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Abstract

Extranuclear localization of long noncoding RNAs (lncRNAs) is poorly understood. Based on machine learning evaluations, we
propose a lncRNA-mitochondrial interaction pathway where polynucleotide phosphorylase (PNPase), through domains that pro-
vide specificity for primary sequence and secondary structure, binds nuclear-encoded lncRNAs to facilitate mitochondrial import.
Using FVB/NJ mouse and human cardiac tissues, RNA from isolated subcellular compartments (cytoplasmic and mitochondrial)
and cross-linked immunoprecipitate (CLIP) with PNPase within the mitochondrion were sequenced on the Illumina HiSeq and
MiSeq, respectively. lncRNA sequence and structure were evaluated through supervised [classification and regression trees
(CART) and support vector machines (SVM)] machine learning algorithms. In HL-1 cells, quantitative PCR of PNPase CLIP knock-
out mutants (KH and S1) was performed. In vitro fluorescence assays assessed PNPase RNA binding capacity and verified with
PNPase CLIP. One hundred twelve (mouse) and 1,548 (human) lncRNAs were identified in the mitochondrion with Malat1 being
the most abundant. Most noncoding RNAs binding PNPase were lncRNAs, including Malat1. lncRNA fragments bound to PNPase
compared against randomly generated sequences of similar length showed stratification with SVM and CART algorithms. The
lncRNAs bound to PNPase were used to create a criterion for binding, with experimental validation revealing increased binding
affinity of RNA designed to bind PNPase compared to control RNA. The binding of lncRNAs to PNPase was decreased through
the knockout of RNA binding domains KH and S1. In conclusion, sequence and secondary structural features identified by
machine learning enhance the likelihood of nuclear-encoded lncRNAs binding to PNPase and undergoing import into the
mitochondrion.

NEW & NOTEWORTHY Long noncoding RNAs (lncRNAs) are relatively novel RNAs with increasingly prominent roles in regulat-
ing genetic expression, mainly in the nucleus but more recently in regions such as the mitochondrion. This study explores how
lncRNAs interact with polynucleotide phosphorylase (PNPase), a protein that regulates RNA import into the mitochondrion.
Machine learning identified several RNA structural features that improved lncRNA binding to PNPase, which may be useful in tar-
geting RNA therapeutics to the mitochondrion.

bioinformatics; heart; lncRNA; machine learning; mitochondria

INTRODUCTION

Noncoding RNAs (ncRNAs) are a diverse group of tran-
scribed genes that do not generate proteins but instead possess

unique regulatory roles. Long noncoding RNAs (lncRNAs) are a
class of noncoding RNAs that assume multiple responsibilities
within the cell, including regulating chromatin structure, his-
tone modification, modifying mRNA transcription, microRNA
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(miRNA) sponging, and regulation of protein translation and
modification (1, 2). In general, lncRNAs have reduced sequen-
tial conservation across species, but as the field has grown,
more and more functional orthologues are being discovered
that lack alignment but possess positional, splicing, and/or
structural homology (3). Current explorations of lncRNA activ-
ity are primarily focused on cytoplasmic and nuclear localiza-
tion, while other subcellular regions have remained largely
ignored. Moreover, procedures examining localization of
lncRNAs often lump nuclear and mitochondrial subcellular
fractions together (4). The mitochondrion represents an iso-
lated, spatially dense region containing a distinct genome that
can serve as a stoichiometrically favorable compartment for
interactions between lncRNAs and other RNA species (5).
Recent investigations from our laboratory as well as others
have assessed the involvement of lncRNAs in altering mito-
chondrial function and gene expression (6–8), but the direct
interactions of lncRNA within the mitochondrion remain pre-
dominantly uncertain. The mechanism by which nuclear-
encoded lncRNAs pass through the mitochondrial outer and
innermembranes is evenmore unclear.

Polynucleotide phosphorylase (PNPase) is a ribonuclease
that is conserved across bacterial, archaeal, and eukaryotic
domains of life (9, 10). In bacteria, PNPase is a primary regu-
lator of mRNA degradation (11, 12), modifying the cellular
response to temperature change (13) and biofilm formation
(14), as well as functioning as a processing enzyme for small
RNA (15). Progressing through the evolutionary timeline, eu-
karyotic PNPase is now localized specifically to the inter-
membrane space of the mitochondrion, seemingly lacking
its bacterial functional roles (16–18). In 2010, the first estab-
lished RNA import function for PNPase in mammalian sys-
tems (19) revealed that tRNA and ribozyme machinery are
transported by PNPase from the intermembrane space of the
mitochondrion into the matrix, and it was hypothesized that
two external domains of PNPase (annotated as KH and S1)
recognize stem-loop structures for RNA import. Further eval-
uation of these domains has shown that their deletion does
not alter PNPase’s mitochondrial localization but will drasti-
cally reduce RNA binding (9, 16, 20–23). Mammalian PNPase
has been shown to form a trimer structure that embeds in
the inner mitochondrial membrane with a positively
charged central pore that has been hypothesized to serve as
a channel for RNAs (see Supplemental Fig. S11C) (21).
Additionally, changes in PNPase expression have resulted in
alterations in cellular function and miRNA import without
directly altering mitochondrial-encoded RNA content (24–
26). PNPase, through its KH and S1 RNA binding domains,
may provide a functional context for noncoding RNA
(ncRNA) import and regulation in themitochondrion.

In the current study, we investigated ncRNA presence in
cardiac mitochondria frommice and humans. Through com-
parison of both cytoplasmic and isolated mitochondrial
ncRNA populations, we identified hundreds of nuclear-
encoded lncRNAs within the mitochondrion, including the
lncRNA metastasis-associated lung adenocarcinoma tran-
script 1 (Malat1). We further examined the mechanisms con-
trolling the localization of lncRNAs into mitochondria.
PNPase binding to lncRNAs is greater when specific primary
and secondary structural conformations are present. We per-
formed experimental validation of these hypotheses through

gel shift assays, revealing increased binding of a predicted
binding construct to PNPase. Additionally, initiation of bind-
ing by the lncRNAMalat1 to PNPase is significantly impaired
when the KH and S1 RNA-binding domains are perturbed.
With the present data, we propose that nuclear-encoded
lncRNAs with specific primary sequence and secondary
structural features identified by machine learning have a
greater propensity to bind to PNPase and undergo import
into the mitochondrion than lncRNAs that lack those
features.

EXPERIMENTAL PROCEDURES

Study Approval and Patient Population

The West Virginia University Institutional Review Board
and Institutional Biosafety Committee approved the studies
and data generated from this work (IRB No. 1812394926),
including all tissue and patient information acquired (27).
Informed written consent was obtained from all patients by
the Heart and Vascular Institute, J.W. Ruby Memorial
Hospital at West Virginia University School of Medicine.
Right atrial appendages were removed during open-heart
and/or valvular surgeries, and all tissue and data were stored
in a double-deidentified process. There was no incentive pro-
vided for patients. Patients’ tissue was used irrespective of
sex, race, or ethnicity. Patients enrolled in the study were
not part of a clinical trial. All procedures performed in stud-
ies involving human participants were in accordance with
the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.

Murine Model

The West Virginia University Animal Care and Use
Committee approved all animal studies, including animal
housing, sedation, euthanasia, and experimentation. These
studies conformed to the most current National Institutes of
Health (NIH) Guidelines for the Care and Use of Laboratory
Animals. FVB/NJ (wild-type) male and female mice were
housed in the West Virginia University Health Sciences
Center Animal Facility and given access to a rodent diet and
water ad libitum. Animals were aged to 25 wk and were eu-
thanized. Both sexes were evaluated indiscriminately.

