
SCALE: A Structure-Centric Accelerator for
Message Passing Graph Neural Networks

Lingxiang Yin*, Sanjay Gandham*, Mingjie Lin, Hao Zheng‡
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA

{lingxiang.yin, sanjay.gandham, milin, hao.zheng}@ucf.edu

Abstract—Message passing paradigm has been widely used
in developing complex Graph Neural Network (GNN) models,
allowing for concise representations of edge and vertex-wise
operations. Despite its pivotal role in theoretical advancement,
the respective expression of edge and vertex operations, along
with evolving GNN variants and datasets, has inevitably led
to enormous computational complexity due to heterogeneous
computation kernels. In particular, such inconsistent computation
characteristics present new challenges in leveraging intermediate
data reuse, ensuring both edge and vertex-wise workload balance,
and sustaining system scalability.

In this paper, we propose a structure-centric accelerator,
SCALE, that can support a variety of message passing GNN
models with improved parallelism, data reuse, and scalability.
The central idea is to find latent similarities among GNN
primitives such as shared dataflow structure, rather than strictly
adhering to heterogeneous model structure. This serves as a
hinge to homogenize inconsistencies in various GNN computation
kernels. To accomplish this concept, SCALE consists of three
unique designs, a novel systolic array-like architecture, a degree
and vertex-aware scheduling, and a coherent dataflow tailored
for fused graph and neural operations. The proposed systolic
array-like architecture can support varying dataflows such as all-
reduce, of distinct GNN operations improving parallelism, data
reuse, and throughput. The degree and vertex-aware scheduling
can remedy the workload imbalance encountered in vertex and
edge-wise operations. Moreover, the proposed dataflow can unify
the data movement of both graph and neural operators without
extra communication and storage overheads. Our simulation
results show that SCALE achieves 1.82× speedup and 38.9%
energy reduction on average over the state-of-the-art GNN
accelerators [1]–[4].

I. INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a promis-

ing model to comprehend complex graph-structured data,

showing satisfactory performance in various applications such

as social networks [5]–[7], recommendation systems [8]–[10],

and bioinformatics [11]–[14]. In light of recent theoretical ad-

vancements, GNN models now incorporate complex edge and

vertex-wise operations to capture nuanced graph structures and

semantics. Such complex operations are typically expressed

using the message passing paradigm in deep learning libraries

such as Deep Graph Library and Pytorch Geometric. Yet,

despite its importance, message passing GNN poses escalating

computational and communication challenges on the hardware

due to intricate vertex and edge-wise operations.

Even though significant efforts [15]–[21] have been de-

voted to facilitating Graph Convolutional Networks (GCN),

they are inefficient in handling message passing GNNs with

*Equal Contribution. ‡Corresponding Author.

Table I: Comparisons of SCALE with other state-of-the-art

accelerators.

Accelerator Message
Passing

Commu.
Latency

Unified
Dataflow

Data
Reuse

Workload Balance
Aggr. Update

AWB-GCN [2] � Medium 1 Low 1 1

GCNAX [1] � High 1 Medium 1 1

I-GCN [22] � High 2 Medium 2 2

ReGNN [4] 3 Medium � Medium � �

FlowGNN [3] � High � Low � �

SCALE � Low � High � �
1: Optimized for sparse-dense matrix multiplications; 2: Optimized for dense-dense

matrix multiplications; 3: No edge embedding support.

explicit edge operations as shown in Table I. Specifically,

GCN computations can be simply accelerated in the form

of sparse-dense matrix multiplication (SpMM) and general

matrix multiplication (GEMM). Prior works, such as AWB-

GCN [2] and I-GCN [22], either relied on runtime workload

distribution or matrix preprocessing to overcome the sparsity

issue involved in SpMMs. GCNAX [1] utilized loop fusion

and reordering to optimize SpMM kernels, thus reducing

excessive off-chip memory access. However, emerging GNN

models like Graph Attention Networks (GAT) [23] involve

complex attention score calculation over edges represented by

sampled dense-dense matrix multiplication (SDDMM) [24].

Higher-Order Graph Convolutional Architectures [25] require

information aggregation from non-adjacent vertices. Conse-

quently, such intricate graph operations make it difficult to

expedite GNN computations through graph reordering and

SpMM optimizations.

To support message passing GNNs, FlowGNN [3] intro-

duced a dataflow architecture to support edge and vertex

operations in a pipeline fashion. These computation units are

connected by a complex interconnection network to withstand

erratic communication, leading to scalability concerns. Simi-

larly, ReGNN [4] presented a dynamic redundancy-eliminated

neighborhood message passing to improve graph data locality.

However, its parallelism is also restricted by separate graph

and neural operations with considerable communication over-

heads. More importantly, heterogeneous architectures emerge

as a key bottleneck hindering the data locality of intermediate

results and scalability.

Considering constantly evolving GNN models, we posit that

adhering to their model structure is the primary issue that lim-

its data locality and scalability, as each GNN operation exhibits

distinct computation and dataflow patterns. To this end, we

propose SCALE, a structure-centric accelerator that unifies the

computation via a shared dataflow. The key idea is to uncover

latent similarities among heterogeneous GNN kernels through

exploiting dataflow structure. Tailoring dedicated dataflows to

be consistent for both graph and neural operations enables

580

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

979-8-3503-5057-9/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00050

20
24

 5
7t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

M
ic

ro
ar

ch
ite

ct
ur

e
(M

IC
RO

) |
 9

79
-8

-3
50

3-
50

57
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
IC

RO
61

85
9.

20
24

.0
00

50

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

their execution using a single computation fabric, thereby

unifying the computation patterns. Consequently, it simplifies

the communication complexity, improving intermediate data

reuse, and system scalability.

The major contributions of this paper are as follows:

• SCALE Accelerator Design: The proposed SCALE

accelerator can efficiently parallelize graph and neu-

ral operations with a coherent dataflow, thus obviating

the communication complexity and storage overheads.

Specifically, SCALE introduces a novel systolic array-like

architecture to simultaneously fuse feature aggregation (in

the form of reduce operations) and vertex update opera-

tions to eliminate graph irregularity with much-improved

performance. In other words, our proposed architecture

repurposes conventional systolic array architecture for the

chained reduction and matrix multiplication with a coher-

ent data movement pattern, enabling intermediate data

reuse between heterogeneous operators with minimized

communication distance. The proposed architecture com-

promises a shift-register array to meet the increased data

bandwidth required by the fused operations, a novel

PE architecture to directly accommodate the dependency

between feature aggregation and vertex update, and a

flexible ring interconnect to provide adaptive dataflow for

both operations.

• Degree and Vertex-aware Scheduling: Unlike con-

ventional graph processing, GNN computations require

considerable execution time for both feature aggregation

and vertex update. As such, both degree and vertex

information should be considered for workload balance.

SCALE incorporates a degree and vertex-aware schedul-

ing policy, which can dynamically allocate equivalent

edge and vertex quantity to different processing units

while reforming the workload for message reduce and

vertex update. This ensures the workload balance for both

aggregation and update phases for GNNs.

• Flexible Dataflow for Fused Graph and Neural Opera-
tions: Given the dynamic variations in graph connectivity,

feature size, and weight matrix, it requires a flexible

dataflow to seamlessly orchestrate the data movement of

the graph and neural operations. We propose a unique

dataflow to fuse the inconsistent graph and neural opera-

tions to achieve unified data movement across computa-

tion units, optimizing the parallelism and data reuse.

We evaluate the proposed SCALE, and the evaluation result

shows that our design achieves 1.82× speedup and 38.9%

energy reduction on average over the state-of-the-art GNN

accelerators [1]–[4].

II. BACKGROUND AND MOTIVATION

A. Graph Neural Networks

Graph Neural Networks (GNNs) are a category of neural

networks developed to handle graph-structured data. This cat-

egory includes several variants, such as Graph Convolutional

Networks (GCNs) [26], Gated Graph Convolutional Networks

(G-GCN) [27], GraphSAGE [28], and Graph Isomorphism

Networks (GINs) [29]. Given the complex and diverse graph

operations, such as updating the edge and vertex embeddings,

GNN computation patterns cannot be simply formulated as

sparse-dense (SpMM) or general matrix (GEMM) multiplica-

tions. Instead, GNN models rely on a message passing scheme

to perform such complex operations. In essence, most GNN

models can likely be expressed using this message passing

approach [30]–[33].

Message Passing in GNNs: Message passing in GNNs is a

key mechanism to incorporate local neighborhood information

and is generally structured into two main stages: the aggrega-

tion and update steps. Given a graph G = (V,E), where V is

the set of vertices and E is the set of edges, the aggregation

step computes a representation for each vertex based on its

neighbors’ features:

mk
v = AGGREGATEk

({hk−1
u : u ∈ N(v)}) (1)

Here, mk
v is the aggregated message for vertex v at layer

k, N(v) represents the neighbors of v, and hk−1
u are the

features of node u from the previous layer. The update step

then integrates the aggregated message with its own features:

hk
v = UPDATEk

(
hk−1
v ,mk

v

)
(2)

These two stages form the core of message passing and

are foundational to various GNN models [34], [35]. The

aggregation phase workload (AGGREGATEk) is dependent on

the degree of each vertex, while the update phase workload

(UPDATEk) relies solely on the number of vertices.

B. Motivation

Despite recent efforts [2], [3], [36], [37], several challenges

remain unsolved in accelerating message passing GNNs, lim-

iting their parallelism, scalability, and data reuse. To fully

uncover such challenges, we conduct an initial study across

different message passing GNN models and graph datasets.

Structure-aware Workload Partitioning: Message passing

paradigm involves extensive edge and vertex-wise operations,

highly contingent on graph structure. Consequently, unlike

edge or vertex-centric graph partitioning [3], [36], [38], it

is imperative to ensure even distribution of edges and ver-

tices among processing elements respectively. Based on our

application profiling, as shown in Fig. 1(a), FlowGNN [3] and

PowerGraph [36] present 40-50% PE under-utilization of both

compute engines, in which only vertex or edge quantity is

considered at the workload scheduling.

