoring [8–11], there are many scenarios in which aerial imagery is

unavailable. For one, an RPAS requires an experienced pilot and suitable conditions, which

unavoidably limits the use of such equipment in surveying large areas. Secondly, current con-

ditions are usually being compared against some measure of past conditions, and we cannot

rely on RPAS imagery to establish a historical baseline against which more recent changes can

be assessed. In these cases, historical photographs may be the only evidence available for past

conditions. In fact, historical photos have been critical to our understanding of processes like

glacial retreat, even when exact georeferencing of the photographs being compared is not pos-

sible [12, 13]. Our goal is to extend the utility of photographs for a wider suite of applications,

including those in which georeferencing of the images is required for interpretation. We use

photographs of Antarctic penguin colonies—appearing as clusters of nesting penguins—to

provide information on the abundance of these sentinel species from photographs that are

already being collected and thus involve no additional disturbance to the species being moni-

tored. In doing so we also demonstrate a general technique that may be employed for ecologi-

cal monitoring in contexts where the spatial expanse of a landscape feature is of interest but

where regular aerial mapping by RPAS is unavailable.

2D segmentation

Advances in computer vision have led to the development of sophisticated segmentation tech-

niques [14–18]. These techniques include semantic segmentation, which assigns labels to each

pixel based on semantic class [19–22], and instance segmentation, which goes further by

grouping pixels into separate object instances [23–25]. Recently, models like detection trans-

former (DETR) [26] have shown significant progress in 2D segmentation [21, 25, 27–33],

leveraging the Transformer architecture [34] for enhanced performance. In the realm of inter-

active segmentation [35–40], where user input guides the segmentation process, a variety of

innovations have emerged. A notable example is the Segment Anything Model (SAM) [37],

which has a prompt-based approach. SAM operates by receiving an input image and a collec-

tion of prompts, the latter of which is optional and could be comprised of single points, bound-

ing boxes, textual descriptions, or even entire masks [37]. SAM capitalizes on its object

recognition capabilities, developed through rigorous training on the extensive SA-1B dataset

with 1 billion masks and 11 million images; this extensive training provides an intricate under-

standing of object structures and boundaries, allowing SAM to generate a predicted
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segmentation mask based on minimal prompts. This adeptness allows SAM to segment objects

it has never encountered in its training, showcasing its zero-shot learning and ability to gener-

alize beyond its training examples. It supports various forms of user interaction (prompts) like

clicks or boxes. Segment-Everything-Everywhere-All-at-Once (SEEM) [41] further expands

SAM’s scope by incorporating visual and audio prompts into a joint visual-semantic space,

allowing for diverse prompt compositions.

In our endeavor, we have strategically adopted SAM for its ease of use since our goal was

to develop a pipeline for georeferencing ground photographs that could be adopted by the

ecological community. SAM’s inherent flexibility and user-friendly interface have proven to

be particularly well-suited for dealing with unstructured images, a common challenge for

phototourism-based projects. The segmentation of the colonies from satellite images is a

long-standing challenge; initial efforts required labor-intensive manual annotations [42],

and efforts to accelerate the process with convolutional neural networks (CNNs) have been

challenged by the limited availability of training data [43]. Le et al. [44] were able to achieve

good performance for penguin colony semantic segmentation using a weakly-supervised

deep learning framework, but did so by leveraging segmentation annotations in the form of

medium-resolution Landsat imagery [42] and commercial satellite imagery from prior years

(e.g., from [45]), the latter of which can harness the fact that penguins are highly site faithful

and colony shape changes only slowly in time. Here we seek a solution to the segmentation

of penguin colonies in ground-based photography, which offers the same challenges faced in

interpreting satellite imagery, most notably that the boundary between the colony and the

surrounding landscape can be fuzzy. Our use of SAM in the task of penguin colony segmen-

tation is novel, but we anticipate that its ease of use could make it an attractive option for a

variety of segmentation tasks in ecological applications, such as environmental monitoring

[46] and ecotope segmentation (the classification of habitat types into distinct ecological

zones) [47].

