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Abstract—Taking advantage of the extreme stability of the pulsar
period, it can serve as the timing source for grid synchronization
to compensate for the timing drift instigated by the loss of GPS
signal. Nevertheless, the real-time transmission and processing of
the pulsar data suffer from its high-frequency data rate, varying
from megahertz to gigahertz, resulting in reduced computing speed
and increased time delay. To mitigate this issue, the hardware and
software frameworks are implemented for the high-density pulsar
data transmission and processing for grid synchronization in this
research. Initially, the high-density pulsar data is transferred using
open-source software. The complementary duty cycle timing mod-
ule is designed to coordinate the operation of the dual-channel high-
speed interface and software. Subsequently, the multiple-threading
is applied to the receiving, parsing, and splicing pulsar data. Next,
the pulsar signal extraction method is implemented based on the
polyphase filterbank and time of arrival estimation. Ultimately,
real-time performance verification experiments are carried out for
different components under two hardware platforms. The results
demonstrate that only 0.482 s is required for processing 4 Gigabyte
data through multiple-threading, which is 3.8 times faster than the
single thread. The pulsar signal extraction can also be executed
within 707 ms for 4.8 seconds of data, thereby indicating that
real-time requirements can be met.

Index Terms—Grid synchronization, high-density pulsar data,
timing module, data transmission and processing, multiple-
threading.

I. INTRODUCTION

R
ECENTLY, the development of a pulsar-based timing

source for grid synchronized sampling has gained traction

Manuscript received 23 December 2023; revised 1 April 2024; accepted
29 May 2024. Date of publication 10 July 2024; date of current version 23
September 2024. Paper 2023-PSEC-1586.R1, presented at the 2023 IEEE In-
dustry Applications Society Annual Meeting, Nashville, TN, USA, Oct. 29–Nov.
02, an approved for publication in the IEEE TRANSACTIONS ON INDUSTRY

APPLICATIONS by the Power Systems Engineering Committee of the IEEE
Industry Applications Society [DOI: 10.1109/IAS54024.2023.10406690]. This
work was supported in part by the National Natural Science Foundation of
China under Grant 52177078 and Grant 52307093 and in part by Hunan
Provincial Natural Science Foundation of China under Grant 2023JJ40151.
(Corresponding author: Wenxuan Yao.)

Wei Qiu, Zhangqing Chen, Cheng Liu, Yao Zheng, Sihao Tang, He Yin, and
Wenxuan Yao are with the College of Electrical and Information Engineer-
ing, Hunan University, Changsha 410082, China (e-mail: qiuwei@hnu.edu.cn;
liu@utk.edu; tangsihao@hnu.edu.cn; wenxuanyao@hnu.edu.cn).

Yilu Liu is with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996 USA, and also with the
Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIA.2024.3425807.

Digital Object Identifier 10.1109/TIA.2024.3425807

due to its exceptional period stability. It is reported that the

frequency stability of millisecond pulsar PSR 1937 + 21 exceeds

6×10−14 over a span of four months [1], [2]. The primary ad-

vantages of pulsar-based timing are that it can serve as a backup

non-satellite clock source and defense against GPS signal loss

and spoofing. For instance, the tolerance for the timing source

is 1 µs, and the maximum timing error can not be exceeded

±26 µs and ±31 µs for the 60 Hz grid and 50 Hz power

system, respectively in the area of grid synchronized [3]. How-

ever, the local system can only withdrawn for several minutes

because the timing drift will easily exceed tens of microseconds

based on the actual testing in [4]. Concurrently, pulsars have

great potential for achieving high timing precision given the

stability of the pulsars [5]. The signals emitted by pulsars are

electromagnetic waves, with the most distinct profile of most

pulsars being extractable from signals around 1440 MHz [6].

To facilitate the sampling of the pulsars, the frequency range of

the radio telescope typically spans from 0.3 to 116 GHz [7].

To drastically alleviate the computational burden, the mixer

can be used to down-convert the high-frequency input signal

to hundreds of megabytes [8]. However, such a high sampling

rate still challenges the real-time performance of establishing

the pulsar-based timing source, especially for the continuous

observation of pulsars [9].

To enable pulsar signals to be used for grid synchronization,

a series of critical stages must be meticulously executed [10].

These stages encompass the collection and transmission of pul-

sar signals, the extraction of pulse profiles, and time of arrival

estimation (TOA)-based grid synchronization signal generation.