Mitochondrial Isolations

Mitochondrial subpopulations were isolated for analyses
as previously described (28), with modifications by our labo-
ratory (29–31). Briefly, mitochondria were isolated from both
human right atrial tissue and mouse whole heart. Buffer 1
(100 KCl mmol/L, 50 MOPSmmol/L, 5 MgSO4·7H2Ommol/L,
1 EGTA mmol/L, and 1 ATP mmol/L at pH 7.4) was used at a
1:10 (wt:vol) ratio to homogenize samples at 4�C. Samples
were then centrifuged at 700 g for 10 min. Following centrif-
ugation, the supernatant was extracted and recentrifuged at
10,000 g. The precipitated pellet was washed in buffer 1 and
centrifuged at 10,000 g twice. The precipitant from the 700 g
spin was further processed by resuspending in a solution of
KCl-MOPS-EGTA buffer (100 KCl mmol/L, 50MOPSmmol/L,
and 0.5 EGTAmmol/L at pH 7.4) and digested with 5 mg/g of
trypsin for 10 min. Following the 10-min incubation, a
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protease inhibitor cocktail (Biovision, Mountain View, CA)
was added to the mixture to stop the digestion and centri-
fuged at 700 g for 10min. The supernatant was collected and
centrifuged at 10,000 g for 10min. Both sets of isolatedmito-
chondria (from the initial supernatant and the digested pel-
let) were combined in a sucrose buffer containing 220
sucrose mmol/L, 70 mannitol mmol/L, 10 Tris·HCl mmol/L,
and 1 EDTAmmol/L (pH 7.4).

Mitochondria were isolated from both human right atrial
tissue and mouse whole heart. Differential centrifugation
allowed for the compartmentalization of nuclear, cytoplas-
mic, and mitochondrial fractions. Mitochondrial subpopula-
tions, subsarcolemmal and interfibrillar, were combined to
form a total mitochondrial population. Mitochondria were
further purified through the use of a sucrose gradient (23%,
15%, 10%, and 3% Percoll solution) by centrifugation in
a Beckman Optima MAX-XP Ultracentrifuge (Beckman
Coulter, Fullerton, CA) at 32,000 g for 8 min, as previously
described (32). Final mitochondrial isolates were stored in a
KME buffer (100 mM KCL, 50 mM MOPS, and 0.5 mM EGTA
(pH 7.4).

PNPase Overexpression and Knockdown Constructs

Express Cloning Vectors were synthesized through GenScript
(Piscataway, NJ) using the pcDNA3.1 þ N-eGFP backbone.
Sequences for the full-length PNPase protein (FL), KH domain
knockout of exon 23 of PNPase (KH), and the S1 domain knock-
out of the COOH terminus of PNPase (S1) were cloned into
vectors and the complete sequence information is pro-
vided (Supplemental Fig. S1). Vectors were then trans-
fected into a bacterial cell line (DH5a), grown through
antibiotic selection, and plasmid DNA was isolated for trans-
fection. Immortalized HL-1 murine cardiomyocytes were cul-
tured at 37�C, 5% CO2, as previously described (24, 32, 33).
Cells were supplemented with Claycomb media (Sigma-
Aldrich, St. Louis, MO) containing 10% FBS, glutamine (2
mM), penicillin/streptomycin, and norepinephrine (0.1 mM).
Cells were seeded and transfection occurred at 70–80% conflu-
ence. Lipofectamine 3000 (Thermo Fisher, Waltham, MA) was
used to transfect cells, per themanufacturer’s instructions.

Briefly, cells were divided into five groups; no plasmid con-
trol (NP), pcDNA3.1 þ N-eGFP only (GFP), FL, KH, and S1. In
the GFP, FL, KH, and S1 sets, 10 lg of each respective plasmid
were transfected. Media, with the Lipofectamine 3000,
remained on the cells for 48 h followed by cell imaging using
the EVO FL Auto Imaging System (Thermo Fisher) on the GFP
fluorescent and phase contrast channels. Cells were washed
with PBS, dissociated with 0.05% trypsin, and preserved at
�80�C. For knockdown experiments of PNPase, HL-1 cells
were seeded at 70–80% confluence. Lipofectamine 3000 was
mixed with Opti-MEM Medium and 10 lM stock solution of
Silencer siRNA for Pnpt1 (cat. no. AM16708, assay ID no.
177160, Thermo Fisher) targeting exon 3. The siRNA-lipid
complex was added to cells with a final concentration of 50
nM siRNA and incubated for 2 days. Cells were washed with
PBS, dissociated with 0.05% trypsin, and preserved at�80�C.

Malat1 Fluorescent In Situ Hybridization

HL-1 cells were seeded on 18-mm round no. 1 coverslips in
6-well dishes and were allowed to reach 70–80% confluency,

with growth conditions provided above. For fluorescent
in situ hybridization (FISH), a modified version of the
Stellaris RNA FISH Protocol for Adherent Cells was used.
Stellaris FISH Probes against Malat1 and Gapdh (Biosearch
Technologies, Inc., Petaluma, CA) were utilized in the
hybridization, and NucBlue Fixed Cell Stain ReadyProbes
reagent (Thermo Fisher) was used to stain nuclei. Following
MitoTracker Deep Red FM (Thermo Fisher) incubation, cover-
glass was washed with 1 mL 1� phosphate-buffered saline
(PBS), and 1 mL Stellaris RNA FISH Fixation Buffer [3.7% (vol/
vol) formaldehyde in 1� PBS] was then added to the six-well
dishes and incubated at room temperature for 10 min. The
cells were washed twice with 1 mL 1� PBS and permeabilized
with 1 mL 70% ethanol for 16 h at 4�C. The ethanol was eluted
and the cells were incubated with Stellaris RNA FISH Wash
Buffer A [Biosearch Technologies; 10% (vol/vol) formamide in
Wash Buffer A] for 5min at room temperature.

The cells were transferred, on the coverglass, to a humidi-
fied chamber and incubated with 100 ll of Stellaris RNA
FISH Hybridization Buffer [Biosearch Technologies; 10%
(vol/vol) formamide in Hybridization Buffer] containing ei-
ther a Malat1 (no. SMF-3008-1) or Gapdh (no. SMF-3002-1)
probe (Stellaris FISH Probes with Quasar 570 Dye) for 16 h at
37�C in darkness. Each Stellaris FISH Probe has �80 hybrid-
ization sites on the target RNA. The coverglass was then
incubated with 1 mL Stellaris RNA FISH Wash Buffer A for
30min at 37�C in darkness, the buffer was aspirated, and one
drop of NucBlue Fixed Cell Stain ReadyProbes reagent
(Thermo Fisher; DAPI stain) was added. The cells were then
incubated for 30 min at 37�C in darkness. The NucBlue stain
was removed, 1 mL Stellaris RNA FISH Wash Buffer B
(Biosearch Technologies) was added, and the cells were
allowed to incubate at room temperature for 5 min. A drop of
Vectashield Mounting Medium (Vector Laboratories, San
Diego, CA) was added to a microscope slide, and the cover-
glass wasmounted. Themounted cells were sealed with clear
nail polish and stored at 4�C.

Cells were incubated with 250 nM of MitoTracker Deep
Red FM (Thermo Fisher) in Opti-MEM (Thermo Fisher)
growth media for 30 min and then washed with Claycomb
media. The cells were incubated with the Stellaris RNA FISH
Hybridization Buffer containing either a Malat1 or Gapdh
probe for 16 h at 37�C in darkness. Cells were imaged using
the Nikon A1R/SIM (Nikon, Minato City, Tokyo, Japan) con-
focal microscope. Images were processed using the NIS
Elements AR (Nikon) software.

