2307.11049v1 [cs.LG] 20 Jul 2023

arxiv

Breadcrumbs to the Goal: Goal-Conditioned
Exploration from Human-in-the-Loop Feedback

Marcel Torne!'> Max Balsells® Zihan Wang® Samedh Desai®
Tao Chen' Pulkit Agrawal' Abhishek Gupta3
Massachusetts Institute of Technology ~ 2Harvard University ~ University of Washington
{marcelto,taochen,pulkitag}@mit.edu
{balsells,avinwang, samedh,abhgupta}@cs.washington.edu

Abstract

Exploration and reward specification are fundamental and intertwined challenges
for reinforcement learning. Solving sequential decision-making tasks requiring
expansive exploration requires either careful design of reward functions or the use
of novelty-seeking exploration bonuses. Human supervisors can provide effec-
tive guidance in the loop to direct the exploration process, but prior methods to
leverage this guidance require constant synchronous high-quality human feedback,
which is expensive and impractical to obtain. In this work, we present a technique
called Human Guided Exploration (HuGE), which uses low-quality feedback from
non-expert users that may be sporadic, asynchronous, and noisy. HuGE guides
exploration for reinforcement learning not only in simulation but also in the real
world, all without meticulous reward specification. The key concept involves bifur-
cating human feedback and policy learning: human feedback steers exploration,
while self-supervised learning from the exploration data yields unbiased policies.
This procedure can leverage noisy, asynchronous human feedback to learn poli-
cies with no hand-crafted reward design or exploration bonuses. HuGE is able
to learn a variety of challenging multi-stage robotic navigation and manipulation
tasks in simulation using crowdsourced feedback from non-expert users. More-
over, this paradigm can be scaled to learning directly on real-world robots, using
occasional, asynchronous feedback from human supervisors. Project website at
https://human-guided-exploration.github.io/HuGE/.

1 Introduction

Pick & place Drawing

Figure 1: HuGE leverages noisy and asynchronous feedback from multiple non-expert humans to train robot
control policies directly on the real world.

How should we teach agents a new task? A general method is to provide agents with a reward
function and employ reinforcement learning. This may appear to be a straightforward plug-and-play

procedure, yet in reality, it usually means iterative human intervention in designing reward functions
to overcome exploration obstacles and circumvent potential reward hacking. The cyclical process of a
human meticulously crafting a reward function, assessing the resulting behavior of the learned policy,
and then refining the rewards to enhance performance can be a painstaking and inefficient process.

If an agent is able to effectively and autonomously explore its environment, it can learn new tasks
using an easily designed sparse reward function [50, 20]. This would make the training process less
reliant on humans designing detailed reward functions for “dense" supervision. Several strategies
incentivize state coverage in exploration by expanding the frontier of visited states and explicitly
rewarding discovering novel states.[46, 5, 21, 43]. When purely optimizing for state coverage, the
agent overexplores parts of the state space that are not relevant to the task at hand [13]. This quickly
becomes a futile effort when exploring in environments with large state spaces, suggesting the need
for a more directed exploration strategy.

A promising avenue for directed exploration, without requiring a prohibitive amount of reward
design, is in developing techniques that leverage non-expert human feedback to adjust the agent’s
training [55, 30, 11, 36]. This work is a step towards the overarching objective of learning new skills
in the real-world through meaningful human-robot interactions. A challenge with techniques that
optimize policies over learned reward functions is that humans may provide noisy feedback, or may
not even know the optimal solution for the task at hand [18], rendering their feedback unreliable and
biased, a problem which is exacerbated with a large number of non-expert supervisors. When this
noisy and incorrect feedback is used to learn reward functions for RL, it can lead to learning biased
and incorrect policies. Requiring human supervisors to provide high-quality feedback synchronously
and frequently during the training process becomes prohibitively expensive. If we want to reduce the
burden on supervisors it is important to ensure that inaccuracies, biases in the reward function are not
reflected directly in the learned policy.

We note that reward functions in reinforcement learning serve two distinct purposes. One, determining
which goal or behavior is optimal, and two, determining how to explore the environment to achieve
this goal. In this work, we make the observation that these two independent purposes of reward
functions can be decoupled. Human feedback can be used to guide exploration, while policy learning
techniques like self-supervised reinforcement learning can learn unbiased optimal behaviors for
reaching various goals from the data collected via exploration. This provides the best of both worlds:
a way to guide exploration using non-expert human supervisors, while avoiding inheriting the bias
from providing asynchronous, low-quality feedback.

Human Guided Exploration (HuGE) uses noisy, infrequent, and asynchronous binary human compar-
ative feedback to guide exploration towards subsets of the state space closer to goal, while learning
optimal policies via self-supervision. Rather than having humans directly label which states to visit,
HuGE solicits users for binary comparisons between visited states to determine which are closer to the
goal. These comparisons help train a goal selector which biases exploration towards chosen states that
are more proximal to the objective. The process of exploration involves returning to these selected
states and subsequently expanding the set of visited states from there. From this exploration data, we
learn optimal policies for goal-reaching in a self-supervised manner using ideas from “hindsight"
relabelling [24, 2, 28], hence avoiding reliance on any explicit reward function.