The efficacy of the initial stage is contingent upon the capabilities

of the embedded hardware and the velocity of sampling. The rest

two stages can be implemented on the data server or data center,

which shifts the focus towards the intricacies and computational

efficiency of the algorithmic processes involved.

In the initial stage, to expedite fast pulsar signal collection and

transmission, several hardware platforms have been deployed.

Notably, the second generation of the Reconfigurable Open

Architecture Computing Hardware (ROACH) [11] platform is

developed by merging the characteristics from the IBOB and

BEE2 platforms [12], where the IBOB and BEE2 both are the

early boards with high-speed and high memory bandwidth [13].

Additionally, a total of 14 Collaboration for Astronomy Signal
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Processing and Electronics Research (CASPER) [14],

[15] Smart Network ADC Processor (SNAP) [16] field-

programmable gate array (FPGA) boards are built for the

CSIRO Parkes Telescope in New South Wales, Australia [17].

A total of 27 compute nodes are installed for this telescope

with a 1.125 GHz bandwidth. Importantly, the output of the

pulsar data is quantized into 8 bits to reduce the computation.

Another example is the design of China re-configurable for

a Five-hundred-meter Aperture Spherical radio Telescope

(FAST) in [18]. By integrating multiple single-FPGA hardware

platforms, an extremely high speed and huge memory

configuration can be applied for long-life and high-performance

operation. This hardware configuration is usually utilized in

some well-known projects such as the Square Kilometre Array

(SKA), and Karoo Array Telescope (KAT). Typically, aiming at

the 4GS/s to 6GS/s sampling rate, the sampling data is routed

through the 10 Gigabit Ethernet (GbE) module, which is capable

of transmitting Ethernet frames at a bandwidth of 10 gigabits

per second. The challenge of the 10 GbE lies in mitigating

the risk of data frame loss problems during high-density data

transmission.

Apart from improving the hardware configuration, software

optimization is another way to help refine pulsar signal profiles

and boost computational efficiency in the rest two stages. It

is time-consuming to search for the objective pulse from the

heavily noise-laden signal. For example, the Wavelet denoising

algorithm is developed to increase the signal-to-noise in terms

of the cross-correlation technology [19], and a near 0.9867

coefficient is achieved. Then, the epoch folding of the data

with repetition periods is utilized using the jumping average

window [20]. Results demonstrated that the detected time de-

creased while keeping a high signal to noise. Additionally, some

research develops software packages to process the pulsar data.

For example, in [21], a Python/C++ framework named Bifrost

is developed to process the high-throughput data stream. It

leverages the high performance of Graphics Processing Units

(GPUs). Another technology based on the GPU parallel com-

puting technology is developed for ultra-wide bandwidth pulsar

processing [22]. Besides, the PSRCHIVE is an open-source and

object-oriented data analysis software library that is suited for

pulsar astronomy [23]. It integrates different data processing

functions, such as modifying the metadata, and produces cus-

tomized quality plots. The other software are TEMPO2 [24],

PSRCAT [25], and PRESTO [26]. The advantages of these

libraries are that data processing would become easier and there

is no need to dig into the details of the pulsar signal processing.

Conversely, the difficulty is that it would be challenging to

process the pulsar signal if the data format is different from what

the library stipulates. In instances such as debugging hardware

and software with analog front-end data, where the format is

often bespoke, this can pose a considerable challenge.

Before the pulsar signal can be deployed into the grid syn-

chronization, the TOA-based technology is necessary to estimate

the frequency of the crystal oscillator. Approaches in both the

temporal and frequency domains are applicable. For instance,

the TOA of the observation pulsar can be determined by the

template-matching methodology by comparing the phase offset

Fig. 1. The hardware framework of high-density pulsar data transmission and
processing.

between the template and observation [27]. However, the results

may not be reliable because it is sensitive to noise. To this

end, the frequency method is proposed. In [28], the channelized

discrete Fourier transform is implemented to improve the timing

precision using the broad-band timing data. It improves the

uncertainties of TOA measurement by approximately 20 percent

in the median. The complexity of this frequency domain is

approximately O(Nlog(N)), where N is the length of the data,

and the real-time performance can be satisfied in most of the

embedded systems.

Taking into account the aforementioned stages, to facilitate

real-time high-density pulsar data transmission and processing

for grid synchronization, the speed of data processing is expected

to surpass the speed of data transmission. Consequently, the

pulses can be extracted from the pulsar data and applied to grid

synchronization [29].