Cross-Linking Immunoprecipitation

Cell culture.
Cells in the NP, GFP, FL, KH, and S1 groups were resus-
pended in PBS and transferred to a 24-well plate on ice.
Additionally, cells without plasmid transfection (i.e., NP)
were assigned to an immunoprecipitation (IP) control (i.e.,
no cross linking) and antibody control (i.e., no antibody).
Cross linking was performed using the CX-2000 Crosslinker
(Analytik Jena, Upland, CA) at (400 mJ/cm2) five times, as
previously described (32), in all groups with the exception of
the IP control. After cross linking, cells were centrifuged
(1,200 � g) for 7 min and subsequently frozen (�80�C) for
further use. Then, 75 lL per sample of Dynabeads Protein G
(Thermo Fisher) were prepared through three washes with
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NP-40 buffer (20 mM Tris at pH 8.0, 137 mMNaCl, 10% glyc-
erol, 1% Triton X100, 2 mM EDTA, and 0.1 mM PMSF). After
the third wash, the supernatant on the beads was discarded
and 5 lg of anti-GFP was added, along with NP-40 buffer, to
reach a total volume of 100 lL. Beads were incubated over-
night at 4�C. The next day, each sample was resuspended in
NP-40 buffer to a total volume of 1 mL, and protein concen-
trations were determined through the Bradford Method (34).
Then, 100 lg of protein from each sample was added to a
new tube followed by RNAse I treatment (1:500 dilution,
Ambion RNase I, Thermo Fisher) for 3 min at 37�C, which
allowed for partial digestion of RNA bound to PNPase. The
reaction was stopped by incubating the samples on ice. The
supernatant on the beads solution was then removed, and
the protein mixture was added and incubated at 4�C for 4 h.
Following the incubation, beads were washed three times in
NP-40 buffer, the final supernatant was removed, and a mix-
ture of water/NuPAG LDS Sample Buffer (4�; Thermo
Fisher) was added to the beads. The beads solution was
heated at 70�C for 15min and assessed through immunoblot-
ting (see Western Blotting) and sequenced (see High-
Throughput Sequencing Cross-Linking Immunoprecipitation
below).

Isolated mitochondria.
Cross-linking immunoprecipitation (CLIP) was also performed
on isolated mitochondria (see Mitochondrial Isolations) from
human andmouse cardiac tissue. To procure sufficient protein,
(n ¼ 3) biological replicates were pooled together four separate
times (i.e., n ¼ 4 pooled groups of mitochondria, each contain-
ing n ¼ 3 biological replicates). From pooled mitochondrial
samples in human (n ¼ 4) and mouse (n ¼ 4), 5% of each sam-
ple volume was saved for an IP control (i.e., no cross linking)
and 5% volume for an antibody control (i.e., no antibody). The
CLIP protocol was performed as described above, including
cross linking, centrifugation, bead preparation, assessment of
protein concentration, RNAse treatment, and incubation and
denaturation steps. With the tissue samples, in place of incuba-
tion with anti-GFP (as this was used for GFP-tagged proteins in
the plasmids), samples were incubated with either 5 lg anti-
PNPase (human), 5 lg anti-PNPase (mouse), or 5 lg anti-
Ago2 (mouse). Differential expression was not performed
as both human and mouse samples have no comparison
groups in the current study; rather the CLIP analysis was
performed for descriptive purposes. Immunoblotting (see
Western Blotting) and sequencing (see High-Throughput
Sequencing Cross-Linking Immunoprecipitation) provide
further information.

In vitro binding assay.
CLIP with FAM-labeled RNA probes was performed on iso-
lated mitochondria from mouse cardiac tissue as described
above, with an additional 4 h incubation of RNA and lysate
before cross linking. Following incubation with beads, the
supernatant was kept and marked as unbound RNA. After
three washes, beads as well as their bound content were
added to a black 96-well plate in duplicate along with an
unbound RNA sample, RNA was added to NP-40 buffer, and
NP-40 with beads was added for normalization. The plate
was read at wavelengths 485–528, with NP-40 buffer used as
a blank.

Western Blotting

Using4–12%gradient gels, immunoblottingwasperformed
through MOPS SDS-PAGE, as previously described (35–37).
Using the BradfordMethod, protein concentrationswere nor-
malized. Primary antibodies (1:1,000 dilution) implemented
in the study included the following: anti-GFP (B-2: sc-9996,
SCBT, Dallas, TX), anti-PNPase (C-5: sc-271973, SCBT), anti-
PNPase (D-1: sc-271479, SCBT), anti-GAPDH (ab8245, Abcam,
Cambridge, MA), anti-VDAC1 (voltage-dependent anion cha-
nnel; SAB5201374, Sigma), and anti-cytochrome c oxidase
subunit 4 (anti-COX IV; ab16056, Abcam). Rabbit anti-mouse
IgG (H&L) horseradish peroxidase (HRP) conjugate 1:10,000
(ab6728, Abcam) and goat anti-rabbit (H&L) HRP conjugate
1:10,000 (ab6721, Abcam) were used as secondary antibod-
ies when appropriate. Normalization of protein content
was through GAPDH (cytoplasmic) and VDAC (mitochon-
drial) expression. Chemiluminescence was quantified with
Radiance Chemiluminescent Substrate (Azure Biosystems,
Dublin, CA), per manufacturer’s instructions, and imaged
using the G:Box Bioimaging system (Syngene, Frederick,
MD). Images were taken with GeneSnap/GeneTools soft-
ware (Syngene). Densitometry was analyzed using ImageJ
and Fiji Software (NIH, Bethesda, MD). For CLIP samples,
the area of nitrocellulose membrane containing the GFP
(cells) or PNPase (human/mouse) fluorescent region was
excised and saved for RNA analysis.

RNA Isolation/Quantitative PCR

Using the miRNeasyMini Kit (product no. 217004, Qiagen,
Hilden, Germany), per manufacturer’s instructions, RNA
was isolated from 20 mg of human right atrial tissue and
mouse whole heart, as well as from samples of nitrocellulose
membrane containing RNA derived from CLIP samples.
Each sample was homogenized in QIAzol lysis reagent before
proceeding. Total RNA was isolated for each sample and
RNA to be analyzed through quantitative (q)PCR was con-
verted to cDNA through the High-Capacity RNA-to-cDNA
Kit (Thermo Fisher), per manufacturer’s instructions. Malat1
levels were also measured in HL-1 cells following PNPase
CLIP (as described above). Experiments were performed on
the Applied Biosystems 7500 Fast Real-Time PCR system
(Applied Biosystems, Foster City, CA), using 2� SYBR Green
Master Mix. Quantification was achieved using the 2�DDCt

method (38), standardized to U6 expressionwhere appropriate.
Primer sequences are provided (Supplemental Table S1) and
were designed throughNCBI Primer BLAST and Primer3 (39).

Long Noncoding RNA Sequencing

RNA, isolated from human atrial appendages and mouse
whole heart (as described above), was sequenced through the
West Virginia University Genomics Core Facility. The com-
plete differential expression profiles of mitochondrial and
cytoplasmic groups are included (Additional File 1 in the
Supplemental Material). Briefly, RNA was selected for lncRNA
analysis using a Ribo-Zero rRNA Removal Kit (Illumina, San
Diego, CA). Samples were run on the HiSeq 2500 (Illumina) in
51 bp paired-end reads achieving �30 million clustered reads
per sample. Generated Fastq files were processed through
HISAT2 (40, 41) under standard parameters, with the excep-
tion of quality scoring control specified under “–phred33.”
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The reference genome used in generating BAM files included
fasta formatted DNA from Ensemble release 95 for human
(GRCh38) and mouse (GRCm38), including novel transcripts
that at the time of print are not annotated. Comparative align-
ment was performed in the R environment using the
AdaLiftOver package (42). Differential gene expression was
performed in the R (v3.5.3) environment, through DESeq2
(43). Calculation of fragments per kilobase per million frag-
ments mapped (FPKM) and transcripts per kilobase million
(TPM) reads was performed in the R environment using the
countToFPKM package (44) and samtools (45). Visualization
was performed through the packages ggplot2 (46), limma (47),
vidger (48), and EnhancedVolcano (49). Additional programs,
such as Seqmonk (v1.45.4) and Cytoscape (v3.7.2) (50) were
implemented to display data.