Visual localization

In the domain of visual localization (camera pose estimation), state-of-the-art methods usually

require the use of local features to represent scenes [48–61]. These methods typically involve

creating SfM point clouds where each 3D point is linked with 2D image features from database

images. The pose of a query image is estimated by matching its features to the 3D points in the

scene model, often employing a random sample consensus (RANSAC) scheme for optimiza-

tion [62–69]. To enhance scalability and performance, hierarchical localization approaches

have been employed, incorporating an initial image retrieval phase [49, 59, 60, 70–72]. This

step narrows down the search area for 2D-3D matching, allowing for more focused and effi-

cient processing. While sparse SfM point clouds are common, some methods also explore the

use of dense meshes as a scene representation [48, 73–75], potentially providing a more

detailed view of the environment.

Our work diverges significantly from existing approaches by focusing on localizing 2D

ground photographs to a 3D mesh at the scale of satellite images, presenting a challenge far

greater than the day-night variations considered challenging in the prior studies. The resolu-

tion discrepancy between the mesh and the 2D ground photograph is vast, diminishing the

comparability with previous methods. We experimented with local feature matching using

SuperGlue [53] and the dense feature matching algorithm GLU-Net [76], but these methods

proved to be inadequate due to the exceptionally challenging nature of our problem. Instead,

our approach relies on manual alignment for camera pose estimation, navigating through chal-

lenges scarcely addressed in conventional visual localization frameworks.
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Materials andmethods

In this paper, we present a semi-automated pipeline that leverages a 2-meter digital elevation

model (DEM) from the Reference Elevation Model of Antarctica (REMA) [77, 78] and

medium-resolution (10-meter) satellite imagery (Sentinel Hub services, Sentinel-2 L2A)

[79] to align and georegister ground photographs. Ground photographs were collected from

our collection of photographs taken in the field as well as photographs that were posted

online. To find photographs available online, we used an online image search engine (Goo-

gle Image) and downloaded photographs that we could confirm based on personal experi-

ence were taken at the target location. Importantly, we did not require that the photograph

contain geographic metadata as to the location where the photo was taken. In our experience

(see, for example, [7]), geographic metadata are often extracted from photographs posted

online even when the camera is capable of recording location and geographic data retained

is often inaccurate in the Antarctic. Moreover, as our goal was to develop a pipeline that

could work equally well for historic imagery, we did not want to rely only on photographs

for which location data were available. Photographs used in this study were collected on sev-

eral expeditions permitted by the US National Science Foundation under the Antarctic Con-

servation Act (Permit ACA 2005-005, 2009-015, 2014-0001, 2019-001). All research was

conducted with approval from Stony Brook University’s Institutional Animal Care and Use

Committee (237420). Links to all data sources including licenses for internet photos are

available in S1 Appendix.

Our goal is to develop a method that detects and segments the penguin colony in each

high-resolution ground photograph and georegisters it to a textured 3D mesh derived from

the DEM and satellite imagery, as depicted in Fig 1. Initially, human operators provide mini-

mal input through a few key annotations to guide SAM [37], which then proceeds to identify

and segment penguin colonies in ground photographs. This minimal intervention significantly

enhances processing speed and ensures accuracy that is comparable to manual human annota-

tions. Following this, the pipeline autonomously generates a textured 3D mesh by overlaying

the satellite image on the DEM. Human experts align the rendering of the 3D model with the

ground photograph to obtain the camera pose. Finally, our automated process registers the

segmented penguin area to the 3D mesh, offering a highly detailed view of the colony’s loca-

tion and an estimate of its area.