To address the aforementioned limitations, this paper intro-

duces a real-time high-density pulsar data transmission and pro-

cessing framework for grid synchronization. Building upon the

analog front-end circuit and pulsar-based hardware framework

established in [30], this research further enhances real-time per-

formance as an extension of the IEEE IAS 2023 conference [31].

1) To prevent frame loss, a data transmission method is devel-

oped based on hardware-assisted software PF_Ring ZC.

Additionally, a complementary duty cycle timing module

is designed to coordinate the operation of the hardware and

PF_Ring ZC, achieving a dual-channel 10 GbE/s speed.

2) To minimize operation time and attain real-time perfor-

mance, a multi-threading approach is employed for pulsar

data processing.

3) The pulsar signal extraction methods are introduced based

on the polyphase filterbank (PFB) and fast folding. The

efficacy of the extracted pulse profile is subsequently as-

sessed through a meticulously designed cross-correlation

evaluation.

4) A hardware platform for pulsar data sampling and trans-

mission is designed. Comprehensive experiments under

various hardware and test scenarios are conducted, with

the results indicating that real-time high-density pulsar

data transmission and processing can be achieved.

The structure of this paper is organized as below. The frame-

work of the developed data transmission and processing is

presented in Section II. The principle of the designed software
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is introduced in Section III and IV. Then, the pulse signal

extraction is introduced in Section V. Next, the experiments are

conducted in Section VI. Finally, the conclusions are drawn in

Section VII.

II. FRAMEWORK OF THE DEVELOPED DATA TRANSMISSION

AND PROCESSING

To achieve real-time high-density pulsar data transmission

and processing, the hardware and software scheme are devel-

oped, as demonstrated in Fig. 1, which can be segmented into

three distinct stages

i) Data transmission based on PF_Ring ZC: High-density

pulsar data, encompassing both the sampling data and

polyphase filterbank data [32], are collected. Subse-

quently, this data is transferred via the PF_RingZC, uti-

lizing the 10 GbE module.

ii) Implementation of multi-threading: Following this, the

pulsar data transmitted from the 10 GbE module is stored

in the data server. A multi-threaded program is imple-

mented to parse the pulsar data, thereby accelerating the

calculation process.

iii) Pulsar data processing: The pulsar data is processed and

the pulse signal is extracted utilizing PFB, dedispersion,

and folding technologies. Thereafter, the grid synchro-

nized signal (or the pulse per second) can then be gen-

erated according to the estimated time of arrival based

method, which involves comparing the standard profile

with the extracted signal [33], [34].

Here, the second edition Smart Network ADC Processor

(SNAP2) [35], [36] based on the Kintex-7 FPGA (K7) is se-

lected, also called SNAP2-K7, as shown in Fig. 1. It contains

three ADCs with a maximum sampling frequency of up to

500 MHz and two Quad Small Form-factor Pluggable (QSFP)

connectors.

III. DATA TRANSMISSION BASED ON PF_RINGZC

To achieve high-density data transmission, a new type of

network socket named PF_Ring technology is utilized [37]. It is

available for Linux kernel with the advantage of improving the

packet capture speed dramatically.

The commonly used high-speed packet capture libraries in-

clude the tcpdump, libpcap and PF_Ring. The tcpdump and

libpcap are the command-line packet analysis and portable

C/C++ libraries for network traffic capture, respectively [38].

The differences in the data packet transmission are demonstrated

in Fig. 2. For the libpcap, it can be seen from Fig. 2 that the data

packet will be saved in the data buffer, and then the user can

capture the data. The data would be copied several times thus

limiting its efficiency.

Compared to the libpcap, the data packet capture buffer is

removed and therefore the data speed can be faster for the

PF_Ring. Besides, the PF_Ring ZC is an extended version of

PF_Ring, which can accelerate packet capture by means of

dynamically loadable kernel plugins. As depicted in Fig. 2,

the PF_Ring ZC can directly capture the data from the Direct

Memory Access (DMA) without the need for an RX buffer.

Fig. 2. Comparison for the libpcap, PF_Ring, and PF_Ring ZC, source: [39].
FIFO: First In, First Out, mmap: memory-mapped file I/O.

Fig. 3. The timing diagram, the n < 1500 denotes the number of the valid
data frame does not exceed 1500.

This technology is called direct network interface card access

(DNA). The biggest advantage of DNA is that it can achieve

zero-copy, which means that the CPU does not perform the data

copy operation.