High-Throughput Sequencing Cross-Linking
Immunoprecipitation

CLIP RNA (as described above) from human atrial appen-
dages (anti-PNPase) and mouse whole heart (anti-PNPase,
anti-Ago2) was sequenced through the West Virginia
University Genomics Core Facility. The complete transcript
abundance profiles, along with the raw count values for each
sample are included (Additional File 1 in the Supplemental
Material). RNA was selected for using the NEXTFLEX Small
RNA-Seq Kit v3 (Bioo Scientific, Austin, TX). Samples were
run on the MiSeq in 36-bp single-end reads achieving �1 mil-
lion clustered reads per sample. Adapter trimming through
cutadapt (51) (50-TGGAATTCTCGGGTGCCAAGG -30) allowed
for isolation of genomic reads. Generated Fastq files were
processed through Bowtie (52) using the parameters, “-a –best
–chunkmbs 250,” which reported all valid alignments ranked
from best to worst. This permitted identification of cross-link-
ing-induced biases while permitting accurate gene alignment.
The reference genome used in generating BAM files included
fasta formatted DNA from Ensemble release 103 for human
(GRCh38) and mouse (GRCm38). Calculation of FPKM and
TPM reads was performed as described above. Additional pro-
grams, such as matplotlib’s plotly package (53), wiggleplotR
(54), and rtracklayer (55), were implemented to display CLIP
data.

Machine Learning CLIP Sequencing lncRNA Input

To determine if lncRNAs that were found in the mito-
chondrion and associated with PNPase had sequence or sec-
ondary structure homology, RNAfold through the ViennaRNA
Package was employed (56). RNAfold was used in conjunction
with LncFinder (57) and seqinR (58) to evaluate folding param-
eters of both the full-length lncRNA, as well as isolated regions
(15–22 nucleotides) shown to bind to PNPase in CLIP analyses.
Isolated regions were identified for 60 human and 60 mouse
lncRNA labeled “positive” (found in CLIP sequencing) and 120
randomly generated sequences of equal length labeled “nega-
tive” (59). The isolated regions from genes identified within
the PNPase CLIP were flanked by surrounding nucleotides
within the genome to achieve 60 nucleotide sequences imple-
mented in the subsequent RNAfold and machine learning
applications. The length of 60 nucleotides for each target was
selected to include enough information about the surrounding
region to generate an appropriate secondary structure but also

succinct enough to be used in computational models for
designing RNA secondary structures (60). The randomly gen-
erated sequences also consisted of 60 nucleotides. The sequen-
ces directly identified in the CLIP sequencing, as well as
flanking regions, are provided for each positive control gene
(Additional File 1 in the Supplemental Material). For compari-
sons within the positive group, lncRNAs identified in the
PNPase CLIP were categorized by total read count into
increased interactions (>1,500 human or >750 mouse) and
decreased interactions (<1,500 human or<750mouse).

Machine Learning for RNA Sequences

Using 10-fold cross validation, classification of “positive”
and “negative” 60 nucleotide isolated regions was assessed
through classification and regression trees (CART) in
randomForest (61) and rfUtilities (62). Machine learning
algorithms were performed on 135 features, which included
primary sequence and secondary structure information
(Additional File 1 in the Supplemental Material). Briefly, rf.
crossValidation was used with a randomForest object to pro-
vide 10-fold cross validation, with a 70% training and 30%
holdout/testing set. As a confirmatory measure, support vec-
tor machines (SVM), using the svm_cv function of LncFinder,
were implemented to determine 10-fold cross validation of
full length and isolated regions. Distance referred to in this
context is defined as linear length calculated for two data
points on the model’s most optimal decision surface, one
data point being a sequence and the other being a feature
defined by LncFinder. Power spectrum signal refers to a
vector of numerical values representing the single elec-
tron-ion interaction potential (EIIP) of each nucleotide,
which is most frequently used for appropriate DNA-to-sig-
nal mapping (88).

Expression and Purification of PNPase Protein

PNPase was transformed and expressed in pET11a plasmids
and expressed in Rosetta (DE3) cells. Expression was achieved
in 3-liter lysogeny broth autoinduction media (63) containing
100 ug/mL carbenicillin and 20 ug/mL chloramphenicol
grown at 25�C for 24 h. Cells were harvested and pelleted at
5,000 g, resuspended in a total volume of 22 mL lysis buffer
(50mMTris·HCl pH 7.5, 1 MNaCl, and 10mM imidazole), and
treated with PMSF protease inhibitor at 1/1,000 dilution. Cells
were lysed via sonication with cleared lysate being applied
over a Ni-NTA column, washed with additional lysis buffer,
and eluded in 20 mM HEPES (pH 7.5), 300 mM KCl, and 300
mM Imidazole. Purified protein was then centrifugated in a
100-kDa cutoff filter to remove purification tags, PNPase
monomers, and imidazole before being stored in 20 mM
HEPES (pH 7.5) with 300 mM KCl until use. The Native Shift
Assay was run using Predicted RNA oligos generated from the
ML and control RNA oligos that were 50 labeled with fluores-
cein (IDT) and combined with pure PNPase samples at speci-
fied molar ratios with a constant concentration (250 nM) of
RNA probe. The reaction was carried out in 20 mM Tris·HCl
(pH 7.4), 50 mM KCl, 0.1 mM EDTA, 1 mM DTT, 10% glycerol,
and 2 mMMgCl2 and incubated at 37�C for 30 min before sep-
arating on a 5% polyacrylamide gel in native conditions at
4�C. The resulting gels were then imaged using a GE Typhoon
for Cy2 fluorescence (21).
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Protein Modeling and Prediction

Predicted models of full-length, KH-deleted, and S1-deleted
PNPase were generated using Colabfold through Cosmic2 (64)
and superpositioned using ProteinDataBank’s Mol�3D Viewer.
Electrostatic potential surface modeling was performed using
human PNPase (Protein Data Bank ID: 3U1K) imported into
Pymol (65) and evaluated using APBS Tools plugin.

Statistics

A two-sided Student’s t test or one-way analysis of var-
iance (ANOVA) was used to determine statistical differences,
where appropriate. Multiple groups were assessed through
Tukey’s multiple comparisons test following the ANOVA.
Differences between groups were considered statistically sig-
nificant if P � 0.05. Data are presented as the means ± SE,
when appropriate. For all sequencing data, raw counts >1
were considered in statistical analyses. The false-discovery
rate was set to 0.05, and all significance was determined
through a P adjusted value<0.05 usingWald testing.

RESULTS

Mitochondrial Isolation

To evaluate the subcellular localization of ncRNAs, purity
of cellular fractionation was assessed. Tissue homogenization,

differential centrifugation, and sucrose gradient separation
allowed for the enrichment of pure populations of car-
diac mitochondria from both mice and humans (Fig. 1A).
Mitochondrial contamination was determined through
the presence of cytoplasmic ribosomal RNA (rRNA) 18S
and 28S within mitochondrial RNA fractions (Fig. 1B).
Low RNA integrity numbers (RIN) for cytoplasmic
rRNAs in mitochondrial fractions, while typically used
in the context of RNA degradation, verify the purity of
mitochondrial RNA isolation through the absence of
cytoplasmic contaminants (32, 66) (Fig. 1C). Further,
the presence of 12S and 16S ribosomal RNA peaks
(Supplemental Fig. S2, A and B), without the inclusion of
18S or 28S (Supplemental Fig. S2, C and D), helped con-
firm the identity of the DNA as mitochondrial on gel
electrophoresis. qPCR in mouse and human mitochon-
dria (Supplemental Fig. S3, A and B) also revealed that
12S and 16S rRNA transcript levels were significantly
higher than nuclear rRNA contaminants, indicated by
U6 snRNA. Immunoblotting further confirmed purifica-
tion of mitochondrial fractions, indicated by an absence
of cytoplasmic proteins (GAPDH), with inclusion of mi-
tochondrial proteins (COX IV) (Fig. 1D). The presence of
COX IV in cytoplasmic fractions is likely due to nuclear-
encoded mitochondrial proteins, such as COX IV, being
transported to the mitochondrion following translation
in the cytoplasm (67).