Scalability Concern due to Heterogeneous Kernels: Mes-

sage passing GNN phases such as aggregation and update

involve operating on irregular graph data and regular computa-

tion on tensors respectively. Given their distinct characteristics,

architectures have to be tailored separately for each operation

phase. These compute engines are connected by either a multi-

stage or a crossbar network to handle the data communication

of intermediate data. Therefore, as the network scales, the

communication latency increases. For example, in Benes net-

work [39], the hop count of each intermediate data is 2log2N .

581

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Figure 1: (a) Unbalanced workload distribution in prior scheduling policies, (b) execution time breakdown in the pipeline of

GNN execution, and (c) normalized size of various data types in sample GCN and GIN models.

However, the computation time for each intermediate result

remains constant regardless of network size. Conventional

architectures [3], [4], [40] typically employ pipelining to mask

communication overheads with the computation. However, it

remains difficult to efficiently overlap communication latency

with computation due to their disproportionate scaling [41].

Based on our study, we observed that the communication time

will not be overlapped when the PE size exceeds 128. This

will eventually increase the overall execution time by 2-3× as

shown in Fig. 1(b). Note that exposed communication refers

to the portion of the communication latency that hinders the

execution of the update phase.

Compromised Intermediate Data Reuse: In addition,

reusing intermediate data is critical in GNN acceleration as

illustrated in Fig. 1(c), as intermediate data is predominant

(approximately 50%) in overall GNN data including graph,

input, weight, and output. Theoretically, the intermediate data

reuse is proportional to graph data and feature size, whereas

graph data reuse is subject to mutually-shared nodes [4]. While

previous study [22] emphasized data reuse optimization in

SpMM kernels, it remains a significant challenge to exploit

intermediate data reuse in heterogeneous computation kernels

at the register level. This requires a strategic design from both

dataflow and architecture aspects.

III. PROPOSED ARCHITECTURE DESIGN

The key idea of SCALE is to identify a shared dataflow

among distinct message passing operations. As such, a co-

herent dataflow can be leveraged to fuse multiple operations,

enabling fine-grained parallelism and increased data reuse at

the register level. Given that all operations are performed

upon a shared graph structure, graph structure serves as the

cornerstone to unify dataflows of GNN operations.

Fig. 2 illustrates SCALE’s coherent dataflow for both

GNN phases. Unlike conventional dataflows in the systolic

array architectures, the proposed dataflow is similar to all-

reduce operation in collective communication, which consists

of ‘reduce-scatter’ and ‘all-gather’ operations [42]. SCALE

first reorganizes the irregular computation involved in ag-

gregating information from neighboring vertices during the

aggregation phase into a linear chain of reduce computations.

This enables the aggregation engine of SCALE to perform

aggregation by shifting data in the forward direction adhering

to a regular communication pattern, corresponding to the

‘reduce-scatter’. The results of the aggregated vertices are then

directly processed by the update engines while communicating

Input Graph

P
E
1

P
E
0

P
E
3

P
E
2

0
1

2

Aggregation Phase

8
4

9

Update Phase
1
4

6

10 w1w2w3w0
Destination
Vertex

Source
Vertex

Edges

3

11

75

20 1

10

4 6

98

0 9
6

2 4
7

1 3
11

8 5
10

3
6

5

7
10

11

w0 w1 w2 w3

Edge Parallelism, Forward Direction

Vertex Parallelism, Backward Direction

F
u

sed
 O

p
erato

r

1

4

6

10

Aggregated Features
Weight Filters

Aggr.
Engine

Update
Engine

Intra-PE
Comm.

Inter-PE
Comm.

Figure 2: The proposed edge and vertex parallelism in SCALE.

in the backward direction, referring to the ‘all-gather’. For

example, vertices 0, 2, and 1 are loaded to PE0, PE1, and PE2

respectively. Vertex 0 will be forwarded to PE1 and aggregated

with Vertex 2, and the intermediate result will be forwarded to

PE2. Once the aggregation is completed at PE2, the aggregated

feature will be forwarded to the update engine within PE2.

The aggregation feature will be multiplied with distributed

weight elements (w0, w1, w2, and w3) via backward direction.

As such, all the intermediate results are exchanged and stored

at the register level, increasing the data reuse. Meanwhile, the

communication distance for each operation is one hop. SCALE

exploits the edge parallelism at the aggregation phase, where

multiple edge reduce operations are distributed and performed

in parallel. On the other hand, it parallelizes the vertex update

by distributing the weight matrix among processing units. Both

edge and vertex parallelism are unified in one architecture via

a coherent dataflow. As such, the aggregated features will be

forwarded for vertex update within each PE to enable operator

parallelism (e.g., aggregation and update).

A. Overall SCALE Architecture

Fig. 3(a) depicts the architecture of the proposed SCALE ac-

celerator. SCALE consists of the following main components:

a multi-bank global buffer, a task controller, data loaders, task

dispatchers, and a flexible processing element (PE) array. The

multi-bank global buffer is used to store the graph information

(vertex and edge) and the weight matrix. The task controller

schedules edge and vertex tasks and assigns them to the array

of task dispatch units. The task dispatch unit orchestrates the

data movement of their respective tasks from the global buffer

to the PE array using the data loader to forward the data to

the PE array. The PEs are connected by a flexible network,

which can be dynamically sized to multiple PE sub-arrays.

Each PE can support both message aggregation and vertex

update phases at the same time. We will detail the design of the

PE array to simultaneously support both message aggregation

and vertex update phases in the following.

582

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Task
Dispatch

1

Task
Dispatch

3

Task
Dispatch

0

Task
Dispatch

2

Control SignalData Path Interconnect Link

ÀD
at

a
Lo

ad
er

ÀD
at

a
Lo

ad
er

ÀD
at

a
Lo

ad
er

ÀD
at

a
Lo

ad
er

Link Switch

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

O
ff-

ch
ip

 D
R

AM

Ta
sk

C

on
tro

lle
r

G
lo

ba
l B

uf
fe

r

D
at

a
Pr

ef
et

ch
er

(a) (b)

Aggregation Engine

Reg.

MUX

4

M
U

X

6 7

5

Reg.

M
U

X

Reg.

MUX

M
U

X

6 7

Reg.

M
U

X

MUX

MUX

Update Engine

WeightÀ
Buffer

AR
B.

0

1

3

2
ARB.

Register File

6

6

7

7

D
EM

U
X

Reg. Reg.

Activation
Unit

OutputÀ
Buffer

Scalar
Buffer

Port # Description

Aggregated Features
From East PE

U
p

d
at

e
E

n
g

in
e

0 Aggregated Features
To West PE

1

2 Updated Vertex From
South PE

3 Updated Vertex ToÀ
North PE/Global Buffer

A
g

g
re

g
at

io
n

 E
n

g
in

e 4 Partial Aggregated
Features From West PE

5 Partial Aggregated
Features To East PE

6 Vertex/Edge Feature
From West RegisterÀ

7 Vertex/Edge Feature
ToÀEast RegisterÀ

Figure 3: SCALE Microarchitecture: (a) Overall SCALE architecture, and (b) PE microarchitecture consisting of update and

aggregation engine.

B. SCALE PE Array Architecture

The proposed PE array is a systolic array-like architec-

ture, which simultaneously enables three types of parallelism,

namely edge (i.e., feature aggregation), vertex (i.e., vertex

update), and operator (i.e., the dependency between aggre-

gation and update) parallelism. Each row of the PE array

is interconnected in a ring-like topology. The wrap-up link

consists of a set of link switches (i.e., transistors) to disable

the signal propagation between segmented short links. By

doing so, a long ring can be divided into several shorter

rings. These small rings can be configured to handle various

graph mapping and dataflow. The forward ring direction within

this structure facilitates the reduce operation required for

message aggregation. On the other hand, the ring’s backward

direction supports the vertex update. Any operator dependency

is managed within each PE once the feature aggregations

are completed. Consequently, the proposed PE array can

achieve high parallelism without incurring extra storage or

communication overheads.

However, several challenges arise when designing the pro-

posed PE due to the irregular nature of the graph structure,

coupled with varying degree numbers. Even though EnGN [15]

attempts to perform ring-based reduce, it requires distributing

the vertex features over the full length of the PE array be-

cause of the vertex-based mapping. Additionally, conventional

designs often require aggregated features to be sent to global

buffers or a centralized update engine. To overcome these

limitations, we present two distinctive designs, aggregation

and update engines within each PE, as illustrated in Fig. 3(b).

The aggregation engine is equipped with a dedicated

multiply-and-accumulate (MAC) unit, along with a register

array. The adder, multiplier, and scalar buffer within this

structure are configurable, thereby enabling various aggre-

gation operations essential for GNN models. Not only can

each aggregation engine transmit the aggregated feature to an

adjacent PE, but it can also forward them to the update engine

housed within the same PE. In addition, each aggregation

engine has a shift register array, comprising an array of double

buffers. It has the capacity either to provide feature or weight

data to MAC units or to forward the information to adjacent

register arrays. The function of the update engine is to execute

vector-vector multiplication, and it includes a weight buffer, an

output buffer, and an activation unit for non-linear functions.

1) Aggregation Phase: The aggregation phase either lever-

ages the edge or feature parallelism to perform multiple reduce

operations simultaneously. To support this idea, the difficulty

is two-fold: (1) The vertex features need to be distributed to

the PE array, and each feature should be aggregated with its

associated reduce operation; (2) the reduce operations increase

data bandwidth requirements, where multiple features result in

just one aggregated feature. To solve the mentioned challenges,

we operate on the individual feature of the vertices rather than

the entire feature vector reducing the bandwidth requirement

across the aggregating PEs. Then, we utilize a task dispatcher

to distribute the feature workload to the PEs and a shift register

array with double buffers, storing feature values for multiple

vertices and edges, to overlap the latency of feature distribution

with feature aggregation.