Iterating between exploration guided by the goal selector and self-supervised policy learning, HuGE
expands the frontier of visited states until the desired target goals can be reached reliably. Opposed to
directly using human feedback as a reward [16, 45], HuGE lets humans provide noisy, asynchronous,
and infrequent feedback, as it is simply used to guide exploration, not directly as an objective for
policy learning. In the worst case, when human feedback is incorrect or absent, the exploration is
hampered but the policy learning scheme is still convergent to the optimal solution. This way, humans
are able to essentially “drop breadcrumbs", incrementally guiding agents to reach distant goals, as
shown in Fig 3. This helps us solve more complex tasks than if solely relying on self-supervision and
is able to overcome the optimization bias that is often encountered when optimizing over a learned
and noisy reward function [16]. Overall, this work presents the following contributions:

Guided Exploration from Noisy and Minimal Human Feedback: We propose an algorithm for
separating (noisy) human feedback from policy learning by utilizing comparative, binary human
feedback to guide exploration while learning a policy through self-supervision. This ensures that we
can derive optimal goal-reaching policies even from imperfect human feedback.

Capability to learn from crowdsourced non-expert human feedback: We show HuGE can
learn from noisy, asynchronous and infrequent human feedback. We validate this by collecting
crowdsourced pilot data from over a hundred arbitrarily selected, non-expert annotators who interact
with the robotic learning through a remote web interface.

Demonstration with real-world policy learning: We show that HuGE can learn policies on a
robotic learning system in the real world, demonstrating effective exploration via human feedback
and compatibility with pretraining from non-expert trajectory demonstrations as seen in Figure 1.

2 Related Work

Our work builds on techniques for exploration methods, goal-conditioned, and human-in-the-loop
RL, but presents a technique for learning from noisy, asynchronous and infrequent human feedback.
We present the connections to each of these sub-fields below:

Exploration in RL: While exploration is a widely studied subfield in RL [10, 43,5, 37,9, 21], this is
typically concerned with either balancing the exploration-exploitation tradeoff [4] or maximizing state
coverage [5, 10, 37]. This contrasts with our goal of performing fargeted exploration, informed by
human feedback. Our work is related to ideas from Go-Explore [21], which explores by maintaining
an archive of visited states, returning to states with a low-visitation count, and performing random
exploration from there. However, this results in redundant overexploration shown in Figure 2 under
the novelty-based exploration paradigm. In contrast, HuGE is able to leverage human feedback
to only explore in promising directions as directed by human supervisors, significantly improving
sample efficiency.

For goal-reaching problems, alternatives for exploration include self-supervision techniques such
as hindsight relabeling [2, 24, 35]. By learning goal-reaching behavior in hindsight for reached
states, these methods obtain dense supervision, albeit only for the states that were actually reached.
This has been shown to empirically aid with exploration in certain cases, via policy generalization
across goals. However, as shown in Figure 3, these methods suffer from underexploration, since the
policy generalization across states can be challenging to control. In contrast, HuGE does not rely
on arbitrary policy generalization, instead revisiting already reached states at the frontier of visited
states and performing further exploration from these states.

Goal-conditioned reinforcement learning: Goal-conditioned RL algorithms [34, 24, 35, 2, 33, 28,
37] are multi-task RL methods where various tasks are defined as reaching different goal states. A
number of different approaches have been proposed for goal-conditioned RL - learning with hindsight
relabeling [2, 19, 33, 28], learning latent spaces for reward assignment [42, 48], learning dynamical
distances [27, 22] and goal conditioned imitation learning [25, 35, 24, 40]. While these algorithms
are able to solve tasks with a simple component of exploration, they can struggle with tasks with
complex sequential nature, requiring complex machinery such as hierarchical architectures [33, 39].
In contrast, our work shows the ability to solve sequential goal-reaching problems with standard
techniques, just using occasional comparative feedback from human supervisors to guide exploration.

Perhaps most closely related to our work is the paradigm introduced in DDL [27] where a human
supervisor occasionally selects which states to explore from. This state is used to define the reward
function, which when combined with self-supervised Q-learning, can aid with exploration for goal-
conditioned RL problems. However, exploration is limited to exactly the state selected by the human,
whereas in HuGE, learning the parametric goal selector allows the exploration frontier to continue
expanding and decreases the overall amount of human feedback needed (as we study in detail in
Section 5 and Figure 8).