Fig 1. Overview of penguin colony registration on Devil Island, Antarctica. First (panel a), we segment the penguin colony area in the ground
photograph. The green dots represent prompts provided by a human annotator and the red polygons represent the segmentation results of the Segment
Anything Model (SAM) [37]. Next (panel b), we estimate the ground photo’s camera pose by matching it with a rendered image from the colorized 3D
mesh derived from the digital elevation map (DEM) and satellite imagery from Sentinel Hub [79]. Finally (panel c), we register the penguin colony to
the 3Dmesh and visualize it from an aerial view.

https://doi.org/10.1371/journal.pone.0311038.g001
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Semi-automated georegistration

Our proposed semi-automated pipeline for accurate ground photograph alignment and geore-

gistration encompasses the following steps.

Step 1: Segmentation of the penguin colony.We use SAM with the human annotator provid-

ing prompts in the form of positive pixels (colony) and negative pixels (non-colony). These

annotations harness the potential of prompt engineering for the segmentation task [80],

enabling precise delineation of the penguin colony in the ground photograph. The entire

process of segmentation for a single image, including the creation of 10-to-15-pixel

prompts, is accomplished in approximately 5 to 10 seconds. This showcases the efficiency

of SAM in handling this task, particularly given that manual segmentation requires consid-

erably more time (at least 1–2 minutes and potentially much longer) given the intricate and

highly crenulated structure of a penguin colony.

Step 2: Colored 3Dmesh generation. Integrating the texture from a 10-meter satellite image

with a 2-meter DEM, which can be perceived as a depth map, we generate an RGB-Depth

image. This essentially transforms the elevation data and satellite imagery into a colorized

point cloud. We then linked adjacent pixels based on their depth values to construct a col-

ored 3D triangle mesh using Trimesh [81], which is used in later steps to render images

from different camera poses.

Step 3: Camera pose estimation for ground photograph. In order to determine the camera

pose for a high-resolution ground photograph, we use a manual annotation process with

the aid of Meshlab software [82], an open-source tool for processing and editing 3D trian-

gular meshes. We begin by importing both the 3D mesh and the high-resolution ground

photograph into Meshlab, which then renders a 2D image based on the 3D mesh. By care-

fully examining the differences between this rendered image and the original ground pho-

tograph, human annotators continuously adjust the camera pose of the 3D mesh until the

two images roughly align.

Step 4 (Optional): Camera pose refinement using feature matching. Similar to the man-

ual annotation process in the second step, we use the feature matching algorithm GLU-

Net [76] to estimate pixel-wise correspondences between the rendered 2D image and the

ground photograph. Using the rendered depth map alongside the pixel correspondences

in the rendered 2D image, we derive corresponding points in the 3D space. This forms a

set of 2D-3D correspondences between the 3D mesh and the ground photograph. Then,

we solve the Perspective-n-Point (PnP) problem [67] using the Levenberg-Marquardt

optimization method [83, 84] to obtain a more precise camera pose. This algorithm

determines the camera pose by minimizing the re-projection error between the observed

2D points in the image and the projected 3D points using a non-linear least squares

method.

Step 5: Registration of the penguin colony to the 3Dmodel. Based on the estimated camera

pose of the ground photograph, we register the segmented area of the penguin colony to the

3D mesh. Specifically, using the camera pose, we project the segmented area into the view

of the medium-resolution satellite image, effectively giving us a 3D reconstruction of the

penguin colony area. It is important to note that the projected penguin colony area still

maintains its high-resolution shape, as shown in Fig 1.
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Experimental evaluation

We demonstrated our pipeline using data at two penguin colonies on the Antarctic Peninsula

—Devil Island, which contains an Adélie penguin (Pygoscelis adeliae) colony, and Brown

Bluff, which contains a mixed Adélie and gentoo penguin (P. papua) colony. We georegistered

eight ground-level photographs from Devil Island and nine ground-level photographs from

Brown Bluff (details in Table 1). The dates on which these photos were taken were not

available.

For evaluating our penguin colony segmentation results, we employed the following met-

rics: mean intersection-over-union (mean IoU), pixel accuracy, perimeter-area ratio, and area

error. Mean IoU, a common metric for segmentation tasks, is calculated as:

mean IoU ¼
True Positives

False Negativesþ True & False Positives
ð1Þ

This metric specifically measures the overlap between our predicted segmentation (colony

or non-colony) and the ground truth.