For example, as shown in Fig. 4(a), four reduce operations

will be performed on two PEs. Each reduce operation includes

various vertices, in which source vertices send the features to

the destination vertices (a, b, c, and d). These feature aggre-

gations will be performed on the PE ring hop by hop. We

first map features of each reduce operation to the aggregation

engines. As such, the shift registers at each PE will receive

two features. For example, features (a00 and c01) are loaded to

the shift registers at PE0. After that, the register array pops

the features up to the MAC units in the aggregation unit. Each

aggregation unit will perform the reduce operation, receiving

one operand from its upstream PE and another from its local

register array. For example, a00 is popped to the MAC units

at cycle 1, and it will be forwarded to PE1 and added with

a01 at the next cycle. The accumulated result, m0
a, will be

further forwarded to the next PE until it finishes aggregating

with all the source vertices. The final accumulated result

corresponding to vertex a, M0
a , will be sent to the update

engine at PE1 during cycle 4. As such, the aggregated features

can be directly sent to the next operation without incurring data

583

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

R
eg

. A
rra

yÀ
0

(a) An Example of Subgraph Workloads and Annotations

a

a2

a1a0
Subgraph 1

b b1b0

Subgraph 2

c

c2

c1c0

Destination VertexSource Vertex

Cycle 0

(b) Ring-based Reduce Aggregation

P
E

0
-

A
g

g
r.

 E
n

g
.

c1
0

c3

Subgraph 3
a0

0

Note Meaning

Intermediate aggregated
feature for feature y of
vertex x

mx
y

Mx
y Final aggregated feature

for feature y of vertex x

xy Feature y of Vertex x

P
E

1
-

A
g

g
r.

 E
n

g
.

0c0

0a1

P
E

0
-

A
g

g
r.

 E
n

g
.

c1
0

P
E

1
-

A
g

g
r.

 E
n

g
.

0a1

a0
0 0c0

P
E

0
-

A
g

g
r.

 E
n

g
.

P
E

1
-

A
g

g
r.

 E
n

g
.

c1
00c0 a0

0 0a1

a2
0 c2

0

a0c3
0

P
E

0
-

A
g

g
r.

 E
n

g
.

P
E

1
-

A
g

g
r.

 E
n

g
.

0c

P
E

0
-

A
g

g
r.

 E
n

g
.

d0
0

P
E

1
-

A
g

g
r.

 E
n

g
.

0b1

0c

P
E

0
-

A
g

g
r.

 E
n

g
.

P
E

1
-

A
g

g
r.

 E
n

g
.

P
E

0
-

A
g

g
r.

 E
n

g
.

b0

P
E

1
-

A
g

g
r.

 E
n

g
.

0dd0
0 b0

0 0b1

b0 d0

mb
0ma

0 a 0mc
0 c3

0

b0
0

b0
0 mc

0

P
E

0
-

A
g

g
r.

 E
n

g
.

a2
0

P
E

1
-

A
g

g
r.

 E
n

g
.

0a

0c2ma
0 mc

0

c3
0

To Upd. Eng. Ma
0 To Upd. Eng. Mb

0 To Upd. Eng. Md
0

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

dd0

Subgraph 4

d0
0

To Upd. Eng. Mc
0

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
1

R
eg

. A
rra

yÀ
0

R
eg

. A
rra

yÀ
0

d0
0 0b1

Figure 4: Aggregation phase example in the proposed SCALE architecture with a 1× 2 PE ring.

1
bd0b0c3

Dispatch
Queues

b1cac2

Circular Shift
Register

a1

c1
a2

c1

a1 Reg.

Reg.M
U

X
M

U
X

Task
Dispatcher

Vertex
Feature
Reader

Data
Loader

Task List PE 0 PE 1

b0
0

c3
0

a2
0

c1
0

a0
0

d0
0

c0

a0

c2
0

a1
0

b1
0

c0
0

t =

Dispatch
Controller

task 0 task 1Control SignalGlobal Buffer Access

0

Task
ID

a0

Task List

b0a b1 b

c0 d0c dc3c2

a2a1

c1

0

1

2

3

4

5

6

d

d0b0

Figure 5: An example of task dispatcher feeding vertex fea-

tures to the PE array.

movement across the memory hierarchy. This eliminates the

communication complexity and memory operations. Note that

using a ring interconnect between the PEs allows arbitrary-

length subgraphs to be mapped onto the PE ring as large

workloads (vertices with high degrees) can wrap around the

PE ring multiple times. Fig. 4(b) shows that subgraphs 3 with

four aggregations can be mapped to a PE ring of size 2.

Note that the SCALE microarchitecture supports a wider

variety of aggregation functions employed by GNN architec-

tures. A key property of the aggregation functions is permu-

tation invariance [29]. This indicates that the ordering of the

input features does not affect the output. Reduction operation

is often associative and commutative, ensuring permutation

invariance over the inputs [43]. By representing aggregation

functions as a reduction operation over the features, SCALE

ensures support for emerging GNN models.

Task Dispatcher: Fig. 5 illustrates the operation of a task

dispatcher. The task dispatcher iterates over every source and

destination vertex of all tasks in the task list and loads a portion

of their respective features with the data loader. These features

are sent through a circular shift register, similar to a barrel

shifter, to reorder the vertex features. Note that the circular

shift register is not the same as the shift register in the register

array. The circular shift register is used to reorder the vertices,

whereas the shift registers in the register array are used to

supply the data to the PEs. For example, vertex features a01
and c01 are read from the global buffer by the data loader. This

pair of features is sent through the circular shift register where

it is shifted i%Tn ring times where i is the index in the task

list and Tn ring is the number of tasks assigned to a PE ring.

In this example, i is 1, and Tn ring is 2, leading to a shift

cycle 0

Ta
sk

 D
is

p
at

ch
TT

M

Register array 1 loads data
from task dispatch.

JMJJ

N

To MAC unit

To MAC unitTT

a0
0 c0

0

a1
0c1

0

c2
0

a0

c2
0

a0

Ta
sk

 D
is

p
at

ch

cycle 1

Ta
sk

 D
is

p
at

ch
TT

M

JMJJ

N

To MAC unit

To MAC unitTT

c1
0 a1

0

a2
0

c3 0

a2
0

c3
0

Ta
sk

 D
is

p
at

ch c2
0

a0

M

JMJJ

N

To MAC unitTT

c4
0

a1 0

Ta
sk

 D
is

p
at

ch

M

JMJJ

N

To MAC unitTT

b0
0

c1 0

Ta
sk

 D
is

p
at

ch

c4 0

a1 0

O
ve

rl
ap

Ta
sk

 D
is

p
at

ch
TT

To MAC unit

a2
0 c2

0

a0c3
0

c4
0

a1
0

Ta
sk

 D
is

p
at

ch
TT

To MAC unit

c3
0 a0b0

0

c1
0

Register array 0Àsends data
to the MAC unit.

cycle 2 cycle 3

Register array 0 loads data
from task dispatch.

Register array 1Àsends data
to the MAC unit.

PE0 PE1 PE0 PE1 PE0 PE1 PE0 PE1

PE0 PE1 PE0 PE1 PE0 PE1 PE0 PE1

Figure 6: An example of overlapped task dispatch and aggre-

gation operations with double buffered register array.

of 1. The reordered features are then pushed into the dispatch

queues to be sent to the register array.

Shift Register Array: Naturally, the fused graph and neural

operations, when performed simultaneously, increase the data

bandwidth requirements. To overcome this problem, we pro-

pose a double buffer design in the shift register array. Fig. 6

illustrates the shift register array architecture, in which the

register arrays of two PEs are interconnected. Specifically, the

proposed shift register array is arranged in a mesh-like network

and supports both horizontal and vertical data transfer. The

features are propagated horizontally to fill up local registers.

Once the features are fully loaded into PEs, they are delivered

to the MAC units in the aggregation engine vertically. For

example, as shown in Fig. 6, the task dispatcher has already

loaded the features (ai and ci) associated with two reduce

operations into a 2×2 register array. At cycle 0, features a00 and

c00 are supplied to the MAC units. Afterward, features c01 and

a01 will be propagated to the MAC units. In the meantime, the

register array 1 starts preloading the feature data corresponding

to the next set of computations. For example, at cycle 0,

features c02 and a0 are loaded to the first column of the register

array 1, and all of them will be shifted horizontally at the

next cycle. To maintain the full utilization of the PE ring, the

register array size should be set to at least N when generalizing

the register array size to an N × N array. It is important to

584

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer

w1
0 w1

1 w1
2 w1

3w0
0 w0

1 w0
2 w0

3

PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

C
yc

le
 0

Weight MatrixAggregated Features Updated Features

w0
0

w0
2

w0
3

w1
0

w1
1

w1
2

w1
3

w0
1

w2
0

w2
1

w2
2

w2
3

w30

w3
1

w3
2

w3
3

Vertex a

Vertex b

Vertex c

Vertex d

Vertex ua

Vertex ub

Vertex uc

Vertex ud

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

Weight
Buffer

Input
Buffer

Output
Buffer PE3

Weight
Buffer

Input
Buffer

Output
Buffer PE2

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

w1
0 w1

1 w1
2 w1

3 w3
0 w3

1 w3
2 w3

3w2
0 w2

1 w2
2 w2

3

Ma
0 Ma

1 Ma
2 Ma

3

Mb
0 Mb

1 Mb
2 Mb

3

Mc
0 Mc

1 Mc
2 Mc

3

Md
0 Md

1 Md
2 Md

3

ua
0 ua

1 ua
2 ua

3

ub
0 ub

1 ub
2 ub

3

uc
0 uc

1 uc
2 uc

3

ud
0 ud

1 ud
2 ud

3

Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3

w0
0 w0

1 w0
2 w0

3

w0
0 w0

1 w0
2 w0

3

Ma
0 Ma

1 Ma
2 Ma

3

Ma
0 Ma

1 Ma
2 Ma

3

Ma
0 Ma

1 Ma
2 Ma

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mb
0 Mb

1 Mb
2 Mb

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Mc
0 Mc

1 Mc
2 Mc

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

Md
0 Md

1 Md
2 Md

3

ua
0

ua
1

ua
2

ua
3ub

0

ub
1

ub
2

ub
3uc

0

uc
1

uc
2

uc
3

ud
3

ud
2

ud
1

ud
0

C
yc

le
 1

C
yc

le
 2

C
yc

le
 3

Figure 7: Vertex update example in SCALE architecture with

a 1× 4 PE ring.

note that the task dispatcher is only connected to the PEs in

the PE array’s leftmost column. To move data across the array,

the dispatcher starts a shift operation while simultaneously

pushing data into the register array.