Reinforcement Learning from Human Feedback (RLHF): RLHF typically characterizes a class
of methods that learn reward models from binary human comparative feedback for use in RL. These
techniques have seen use in better aligning language models, and guiding learning of embodied
agents in simulation with expert feedback [16, 7, 8]. In much of this work, humans are assumed to
provide high-quality and frequent feedback to learn rewards. In HuGE, we take a complementary
view and show that by considering human feedback in a self-supervised policy learning setting,
much of the burden can be placed on self-supervision, rather than on receiving high-quality human
feedback. More broadly, human in the loop RL is a well explored concept, with various interfaces
ranging from preferences [16, 7, 8, 31] to scalar rewards [29], language based corrections [53],

binary right/wrong signals [12] and even sketching out rewards [11]. While we restrict the study
in this work to binary comparative feedback, exploring how the underlying principles in HuGE (of
decoupling human feedback and self supervised policy learning) can be extended to other forms of
feedback is an exciting avenue for future work.

Hindsight Relabelling Novelty-Based Exploration Directed Exploration
(GCSL) (LEXA, Go-Explore) (Ours)
l ‘e : L“z Lo ool |7
) R ?%77‘ io loratior »
./IT‘ Co//crpsc:- o W <."':l) verexp. orci ?o‘v | o= /7‘

e, ... @Goal
I | | S50 | g < @ Start | |

Figure 2: Comparison of exploration types. hindsight relabelling: suffers from exploration collapse, novelty-
based exploration suffers from overexploration, we propose directed exploration from human feedback Ours.

3 Problem Setup and Preliminaries

This work solves goal reaching tasks by using goal-conditioned policy learning methods. The goal
reaching problem is characterized by the tuple (S, A, T, p(so0), T, p(g)), adopting the standard MDP
notation with p(g) being the distribution over goal states g € S that the agent is tasked with reaching.
We assume sampling access to p(g). We aim to find a stationary goal-conditioned policy 7 (s, g):
S x 8§ = A(A), where A(A) is the probability simplex over the action space. We will say that a
goal is achieved if the agent has reached the goal at the end of the episode (or is within e distance of
the goal). The learning problem can be characterized as that of learning a goal conditioned policy
that maximizes the likelihood of reaching the goal 7 « arg max, J(7) = Egy(g) [Pr, (s7 = 9)] -

Goal-conditioned Policy Learning: Goal-conditioned RL methods approach this prob-
lem using the reward function r,(s) = 1(s = g), defining a sparse reward problem:

T 4= argmaxXy Err(.)s,9),9~p(g) [Zil v'r4(s¢)|. This problem can be difficult to solve with
typical RL algorithms [26, 52, 23] because the training process is largely devoid of learning signals.

3.1 Why is exploration in goal-conditioned reinforcement learning challenging?

Hindsight relabelling: To circumvent the challenge of sparse rewards in goal-conditioned rein-
forcement learning, the structure of goal-reaching problems can be exploited using the hindsight
relabeling technique [28, 1, 3]. Hindsight relabeling leverages the insight that transitions that may be
suboptimal for reaching "commanded" goals g, may be optimal in hindsight had the actually reached
states s been chosen as goals. This allows us to relabel a transition tuple (s, a, s', g,74(s)), with
a hindsight tuple (s, a,s’, ¢’, 74/ (s)), where ¢’ can be arbitrary goals chosen in hindsight. When ¢’
is chosen to be states s actually visited along a trajectory, the reward function r¢(s) = 1 provides a
dense reward signal for reaching different goals g = s, which can be used to supervise an off-policy
RL algorithm [3] or a supervised learning algorithm [1, 40, 47, 24].

The key to exploration in these methods is generalization - even though the desired goal distribution
p(g) is not accomplished, learning policies on the accomplished goal distribution p(g’) influences
exploration towards p(g) via generalization between ¢’ and g. However, this form of exploration is
unreliable across domains and goal representations. As shown in Figure 2 and in Appendix D, this
often underexplores the environment without accomplishing the target goal.

Novelty-based exploration: On the other hand, pure novelty-based exploration [21, 51, 5, 44] is also
ineffective, since it performs task agnostic exploration of the entire state-space, thereby overexploring
the environment (Fig 2). This becomes intractable with large state and action spaces.

Directed exploration (Ours): A practical solution would explicitly encourage exploration but
directed towards the goal. In the following sections, we will argue that providing noisy, asynchronous
and infrequent binary comparison feedback by a variety of human users can provide this directed
exploration, without inheriting the noise and bias of the provided feedback.

4 HuGE: Guiding Exploration in Goal-Conditioned RL with Human
Feedback

Goal Selector Training Data Collection Policy Learning
/ V4 B N N
We want to reach (3) ||| (!@
the cup o . EII @
e .~ ;
ﬁ 1 ol .
‘ () il 4.__.n| | Hindsight
.. g’r’e’?e’rye e i}i "‘" B Relabelling
[
2 - Ly W
o @ coal
o M @ startpoirt
|i| ||| L.t : Exploration
o B
. Visited States
(0) IH g N 4 sa |
i o
kil .t |
Train 2 (0) III ’
with BCE ol 3 A ”
\o'x?.' ®
S D S
. I L upervise:
. fe“ ¢ i -193 R Leaming
Tl i . Policy

Goal Selector ~ Tressesrt) N T T T .