A

B DC

Figure 1. Enrichment of mitochondria from cardiac tissue. A: from human atrial appendages and whole mouse hearts, samples are homogenized and dif-
ferentially centrifuged to produce subcellular fractionations; mitochondria are further sucrose-gradient purified to remove cytoplasmic contamination. B:
electrophoresis gel showing purity of cytoplasmic (Cyto) and mitochondrial (Mito) RNA assessed through the Bioanalyzer (Agilent Technologies). C: elec-
tropherogram trace for calculating RNA integrity number (RIN) indicating limited or no presence of cytoplasmic ribosomal RNA. D: immunoblotting of iso-
lated mitochondria for cytoplasmic [glyceraldehyde phosphate dehydrogenase (GAPDH)] and mitochondrial [cytochrome c oxidase subunit (COX IV)]
proteins in mouse (top) and human (bottom). FU, fluorescence units.
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Nuclear-Encoded lncRNA in Mitochondria

Using a lncRNA sequencing approach on sucrose-purified
mitochondria, we identified a variety of lncRNAs that were
compartmentalized in mitochondria from mouse (Fig. 2A,
top) and human (Fig. 2A, bottom) hearts relative to the cyto-
plasm. To confirm minimal nuclear contamination, which is
crucial for evaluating lncRNAs, GAPDH mRNA in mouse
and human lncRNA sequencing of the cytoplasmic fraction
was identified to be immensely more highly expressed relative
to small nuclear RNAs such as U6 and 7SK (Supplemental Fig.
S3C). In total, 112 (mouse) and 1,548 (human) lncRNAs with 0.1
or more mean TPM counts were identified in the mitochond-
rion, with over 30% of mouse lncRNAs identified to have
annotated human orthologues. Of the lncRNAs identified in
themitochondrion,Malat1 was expressed in the greatest abun-
dance for both mouse (Fig. 2B, top) and human (Fig. 2B, bot-
tom) mitochondrial sequencing results, presented as the top 6
most abundant genes. Additionally, other highly expressed
nuclear-localized lncRNAs such as Haglr, Hotair, Hottip,
Fendrr, Xact, Disc2, and Anril were not identified inmitochon-
drial sequencing, confirming the specificity of these results
(68, 69). FISH revealed that Malat1, while predominately pres-
ent in the nucleus, can be identified in the cytoplasm (Fig.
2C; Supplemental Fig. S4A). Further, coupling FISH with
MitoTracker staining suggested that a colocalization of
Malat1 with mitochondria also occurred (Supplemental Fig.
S4B), similar to recent findings in hepatocellular carcinoma
cells (70). This indicates that Malat1, although classically con-
sidered to be restricted to the nucleus, can be detected inter-
acting with the mitochondrion. Additional evaluations of
Malat1 localization support its potential to translocate to the
mitochondrion, although these evaluations have never been
performed in cardiac tissue or with a sequencing approach
optimized for themitochondrion (71, 72).

PNPase CLIP Sequencing

The complete pathway facilitating ncRNA transport into
the mitochondrial matrix is not fully elucidated, though
work from our laboratory (24) as well as others (19, 25) has
implicated PNPase as a meditator of miRNA and tRNA
import (Fig. 3A). Using purified mitochondria from mouse
and human cardiac tissue, we performed CLIP analysis on
PNPase. CLIP revealed that a significant portion of ncRNA
PNPase binding targets were lncRNAs in both mouse (�60%)
and human (�69%) mitochondria (Fig. 3B). While additional
ncRNAs such as miRNAs and miscRNAs also appear as
PNPase binding targets, lncRNAs are by far the most promi-
nent target ncRNA type. Protein-coding RNAs are also pres-
ent in CLIP sequencing results with the greatest quantity of
gene species among all the RNAs (Supplemental Fig. S5A).
However, at least in human results, lncRNAs are more prom-
inent by a margin of 6% when scaled by percentage to total
contribution to TPM, (Supplemental Fig. S5B). This does not
hold true for mouse PNPase CLIP sequencing, which may
reflect the lack of characterization of mouse ncRNA. Wiggle
plot analysis of CLIP sequencing shows that lncRNAs such
as Malat1, Neat1, and H19 have defined peak densities of
reads, indicating that PNPase targets specific regions
(Supplemental Fig. S6). The presence of additional smaller
peaksmay indicate the involvement of tertiary structures.

To determine that the noncoding RNA binding profile of
PNPase was not fortuitous, CLIP analysis was also performed
on noncoding RNA-binding protein Ago2, which has been
reported to localize to mitochondria (32, 73) and also has the
capability to bind to lncRNAs (Supplemental Fig. S7A) (74,
75). We hypothesized that if the binding of lncRNAs to
PNPase was merely fortuitous, the profile of lncRNAs binding
to Ago2 would be similar. The comparison between the two
proteins inmouse cardiac mitochondria shows that a low pro-
portion of PNPase-binding lncRNA targets have the capacity
to bind to Ago2 as well, indicating that there may be char-
acteristics of these lncRNAs that provide specificity for
PNPase that Ago2 lack (Supplemental Fig. S7B). These data
also indicate that not all lncRNAs imported into mitochon-
dria engage in Ago2-related RNA-induced silencing com-
plex (RISC) activity.

Stratification of lncRNA Fragments by Primary and
Secondary Features

CLIP is a technique that takes advantage of UV cross link-
ing to examine short RNA regions bound to a protein of inter-
est, leading to both the identification of the bound RNA and
the specific region(s) involved in binding (76) (Fig. 4A).
Examining the most prominent peaks of gene coverage in the
CLIP PNPase sequencing data, we wanted to determine if a
mitochondrial RNA targeting sequence or secondary struc-
ture exists that would predict the binding of lncRNA to
PNPase and trigger import activity. For secondary structure
predictions relying on base pairing energies to be accurate,
the more of the endogenous sequence included the better.
However, sequences like Malat1, which are multiple kilobases
in length, are difficult tomanage and appropriately analyze.

To define a better understanding of the primary sequence
and secondary structure of the RNA bound to PNPase, we
needed to increase the number of nucleotides in the eval-
uated RNA fragments. Concomitantly, we wanted to limit
the amount of bias introduced into the data by including
additional sequence information from surrounding regions
of the lncRNA found to be bound to PNPase. We used the re-
ceiver operating characteristics (ROC) area under the curve
(AUC) values derived from the LncFinder pipeline to choose
how many additional nucleotides would be optimal to maxi-
mize folding potential and limit unnecessary extension of
the reads. The largest increase in the slope of AUC values is
between 50 and 60 nucleotides (Supplemental Fig. S9A).
After 60 nucleotides, the margin of improvement of the
model significantly decreases. lncRNA reads (ranging from
15 to 24 bases) from CLIP sequencing were identified and en-
dogenous flanking nucleotides were included at the 50- and
30-ends to achieve a total sequence length of 60 nucleotides
(Fig. 4A). These sequences were analyzed using RNAfold
from the ViennaRNA Package (56).

Machine learning is a powerful tool for identifying com-
monalities between large datasets and forming predictions
from those commonalities. Established algorithms for evalu-
ating RNA-protein interactions, while externally validated,
are often limited to short motifs that cannot provide clarity
on secondary structure and additionally lack ncRNA-specific
feature descriptions (57, 77,78). As previous literature has
demonstrated the advantages of using machine learning in
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the classification of lncRNA and lncRNA features (57, 79), we
applied a supervised machine learning approach to assess if
we could predict the primary sequence or secondary structure
of the lncRNA optimal for binding to PNPase (Fig. 4A). We
started by extracting sequence information from the most
highly bound lncRNA fragments for both mouse (n ¼ 60) and
human (n ¼ 60) to serve as our “positive” class of 60 nucleo-
tide sequences, ensuring that the end result is conserved
between species. A corresponding 120 randomly generated,
60 nucleotide sequences were selected for the “negative” class
(59). We applied supervised machine learning to detect the
positive class by implementing 10-fold cross validation
through support vector machines (SVM) and classification
and regression trees (CART) (Supplemental Table S2).