2) Update Phase: The vertex update occurs once the accu-

mulation of a vertex’s features is complete. The fundamental

computations of the vertex update are matrix-vector multipli-

cations. In this process, feature vectors are multiplied with

a weight matrix. Since the weight matrix is identical and

shared across feature vectors, a weight-stationary dataflow

is employed for the update phase. Specifically, we evenly

distribute the computation of the update phase across a set

of PEs by partitioning the weight matrix into equal chunks,

where each PE holds one chunk. The weight matrix mapping

is determined by matrix dimension and ring size, which

will be handled by the task controller. This approach helps

eliminate data duplication, enhancing the effective memory

capacity. The weight matrix is pre-loaded into the PE array,

while the aggregated feature is passed across PEs to facilitate

computation with each weight partition. The data movement

for vertex updates is orchestrated in a direction opposite to

that of aggregation, fully utilizing both directions of the ring.

For example, as shown in Fig. 7, the feature vectors (a, b, c,
and d) are received from the aggregation engine and are

stored in the update engine. Each feature vector includes four

elements (M0
a , M1

a , M2
a , and M3

a) and needs to be multiplied

by the weight matrix. As the weight matrix is partitioned

and distributed into the PE array, the weight vectors will be

temporally stored at each PE for vertex update. The feature

vector will move along the PE array to be multiplied with

each weight vector. For example, the aggregated features (M0
a ,

M1
a , M2

a , and M3
a) will be multiplied by a weight vector

(w0
0 , w1

0 , w2
0 , and w3

0). The results (uj
i , i ∈ {a, b, c, d} and

j ∈ {0, 1, 2, 3}) will be eventually sent back to global buffers

through the vertical links in the PE arrays. The vertical links

connect each PE with the corresponding PE in the row above

it. As such, only the PEs of the topmost row are connected

to the global buffer to write the updated features back to

the global buffer. While the PEs of the other rows perform

shift operations to send the updated feature to the row above

it. This ensures design scalability as not all PEs need a

direct connection to the global buffer. The aggregated feature

vectors will be forwarded to the next hop. We note that each

aggregated feature has to traverse N − 1 hops (N is the ring

size) to accomplish the update operation.

3) Workload Imbalance and Ring Size: The efficiency of

the proposed architecture is clearly influenced by the vari-

ability in vertex degree and weight matrix dimension size.

Specifically, the edge parallelism in reduce operations is linked

to the vertex degree since the number of features corresponds

to the vertex degree. With a fixed PE array size, accommo-

dating varying sizes of reduce operations becomes a complex

task. Additionally, the size of the weight matrix determines

the spatial parallelism, where each weight vector is divided

among multiple PEs. These factors collectively contribute to

the challenges of fusing the aggregation and update phases

into a cohesive dataflow. Such integration demands meticulous

design in terms of workload scheduling and PE array size,

which will be discussed in the following sections.

IV. PROPOSED SCHEDULING POLICY

As mentioned, the message passing GNNs follows a neigh-

borhood aggregation scheme, where the feature vector of a ver-

tex is computed by recursively aggregating and transforming

feature vectors of its neighboring vertices [29]. This indicates

that the computation associated with the aggregation phase

depends on the number of neighboring vertices (represented

by the edges of a vertex). Further, the update phases trans-

form the feature representation of each vertex, indicating that

the workload is proportional to the number of vertices. In

distributing the workload across the proposed PE array, the

ideal scenario would involve an even task allocation of edge

and vertex to avoid workload imbalance at different stages.

However, the varying degrees of vertices in power-law graphs

pose a complicated challenge to the workload distribution.

In the context of workload scheduling, prior work typically

falls into one of two categories: vertex-aware scheduling [44]–

[46] and degree-aware scheduling [15], [47], [48]. Vertex-

aware scheduling allocates an equal number of vertices to

computing units. To illustrate this, we consider the example

graph shown in Fig. 8(a). Vertex-aware partitioning forms

four tasks, each containing an equal number of vertices but

with differing degrees, as depicted in Fig. 8(b) with each

task assigned to one PE. While this method balances the

workload during the update phase, it leads to an unbalanced

load in the aggregation phase, resulting in unbalanced PE uti-

lization. However, degree-aware scheduling organizes vertices

into tasks in such a way that the total degree of the vertices

585

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

(a) An Example Graph and
Its Edge List Representation (d) Degree and Vertex (DV)-aware Scheduling

Balance Update Workload between Task Groups

Task Group

of

 E
dg

es

a,
e

b,
f

c,
g

0

4

8

d,
h

0 1 2 3

of

 V
er

tic
es

a,
e

b,
f

c,
g

0

2

4

d,
h

0 1 2 3

Vertex
ID

8

3

(c) Degree-aware Scheduling

of

 E
dg

es

Task ID

a,
b,

h

c,
d,

e

f0

4

8

g

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b,

h

c,
d,

e

f0

2

4

g

0 1 2 3

BalancedÀ Edges

of

 E
dg

es

Task ID

a,
b,

h

f c,
d,

e

0

4

8

g

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b,

h

f c,
d,

e

0

2

4

g

0 1 2 3

1 b(2), f(6)
2 c(2), g(6)

Task ID Vertex ID (Edges #)
0 a(3), e(2)

3 d(2), h(1)

1 c(2), d(2), e(2)
2 f(6)

Task ID Vertex ID (Edges #)
0 a(3), b(2)

3 g(6), h(1)

1 f(6)
2 c(2), d(2), e(2)

Task ID Vertex ID (Edges #)
0 a(3), b(2), h(1)

3 g(6)

1 c(2), d(2), e(2)
2 f(6)

Task ID Vertex ID (Edges #)
0 a(3), b(2), h(1)

3 g(6)

Task List

(b) Vertex-aware Scheduling

Task List

Imbalanced Edges

5

Balanced Vertices

4 4

Task List

Task List

6 6

BalancedÀ Edges Balanced Vertices

4 4

Imbalanced Vertices

6 28

6 6

6 6 6 6

b (f,b), (g,b)
c (f,c), (f,c)

Vertex ID Edge Lists (Vsrc,Vdst)
a (e,a), (f,a), (g,a),

d (f,d), (f,d)

f (a,f), (b,f), (c,f), (d,f),
(e,f), (g,f)

g (a,g), (b,g), (c,g), (d,g),
(f,g), (h,g)

e (a,e),(f,e)

h (g,h)

of

 E
dg

es

Task ID

a,
b

c,
d,

e

f0

4

8

g,
h

0 1 2 3 #
of

 V
er

tic
es

Task ID

a,
b

c,
d,

e

f0

2

4

g,
h

0 1 2 3

BalancedÀ Edges Imbalanced Vertices

66 5 37

5

Task ID Task ID

a

g

b

f

dc

h

e
Reorder

1

2

Figure 8: Comparisons of different scheduling policies when assigning four tasks to a 2×2 PE array, and each task is assigned

to the corresponding same PE ID. PE 0 and 1 form one ring, and PE 2 and 3 form the other ring. (a) an example graph, (b)

vertex-aware scheduling, (c) degree-aware scheduling, and (d) our proposed degree and vertex-aware scheduling.

within each task is balanced. Fig. 8(c) provides an example

of degree-aware scheduling, with four tasks created to have

an equal number of edges. Although this approach ensures

balance during the aggregation phase, it may create imbalances

during the update phase due to the varying numbers of vertices

in each task, which leads to unbalanced PE utilization.

A. Degree and Vertex-aware Scheduling
Finding a balance between the number of edges and vertices

can be particularly challenging, as graph data often exhibit

high irregularities. To tackle this challenge, we introduce a

degree and vertex-aware task scheduling algorithm, in which a

greedy heuristic is proposed for this bin-packing problem [49].

The process begins with degree-aware scheduling to create

edge-balanced tasks. These tasks are then combined into

equally distributed task groups using a modified vertex-aware

scheduling approach. This two-step method ensures balanced

edge and vertex workloads across all task groups.
Algorithm 1 outlines the pseudo-code for the proposed task

scheduling method, which consists of two main steps. In the

first phase, our goal is to organize vertices into tasks that are

balanced in terms of edges. We approach this as a modified

version of the bin-packing problem, where each “bin” or task

has a size equivalent to the number of edges in that task.