However, the data packet contains some parity bits, as shown

in Fig. 3. It shows that there is a gap at the end of the frame,

which indicates that the system can not guarantee the continuous

transmission of data. The duty cycle can be calculated based

on the length of the valid and gap, which can be expressed as

valid/(valid + gap).

To this end, the dual-channel, hot-pluggable network inter-

face, named the SFP+ ports is usually used in the hardware. To

achieve the interfaces operating in coordination and continuous

data transmission, a coordination mechanism is designed. The

dual-channel ports are controlled to transfer data alternately.

In this research, a complementary duty cycle timing module

is developed, where the software and tested timing results are

presented in Fig. 4.

In Fig. 4(a), the designed complementary duty cycle timing

module consists of three components, including the period

count, counter comparison, and reset. The software is imple-

mented based on the Simulink design using both standard Xilinx

system generator blockset, as well as library blocks specific

to CASPER boards. As can be seen from the output of this

timing module shown in Fig. 4(b), the output timing signals are

completely complementary, indicating the effectiveness of the

designed module.

The architecture of the programmed 10 GbE module is de-

picted in Fig. 5. The design encapsulates three distinct stages:

gigabit network communication, complementary duty cycle tim-

ing module, and 10 gigabit Ethernet port. The Gigabit network

communication is responsible for establishing communication

with the SNAP2-K7 to realize real-time command control.

Meanwhile, the 10 gigabit Ethernet port is utilized to encapsulate

and transmit the data processed by the PFB.
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Fig. 4. The designed complementary duty cycle timing module and its tested
timing results. In (a), the yellow part denotes the hardware configuration in the
SNAP2-K7, the light blue denotes the basic operations such as the counter.

Fig. 5. The program of 10 GbE module based on Simulink.

Finally, the proceeding of the PF_RingZC can be summarized

as

1) Initialization: The user receiving program is initialized

first, a PF_RING socket is created, and waiting for the

arrival of the data packet.

2) Receiving: The network card receives the data packet from

SNAP2-K7. The hard interrupt is triggered, and the driver

in the server copies the pulsar data into the ring_buffer

allocated by the PF_RING socket through DMA technol-

ogy.

3) Saving: The user program continuously writes the re-

ceived data into the target address using fwrite() in the

Fig. 6. The flowchart of the multi-threading for pulsar data processing.

pfring_loop() function, which is the C language function.

Then the data will be saved on the hard disk.

Next, the data would be processed in the data server and the

pulses can be extracted.

IV. REAL-TIME PROCESSING BASED ON MULTI-THREADING

If pulsar data streaming is not processed in a timely manner,

it can result in a substantial accumulation of data. Traditionally,

both multi-threading and multiprocessing are employed to expe-

dite data processing. However, multiprocessing does not allow

for data sharing between different process functions, which can

slow down data access speed. To achieve real-time operation,

multi-threading technology is designed in this section.

If pulsar data streaming is not processed in a timely manner,

it can result in a substantial accumulation of data. Traditionally,

both multi-threading and multiprocessing are employed to ex-

pedite data processing. The parallelism with multiple isolated

processes is popular in Python but it may lead to inefficiency

because the system needs to allocate separate memory space

when a new process is created [40], which can slow down

data access speed. For multi-threading, there is no need for

additional memory allocation and environment copying, thus

the overhead of creating a new thread is small. Importantly, it

is worth mentioning that the pulsar data stream is a binary file

requiring more I/O operations, where the global interpreter lock

would be released during I/O operations and it also helps speed

up the data parsing process. To achieve real-time operation,

multi-threading technology is designed in this section.

The fundamental multi-threading process is depicted in Fig. 6.

Utilizing the Python language, the number of multi-threading is

set as nt. Subsequently, the received data is processed in parallel

before being integrated. The library named ’threading’ is utilized

in this research [41].
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Fig. 7. Implementation of PFB for pulsar data streaming.

V. PULSAR SIGNAL EXTRACTION AND SYNCHRONIZED SIGNAL

GENERATION

A. Pulsar Signal Extraction Based on PFB

The polyphase filterbanks have the advantage of low compu-

tational complexity in processing the high-sampling radiotele-

scope data.

Denoted received pulsar data as x(n), the PFB consists of

two steps to calculate its output, including the polyphase finite

impulse response (FIR) filter and fast Fourier transform (FFT).