With each k-fold validation, accuracy in the subset valida-
tion data (Fig. 4B, left) and across the entire model (Fig. 4B,
right) increased. Out-of-bag (OoB) error rates remained consist-
ent in the subset validation data (Fig. 4C, left) and across the
entire model (Fig. 4C, right). Stratification of lncRNA frag-
ments from random sequences was robustly shown using
CART (AUC: 0.89; Fig. 4D) and SVM (accuracy: 82%;
Supplemental Table S2). The top features influencing classifi-
cation of lncRNAs from random nucleotide sequences are

provided (Table 1), along with all features tested (Additional
File 1 in the Supplemental Material). While many of these fea-
tures are k-mer frequencies that illustrate the lower occurrence
of nucleotide sequences (e.g., CG dinuclotides) in positive
lncRNA fragments, other features that describe dissimilarity
from coding sequences include log distance acgu-ACGU pro-
tein-coding transcripts; this metric refers to how similar or dis-
similar distribution of bound nucleotides are to that of a
protein-coding transcript based on the model’s decision sur-
face. This reinforces the uniqueness of the lncRNA group, as
both the randomly generated sequences and lncRNA frag-
ments will fold into secondary structures, but the lncRNAs
have innate properties dictating the primary sequence and
folding structure of the motif (Table 1). Performance metrics of
the CART and SVMmachine learning model are also provided
(Supplemental Table S2). Based on human and mouse PNPase
CLIP sequencing, fragments of lncRNAs bound to PNPase have
distinct sequence properties identifiable bymachine learning.

Quantification of lncRNA Properties Associated with
Interactions with PNPase

After identifying the unique properties of lncRNAs bound
to PNPase from random sequences, we wanted to assess if

Figure 2. Characterization of long noncoding RNA (lncRNA) in the mitochondrion. Mouse whole heart (n ¼ 6) and human atrial tissue (n ¼ 6) were
assessed for lncRNA in the mitochondrion. A: volcano plots for mouse (top) and human (bottom) demonstrate the total lncRNAs differentially expressed
in mitochondria compared against cytoplasm. B: top 6 most abundant lncRNAs in mitochondria are depicted for mouse (top) and human (bottom) with
the mean transcripts per kilobase million (TPM) value per each sample displayed. C: confocal microscopy of HL-1 cells depicting the nucleus (DAPI: blue;
emission: 4 nm), probe [metastasis-associated lung adenocarcinoma transcript 1 (Malat1) or glyceraldehyde 3-phosphate dehydrogenase (Gapdh): red;
emission: 570 nm], and merged image following fluorescent in situ hybridization. Values derived from sequencing are considered statistically significant
when P adjusted (Padj) < 0.05 or –Log10Padj ¼ 1.30. Significance was determined through the Wald test in the R environment for sequencing compari-
sons. FC, fold change; NS, not significant.
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the identified lncRNAs could be separated into biologically
significant groupings. The top 60 lncRNAs identified to bind
to PNPase were arbitrarily selected based on total read
counts for both human and mouse to eliminate noise from
transient interactions with PNPase. Comparison between the
features of these 2 groups of 60 shows no significant differ-
ence, indicating that the predominant features are likely to
be conserved. Additionally, the top 60 human lncRNAs were
evaluated using AdaLiftOver to verify that while only 25%
of them had previously annotated mouse orthologues,
the remainder possessed orthologous regulatory elements
(Supplemental Fig. S8). The resulting 120 lncRNAs were split
into the top and bottom 50%, which were designated as high
versus low binding potential for PNPase and input into
machine learning to identify differences that might increase
affinity relative to random sequences. This lncRNA input
was characterized by mitochondrial presence in lncRNA
sequencing to identify if they were imported or just binding
to PNPase. Approximately one-third of the machine learning
input lncRNAs were designated as high interaction potential
and imported and represented �50% of all the machine
learning input lncRNAs that were imported. Another third of
the input lncRNAs had low interaction potential but were
still imported, and the remaining third had predominantly
low interaction potential and were not imported (Fig. 5A;
Additional File 1 in the Supplemental Material). This indi-
cates that lncRNAs with increased interaction potential were

more likely to appear in lncRNA mitochondrial sequencing
as being imported and that this selection was an optimal
input for machine learning to differentiate between high
and low interaction potential in relation to import. Features
influencing classification of increased interaction lncRNAs
from decreased interaction lncRNAs identified by machine
learning are provided (Table 2). A representative lncRNA
from each group is provided (Fig. 5B), highlighting the major
differences in primary sequence and secondary structure,
including GC content and various k-mers, as well as distribu-
tion of unpaired nucleotides. Specifically, the LncFinder algo-
rithm utilized was designed to identify nucleotide pairing
distributions either unique to lncRNAs or as a ratio between
lncRNAs and protein-coding transcripts (57). On a superficial
level, analysis of these groups using RNAfold indicates that
stem-loops with at least seven unpaired nucleotides in the
loop are significantly more prevalent in increased interaction
lncRNAs. Additionally, minimum free energy assessed to not
be significantly different between high or low interaction
potential lncRNAs and random sequences indicates that this
loop is unstable and unlikely to resist linearization, which
would be optimal for import as it has been suggested that
structured RNAs are linearized to be threaded through the
central channel of PNPase (22, 80). Based on these results,
lncRNAs possessing primary sequence features, including
reduced GC content and increased prevalence of k-mers like
CA, result in a secondary structure with an increased relative
unbound nucleotide distribution represented by a 	7-mer
loop thatmay enhance binding to PNPase.

Additional performance metrics are included for the total
lncRNA, lncRNA with increased interaction, and lncRNA
with decreased interaction (Supplemental Table S2), including
AUCs for increased interaction lncRNAs against random
sequences (0.89; Supplemental Fig. S9B), decreased interaction
lncRNAs against random sequences (0.91; Supplemental Fig.
S9C), and increased interaction lncRNAs against decreased
interaction lncRNAs (0.60; Supplemental Fig. S9D). Due to our
restriction of the folded RNA fragments to 60 nucleotides, we
also showcase the preservation of secondary structure in
Supplemental Fig. S10 As an example, full-lengthMALAT1 was
folded using RNAfold, and the structure of the region contain-
ing the PNPase CLIP sequence was extracted. This extracted
region (Supplemental Fig. S10) retains the stem-loop motif(s)
that were found in our 60 nucleotide regions used throughout
our analysis and matches the criteria for improved binding to
PNPase. The lncRNAs bound to PNPase have different proper-
ties involving their primary sequence and secondary structure,
which can be utilized to develop a criterion necessary to engi-
neer PNPase binding sequences.

Importance of PNPase RNA Binding Domains

At the interface of the mitochondrion, alterations to the
structural integrity of PNPase may influence lncRNA binding
and eventual import. PNPase may be involved in shuttling
Malat1, and other lncRNAs, through its KH and S1 RNAbinding
domains (Fig. 6A). Using an HL-1 immortalized mouse cardio-
myocyte cell line, we transfected cells with vectors overexpress-
ing full-length PNPase, PNPase with the KH domain knocked
out, or PNPase with the S1 domain knocked out. (Fig. 6B).
Overexpression of constructs was demonstrated through

Figure 3. Expression profiles of noncoding RNA (ncRNA) bound to polynu-
cleotide phosphorylase (PNPase). Mouse whole heart (n ¼4) and human
atrial tissue (n¼ 4) cross-linking immunoprecipitation (CLIP) sequencing of
PNPase. A: illustration of noncoding RNA (ncRNA) passage through the
mitochondrial membrane and interaction with PNPase. B: pie charts com-
paring percentages of ncRNA species identified in PNPase CLIP for
mouse (left) and human (right). IG gene, immunoglobulin gene; lncRNA,
long noncoding RNA; miRNA, microRNA; miscRNA, miscellaneous non-
coding RNA; rRNA, ribosomal RNA; snoRNA, small nucleolar RNA; snRNA,
small nuclear RNA; TR gene, T-cell receptor gene.
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immunoblotting, with a shift in size between the full length,
KH domain knockout, and S1 domain knockout (Fig. 6C). Using
AlphaFold predictions, KH and S1 domain knockouts were con-
firmed to not grossly misfold and create confounding variables
(Supplemental Fig. S11A), which is supported by other assess-
ments of KH and S1 deletion (9, 16, 20–23). Mitochondrial local-
ization of Malat1 and Neat1 was confirmed through qPCR in
HL-1 cells with the GFP, FL, KH, and S1 overexpression vectors
(Supplemental Fig. S12A). Additionally, multiple isoforms that
align with diverse areas of Malat1 were shown to have altered
presence in the mitochondrion (Supplemental Fig. S12B).
Knockdown of PNPase expression was shown to reduce Malat1
import into themitochondrion, with Neat1 showing similar but
less significant trends (Supplemental Fig. S12C).