Figure 3: Overview of HuGE. We train a goal selector, from human feedback through state comparisons, to
perform directed exploration in self-supervised learning.

The key idea behind HuGE is to leverage (noisy) human feedback for guiding exploration and data
collection, but to decouple this from the process of learning goal-reaching policies from the collected
data. We show how this can be done in a self-supervised way, allowing unbiased goal-reaching
policies to be learned, while human feedback can still be useful in guiding exploration. We describe
each component of our proposed algorithm below.

4.1 Decoupling Human Feedback from Policy Learning for Goal Reaching Problems

While human feedback has been shown to be an effective tool to guide exploration [16, 8], policies
obtained by maximizing reward functions learned from noisy and infrequent human feedback can be
very suboptimal, often getting trapped in local optima. This places a significant burden on human
supervision, making it challenging for non-expert, casual supervisors to guide robot learning. How
can we enable policy learning from infrequent and noisy human feedback?

Our key insight is that human feedback and policy learning can be disentangled by decoupling
the process of exploration from the policy learning, while only leveraging the human feedback on
the exploration process. In this new paradigm, where the generation of exploration data does not
necessitate optimality, we can harness guiding signals originating from noisy human feedback, yet
still effectively learning optimal goal-conditioned policies.

In particular, for human guided exploration we build on the idea of frontier expansion [21, 37, 14],
where exploration is performed by revisiting states at the frontier of visited states and then continuing
exploration from these. This technique would maintain a frontier F that consists of the set of all
visited states. We can then select a previously visited state for the policy to revisit, which we will
call breadcrumb state gy, by querying a “goal selector" on F, that is learned from (noisy) human
feedback and defined in detail in 4.2. In this way, human feedback can be used to “softly" guide
exploration towards promising states g;. Frontier expansion can then performed by executing random
exploration from the reached breadcrumb state g, and adding the collected data to the replay buffer
for self-supervised policy learning.

Given data collected by frontier expansion directed using human feedback, goal-reaching policies can
then be learned by leveraging self-supervised policy learning techniques [24, 2, 35] that are able to
learn policies from collected data using “hindsight" relabeling and supervised learning. Importantly,
this self-supervised policy learning procedure does not depend on the human feedback at all and is
purely self-supervised. The decoupling of exploration and policy learning implies that even if this
exploration is biased and imperfect, the self-supervised policy learns unbiased paths to reach all goals

that were visited. In this way, cheap low-quality supervision from non-expert human feedback can
be used to ensure guided frontier expansion towards relevant subsets of the state space, while still
being able to learn unbiased goal-reaching policies. Below, we delve into each of these components -
guided frontier expansion and self-supervised policy learning and describe the overall algorithm in
Algorithm 1.

4.2 Guiding Exploration from Human Comparative Feedback by Learning Goal Selectors

To direct exploration more effectively, we hypothesize that receiving small amounts of occasional
guidance from non-expert human users can be beneficial, even if the feedback is biased and noisy.
To leverage this feedback, we learn a parametric goal selection function directly from binary human
comparison feedback. Learning a parametric goal selection function allows this feedback to be useful
even when humans are providing feedback infrequently and asynchronously.

Learning State-Goal Distances from Binary Comparisons: We propose a simple interface between
the human and the algorithm that simply relies on the human supervisor to provide binary comparisons
of which of two states s, s3 is closer to a particular goal g (as demonstrated in Fig 3 and Appendix
Fig B.4). These binary comparisons can be used to train an unnormalized estimate of distances
fo(s, g) by leveraging the Bradley-Terry model of choice [16, 8, 7]:

exp fo(s1,9)
exp fo(s1,9) +exp fo(s2,9)
exp fo(s2,9)
exp fo(s1,9) + exp fo(s2,9)

This objective encourages states s closer to particular goals g to have smaller fy(s, g). While this
estimate may be imperfect and noisy, it can serve to bias exploration in promising directions.

max Z]l(sl > s2|g) log
ey

(1 —1(s1 > s2]|g))log

Using the Learned State-Goal Distances for Biasing Exploration: To guide exploration, we can
select which breadcrumb state g; to command and start exploring from during frontier expansion,
by sampling states inversely proportional to their distance to the goal measured as, exp(— fy(s, g)),
where f is learned above. This encourages guiding exploration towards states that have a lower
estimated distance to the goal since these are more promising directions to explore, as indicated by

the human comparisons. g, ~ p(gs|9);p(gv]g) = ngc:fp) ;f;f A S’};g()g,g) (2) where D represents the

set of reached states. Sampling through a soft distribution instead of choosing the state with the
minimum estimated distance, can overcome noise and errors in the learned distance function, albeit at
the cost of slower (yet convergent) exploration. The choice of softmax temperature o determines how
much the exploration algorithm trusts the goal selector estimate (large «), versus resorting back to
uniform frontier expansion (small o). The key to effectively using this state-goal distance function, is
getting away from directly optimizing the reward function learned from human preferences, avoiding
the aforementioned problems regarding the optimization of the reward function learned from human
preferences and instead relying on self-supervision for policy training, Section 4.3.