Pixel accuracy is a simpler and more intuitive metric defined as the ratio of correctly pre-

dicted pixels to the total number of pixels:

Pixel Accuracy ¼
True Positivesþ True Negatives

Total Number of Pixels
ð2Þ

Perimeter-area ratio (PAR)—a region’s perimeter divided by its area—is a simple shape

complexity metric, often used in studying landscapes and wilderness areas [85]. Here, we use

PAR to estimate the level of shape complexity captured by our colony registration procedure,

as colonies with excessive perimeter extents can imply a greater risk of predation to nesting

penguins [86]. For a shape with multiple components, we calculate PAR as the total perimeter

divided by the total area. Note that for a shape with holes (i.e. areas within a colony that do

contain nesting penguins), we take the perimeter to be the combined perimeters of the bound-

ary and holes.

Area prediction error is a measure comparing the predicted area (in this case, the penguin

colony) to its actual area, expressed as the ratio of the absolute error in the predicted area to

the actual area. Formally, it is expressed as:

Area Error ¼
jPredicted Area� Actual Areaj

Actual Area
ð3Þ

This metric is vital in our application because the area of these segmented penguin colonies

is directly related to the number of penguins estimated to be breeding within each colony [87],

but may be valuable for a range of ecological applications (e.g., patch area for vegetation moni-

toring, herd area in a study of grazers, pond area in hydrology, etc.).

Table 1. Photograph sources for Devil Island and Brown Bluff Antarctic penguin colonies. This table enumerates
the selected photographs from an initial pool of over 70 images, filtered based on criteria detailed in the discussion of
‘the appropriateness of ground photos’ (see Results and discussion section).

Colonies Sources

Devil
Island

Our team, and Dreamstime (www.dreamstime.com)

Brown
Bluff

Our team, Flickr users Outward_bound and Delphinidaesy, Alek Komarnitsky (www.komar.org), and
Antarctic Treaty Secretariat (www.ats.aq)

https://doi.org/10.1371/journal.pone.0311038.t001
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Results and discussion

Our method, illustrated schematically in Fig 2, successfully segments and georegisters penguin

colonies in complex environments, solving the challenge of the heterogeneous nature of

assembling preexisting photos and the highly dynamic surface dominated by shifting snow

(Figs 3 and 4, Tables 2 and 3).

Fig 2. Diagram with results of each step.We show the sequential outputs for our pipeline: penguin colony segmentation (panels a, d), camera pose
estimation for ground photographs (panels b, e), georegistrations via projection (panels c, f), and the final combined georegistration result (panel g).

https://doi.org/10.1371/journal.pone.0311038.g002

Fig 3. Segmentation and registration. Visualization of segmentation (a-c) and registration (d-f) of penguin colonies at Devil Island and Brown Bluff in
Antarctica.

https://doi.org/10.1371/journal.pone.0311038.g003
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Inside our pipeline, SAM does an excellent job tracing the irregular contours of the colony

(Table 2, Figs 3 and 4), and it can represent the detailed and high-resolution structures of the

penguin nesting area. Notably, when compared with the ground truth segmentation, our

method achieves a mean IoU of over 70%, an area error of approximately 7–12%, and per-

forms well in terms of the perimeter-area ratio difference and accuracy for both the Devil

Island and Brown Bluff colonies.