Unlike the traditional bin-packing problem, which seeks to

minimize the number of bins, our version fixes the number

of bins to the maximum number of tasks the hardware can

handle, a limit set by the register array size. As outlined in

lines 17-30 of the algorithm, we apply the first-fit heuristic, a

common approach used for runtime bin packing. For SCALE,

we set the number of tasks, Tn, and number of task groups,

Gn, to be equal to the number of PEs and rings, respectively.
The second phase involves grouping these edge-balanced

tasks into task groups, ensuring that the number of vertices

within each group is balanced. It’s important to note that

the number of task groups is constrained by the number of

available rings. To achieve the balance, we first sort the tasks

according to the number of vertices in each task, as indicated

in line 4. We then use a simple modulo operation in line 13

to identify the index for the task group and place the task

there. This method allows us to pair tasks with high vertex

Algorithm 1: Pseudocode for degree and vertex-aware

scheduling

Input : Graph: G = (V,E); Number of Tasks: Tn; Number
of Task Groups: Gn

Output: Workload balanced Task Groups: G
1 Function Hierarchical Scheduling(G, Task Groups)
2 // Create Edge-Balanced Tasks
3 Task List = First F it(G, Tn);
4 Sorted Task List = Sort(Task List);
5 // Initializing Task Groups
6 Task Groups = [];
7 for i in 0 → Gn do
8 Task Groups.append(new Task Group());
9 end

10 // Assign Tasks to Task Groups
11 for Task num in T n do
12 Task = Sorted Task List[Task num];
13 Task Group = Task Groups[Task num%Gn];
14 Place Task in Task Group;
15 end
16 return Task Groups;
17 Function First Fit(G, Tn)
18 // Initializing Tasks
19 Tasks = [];
20 for i in 0 →Tn do
21 Tasks.append(new Task());
22 end
23 // Assign Vertices to Tasks
24 for V ertex V in Graph G do
25 for T in Tasks do
26 if T.edges+ V.edges ≤ T.target edges then
27 Place V in T ;
28 end
29 end
30 return Tasks;

workloads with those having low vertex workloads, resulting

in task groups that have balanced vertex workloads.

Fig. 8(d) illustrates the degree and vertex-aware scheduling

for a 2× 2 PE array. We create four tasks (Task 0 - 3), each

containing a similar number of edges (i.e., 6). Take Task 0 as

an example; it includes 6 edges from three vertices (vertex a,

b, and h). These edges represent the reduce operations to be

performed at each PE during the aggregation phase. We further

combine the tasks into pairs, referred to as “task groups”. Each

586

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

group of tasks is assigned to one PE ring. For instance, Task

0 and Task 1 are grouped together as group 0, which has

four vertices (vertex a, b, h, and f). This number represents

the vertex updates for the group. With two PE rings, we form

two task groups, ensuring that both the aggregation and update

phases have a similar workload in both rings. It’s worth noting

that Task 0 includes three small-degree vertices and produces

three aggregated feature vectors. Meanwhile, Task 1 includes

a large-degree vertex and produces one aggregated feature.

While the edge and vertex workloads among the task groups

are balanced, there may be some vertex imbalance within a

task group due to the greedy policy. Our architecture and

mapping strategies, however, can tolerate this imbalance. As

the weight matrix is distributed across PEs and the aggregated

vertex features circulate through all PEs in a ring during the

update phase, it ultimately equalizes the workload among PEs.

Following Algorithm 1, we implement the proposed

scheduling algorithm in hardware allowing SCALE to sched-

ule workloads during runtime. Task scheduling involves cre-

ating workloads and writing them to the task lists of each

task dispatcher unit. To vary the scheduling latency, the task

scheduler creates tasks over a subset of the graph vertices

defined by batch size B. To minimize task scheduling over-

heads, we decouple the task scheduling and execution by using

a double-buffered task list in the task dispatcher, allowing the

task controller to schedule new tasks while the previously

scheduled tasks are being executed. This allows SCALE to

overlap the task scheduling latency with the task execution. By

employing such a runtime mechanism, we avoid preprocessing

the graph data. To hide the task scheduling latency with

the task execution, SCALE uses a performance model, as

described in IV-B, to estimate their latency and restricts the

batch size parameter, B to ensure that the task scheduling does

not hinder task execution.

B. Performance Model

The batch size, B, indicates the number of vertices operated

by the task scheduler to allocate tasks during one pipeline

phase. SCALE selects a suitable value for B such that the

task scheduling does not hinder the first pipeline stage of task

execution. Specifically, the task scheduling latency, tts must

be less than the aggregation latency, tagg of the tasks. SCALE

implements an analytical model of task scheduling and task

aggregation to determine their respective execution time for a

given subgraph with an average degree of Davg .

The task scheduling latency, tts, from Algorithm 1 can be

written as the sum of time to create tasks and task groups.

Operations involved in creating tasks, as indicated by the

nested for-loops in Algorithm 1 (lines 24-29), require, on

average, B × Log(Tn) on-chip memory access. Task group

creation, as indicated by sorting tasks and a for loop in lines

4-15, takes (Tn × Log(Tn) + Tn) on-chip memory accesses.

Thus the task scheduling latency can be written as

tts = ((B + Tn)× Log(Tn) + Tn)× tocm

Here, tocm is the access latency for on-chip memory. Sim-

ilarly, the aggregation of a task involves the PEs performing

B × Davg reduce operation and inter-PE communication for

each feature. Moreover, the same task list can be reused to

perform the computation associated with Fn features of the

vertex. Since these reduce operations are performed in parallel

by Tn PE, the task scheduling latency can be written as

tagg =
B ×Davg

Tn
× (treduce + tcomm)× Fn

Here, treduce and tcomm are the latency to perform a reduce

operation and inter-PE communication, respectively. If the tts
is larger than tagg , the aggregation engines of the PE will

remain idle, leading to resource underutilization. Therefore, for

a given accelerator configuration, SCALE chooses the batch

size B carefully such that tts < tagg . The sensitivity study is

provided in Section VII-F.

V. PROPOSED DATAFLOW AND MAPPING

Both dataflow and mapping choices affect the performance

by exploiting the temporal and spatial data locality via loop

interchanging and spatial parallelism [50]–[52]. The weight

matrix is of a relatively lower dimensionality compared to

CNNs. Therefore, conventional CNN dataflow and mapping

methods have limited applicability to message passing-based

GNN acceleration.

In this work, the principal objective of the mapping strategy

is to parallelize both feature aggregation and vertex update

in a coherent dataflow. To attain this, the proposed flexible

ring plays a critical role in achieving spatial parallelism.

For instance, the weight matrix must be distributed across

different PEs within the same PE ring, thereby mitigating

data duplication and resource under-utilization. However, the

dimensionality of the weight matrix differs among datasets.

In the update phase of the GCN’s second layer on the Cora

dataset, a weight matrix of dimension 16×7 is utilized, while

for Nell, the dimensions are 64×168. This necessitates a ring

size adaptable to diverse matrix dimensions. For example, if

the ring size Sring is small, then the sum of weight buffers

Bweight in the ring may be smaller than the entire weight

matrix W . This would incur off-chip memory accesses to load

portions corresponding to the weight matrix that is not present

in the weight buffers. On the other hand, employing a ring size

Sring larger than the total available computations in the update

phase would reduce the PE utilization rate. This is caused by

certain update engines being idle due to the lack of available

computations. Formally, we show the optimal range of ring

size as

Sring ∈ [� W

Bweight
�, Rweight × Cweight], Sring ∈ Z

+ (3)

where Rweight and Cweight are the row and column dimen-

sions of the weight matrix, respectively.

Upon determining the ring size, the flexible PE array will

be configured accordingly. As depicted in Fig. 9(a), if the

ring size is set to 2, a row of the array is configured into

two PE rings, resulting in the formation of eight rings to

587

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

(a)

Aggregated Features
Weight Matrix

Updated Features

Ma
0 Ma1 Ma2 Ma3

Mb0 Mb1 Mb2 Mb3

Mc0 Mc
1 Mc

2 Mc
3

Md
0 Md

1 Md
2 Md

3

w0
0 ua

0

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

w0
1

w0
2

w0
3

w1
0

w1
1

w1
2

w1
3

ub
0

uc
0

ud
0

ua
1

ub
1

uc
1

ud
1

ua
1

Mb0 Mb1 Mb2 Mb3 Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3 w1
0 w1

1 w1
2 w1

3

ub
1

(b)

Weight
Buffer

Input
Buffer

Output
Buffer PE1

Weight
Buffer

Input
Buffer

Output
Buffer PE0

C
yc

le
 0

Ma
0 Ma

1 Ma
2 Ma

3

w0
0 w0

1 w0
2 w0

3

ua
0 ub

0

Mb0 Mb1 Mb2 Mb3

w1
1 w1

2 w1
3w1

0

S0 S1 S2

S3 S4 S5

S6 S7 S8

S9 S10 S11

PE0

PE11

PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15 C
yc

le
 1

Figure 9: An example of the proposed ring configurations in

which PE ring size is 2. (a) link switch configuration and (b)

vertex update workloads on a 1× 2 PE ring.

facilitate the concurrent execution of feature aggregation and

vertex update. To illustrate this, Fig. 9(b) shows aggregated

feature vectors, such as M0
a , M1

a , M2
a , and M3

a , are distributed

among PEs. In parallel, each column of the weight matrix,

like w0
0 , w1

0 , w2
0 , and w3

0 , is also distributed to PEs by the

task controller. The aggregated feature vectors only need to

pass through two PEs, where they are then multiplied by each

corresponding weight partition. The resulting products, such

as u0
a, u0

b , u1
b , and u1

a, can be directly written back to the

global buffer. If an outer product were chosen, it would require

additional buffers at each PE to hold the intermediate data.

This method would cause the data movement to be inconsistent

with the aggregation phase and would also introduce additional

computations to accumulate all the partial results.

Once the optimal ring size is determined, the PE array

will be configured. As the size of the ring is determined

by the dimension of the weight matrix used in the update

phase of each layer, we reconfigure the rings between the

execution of layers. Note that GNNs have fewer layers than

other neural networks (e.g., CNN), so the reconfiguration

overheads, involving simple switch toggling, are negligible

even if SCALE reconfigures the ring size for each layer.

VI. EXPERIMENTAL SETUP

We implemented SCALE using a validated cycle-accurate

C++ simulator to model the behavior of the hardware. We in-

tegrate our simulator with Ramulator [53] configured as High-

bandwidth memory (HBM) with a bandwidth of 256 GB/s to

model the off-chip storage. We used single-precision floating

point datatype according to IEEE 754 for our evaluation.