4.3 Self-Supervised Policy Learning: Hindsight Relabeled Learning for Goal-Conditioned
Policies

Given exploratory data collected by guided frontier expansion (Algorithm 2, Section 4.1), we can
leverage a simple self-supervised learning scheme building on [1, 47, 24] for goal-conditioned policy
learning. Given trajectories 7 = {so, ag, $1, 82, - - ., ST, ar }1*.; We to construct a dataset of optimal
tuples using: D, = {(st, at, g = St4n, h) 1 t,h > 0,t + h < T}(3). This relabeled optimal dataset

can then be used for supervised learning: Jpolicy (7) = Ernk, [roa(-19)] |:ZtT:O log m(a|se, G (T))} (4).

This process can be repeated, iterating between collecting data, relabeling it, and performing su-
pervised learning. As policy learning continues improving, the learned policy can be deployed to
solve an expanding set of goals, eventually encompassing the desired goal distribution. The overall
pseudocode of HuGE is shown in Algorithm 1. We note that this relabeled supervised learning
scheme has been studied in past works [1, 47, 24], the unique contribution here being how low-quality
human comparative feedback is used to guide exploration for self-supervised policy learning. While
prior techniques such as [1, 47, 24] often struggle with exploration, the occasional human feedback
can lead to significantly more directed exploration behavior for HuGE as compared to prior work.

Boostrapping Learning from Trajectory Demonstrations: While the system thus far has de-
scribed a strategy that is applicable for learning policies from scratch, training HuGE from scratch
can be prohibitively slow in the real world, and instead we may look to finetune already pre-trained
“foundation" models or existing goal-directed policies using HuGE, or to pretrain from human
demonstrations as considered in a huge plethora of prior work [49, 32, 6, 41].

Given that the self-supervised policy learning method in HuGE is fundamentally based on iterated
supervised learning, a natural way to ensure the practicality of the method is by simply initializing
the policy 7 using supervised imitation learning on trajectory demonstrations (or from other sources
if available). While this technique is effective on policy pretraining, it fails to account for the goal
selection model fy(s,g). A simple modification to the training process allows also for effective
pre-training the state-goal distances model fy(s, g) from demonstrations. Concretely, since demon-
strations are typically monotonically decreasing in terms of effective distance to the goal, a single

trajectory 7 can be reinterpreted as a set of % comparisons, where later states in the trajectory
are preferred to earlier ones: {s;, < s, : t1 < taV¥sy,, S, € 7}. These comparisons can then be
used to pre-train the goal-selector, as discussed in Equation 1. Our proposed technique is not a
replacement for learning from demonstrations, but rather serves a complementary role. As we show
experimentally, this combination of HuGE and pre-training from non-expert demonstrations actually
enables learning in the real world under practical time constraints.

Algorithm 1 HuGE: Guided Exploration with Algorithm 2 PolicyExploration
Human Feedback 1: Input: policy 7, goal selector fy, goal g, data
1: Input: Human H, goal distribution p(g) buffer D
2: Initialize policy m, goal selector fp, data 2: g, ~ SampleBreadcrumb(fs, g, D)(2)
buffer D, goal selector buffer G 3: D+ {}
3: while True do 4: fori=1,2,...,N do
4: Sample goal g ~ p(g) 5: s+4— 8o
5: D, « PolicyExploration(w, G, g, D) 6: while NOT stopped (see F.1) do
6: D < DU RelabelTrajectory(D;) (3) 7: Take action a ~ 7(als, gy)
7: 8
8 9
9 10

7 < TrainPolicy(r, D) (4) Execute T andom for H timesteps
G < G U CollectFeedback(D, H) (4.2)
fo < TrainGoalSelector(fy,G) (1)

: Add 7 to D, without redundant states
: return D

5 Experimental Evaluation

In this work, we show that HuGE learns to successfully accomplish long-horizon tasks, and tasks
with large combinatorial exploration spaces through little human supervision. To demonstrate these
experimentally, we test on several goal-reaching domains in simulation, shown in 4, in the MuJoCo
[54] and PyBullet [17] simulators where we compare against state-of-the-art baselines. Furthermore,
we show the benefits of our method by learning policies directly on a real-world LoCoBot robot. We
additionally show the ability for HuGE to be used with an uncurated, large-scale crowdsourcing setup
with non-expert human supervisors. With these experiments, we show 1) HuGE outperforms prior
work on solving long horizon goal-reaching tasks in simulation; 2) HuGE is suitable for collecting
crowdsourced, noisy and asynchronous feedback from humans all over the world with different
backgrounds and education levels; 3) HuGE is suited to learning in the real world with a robotic
platform in practical time-scales, directly from visual inputs.