Using CLIP for PNPase in each of the cell variants, RNAwas
purified from each of the overexpression groups through SDS-
PAGE gel electrophoresis, with a representative gel illustrated
(Fig. 6D). Examination of the RNA bound to PNPase revealed
that Malat1 levels were significantly downregulated when the
S1 domain was removed from PNPase (Fig. 6E), suggesting its
role in RNA-protein interactions. While not significant in
ANOVA analyses, Malat1 levels were also visibly diminished
with KH domain removal (P � 0.09, Student’s t test), which
may indicate a role in regulating lncRNA import through the
KH domain as well. These results suggest that PNPase has a
binding affinity for Malat1, most likely through the S1 and/or
KH RNA binding domains. They also verify the importance of
secondary structure recognition for lncRNA import.

Figure 4. Polynucleotide phosphorylase (PNPase) cross-linking immunoprecipitation (CLIP) analysis pipeline and machine learning implementation. A:
illustration highlighting critical steps in the CLIP procedure and analysis of reads bound to PNPase. B: producer’s accuracy for validation subsets (left)
and model (right) in the prediction of lncRNAs against random nucleotide sequences. C: out of bag (OOB) errors for validation subsets (left) and model
(right) in the prediction of long noncoding RNAs (lncRNAs) against random nucleotide sequences. D: receiver operating characteristics showing area
under curve (AUC) for prediction of lncRNAs against random nucleotide sequences. CV, cross validation; ncRNA, noncoding RNA.

Table 1. The top 10 most significant features between lncRNA and random nucleotide sequences

Feature P Value Long Noncoding RNA Random Nucleotide Sequence

CG 5.17E-24 0.0005 0.0015
Log distance acgu-ACGU lncRNA 8.43E-13 �6.3753 �6.1339
CGA 1.30E-11 0.0004 0.0020
Log distance acgu-ACGU protein-coding transcripts 6.22E-11 �6.3537 �6.1407
ACG 9.88E-10 0.0006 0.0019
Distance ratio acgu-ACGU 6.94E-08 1.0034 0.9989
CCG 3.22E-07 0.0007 0.0022
Distance ratio acguD 2.24E-06 0.9996 0.9965
CGC 2.80E-06 0.0007 0.0020
CA 3.04E-06 0.0022 0.0017

Data are reported as the mean. The values for k-mers are listed as frequencies and not counts. A two-sided Student’s t test was imple-
mented for determining statistical significance, with a Bonferroni-adjusted alpha < 0.000373. acgu-ACGU, proportion of uppercase let-
ters annotating paired nucleotides; acguD, proportion of dots annotating unpaired nucleotides; lncRNA, long noncoding RNA.
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Design and Validation of PNPase Binding Potential for
RNA

With information from the mitochondrial lncRNA and
PNPase CLIP sequencing andmachine learning applications,

we designed a 60-nucleotide RNA fragment that should have
the propensity to bind PNPase (Fig. 7A). This predicted
sequence contained a unique sequence structure (e.g., GC
content and CA frequency) as well as characteristics regard-
ing its secondary structure (e.g., a high distribution of

Figure 5. Increased and decreased interacting long noncod-
ing RNA (lncRNA) characteristics. A: pie chart illustrating divi-
sion of increased and decreased interaction potential lncRNA
input into machine learning as well as presence (imported) or
absence (binding only) in lncRNA mitochondrial sequencing.
B: representative 60 nucleotide human lncRNA fragments
from the increased interacting [hepatocellular carcinoma up-
regulated long noncoding RNAH (HULC); left] and decreased
interacting [myocardial infarction associate transcript (MIAT);
right] groups. The color of each nucleotide signifies the prob-
ability of binding, or remaining unpaired, in the diagram.
acguD, proportion of dots annotating unpaired nucleotides;
CLIP, cross-linking immunoprecipitation; PCT, protein coding
transcript; PNPase, polynucleotide phosphorylase.

Table 2. Significant features for increased and decreased interaction lncRNA fragments subsets compared to
random lncRNA fragments

Feature : Interaction P Value : Interaction Mean ; Interaction P Value ; Interaction Mean Random Mean

CG 4.99756E-21 0.000347224 3.36924E-14 0.000620281 0.001530936
Distance ratio acgu-ACGU 1.6297E-08 1.00490202 0.000288139 1.002302427 0.998883974
ACG 8.07509E-08 0.000336071 1.51827E-05 0.000730169 0.001860001
Log distance acgu-ACGU lncRNA 9.43243E-08 �6.351869094 3.19177E-11 �6.391983821 �6.133939417
CGA 1.68631E-07 0.000239047 7.71784E-07 0.000522188 0.002002316
CCG 2.6595E-06 0.00048908 0.000339854 0.000893047 0.002179283
Log distance acgu-ACGU
protein-coding transcripts

4.47231E-06 �6.32078765 3.18596E-10 �6.37713348 �6.140681014

CA 1.96269E-09 0.002491291 NS 0.001960414 0.00165374
Distance ratio acguD 1.17543E-05 1.000437813 NS 0.999026841 0.996540097
CGG 1.91646E-05 0.000615433 NS 0.001089223 0.002040002
CGC 2.51624E-05 0.000493545 NS 0.000872332 0.002020788
CACA 5.5346E-05 0.007606291 NS 0.004237178 0.002149228
GCG 5.93167E-05 0.000570784 NS 0.000966878 0.002025162
CACAA 8.92206E-05 0.017195084 NS 0.003215303 0.002338989
ACACA 0.000267668 0.010455789 NS 0.00828333 0.001248782
ACA 0.000323641 0.003894203 NS 0.002617873 0.002260456
GC content 0.00036204 0.597227355 NS 0.669249925 0.650958698
CAGG NS 0.003589873 6.74433E-05 0.006717755 0.002310656
Log distance acguD lncRNA NS �8.882641233 0.000296033 �8.959120344 �8.686657734
ACCG NS 0.000600641 0.000358731 0.000272817 0.003254588

Data are reported as the means. The values for k-mers are listed as frequencies and not counts. A two-sided Student’s t-test was implemented
for determining statistical significance between either the high or low interaction potential subset against random lncRNAs, with a Bonferroni-
adjusted alpha <0.000373. NS, not significant, i.e. a P value above the determined Bonferroni-adjusted alpha. acgu-ACGU, proportion of upper-
case letters annotating paired nucleotides; acguD, proportion of dots annotating unpaired nucleotides; lncRNA, long noncoding RNA.
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unbound nucleotides). We then tested our hypothesis through
a fluorescence native gel shift assay to determine the percent-
age of binding of PNPase with our RNA constructs (Fig. 7B). A
Poly-U RNA sequence of equal length was used as a negative
control to represent the binding potential of a completely
unstructured RNA, which revealedminimal binding to PNPase
with increasing concentrations (11.3% RNA shifted; Fig. 7C).
Theminimal binding observedmay have been due to the pres-
ence of bacterial monomeric ribonuclease PNPase endoge-
nously present in the native gel shift assay, which is why it was
crucial to utilize an unstructured RNA to set an accurate base-
line as opposed to a scrambled RNA. Additionally, the 60-nu-
cleotide sequence of Malat1 identified in the PNPase CLIP
sequencing was utilized as an approximation of a biologically
relevant positive control for binding to PNPase, revealing
increased binding affinity to PNPase (51.4%RNA shifted), com-
pared to control. When comparing the Predicted (74.3% RNA
shifted) and Poly-U RNA sequences, a strong preference for the
Predicted construct was observed (558% increased binding af-
finity compared to Poly-U; Fig. 7C). A PNPase CLIP was run
with the same Predicted and Poly-U RNAs incubated with
mouse mitochondrial lysate to confirm that the interaction
potentials identified with purified PNPase were consistent
with PNPase in its native environment. Cross-linked precipi-
tate compared to unbound RNA remaining in solution indi-
cated that Predicted RNA had a high affinity for ex vivo

PNPase while Poly-U RNA was entirely absent and showed no
indication of binding to PNPase (Fig. 7D).