The motivation for deploying a polyphase FIR filter is to enhance

the power spectrum response as well as decrease the calculation

time.

In the first step, the input data x(n) will be decomposed into

a set of P sub-sequences. This process is achieved through a

decimating lowpass polyphase filter, which can be expressed as

ypfbp (n′) =
M−1
∑

m=0

wp(m)xp (n
′
−m) (1)

wherewp(m) is the coefficients from the prototype lowpass filter

M denotes the number of polyphase taps in the filter, xp(n)
denotes the P th branches derived from x(n), p = 1, 2, . . ., P .

The window function can be derived from the window function,

where the Hanning window function is selected in this research.

Therefore, each branch of yp(n
′) will be fed into the FFT to

calculate the spectrum of the pulsar signal, we can get the FFT

results

Yfft (k, n
′) =

P−1
∑

p=0

ypfbp (n′) e−2πikp/P

=

P−1
∑

p=0

M−1
∑

m=0

[

wp(m)e−2πikp/P
]

xp (n
′
−m) .

(2)

As demonstrated in Fig. 7, the PFB for processing the pulsar

data streaming is divided into two parts, where M × P points

are used in the first part. Based on the above two equations, the

sampling rate of the input x(n) is downsampled into the M th

dataset with a length ofP . To accelerate the calculation, the FFT

is programmed in the FPGA as a part of PFB because it has a

lower time complexity.

Fig. 8. Implementation of polyphase filterbanks based on Simulink.

The designed program of polyphase filterbanks with four taps

is demonstrated in Fig. 8. It shows that the window coefficients

wp(m) are saved in the memory and then the multiple with the

data from taps. Therefore, the output of four taps is accumulated

through 3 adders. Finally, the output of polyphase filterbanks

will be fed into FFT.

B. Complexity Analysis of PFB

The complexity of PFB is analyzed in this subsection. For the

first part of PFB, a buffer of size M × P is necessitated to store

the filter coefficients. Considering the real-time characteristics,

only 2P points deserve to be saved, one for data saving and

another for sum calculation. The complexity of the polyphase

FIR filter is O(log(MN)), which simplifies to approximately

O(log(N)), where N is the length of the data. The FFT exhibits

a complexity of O(Nlog(N)). Besides, the memory size and

bit length are also changed with the multiplication and addition

operations.

C. Folding and TOA Estimation for Grid Synchronization

Caused by the vacuum media interference, the delaying effect

will be reflected in different frequency channels. The low-

frequency areas will be delayed more than the high-frequency

band. Therefore, the incoherent dedispersion is deployed to

calibrate the results of different frequency channels of PFB.

The observed time delay in each channel can be expressed as

∆T (f) ≡
kDM

∆τ

(

1

(f0 + f∆f)2
−

1

f 2
0

)

(3)

where the kDM = 4.148808 × 103 MHz2 pc−1cm3 s is the dis-

persion constant. ∆τ is the sampling interval between each

sampling point. f denotes the frequency of each channel, f0 and

∆f are the start frequency of the band and channel frequency

differences with the MHz unit, respectively.

Actually, the value of ∆T (f) is a decimal. Thus, the round

function is utilized to calculate the time delay as

∆t(f) ≡ round(DM∆T (f)) (4)
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TABLE I
CONFIGURATION OF THE DATA SERVER AND LAPTOP

where the DM ≡
∫

nedL denotes the dispersion measure and

it is determined by the distance L to the observed pulsars and

the electron number density ne.

After that, the time series data is channeled into the folding

steps for pulsar extraction. At this juncture, the folding period

is approximated and is expected to fall within the interval

[mtbin, (m+ 1)tbin], and tbin denotes the equivalent time per

point after incoherent dedispersion. To ensure precise folding,

the accumulated residual error, denoted by σ = tbin − fp, is

meticulously tracked for the next folding, where fp denotes the

pulsar period.

Additionally, the improved fast folding algorithm (IFFA) will

also employed to estimate the period of puslars, where the IFFA

was originally designed by Stealin and Song [42].

Next, after extracting the temporal pulse profile, the time of

arrival of the observation will be determined. The fundamen-

tal concept involves comparing the observation profile with a

template, which is typically provided by long-term observations

conducted through large radio telescopes. By establishing an

estimation method for TOA, its uncertainty can be calculated

using Fourier phase gradient and Fourier domain technologies,

in conjunction with Markov chain Monte Carlo methodolo-

gies [13].