T el

Bandu Block stacking Kitchen Pusher two walls Maze Four Rooms

Figure 4: Six simulation benchmarks where we test HuGE and compare against baselines. Bandu, Block
Stacking, Kitchen, and Pusher, are long-horizon manipulation tasks; Four rooms and Maze are 2D navigation
tasks, see Appendix C

Four Rooms

Pusher with walls

Maze

250k

1 1 1
o 08 ° 0.8| ° 08
3 5 T
@xo.6 0.6 o6
” ? »
2 2 2
804 8oa S04
S S S
(2] 12 (2]
0.2 0.2 0.2
0 A/ 0
0 100k 200k 300k 400k 500k 0 0.2m 0.4M 0.6M 0.8M ™ 0 0.5M ™ 1.5M Pl
Number of steps Number of steps Number of steps
Kitchen Block Stacking Bandu
3
2.5
°
2]
52]
515 = 2
P
E S
& (2]
0.5|2 N e - - - -l - - - - -k =
o
0 ™ Pl 3M 4am 5M M 0 10k 20k 30k 40k 50k 60k 70k 80k 0 50k 100k 150k 200k
Number of steps Number of steps Number of steps
— OUrS Inverse Models === BC (5demos) = PPO (dense) == Human Preferences
Oracle DDL BC + Ours (5demos) === PPO (sparse) LEXA-like

Figure 5: Success curves of HuGE on the proposed benchmarks compared to the baselines. HuGE outperforms
the rest of the baselines, some of which cannot solve the environment while converging to the oracle accuracy.
For those curves that are not visible, it means they never succeeded and hence are all at 0 (see D.9 for distance
curves). Note the lexa-like benchmark is only computed in the four rooms benchmark. The curves are the
average of 4 runs, and the shaded region corresponds to the standard deviation.

5.1 Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop Feedback in
Simulation

We consider goal-reaching problems in the six domains shown in Fig 4. These are domains with
non-trivial exploration challenges —the agents must assemble a structure in a specific order without
breaking it, navigate around walls, etc., and purely random exploration is unlikely to succeed. We
evaluate HuGE compared to the baselines described in Appendix D on these domains. These baselines
were chosen to compare HuGE with methods that perform different types of exploration, hindsight
relabeling, and methods that use human preferences to learn a reward function instead, to highlight
the benefits of decoupling exploration from human preferences and policy learning. We report the
number of final goals reached successfully in Fig 5 as learning progresses. Only in these and the
analysis experiments, the human feedback is synthetic (see Appendix C).

In Figure 5, we show HuGE learning a goal selector model to perform goal selection (Ours) matches,
at convergence, the performance of using an Oracle always choosing the best goal to explore. More-
over, we see that pretraining HuGE with 5 noisy trajectories (BC + Ours) gives a significant decrease
in the number of timesteps needed to succeed and beats plain Behavior Cloning (BC). Guiding
exploration (Ours) is significantly better than techniques that perform indiscriminate exploration
(LEXA) [21, 37]. Ours also beats methods that purely rely on policy generalization and stochasticity
to perform exploration and do not explicitly expand the frontier (Inverse Models) [1, 47, 24] which
fail in complex exploration domains. Goal-conditioned reinforcement learning methods with PPO
[52] and sparse rewards do not experience enough reward signals to actually learn directed behavior.
In PPO with dense reward, we use the same reward as for generating the synthetic human labels and
we observe, that in most cases the performance is very low. The reason is that we did not do any
reward engineering for either PPO or HuGE, showing that Ours is more robust to simpler underlying
reward functions than PPO, as we also show in Appendix E. Similarly, using human feedback to bias
exploration Ours beats using it to learn a reward function (Human Preferences)[16].

5.2 Learning Goal-Conditioned Policies with large-scale crowdsourced data collection

In this section, we show HuGE works from a crowdsourced data collection of 109 non-experts
annotators labeling asynchronously and from all over the world, as shown in Figure 6. We spanned
across three continents, having annotators living in 13 different countries, with ages ranging from
18 to 65+ and a variety of academic backgrounds, we refer the reader to B.1 and B.2 for more
details about the demographics. Each annotator could provide labels at any time during the day,

Kitchen (Human Experiment)

w

e Goal: Goal-
i

’\\ Human-in-the-loop Feedback

N
2

°
T 2
14
Py
§1 5 »
% 1 —Ours (human + 5 demos) - > 30%

05 —Ours (crowdsource + 5 demos) 5-30%

R —Ours (synthetic + 5 demos) <5%
0 0.5M ™M 1.5M 2M 2.5M No data

Number of steps

Figure 6: left: Crowdsourcing experiment learning curves for the kitchen, middle: human annotators spanned
3 continents and 13 countries, right: screenshot of the interface for data collection.