We evaluated the performance of SCALE using three citation

graphs (Cora, CiteSeer, and PubMed) [54], one knowledge

graph (Nell) [55], and one large post graph (Reddit) [28]. The

detailed size and length of features in different layers of data

sets are summarised in Table II. Additionally, we used the most

popular representative GNN models: GCN [26], Gated-GCN

(G-GCN) [27], GraphSage-Pool (GS-PL) [28], and GIN [29].

The programming model that we used is similar to Deep Graph

Library (DGL) and PyTorch Geometric.

Table II: Structure of the Graph Datasets for the 2-layer GNN.

Datasets Vertices Edges Average Feature LengthDegree
Cora 2,708 10,556 3.9 1,433 - 16 - 7

CiteSeer 3,327 9,104 2.7 3,703 - 16 - 6

PubMed 19,717 88,648 4.5 500 - 16 - 3

Nell 65,755 251,550 3.8 61,278 - 64 - 210

Reddit 232,965 114,615,892 492 602 - 64 - 41

CAD Tools and Methodology: To estimate the power, area,

and timing characteristics of SCALE as an ASIC accelerator,

we implemented it using Verilog. We synthesized it using

Synopsys Design Compiler with the TSMC 32 nm standard

library to learn its timing characteristics that we used in our

simulator validating the accuracy of our model. We set the

clock frequency at 1GHz. We performed RTL simulations to

generate the waveform activity file to observe the switching

activity of the logic gates. Next, we used Synopsys PrimeTime

PX with the waveform activity file to measure the dynamic

and static power consumption of SCALE. For the area and

power of on-chip buffers, we employed Cacti 6.0 with 32 nm

technology [56].

Baseline Platforms: To evaluate the efficiency and scal-

ability of SCALE, we compare it with prior state-of-the-

art GNN accelerators such as ReGNN [4], FlowGNN [3],

AWB-GCN [2], and GCNAX [1]. We model the baseline

architectures using our C++ simulator employing their re-

spective optimizations. For a fair comparison, all the baseline

accelerators are scaled to have the same clock frequency and

the same number of single precision MAC units as SCALE.

As FlowGNN utilizes a hybrid engine with node transform

units performing the update phase and message passing units

performing the aggregation phase, we use twice as many mes-

sage passing units as node transform units. Although GCNAX

and FlowGNN perform optimizations such as parallelization

strategies and loop fusion, they suffer from imbalanced work-

loads in their processing units when scaling up the number of

MAC units. Our reported latency of GCNAX and FlowGNN

accounts for this workload imbalance. Additionally, we have

scaled the bandwidth and on-chip memory to match SCALE.

VII. EVALUATION RESULTS

A. Performance Analysis

We configure SCALE as 32 × 16 PE array with a 4 MB

global buffer. Each PE has 6 KB local buffers (4 KB update

engine buffer and 2 KB aggregation engine buffer) and 2 MAC

units, so the total MAC units of SCALE is 1024. We utilize

the number of execution cycles as the performance metric.

Fig. 10 shows the speedup compared to other state-of-the-art

GCN and GNN accelerators. SCALE, on average, is 1.62×
and 2.01× faster than AWB-GCN and GCNAX for the GCN

model, respectively. For other models such as G-GCN, GS-

PL, and GIN, SCALE, on average, is 1.57× and 1.80× faster

than FlowGNN and ReGNN, respectively. The performance

improvement primarily stems from the balanced workload

with improved PE utilization and the coherent dataflow with

simplified communication patterns. As shown in Fig. 11, the

588

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Figure 10: Normalized speedup comparison of AWB-GCN, GCNAX, ReGNN, FlowGNN, and SCALE for different datasets

and GNN models.

Cora CiteSeer PubMed Nell Reddit

Figure 11: Latency Breakdown.

exposed communication latency is reduced by up to 87.56% as

compared to baseline architectures. Next, we evenly distribute

the workload that considers both edge and vertex variations,

leading to better PE underutilization, which contributes up

to 50.35% latency reduction in both aggregation and update

phases. FlowGNN and GCNAX suffer from high workload

imbalance in the aggregation phase due to their fixed work-

load assignment strategy, which limits their performance. On

the other hand, although AWB-GCN mitigates the workload

balance issue, they do not pipeline both phases of GNN com-

putation. This comes with a considerable amount of redundant

memory accesses. ReGNN eliminates redundant computation,

but it employs disjoint engines for both phases and suffers

from workload imbalance in the aggregation phase.

Although SCALE shows considerable improvement over the

prior art for Cora, CiteSeer, PubMed, and Nell, its performance

is slightly worse than ReGNN on Reddit. The reason is two-

fold. First, Reddit graph dataset presents better regularity

in graph connectivity, in which edge and vertex degrees

show high similarity. Coupled with a low feature length,

Reddit inherently exhibits a balanced workload on baseline

accelerators. Additionally, Reddit has high graph-level data

reuse, in which a pair of vertices is connected to a set

of mutually shared vertices. Based on our dataset profiling,

75.5% of aggregation operations can be eliminated in Reddit.

As such, ReGNN, on the other hand, outperforms SCALE as

it primarily aims to minimize the large amount of redundant

computation in Reddit. However, it must be noted that such

redundancy removal techniques are orthogonal to SCALE.

To further understand the performance benefits of SCALE,

we implement the redundancy removal strategy to reprocess

the graph dataset, and Table. III shows that SCALE with

redundancy removal can outperform ReGNN by an average

of 1.23× on the Reddit dataset across different models.

Table III: Normalized speedup of SCALE with redundancy

removal compared to ReGNN.

Models
Datasets

Cora CiteSeer PubMed Nell Reddit

GCN 2.15 2.31 1.98 2.07 1.13

G-GCN 2.22 2.36 1.92 1.85 1.34

B. Scalability Analysis

To compare the scalability, we normalize the accelerator’s

speedup over AWB-GCN configured with 512 MACs. The

array dimensions of the PE array in our design are set as

16×16, 32×16, 32×32, and 64×32 for 512, 1K, 2K, and 4K

MACs, respectively. We prefer to increase the row dimension

rather than the column dimension, as increasing the column

dimension will lead to a larger shift register array. As shown in

Fig. 12, SCALE shows better scalability than prior accelerators

showing an average speedup of 12.07× compared to speed up

of 7.61×, 6.49×, 7.3×, and 6.68× for AWB-GCN, GCNAX,

ReGNN, and FlowGNN respectively when configured for

4K MACs. SCALE shows better scalability primarily due to

three reasons - a unified dataflow architecture, a balanced

workload, and simplified interconnects. To be specific, even

though AWB-GCN resolves the workload balance, it relies on

an all-to-all network to redirect computations to underutilized

computation resources. The disjoint aggregation and update

engines of all the prior works require a complicated network

to ensure data movement, which all suffer from bandwidth or

latency issues. SCALE eliminates the need for complicated

networks by having the proposed degree and vertex-aware

scheduling and coherent dataflow. Given this, SCALE shows

the best improvement for Nell, as it exhibits high irregularity

in the graph structure and large feature length exacerbating

workload imbalance in baseline accelerators. Even for such

irregular graphs, SCALE shows good workload balance and a

high degree of parallelism with a large accelerator size.

C. Workload Balance Analysis

To evaluate the proposed workload balancing techniques,

we analyze the PE utilization of SCALE and compare it

with the PE utilization of state-of-the-art GNN and GCN

accelerators, FlowGNN (FG) and AWB-GCN (AWB). Note

that all accelerators are configured with 1K MACs. We use

performance measurement counters to measure the active

cycles of the PEs during both the aggregation and update

phase of all the models and report the average utilization.

589

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Figure 12: Scalability comparison: Normalized speedup of AWB-GCN, GCNAX, ReGNN, FlowGNN, and SCALE for different

datasets with varying MAC units.

Figure 13: (a) Average PE utilization of two phases with

different datasets and accelerators, and (b) ablation study of

scheduling policies.

Fig. 13(a) shows SCALE efficiently balances the workload

in both phases with an average PE utilization of 98.7% and

97.3% in aggregation and update, respectively. FlowGNN em-

ploys a scheduling similar to vertex-aware scheduling, which

shows an average PE utilization of 99.1% in the update phase

and 62.8% in the aggregation phase. AWB-GCN employs a

runtime workload balancing scheme to distribute the workload

evenly across the PEs, achieving a utilization close to SCALE

with a PE utilization of 86.4% for the aggregation phase

and 88.5% for the update phase on average. However, AWB-

GCN’s runtime balancing policy cannot be directly used for

other GNN models that cannot be represented as SpMM. In

contrast, SCALE, with the proposed scheduling, can balance

the workload in both phases.

D. Ablation Study of Scheduling Policy

We include an ablation study of various scheduling poli-

cies, such as degree-aware scheduling (S+DS), vertex-aware

scheduling (S+VS), and degree and vertex-aware scheduling

(S+DVS). Fig. 13(b) shows that S+DVS achieves high PE

utilization in both phases. On the other hand, S+DS has a

high utilization of 99.1% in the aggregation phase but a lower

utilization of 58.7% in the update phase. This is due to the even

distribution of edges, which results in a balanced workload

in the aggregation phase. S+VS has a high utilization of

99.2% in the update phase but a lower utilization of 54.7%

in the aggregation phase due to the uneven distribution of

edges. However, either scheduling is inefficient in balancing

the workload in both phases.