Ultimately, the frequency of the local crystal oscillator will be

estimated by establishing the relationship between the sampling

data and the TOA value.

VI. EXPERIMENTS

To verify the real-time performance of the designed frame-

work, a series of experiments have been designed and con-

ducted. The programming development environment is based

on MATLAB 2016b and Vivado 2016.04 under Ubuntu 16.04.

For hardware interfacing, the 10 G SFP+ DAC passive cable is

selected to connect the SNAP2-K7 and Ethernet adapter. Fur-

thermore, considering that the quad SFP (QSFP) is configured

in SNAP2-K7, the cable converter is selected to realize QSFP to

SFP interface conversion so that the 40 G speed can be converted

to 10 G, as illustrated in Fig. 1.

In the tests, the operating frequency of the 10GbE module is

156.25 MHz, and the main frequency of FPGA is set to 100 MHz.

To compare the speed, a laptop is also used. The configuration

of the data server and the laptop are listed in Table I.

A. Transmission Rate Under Different Duty Cycles

To verify the transmission rate under different duty cycles and

module clocks, the results are carried out as listed in Table II.

In this Table, the frequency refers to the clock of the Gigabit

TABLE II
TRANSMISSION RATE UNDER DIFFERENT DUTY CYCLE FOR DATA SERVER

TABLE III
THE RUNNING TIME USING MULTIPROCESSING FOR 4 GB PULSAR DATA

transceiver reference clock. And a relatively low frequency is to

explore the progressive relationship of the transfer speed before

reaching the maximum rate.

It reveals that the transmission rate increases with the in-

crease of the duty cycle. Meanwhile, the module clock exerts

an impact on the transmission rate, with higher frequencies

yielding increased rates. Importantly, the transmission rate can

reach 6.42 G/s which is sufficient to receive the data from the

SNAP2-K7 when utilizing dual SFP ports. This also means that

the pulsar data would not be dropped under this configuration.

B. Comparison for Multi-Threading and Multiprocessing

Next, to further verify the real-time performance, both the

multi-threading and multiprocessing are tested. The duration of

data parsing and integration under multiprocessing is listed in

Table III.

The data presented in Table III demonstrates that the time

increases when the number of cores increases. Besides, a greater

number of tasks correlates with increased time demands. For

example, only 2.362 s is consumed, and this value escalates to

8.138 s with a greater task load, even when additional cores are

employed. The primary reason could be that when a new process

is created, the operating system needs to allocate independent

memory space for it and copy the execution environment of the

parent process, which is relatively time-consuming. Overall, the

results reveal that there are more obstacles to meeting real-time

requirements for multiprocessing in processing the pulsar data.

To assess real-time performance further, the time consump-

tion via multi-threading is tested, as demonstrated in Fig. 9.

A 4 GB data is collected which corresponds to a sampling

time of approximately 4.8 s. When the nt = 1, it means that

the multi-threading is not activated. It can be seen that as the

number of threads increases, the time decreases to 1.493 s on

the laptop. For the data server, the time increases slightly with

more cores. The reason could be that the server is much faster

than the laptop, and the server reaches an inflection point where

additional threads no longer equate to performance gains. If

the data is processed without multi-threading, 4 GB data will
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Fig. 9. The running time using multi-threading for 4 GB pulsar data.

Fig. 10. The waterfall profile and the extracted pulses for pulsar J1939+2134.

consume 1.842 s for the data server. The lowest times are 0.482 s

and 1.493 s for the data server and laptop when the number of

cores is 100 and 10, respectively. The result demonstrates that

the speed of processing data is increased by more than 3.8 times

(1.842/0.482), indicating that the data is processed faster than

the data is collected.

One illustrative case of pulse extraction is depicted in Fig. 10.

It demonstrates that the pulses can be extracted successfully,

where their profile is the same as the pulsar J1939+2134.1

Utilizing this profile, the timing information can be connected

with the Coordinated Universal Time. Then the pulse profile

can be converted into the TOA that the grid synchronization

measurement device can be refereed.

C. Verification of the PFB and Processing Time

To investigate the effectiveness of the PFB and the folding

performance under different volumes of pulsar data, the ex-

tracted PFB and pulse profiles are carried out, as illustrated in

Figs. 11 and 12, respectively. The tests are conducted based on

the analog front-end circuit in the previous research [30], where

the standard pulse profile suppressed full frequency range noise

1Source: http://www.epta.eu.org/epndb/

TABLE IV
THE RUNNING TIME USING PFB AND FOLDING PULSAR DATA

is fed into the circuit. The pulse profile is referred to as the PSR

B1937+21, which is a double pulsar system. Additionally, there

is no need to perform dispersion as the analog signal in this

instance does not contain any time delay.