In Table 3 and Fig 5, we show the final georegistration results, including a composite of the

segmented areas of penguin colonies from an aerial view (Fig 5). The availability of high-reso-

lution satellite image annotations for Devil Island provide the opportunity to directly compare

the georegistered composite to high-resolution satellite imagery (Table 3). Compared with a

fully manual approach, we show good mean IoU and even better area error. Although the

accuracy of the composite colony area leaves room for improvement, in this particular applica-

tion where inter-annual variability in abundance is substantial and greater than 20%, estimates

of area with this level of precision can be highly informative when modelling population

change through time (see Fig 3d in [88]). The precision is limited by the challenges of project-

ing ground photographs to an aerial view using a DEM, particularly because the 2-meter

Fig 4. Segmentation and registration at Devil Island. Additional visualization of segmentation (a-c) and registration (d-f) of penguin colonies at Devil
Island, Antarctica.

https://doi.org/10.1371/journal.pone.0311038.g004

Table 2. Segmentation evaluation. Evaluation of the the Segment Anything Model (SAM) for penguin colony segmentation using mean intersection over union (mIoU),
difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. panels a-c in Figs 3 and 4 vs. ground truth). 95% confidence intervals are shown. An up (down)
arrow indicates a measure where a larger (smaller) number is preferred.

Colonies mIoU (%) " PAR Difference # Area Error (%) # Accuracy (%) "

Devil Island 76.8 ±0.4 0.004 ±0.001 7.8 ±0.6 98.2 ±0.1

Brown Bluff 76.1 ±0.8 0.012 ±0.001 12.6 ±0.7 97.1 ±0.1

https://doi.org/10.1371/journal.pone.0311038.t002
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resolution of the DEM available is at least 10 times coarser in resolution than the photographs

(typically 4K) taken by tourists. In other words, there may be over 100 pixels in the photograph

that get mapped to a single pixel in the DEM. Despite these challenges, our overall results illus-

trate the effectiveness of the method even under challenging environmental conditions (Fig 5).

In Tables 2 and 3, we also present 95% confidence intervals for all metrics, calculated by

repeatedly running our method 30 times. Our method yields only small variance across differ-

ent experimental runs. In Table 4, we perform a sensitivity analysis on the Devil Island dataset

to determine the optimal number of pixel prompts for an image. Our evaluation shows that

using only 3 pixel prompts is inadequate. In contrast, using 9-to-15-pixel prompts yields com-

parable results, indicating a plateau in performance. This confirms that our approach is robust

with a reasonably small number of pixel prompts. In practice, we use 10–15 pixel prompts per

image.

Citizen science is a growing area of interest for ecologists looking to study large or remote

areas, and photographs have been harnessed in a large number of these citizen scientist appli-

cations [89]. However, the vast majority of these photograph-based projects have actively solic-

ited photographs from tourists or have set up dedicated portals for image submission. The

alternative approach, to gather images placed online for other purposes, is less common. Some

examples of this ‘passive’ approach to citizen science include studies of whale sharks (Rhinco-

don typus) [90, 91] and Weddell seals (Leptonychotes weddellii) [7], two species that can be

individually identified in photographs by their spotted coloration. Though most cameras now

capture geographic metadata, our experience has been that such data are typically unavailable

by the time an image is posted online. Here we present an alternative approach for geolocating

Table 3. Model evaluation. Evaluation of final predicted penguin colony areas at Devil Island using mean intersection
over union (mIoU), difference in perimeter to area ratio (PAR), area error, and accuracy (i.e. Fig 5 vs. ground truth).
95% confidence intervals are shown. We also show the evaluation of a fully manual approach. An up (down) arrow
indicates a measure where a larger (smaller) number is preferred.

mIoU (%) " PAR Difference # Area Error (%) #

Ours 45.3 ±0.1 0.017 ±0.001 20.4 ±0.3

Manual Method 45.6 0.015 20.5

https://doi.org/10.1371/journal.pone.0311038.t003

Fig 5. Final composite. The final composite penguin colony areas at Devil Island (a) and Brown Bluff (b) in Antarctica from an aerial view.

https://doi.org/10.1371/journal.pone.0311038.g005
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photographs sourced from the internet that does not require the camera to record its location.

This method greatly expands the possible applications of passively sourced photographs for

monitoring environmental conditions or, as we have demonstrated in our application, popula-

tions of wildlife. Antarctica is difficult to survey because of its remoteness, so harnessing tour-

ists’ photos of penguin colonies can appreciably add to the robustness of datasets of population

size, colony shape, and phenology.