our recommendation was to provide 30 labels, which took on average less than 2 minutes of their
time. We collected a total of 2678 labels for this crowdsourcing experiment beating Ours when
labels are synthetically generated, This indicates that the crowdsourced data might provide more
information than the simplistic reward function that we designed to provide the synthetic feedback.
We also repeated the experiment collecting just 1670 labels from 4 annotators and saw that the
crowdsourcing experiment also yield better results, suggesting that a wider variety of feedback does
not damage performance. We refer the reader to Appendix B for more detailed information about
these experiments, where we show additional results of HuGE from real human feedback on other
simulated benchmarks, we provide more details on the platform we developed for these experiments,
and we clarify that this study was approved by the Institutional Review Board.

5.3 Learning Goal-Conditioned Policies in the real world

Pick & place in the real world

8

; 0 steps 2500 steps 5000 steps 7500 steps 10000 steps
8k 10K Training steps

ot (|

k. 6l
Number of steps

Drawing in the real world

3

®

o

Human Alignment Score

O steps 1000 steps 2000 steps 3000 steps 4000 steps
o 1000 2000 3000 4000 5000 e
Number of steps Training steps

Figure 7: Accomplished goals at the end of 5 different evaluation episodes throughout training in the real world.

HuGE’s qualities of being robust to noisy feedback and requiring minimal and asynchronous human
supervision together with its self-supervised policy learning nature and the capability to be pretrained
from trajectory demonstrations makes it suitable for learning in the real world. As shown in Fig 7,
HuGE can learn policies for pick and place and drawing in the real world with a LoCoBot [38]. Some
adaptations were made to run HuGE on real hardware such as changing the state space to images,
instead of point space. In Appendix A we provide more results on HuGE from image space in the
real world and simulation. We also pretrained our policy with 5 trajectory demonstrations. For both
experiments, the robots learned directly on the real hardware. In the pick and place experiment, we
collected around 130 labels across 20 hours of real-world robot training, whereas in the drawing one,
we collected 150 labels across 6 hours.

5.4 Ablation Analysis

Lastly, we conducted a number of quantitative analysis experiments to better appreciate and convey
the benefits of HuGE. In Figure 8, we show that learning a parametric goal selector (Ours) is more
sample efficient than directly using the human-selected goals (DDL [27]). More concretely, learning
a parametric goal selector needs 50% less human annotations than DDL [27]. The underlying

Increased feedback efficiency

A Time to success for different injected noise
by learning a goal selector

Robust to Multimodality

500

250k

iy
3
3

200k|

@
8
3

150k

N
3
3

100k

mestep of success

Method
-DDLlike = 50k
= Ours

Labels to succeed

p—

3
3

Human
Preferences
Ours.

15 episodes 100 episodes 500 episodes 0 Ours
Frequency Method
Figure 8: (left): Learning a goal selector (Ours) needs on average 50% fewer labels than not (DDL) (middle):
As the noise in the feedback increases, so will the number of timesteps to succeed, however HuGE still finds a
solution. (right): HuGE is robust to noisy goal selectors since trajectories going to each mode will be sampled
while if we ran RL the policy would become biased and fail. See Appendix E for more details.

idea is that by deriving a goal selector from human feedback, we extract recurrent patterns and
generalizations that can be redeployed in future rollouts. Conversely, without learning from this goal
selector, we would overlook these patterns, leading to more frequent queries for human input.

One of the properties of HuGE is that it works from noisy human feedback. In Figure §, we observe
that despite adding large amounts of noise on the human annotations, HuGE still converges to the
optimal solution. This supports the idea that when the human feedback is noisier, exploration will be
less efficient and will take longer to converge nevertheless, still converging to an optimal policy.

Furthermore, in Figure 8 (right), we provide a visualization explaining why optimizing over the
reward function (Human Preferences [16]) can provide non-optimal solutions. We observe reward
functions learned from noisy human feedback are suboptimal, with multiple local maxima, and hence
optimizing over them will potentially lead to the policy getting stuck in local optima. On the other
hand, HuGE, which samples goals from this noisy learned reward function will still converge to the
optimal solution. The explanation is that the goal selector will steer exploration towards the three
modes uniformly, making exploration suboptimal but still converging to an optimal goal-conditioned
policy reaching each one of the modes, the goal included.

Ablations on frequency of annotations Ablations on frequency of annotations
1 1
08 w 08
2 e}
© ©
xo6 o6
12} 123
3 3
Q04 » g04 »
@ @
-15 -15
02 —100 02 =100
. =500 o =500
0 2% 4k 6k 8k 10k 0 100k 200k 300k 400k 500k 600k
Number of labels Number of steps

Figure 9: On the left/right we show the number of labels/timesteps needed to succeed when varying the
query frequency. 1, 15, 100, and 500 are the number of episodes between each period of querying the human
for annotations. We observe a clear tradeoff between needing fewer labels to succeed against needing more
timesteps. Meaning that if we query more frequently, we will need fewer timesteps to succeed and vice versa.
These experiments are done in the Four Rooms benchmark.