E. Sensitivity Study of Ring Size

To study the effects of varying ring sizes on performance,

we perform a sensitivity study in a 2-layer GCN model using

Cora and PubMed Datasets, where the scheduling policy is

consistent across all configurations. Fig. 14 shows that the

performance varies across datasets. For example, the first layer

Figure 14: Performance comparisons with various ring sizes

when running 2-layer GCN with (a) Cora and (b) PubMed.

of the GCN model would prefer a ring size of 64. This is

because a small ring size may not be able to accommodate the

entire weight matrix, resulting in excessive off-chip memory

access. Conversely, a ring size that is too large may require

a longer initial data load time and could result in a less

balanced workload. For the second layer in Cora and PubMed

datasets, the dimension of the weight matrix is 16×7 and

16×3, respectively. In such a case, the update phase would

suffer from significant PE under-utilization because of the

small weight size. To solve this, we configure SCALE with

multiple small rings and duplicate the weight matrix, thereby

increasing spatial parallelism.

F. Task Scheduling Overhead Analysis

Fig. 16(a) shows the ratio of task scheduling latency (tts)

and task aggregation latency (tagg) for various batch sizes.

The task scheduling overhead is negligible when tts/tagg < 1
(TS-Negligible) and the bottleneck when tts/tagg > 1 (TS-

Bound). We observe that the aggregation engines transition

from TS-Bound to TS-Negligible as the batch size increases

and graphs with a low feature length or low average degree

require a larger batch size to cover the overhead. When batch

size is above 500, tts is smaller than tagg for all the datasets.

G. Energy and Area Analysis

Fig. 15 shows the energy breakdown of SCALE compared

to baselines normalized to AWB-GCN. SCALE reduces the

average DRAM and Global Buffer energy consumption by

36.8% and 53.2%, respectively.

The energy reduction results are from higher intermediate

data reuse at the register level, thereby reducing read/write

operations to Global Buffer and DRAM. This allows for

efficient usage of on-chip storage leading to higher input data

reuse. The intermediate data reuse will increase the number

of read/write at the register level in SCALE, as such it

exhibits a 5.72× Local Buffer energy consumption on average

as compared to prior works. Meanwhile, Reddit presents a

590

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

Cora CiteSeer PubMed Nell Reddit

Figure 15: Energy Breakdown.

large portion of mutually shared vertices, which translates to

a higher reduction in DRAM and Global Buffer access in

ReGNN. For Nell, with a large feature length, the benefits of

intermediate data reuse become more significant. Fig. 16(b)

shows the breakdown of the total die area of SCALE. Storage

components like Global Buffer and Local Buffer account for

81.4% of the total area, whereas the MACs and Task Control

occupy 12.2% and 6.4% of the total die area, respectively.

VIII. RELATED WORK

A. GCN Accelerators

GCN is one of the most prevalent GNN variants which

allows the application of convolutional layers directly on

graph-structured data. A variety of accelerators have been

developed to enhance GCN performance. For example, AWB-

GCN [2] employs a runtime workload rebalancing scheme to

redistribute uneven workload through an all-to-all network.

GCNAX [1] exploits loop fusion and reordering to unify the

computation characteristics of both GCN phases while reduc-

ing off-chip memory access. I-GCN [22] employs a breadth-

first search algorithm to extract dense matrix regions, thus im-

proving computation efficiency and data locality. GCoD [57]

decouples dense and sparse regions of the adjacency matrix

and accelerates them in different computing engines. RE-

FLIP [58] and PIM-GCN [59] accelerate GCN in the form of

matrix-vector multiplication in crossbar-based processing-in-

memory (PIM) architecture. However, prior research mostly

focuses on analog computing, and their proposed design is

unable to support complex GNN models with search and

comparison functions. Furthermore, these GCN accelerators

employ spatial or SIMD architectures adapting to graph irreg-

ularity, so intermediate and partial results are hardly reused at

the register level.

B. Graph Quantization, Sampling, and Pruning

To further enhance GNN model performance, various opti-

mization techniques have been proposed. DBQ [60] introduces

a degree-based quantization, in which only insensitive nodes

are quantized with low precision. MEGA [61] proposes a

mixed-precision quantization method depending on vertex’s

in-degree. GNNSampler [62] exploits the data locality among

nodes and their neighbors, eliminating irregular memory ac-

cess. DyGNN [63] proposes EdgePrune and VertexPrune to

eliminate redundant computations caused by message aggre-

gation. PruneGNN [64] develops a dimension-pruning-aware

Global Buffer

MAC Units

Task Control

46.5%

44.9%

12.2%

6.4%
MAC

TC

GLB

LB

Local Buffer
LB

GLB
TC

MAC

TS-Negligible
TS-Bound

Figure 16: (a) Task scheduling overhead with different batch

sizes and (b) area breakdown.

sparse training method coupled with a SIMD-aware SpMM

kernel to exploit matrix-operator-level parallelism. It is evident

that all the quantization, sampling, and pruning optimizations

only optimize the graph data without changing the GNN oper-

ations. As such, these optimization techniques are orthogonal

to SCALE.

C. Sparse Tensor Algebra Accelerators

Given that the aggregation phase of several GNN models

can be abstracted as SpMM, several accelerator architec-

tures have been proposed to facilitate SpMM computations.

OuterSpace [65] proposes an outer product-based SpMM to

achieve higher input reuse compared to an inner product-

based method. ExTensor [66] proposes a novel approach to

eliminate all the unnecessary computations associated with

zero elements. SIGMA [67] adopts a Benes network to dy-

namically pair non-zero elements and distribute them to all the

multipliers. Flexagon [68] exploits a flexible dataflow design

for Sparse-Sparse Matrix Multiplication (SpMSpM) adapting

to various matrix dimensions. However, prior works typically

are inefficient in handling GNN models due to the following

issues. First, the mentioned sparse tensor accelerators typically

target SpMM or SpMSpM with lower sparsity, whereas graph

data exhibits a much higher sparsity ratio. In addition, the

intermediate data reuse is not considered in the sparse tensor

accelerators, as they are optimized only for SpMM, not for

chained reduce and matrix multiplications.

IX. CONCLUSION

In this paper, we propose an elastic accelerator, SCALE,

that can support a wide range of GNN models and graph

irregularities with much-improved performance and energy

efficiency. Specifically, SCALE consists of three designs, a

novel systolic array-like architecture, a degree and vertex-

aware scheduling, and a new dataflow tailored for fused

graph and neural operations. The proposed systolic array-like

architecture is robust to edge and vertex variations and can

accommodate edge, vertex, feature, and operator parallelism

simultaneously. The degree and vertex-aware scheduling can

alleviate the workload imbalance issues in the message aggre-

gation and vertex update phases. Additionally, the proposed

dataflow can unify the data movement of both graph and

neural operators without extra communication overheads. Our

simulation results show that SCALE achieves 1.82× speedup

with 38.9% energy reduction on average over the state-of-the-

art GNN accelerators.

591

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. GC-
NAX: A flexible and energy-efficient accelerator for graph convolutional
neural networks. In Proceedings of IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 775–788.
IEEE, 2021.

[2] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei
Li, Pouya Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, and
Martin C. Herbordt. AWB-GCN: A graph convolutional network
accelerator with runtime workload rebalancing. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 922–936. IEEE, 2020.

[3] Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and
Cong Hao. FlowGNN: A dataflow architecture for real-time workload-
agnostic graph neural network inference. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 1099–1112. IEEE, 2023.

[4] Cen Chen, Kenli Li, Yangfan Li, and Xiaofeng Zou. ReGNN: A
redundancy-eliminated graph neural networks accelerator. In Proceed-
ings of IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 429–443. IEEE, 2022.

[5] Zhiwei Guo and Heng Wang. A deep graph neural network-based
mechanism for social recommendations. In IEEE Transactions on
Industrial Informatics, pages 2776–2783, 2021.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online
learning of social representations. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD), pages 701–710. ACM, 2014.

[7] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural
network based recommendation in social networks. In Neurocomputing,
page 126441. Elsevier, 2023.

[8] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. Graph convolutional neural networks
for web-scale recommender systems. In Proceedings of ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD), pages 974–983. ACM, 2018.

[9] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph
neural networks in recommender systems: A survey. In ACM Computing
Surveys, pages 1–37. ACM, 2020.

[10] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole
Ai, Yong Li, and Jingren Zhou. AliGraph: A comprehensive graph
neural network platform. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD), pages
2094–2105. ACM, 2019.

[11] Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. Graph neural
networks and their current applications in bioinformatics. In Frontiers
in Genetics, 2021.

[12] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Zı́dek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David A. Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet
Kohli, and Demis Hassabis. Highly accurate protein structure prediction
with alphafold. In Nature, pages 583 – 589, 2021.

[13] Chuanze Kang, Han Zhang, Zhuo Liu, Shenwei Huang, and Yanbin
Yin. Lr-gnn: A graph neural network based on link representation for
predicting molecular associations. In Briefings in Bioinformatics, page
bbab513. Oxford University Press, 2022.

[14] Shilin Tian, Chase Szafranski, Ce Zheng, Fan Yao, Ahmed Louri, Chen
Chen, and Hao Zheng. Vita: Vit acceleration for efficient 3d human
mesh recovery via hardware-algorithm co-design. In Proceedings of
ACM/IEEE Design Automation Conference (DAC). IEEE, 2024.

[15] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen
Xu, and Xiaowei Li. EnGN: A high-throughput and energy-efficient
accelerator for large graph neural networks. In IEEE Transactions on
Computers, pages 1511–1525. IEEE, 2020.

[16] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong
Zhou, and Yafei Dai. NeuGraph: Parallel deep neural network compu-
tation on large graphs. In Proceedings of USENIX Annual Technical
Conference (USENIX ATC), pages 443–458. ACM, 2019.

[17] Adam Auten, Matthew Tomei, and Rakesh Kumar. Hardware acceler-
ation of graph neural networks. In Proceedings of ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[18] Feng Shi, Ahren Yiqiao Jin, and Song-Chun Zhu. VersaGNN: a
versatile accelerator for graph neural networks. In arXiv preprint
arXiv:2105.01280, 2021.