As demonstrated in Fig. 11, the magnitude of the waterfall

profile of pulsars undergoes random changes due to the super-

imposed heavy noise. As the sampling time increases, the folding

times increase from Fig. 11(a) to (d). It is noteworthy that the

magnitude ratio of the pulsar and noise is determined by the

circuit voltage in this scenario. It is anticipated that the noise

will neutralize itself over time.

Subsequently, the profiles of the pulsar are extracted and

folded based on the PFB waterfall results, with all profiles

being normalized. It is noteworthy that, despite the phase shift

phenomena in Fig. 12, which is brought on by the observation

time difference, the profile of the standard and observed pulses

remains similar. It can be visualized from Fig. 12(a) that the

observed pulsar signal contains a significant amount of noise in

comparison to the standard profile. However, the pulse profile

becomes more distinct as the number of folding times increases,

as compared with Fig. 12(d). Importantly, the noise is elimi-

nated with a longer time window, which aligns with the results

presented in Fig. 12.

To quantitatively evaluate the performance of the extracted

pulses, the normalized cross-correlation index is calculated, as

demonstrated in Fig. 13. It reveals that the red line has the

highest value, indicating that a long-time folding contributes to

the improvement of the profile. Meanwhile, it can be seen from

Fig. 13 that the noise will lead to increased cross-correlation

when the phase is near 1000. This effect arises because the

noise obscures the amplitude discrepancy between the pulse and

noise. Consequently, a longer window size will produce a clearer

profile with differential correlation indicators.

D. Performance With Different Volumes of Pulsar Data

To authenticate the real-time performance of the PFB and

folding parts in Section IV, the time consumed for pulsar profile

extraction is evaluated based on the server configuration delin-

eated in Table I. The generated folding and improved folding

method IFFA [42] are compared, with the results tabulated in

Table IV. The uncertainty of folding is also presented.

It is evident that the time consumption increases with the

volume of data. Despite the PFB calculation requiring nearly

3.3 seconds for 1 GB of data, this step can be integrated into the
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Fig. 11. The waterfall profile for pulsar PSR B1937+21 under different window sizes, (a) 0.003125 s window size, (b) 0.0125 s window size, (c) 0.05 s window
size, (d) 2 s window size.

Fig. 12. Extracted pulses for PSR B1937+21 under different numbers of
folding times. (a) 10 folding times for 0.003125 s data, (b) 30 folding times
for 0.0125 s data, (c) 51 folding times for 0.05 s data, and (d) 408 folding times
for 2 s data.

Fig. 13. The normalized cross-correlation under different numbers of folding
times.

FPGA to facilitate real-time computation. Additionally, the fold-

ing time is linearly proportional to the data volume. Compared

with the generated folding and IFFA, it is observed that IFFA

consumes more time due to additional shifts and operations. The

uncertainty results also indicate that larger data volumes result

in higher uncertainties. Overall, it consumes about 482 ms for

data receiving and 225 ± 1.23 ms to fold the pulse profile for

4 GB volume data, which corresponds to the 4.8 s original data,

indicating the real-time performance can be satisfied.

VII. CONCLUSION

To facilitate real-time high-density pulsar data transmission

and processing, a hardware and software framework is devel-

oped to promote the application of pulsars in grid synchroniza-

tion. The data transmission technology based on PF Ring ZC

is used. Besides, a complementary duty cycle timing module

is designed to coordinate the dual 10GbE module ports. The

results of transmission rate under different duty cycles demon-

strate that 9.6 GB/s speed can be achieved, even at a 75%

duty cycle. Then, the multi-threading is applied to the pulsar

data processing, including reading, parsing, and splicing. The

tested time based on the laptop and server reveals that it will

consume 1.493 s and 0.482 s for 4 GB data, respectively. The

developed framework enables real-time high-density pulsar data

processing, significantly reducing the time required for pulsar

signal extraction and TOA transformation. Moreover, the folding

experiments are carried out, where the results demonstrate that

approximately 707 ms will be consumed for 4 GB volume

pulsar signal measurements when the PFB is performed in the

hardware. This indicates that a low time delay can be achieved

for grid synchronization.
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