We found GLU-Net [76] was capable of successfully feature matching in the pose refine-

ment process (step 4 in method section; Fig 6) whereas the correspondences across images

were found to be too sparse for SuperGlue [53] and this led to unsuccessful pose refinement

(Fig 6). While pose refinement offers improved results in some cases, the relatively coarse reso-

lution of the satellite imagery we were using limited its benefit for our application. Conse-

quently, the segmentation results used for computing our metrics omit the pose refinement

step. Though we anticipate that future developments in the area of feature matching may help

mitigate this issue, the use of the highest resolution satellite imagery for a given location is

likely to provide the best opportunities for feature matching.

When considering the appropriateness of ground photographs for alignment with 3D

mesh, it is essential to prioritize those captured from a relatively distant viewpoint, as shown in

the bottom row of Fig 7. Images that provide sufficient context for georegistration offer clear

and easily recognizable features that can be used for alignment. In contrast, close-up images or

images that do not provide any sense of the larger landscape do not provide enough context

for the alignment procedure that we have developed and tested. The use of telephoto lenses,

while impacting the determination of the camera’s location due to their parallel projection

characteristics, should not be overly concerning. This is because the primary limitations in the

accuracy of our method currently stem from the resolution constraints of available satellite

imagery and DEM. Though our primary goal was to develop the tools needed to georeference

‘found’ images, there are contexts in which photographs might be explicitly solicited for a sci-

entific purpose. In particular, photography provides a straightforward way for travelers to

remote regions to get involved as ‘citizen scientists’ and in that light, Fig 7 provides some guid-

ance for photographers.

For 2D to 3D colony registration, working within entirely natural environments presents

distinct challenges. One predominant issue is the lack of stable landmarks like buildings

which, with their well-defined shapes, straight edges, and 90-degree angles, provide clear refer-

ence points that facilitate the alignment process [92]. Moreover, there exists an abundance of

training data specifically designed to identify such man-made structures, making them even

more advantageous for registration tasks [93–95]. In contrast, natural environments lack these

distinct, consistent features, complicating the alignment process. Furthermore, changing snow

conditions can introduce additional complexities; as snow accumulates, melts, or shifts, the

physical terrain and its visual representation can change substantially. Though not all

Table 4. Sensitivity analysis.We use the Devil Island dataset to conduct a sensitivity analysis for the number of pixel
prompts needed using mean intersection over union (mIoU), difference in perimeter to area ratio (PAR), and area
error. An up (down) arrow indicates a measure where a larger (smaller) number is preferred.

Number of Pixel Prompts mIoU (%) " PAR Difference # Area Error (%) #

3 37.0 0.044 36.1

9 46.2 0.022 19.1

12 45.6 0.023 20.4

15 45.3 0.017 20.4

Manual Method 45.6 0.015 20.5

https://doi.org/10.1371/journal.pone.0311038.t004
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applications will be as heavily impacted by snow accumulation, more dynamic landscapes are

unavoidably challenging and represent an area for continued technical development.

Our general schema for using georeferencing ground photos for ecological monitoring is

not specific to penguins. In fact, this technique could be used anytime there is a feature of

interest on the landscape that can be segmented and where the landscape contains enough

topography for a digital elevation model to be useful for alignment. Though its utility in any

specific application would need to be rigorously tested, potential applications include the

tracking of marsh grasses through time [96], flowering phenology [97], and the mapping of

vernal pools [98]. Though it was not the focus of our study, one natural application for this

technique would be in the study of glacial retreat, since glaciers are a natural focus for

ground photography and changes in their size and shape are of interest for studying the

impacts of climate change. Though 3D data are now commonly available to researchers

through techniques such as lidar and photogrammetry, our approach offers an alternative

that can incorporate older images and those taken without special equipment or a specific

monitoring aim in mind. It proves particularly valuable in scenarios where manual data

Fig 6. Feature matching. Comparative visualization of feature matching: (a) Dense pixel-wise correspondences between the rendered and ground
photographs using GLU-Net [76], indicating successful matching; (b) Sparse and incorrect pixel-wise correspondences using SuperGlue [53], reflecting
poor matching performance in the challenging scenario.

https://doi.org/10.1371/journal.pone.0311038.g006
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annotation might otherwise be required, providing a more intuitive solution through the use

of colored mesh rendering.