[19] Zhuofu Tao, Chen Wu, Yuan Liang, Kun Wang, and Lei He. LW-GCN:
A lightweight fpga-based graph convolutional network accelerator. In
ACM Transactions on Reconfigurable Technology and Systems, pages
1–19. ACM, 2021.

[20] Lingxiang Yin, Jun Wang, and Hao Zheng. Exploring architecture,
dataflow, and sparsity for gcn accelerators: A holistic framework. In
Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI), pages
489–495. ACM, 2023.

[21] Sanjay Gandham, Lingxiang Yin, Hao Zheng, and Mingjie Lin. SAGA:
Sparsity-agnostic graph convolutional network acceleration with near-
optimal workload balance. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–9. IEEE,
2023.

[22] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie,
Haoran You, Martin Herbordt, Yingyan Lin, and Ang Li. I-GCN: A
graph convolutional network accelerator with runtime locality enhance-
ment through islandization. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1051–1063. IEEE,
2021.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. In arXiv
preprint arXiv:1710.10903, 2017.

[24] Md Khaledur Rahman, Majedul Haque Sujon, and Ariful Azad.
Fusedmm: A unified sddmm-spmm kernel for graph embedding and
graph neural networks. In Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 256–266. IEEE,
2021.

[25] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipour-
fard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram
Galstyan. Mixhop: Higher-order graph convolutional architectures
via sparsified neighborhood mixing. In Proceedings of International
Conference on Machine Learning (ICML), pages 21–29. PMLR, 2019.

[26] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In arXiv preprint arXiv:1609.02907,
2016.

[27] Xavier Bresson and Thomas Laurent. Residual gated graph convnets.
In arXiv preprint arXiv:1711.07553, 2017.

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Proceedings of International Conference
on Neural Information Processing Systems (NIPS), pages 1025–1035.
ACM, 2017.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-
erful are graph neural networks? In arXiv preprint arXiv:1810.00826,
2018.

[30] Petar Veličković. Message passing all the way up. In arXiv preprint
arXiv:2202.11097, 2022.

[31] Kevin Kiningham, Philip Levis, and Christopher Ré. Grip: A graph
neural network accelerator architecture. In IEEE Transactions on
Computers, pages 914–925. IEEE, 2022.

[32] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu.
Graph neural networks for graphs with heterophily: A survey. In arXiv
preprint arXiv:2202.07082, 2022.

[33] Maciej Besta and Torsten Hoefler. Parallel and distributed graph neural
networks: An in-depth concurrency analysis. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 2584–2606. IEEE,
2024.

[34] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,
and George E Dahl. Neural message passing for quantum chemistry. In
Proceedings of International Conference on Machine Learning-Volume
70 (ICML), pages 1263–1272. JMLR.org, 2017.

[35] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In arXiv preprint arXiv:1609.02907,
2017.

[36] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of USENIX Conference on Operating
Systems Design and Implementation (OSDI), pages 17–30. ACM, 2012.

592

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

[37] Fangzhou Ye, Lingxiang Yin, Amir Ahsaei Ghazizadeh, and Hao Zheng.
Egma: Enhancing data reuse and workload balancing in message passing
gnn acceleration via gram matrix optimization. In Proceedings of
ACM/IEEE Design Automation Conference (DAC). IEEE, 2024.

[38] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-
vector multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
pages 678–689. IEEE, 2016.

[39] Abbas Karimi, Kiarash Aghakhani, Seyed Ehsan Manavi, Faraneh
Zarafshan, and SAR Al-Haddad. Introduction and analysis of optimal
routing algorithm in benes networks. In Procedia Computer Science,
pages 313–319. Elsevier, 2014.

[40] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun
Ye, Zhimin Zhang, Dongrui Fan, and Yuan Xie. HyGCN: A GCN ac-
celerator with hybrid architecture. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
15–29. IEEE, 2020.

[41] Hao Zheng, Ke Wang, and Ahmed Louri. Adapt-noc: A flexible
network-on-chip design for heterogeneous manycore architectures. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 723–735. IEEE, 2021.

[42] Lingxiang Yin, Amir Ghazizadeh Ahsaei, Ahmed Louri, and Hao Zheng.
ARIES: Accelerating distributed training in chiplet-based systems via
flexible interconnects. In Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–9. IEEE,
2023.

[43] Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming. Parallel computing, 30(3):389–406,
2004.

[44] Pengcheng Yao, Long Zheng, Yu Huang, Qinggang Wang, Chuangyi
Gui, Zhen Zeng, Xiaofei Liao, Hai Jin, and Jingling Xue. ScalaGraph:
A scalable accelerator for massively parallel graph processing. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 199–212. IEEE, 2022.

[45] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
Gemini: A computation-centric distributed graph processing system. In
Proceedings of USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 301–316. ACM, 2016.

[46] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-
oung Choi. A scalable processing-in-memory accelerator for parallel
graph processing. In Proceedings of ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), pages 105–117. IEEE,
2015.

[47] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), pages 472–
488. IEEE, 2013.

[48] Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun,
Yongpan Liu, Yu Wang, Yuan Xie, and Huazhong Yang. Graphh: A
processing-in-memory architecture for large-scale graph processing. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 640–653. IEEE, 2019.

[49] Andrea Lodi, Silvano Martello, and Daniele Vigo. Recent advances on
two-dimensional bin packing problems. In Discrete Applied Mathemat-
ics, pages 379–396, 2002.

[50] Tayo Oguntebi and Kunle Olukotun. GraphOps: A dataflow library for
graph analytics acceleration. In Proceedings of ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA). ACM,
2016.

[51] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse,
performance, and hardware cost of DNN dataflow: A data-centric
approach. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 754–768. IEEE, 2018.

[52] Raveesh Garg, Eric Qin, Francisco Munoz-Mart’inez, Robert Guirado,
Akshay Jain, S. Abadal, Jos’e L. Abell’an, Manuel E. Acacio, Eduard
Alarc’on, Sivasankaran Rajamanickam, and Tushar Krishna. Under-
standing the design space of sparse/dense multiphase dataflows for
mapping graph neural networks on spatial accelerators. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 571–582. IEEE, 2021.

[53] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and
extensible dram simulator. In IEEE Computer Architecture Letters, pages
45–49, 2016.

[54] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian
Galligher, and Tina Eliassi-Rad. Collective classification in network
data. In AI magazine, pages 93–93, 2008.

[55] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
Hruschka, and Tom Mitchell. Toward an architecture for never-ending
language learning. In Proceedings of AAAI Conference on Artificial
Intelligence (AAAI), pages 1306–1313. AAAI Press, 2010.

[56] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. CACTI 6.0: A tool to understand large caches. In University of
Utah and Hewlett Packard Laboratories, Technical Report, 2009.

[57] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin.
Gcod: Graph convolutional network acceleration via dedicated algorithm
and accelerator co-design. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
460–474. IEEE, 2022.

[58] Yu Huang, Long Zheng, Pengcheng Yao, Qinggang Wang, Xiaofei
Liao, Hai Jin, and Jingling Xue. Accelerating graph convolutional
networks using crossbar-based processing-in-memory architectures. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 1029–1042. IEEE, 2022.

[59] Nagadastagiri Challapalle, Karthik Swaminathan, Nandhini Chan-
dramoorthy, and Vijaykrishnan Narayanan. Crossbar based processing
in memory accelerator architecture for graph convolutional networks.
In Proceedings of IEEE/ACM International Conference On Computer
Aided Design (ICCAD), pages 1–9. IEEE, 2021.

[60] Yilong Guo, Yuxuan Chen, Xiaofeng Zou, Xulei Yang, and Yuandong
Gu. Algorithms and architecture support of degree-based quantization
for graph neural networks. In Journal of Systems Architecture, page
102578. Elsevier, 2022.

[61] Zeyu Zhu, Fanrong Li, Gang Li, Zejian Liu, Zitao Mo, Qinghao
Hu, Xiaoyao Liang, and Jian Cheng. Mega: A memory-efficient gnn
accelerator exploiting degree-aware mixed-precision quantization. In
Proceedings of IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 124–138. IEEE, 2024.

[62] Xin Liu, Mingyu Yan, Shuhan Song, Zhengyang Lv, Wenming Li,
Guangyu Sun, Xiaochun Ye, and Dongrui Fan. Gnnsampler: Bridging
the gap between sampling algorithms of gnn and hardware. In Proceed-
ings of Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 498–514. Springer, 2022.

[63] Cen Chen, Kenli Li, Xiaofeng Zou, and Yangfan Li. Dygnn: Algorithm
and architecture support of dynamic pruning for graph neural networks.
In Proceedings of ACM/IEEE Design Automation Conference (DAC),
pages 1201–1206. IEEE, 2021.

[64] Deniz Gurevin, Mohsin Shan, Shaoyi Huang, MD Amit Hasan, Caiwen
Ding, and Omer Khan. Prunegnn: Algorithm-architecture pruning frame-
work for graph neural network acceleration. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 108–123. IEEE, 2024.

[65] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. Outerspace: An outer product
based sparse matrix multiplication accelerator. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 724–736. IEEE, 2018.

[66] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Aamer Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher.
Extensor: An accelerator for sparse tensor algebra. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 319–333. IEEE, 2019.

[67] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan
Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. SIGMA:
A sparse and irregular GEMM accelerator with flexible interconnects
for DNN training. In Proceedings of IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 58–70. IEEE,
2020.

[68] Francisco Muñoz-Martı́nez, Raveesh Garg, Michael Pellauer, José L
Abellán, Manuel E Acacio, and Tushar Krishna. Flexagon: A multi-
dataflow sparse-sparse matrix multiplication accelerator for efficient dnn
processing. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 252–265. ACM, 2023.

593

Authorized licensed use limited to: University of Central Florida. Downloaded on September 09,2025 at 03:49:09 UTC from IEEE Xplore. Restrictions apply.