DISCUSSION

In the current article, we observed the presence of
numerous nuclear-encoded lncRNAs localized within mi-
tochondria, a large percentage of which were previously
considered to be restricted to the nucleus (81, 82). Our
goal was to understand how these lncRNAs can enter the
mitochondrion and if a defined sequence or structural
motif is necessary to facilitate binding. Only recently has
the concept of nuclear-encoded lncRNA localization into
the mitochondrion been explored (70, 83), challenging
our understanding of the import mechanisms required to
facilitate this process and the extent of lncRNAs being se-
questered in extranuclear compartments. However, this
study is the first to directly compare nuclear-encoded
lncRNA sequence identity with mitochondrial binding
through PNPase.

When not directly accessible to the cytoplasm or mito-
chondrial matrix, studies have reported the ability of PNPase
to interact with and transport RNAs into the mitochondrion
(19, 84). The KH and S1 RNA binding domains of PNPase are
suggested as the mechanism for channeling ncRNA through
the mitochondrial intermembrane space into the matrix (19).

Figure 6. Polynucleotide phosphorylase (PNPase) RNA binding domain interaction with metastasis-associated lung adenocarcinoma transcript 1 (Malat1).
A: illustration of plausible KH and S1 interaction with long noncoding RNAs (lncRNAs), not experimentally validated. B: representative images for HL-1
cells in each group (n ¼ 10 per group) showing fluorescence induced by pcDNA3.1þN-eGFP overexpression. C: immunoblotting depicting the overex-
pression in HL-1 cells, as well as shift in size, of the constructs. D: representative image of SDS-PAGE following cross-linking immunoprecipitation (CLIP)
of HL-1 cells to retrieve RNA specifically bound to PNPase. E: real-time PCR on isolated RNA to assess binding affinity of lncRNA Malat1 (n ¼ 3 each
group) to PNPase variants. Differences were considered statistically different at �P � 0.05. A one-way ANOVA with Tukey’s multiple comparisons was
implemented for determining significance of quantitative PCR. All data are presented as the means ± SE. GFP, pcDNA3.1þN-eGFP backbone only; FL,
full-length PNPase open reading frame in pcDNA3.1þN-eGFP; IP, immunoprecipitation; KH, exon 23 removed from full-length PNPase in pcDNA3.1þN-
eGFP; N, no antibody; NP, no plasmid control; S1, COOH terminus removed from full-length PNPase in pcDNA3.1þN-eGFP.

lncRNA BINDING TO MITOCHONDRIAL PNPase

C232 AJP-Cell Physiol � doi:10.1152/ajpcell.00648.2023 � www.ajpcell.org

Downloaded from journals.physiology.org/journal/ajpcell (2601:0541:0D81:3440:D419:81A6:2F25:972E) on September 8, 2025.

http://www.ajpcell.org


Importantly, it has been suggested that a stem-loop sequence
on the RNA was necessary for mitochondrial import (19).
These findings support a mechanism whereby PNPase recog-
nition requires RNA secondary structure as opposed to
sequence specificity but does not provide further detail
regarding the structure, size, or number of the stem loop(s).

We separated lncRNAs bound to PNPase into clusters rep-
resenting increased and decreased potential for interacting
with PNPase. By utilizing features generated for each cluster
like GC content and nucleotide pairing distribution, pseu-
dorandom sequences can be produced that visually retain
secondary structures similar to what are observed in endoge-
nous lncRNAs identified in the PNPase CLIP sequences. Our
data suggest that lncRNAs with lower GC content and
increased unpaired nucleotide distribution as well as certain
frequencies of various k-mers are most likely to have an
increased interaction potential for PNPase. Low GC content
(85) and increased distance ratio acguD are both characteris-
tic qualities of lncRNAs, as higher GC content reflects pro-
tein-coding regions and the presence of trinucleotides
required for amino acid assembly. This suggests that the
more “lncRNA-like” a sequence is, the higher the potential
binding to PNPase. Lower frequencies of k-mer sequences

such as CGG but higher frequencies of ACACA and CACAA
indicate the potential for sequence-driven motifs that com-
plement secondary structures. Overall, these data support
the hypothesis that PNPase has specificity for lncRNAs in a
manner more complicated than generic stem-loops or sim-
ple primary sequences.

Additionally, we validated that a construct designed
from these predicted features can interact with PNPase.
Future research could explore the degree of affinity
between PNPase and the Predicted RNA probe and if
point mutations can disrupt that affinity. Future applica-
tions of this research could also evaluate if a construct
containing a sequence with high PNPase binding poten-
tial can be tracked passing into the mitochondrion. These
future experiments can include in vivo chemical modifi-
cations, such as dimethyl sulfate mutational profiling
with sequencing (DMS-MaPseq), that can allow for track-
ing even low abundance lncRNAs (86). Additionally, the
machine learning models trained in our application only
capture a single read from the PNPase CLIP for each
lncRNA represented. While we use the most abundant
and correctly mapped read as our surrogate, it could be
that additional fragments from the same lncRNA further

Figure 7. Designed long noncoding RNA fragment with specific criteria for increased binding affinity. A: using RNAFold, a 60-nucleotide predicted RNA
fragment was engineered based on the criteria of low GC content (43%) and electron-ion interaction pseudopotential (EIIP; 0.068), increased minimum
free energy (more positive,�4.8), and k-mer specific base combinations (CA and AGG). The resultant structure is provided and serves as an illustration of
motifs that can be designed to aid in the incorporation of noncoding RNA sequences into the mitochondrion. B: fluorescence native gel shift assay identi-
fying differences in polynucleotide phosphorylase (PNPase) protein binding between a 60-nucleotide sequence of Poly-U RNA, the Predicted 60-nucleo-
tide sequence construct, and a 60-nucleotide portion of metastasis-associated lung adenocarcinoma transcript 1 (Malat1) RNA selected based on the
PNPase cross-linking immunoprecipitation (CLIP) added at increasing ratios of protein relative to probe. C: band intensity of bound bands compared to
unbound and expressed as a percentage of binding affinity plotted against molar ratio of protein to probe. D: PNPase CLIP fluorescence assay verifying
ex vivo binding between PNPase and Predicted RNA probe construct (Predicted) relative to Poly-U RNA probe as well as probes in CLIP buffer (n ¼ 3 for
all groups except for positive probe controls). All data are presented as the means ± SE. acguD, proportion of dots annotating unpaired nucleotides.
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increase suitable binding sequences to PNPase. While this
and other research indicate that PNPase possesses RNA struc-
tural specificity, the role of charge-based binding should not
be ignored, and future evaluations should explore PNPase’s
electrostatic features (87). Finally, although novel lncRNAs
that were annotated but have not been functionally character-
ized (i.e., Gm- or -Rik) were included in sequencing analyses,
multiple other datasets exist that incorporate additional novel
lncRNAs, which may afford a broader understanding of
lncRNA interaction with PNPase.

Conclusions

The framework from LncFinder and the machine learning
algorithms begins to provide an archetype for designing
lncRNA sequences to target to eukaryotic mitochondrial
PNPase. Specifically, through constructing a lncRNA with
low GC content and increased unpaired nucleotide distribu-
tion as well as k-mer specific base combinations, an engi-
neered ncRNA optimized for binding to PNPase can be
constructed (Fig. 7). Beyond the therapeutic possibilities,
this pipeline of lncRNA sequencing combined with CLIP-
Seq, machine learning, and probe design assessments shows
promise in optimizing lncRNA-binding protein analyses.
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