One limitation of our method is the dependency on a DEM to generate images that can be

used to align with ground photographs. Obtaining high-precision DEMs, especially those finer

than 2-meter resolution, can be particularly challenging. Such granular DEMs are essential for

accurate alignment, yet they are not always readily available or accessible for every location of

interest. Another limitation of our approach is the requirement of manual alignment, which

can introduce errors. It is worth noting that while some landscapes are inherently more

straightforward to align, thereby reducing the propensity for alignment errors, the complexity

of the landscape remains a significant factor in alignment quality. Drawing upon literature in

computational anatomy [99, 100], certain geometric primitives, including spheres, cylinders,

and rectangular prisms, are more readily identifiable by the human eye, facilitating easier reg-

istration and matching. Artificial structures or prominent landmarks, like architectural fea-

tures in satellite images, can act as useful reference points during the alignment process.

However, manual interventions from human operators not only introduce potential inaccura-

cies but also result in increased time and cost implications.

While we explored state-of-the-art deep learning and feature matching algorithms for cam-

era pose estimation, such as SuperGlue [53] and GLU-Net [76], these methods demonstrated

sub-optimal performance in identifying correspondences between images. The difference

between high-resolution ground photographs and medium-resolution images rendered from

3Dmesh is substantial, posing significant challenges even for human experts. Future advance-

ments, such as feature enhancement techniques, may help address these challenges. Addition-

ally, incorporating machine learning models to predict and adapt to dynamic changes in

colony boundaries could complement feature-matching processes, potentially improving geor-

egistration accuracy over time.

Fig 7. A visual guide for selecting appropriate ground photographs. Photos by Heather Lynch / Creative Commons CC-BY, Liam Quinn / Creative
Commons CC-BY-SA, and Flickr user Outward_bound / Creative Commons CC-BY-NC-ND.

https://doi.org/10.1371/journal.pone.0311038.g007
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Conclusion

Though satellites and uncrewed aerial vehicles are now routinely used for tracking changes on

the landscape through time, there are many applications in which neither type of data are read-

ily available. The proliferation of cameras in mobile phones now greatly expands the volume of

data potentially available for long-term environmental monitoring. Thus, creative approaches

for georeferencing these photos are essential to fully harness their value. Our proposed pipeline

combines state-of-the-art segmentation tools with an alignment technique that does not

require a priori information on the position of the camera, and paves the way for expanded

use of crowd-sourced or historical photography.
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ics despite stochastic noise. Nature Communications. 2017; 8(1):832. https://doi.org/10.1038/s41467-
017-00890-0 PMID: 29018199

89. Butler G, Ross K, Beaman J, Hoepner C, Baring R, da Silva KB. Utilising tourist-generated citizen sci-
ence data in response to environmental challenges: A systematic literature review. Journal of Environ-
mental Management. 2023; 339:117889. https://doi.org/10.1016/j.jenvman.2023.117889 PMID:
37058928

90. Davies TK, Stevens G, MeekanMG, Struve J, Rowcliffe JM. Can citizen science monitor whale-shark
aggregations? Investigating bias in mark–recapture modelling using identification photographs
sourced from the public. Wildlife Research. 2012; 39(8):696–704. https://doi.org/10.1071/WR12092

91. Magson K, Monacella E, Scott C, Buffat N, Arunrugstichai S, ChuangcharoendeeM, et al. Citizen sci-
ence reveals the population structure and seasonal presence of whale sharks in the Gulf of Thailand.
Journal of Fish Biology. 2022; 101(3):540–549. https://doi.org/10.1111/jfb.15121 PMID: 35638311

92. DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: Self-Supervised Interest Point Detection and
Description. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern RecognitionWorkshops
(CVPRW); 2018. p. 337–33712.

93. Dai A, Chang AX, Savva M, Halber M, Funkhouser T, Nießner M. ScanNet: Richly-Annotated 3D
Reconstructions of Indoor Scenes. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR); 2017. p. 2432–2443.

94. DeTone D, Malisiewicz T, Rabinovich A. Toward geometric deep SLAM. arXiv preprint
arXiv:170707410. 2017;.

95. Radenovic F, Iscen A, Tolias G, Avrithis Y, ChumO. Revisiting Oxford and Paris: Large-Scale Image
Retrieval Benchmarking. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion; 2018. p. 5706–5715.

96. Donnelly JP, Bertness MD. Rapid shoreward encroachment of salt marsh cordgrass in response to
accelerated sea-level rise. Proceedings of the National Academy of Sciences. 2001; 98(25):14218–
14223. https://doi.org/10.1073/pnas.251209298 PMID: 11724926

97. Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham EA, Abatzoglou J, et al. Tracking the
rhythm of the seasons in the face of global change: phenological research in the 21st century. Frontiers
in Ecology and the Environment. 2009; 7(5):253–260. https://doi.org/10.1890/070217

PLOS ONE Penguin colony georegistration using camera pose estimation and phototourism

PLOSONE | https://doi.org/10.1371/journal.pone.0311038 October 30, 2024 17 / 18

https://doi.org/10.7910/DVN/X7NDNY
https://doi.org/10.7910/DVN/EBW8UC
https://www.sentinel-hub.com
https://trimsh.org/
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1016/j.gecco.2018.e00504
https://doi.org/10.1038/s41598-021-94861-7
http://www.ncbi.nlm.nih.gov/pubmed/34321573
https://doi.org/10.1007/s00300-014-1451-8
https://doi.org/10.1007/s00300-014-1451-8
https://doi.org/10.1038/s41467-017-00890-0
https://doi.org/10.1038/s41467-017-00890-0
http://www.ncbi.nlm.nih.gov/pubmed/29018199
https://doi.org/10.1016/j.jenvman.2023.117889
http://www.ncbi.nlm.nih.gov/pubmed/37058928
https://doi.org/10.1071/WR12092
https://doi.org/10.1111/jfb.15121
http://www.ncbi.nlm.nih.gov/pubmed/35638311
https://doi.org/10.1073/pnas.251209298
http://www.ncbi.nlm.nih.gov/pubmed/11724926
https://doi.org/10.1890/070217
https://doi.org/10.1371/journal.pone.0311038


98. DiBello FJ, Calhoun AJ, Morgan DE, F SA. Efficiency and detection accuracy using print and digital
stereo aerial photography for remotely mapping vernal pools in New England landscapes. Wetlands.
2016; 36:505–514. https://doi.org/10.1007/s13157-016-0759-2

99. Biederman I. Recognition-by-components: a theory of human image understanding. Psychological
Review. 1987; 94(2):115. https://doi.org/10.1037/0033-295X.94.2.115 PMID: 3575582

100. Hussain Ismail AM, Solomon JA, Hansard M, Mareschal I. A perceptual bias for man-made objects in
humans. Proceedings of the Royal Society B. 2019; 286(1914):20191492. https://doi.org/10.1098/
rspb.2019.1492 PMID: 31690239

PLOS ONE Penguin colony georegistration using camera pose estimation and phototourism

PLOSONE | https://doi.org/10.1371/journal.pone.0311038 October 30, 2024 18 / 18

https://doi.org/10.1007/s13157-016-0759-2
https://doi.org/10.1037/0033-295X.94.2.115
http://www.ncbi.nlm.nih.gov/pubmed/3575582
https://doi.org/10.1098/rspb.2019.1492
https://doi.org/10.1098/rspb.2019.1492
http://www.ncbi.nlm.nih.gov/pubmed/31690239
https://doi.org/10.1371/journal.pone.0311038