One final important analysis consists in studying the tradeoff between the frequency of labelling and
the speed for the policy to converge. In Figure 9, (left) we observe that if we query more frequently,
the policy needs more labels to succeed, however, we also observe (right) that when querying less
frequently it takes more timesteps to succeed. Meaning that if we provide labels more frequently, the
policy is going to converge faster to the optimal policy, but will come at the cost of needing more
human annotations. On the other hand, if the human annotators provide labels less frequently, it will
take longer for the policy to converge to the optimal policy. The query frequency will hence be an
important parameter to look into depending on what we want to optimize for, number of human labels
or timesteps to succeed. We believe that for simulation experiments, we might want to optimize for
using less human labels since the policy rollouts can be done very fast. However, when working
with learning on the real robot, we might prefer to have humans label more frequently and reduce
the number of rollouts in the real world, which is usually the bottleneck. In Appendix E, we explain

10

these results further as well as showing that HuGE is also robust to incomplete feedback, and we that
the amount of labels needed per batch is fairly small, around 5 labels.

6 Discussion

In this work, we build from the insight of decoupling human feedback from policy learning. We
introduced HuGE, that guides exploration by leveraging small amounts of noisy and asynchronous
human feedback, improving upon indiscriminate exploration or relying on hindsight generalization.
Moreover, the policy training using self-supervised learning remains disentangled from the human
feedback and makes it robust to asynchronous and noisy human feedback. We firmly believe this
insight is key to learn policies from crowdsourced human feedback, where the noise in the labels due
to non-expertise and variety of the annotators will be significant. As we show, when the annotations
are noisy, optimizing over the learned noisy reward function using standard RL techniques will fail.
However, once we disentangle the human feedback from the learned policy, and only use this to softly
guide exploration, we can still learn optimal policies despite the noise. We rigurously demonstrate
that HuGE is able to solve difficult exploration problems for various control tasks learning in both
the real world and in simulation. Moreover, we run a crowdsourced data collection experiment with
109 human annotators living across three continents, with a wide variety of backgrounds, education
level, ages, and we show HuGE succeeds in learning optimal policies. Finally, we provide ablations
and analysis on the design decisions and better show the benefits of HuGE.

There are a number of directions for future work that are very exciting building on HuGE. On an
immediate note, adapting HuGE to work in reset-free environments so that we can scale up the
applications on learning on the real robot is the most promising. It is with excitement that we would
like to see this system scaled to fine-tune foundation models in robotics. In the future, aiming to
learn behaviors not just from bianry comparative feedback, but from richer forms of communication
such as language corrections, physical corrections or vector valued feedback would be an intriguing
direction as well.

7 Acknowledgements

We thank all of the participants to our human studies that gave us some of their time to provide labels.
We thank the members of the Improbable AI Lab and the WEIRD Lab for their helpful feedback and
insightful discussions.

The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for
providing HPC resources that have contributed to the research results reported within this paper. This
research was supported by MIT-IBM Watson Al Lab.

8 Contributions

Marcel Torne and Abhishek Gupta jointly conceived the project. Marcel set up the simulation and
training code, designed and conducted experiments in simulation, designed and implemented the
interface for collecting human feedback, led the human experiments, conducted the ablations, and
made the figures. Marecel led the manuscript writing together with Abhishek. Max Balsells designed
and conducted the experiments in the real-world, integrated the vision models in the code, helped
running some of the simulation experiments and ablations and helped writing the manuscript. Zihan
Wang provided feedback on the manuscript. Samedh Desai helped Max setting up the real-world
experiments. Tao Chen was involved in the initial research discussions and provided feedback on
the paper. Pulkit Agrawal was involved in research discussions, contributed some of the main ideas
behind the project and provided feedback on the writing and positioning of the work. Abhishek
Gupta conceived the project jointly with Marcel, led the manuscript writing together with Marcel,
and provided the main overall advising.

11

References

(1]

(2]

(3]

(4]

(5]

(6]

(71
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine. Learning to poke by poking:
Experiential learning of intuitive physics. Advances in neural information processing systems,
29, 2016.

M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. In I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5048-5058, 2017.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048-5058, 2017.

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pages 263-272. PMLR, 2017.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. In Advances in Neural Information Processing
Systems, pages 1471-1479, 2016.

A. Billard and G. Hayes. Learning to communicate through imitation in autonomous robots. In
W. Gerstner, A. Germond, M. Hasler, and J. Nicoud, editors, Artificial Neural Networks - ICANN
'97, 7th International Conference, Lausanne, Switzerland, October 8-10, 1997, Proceedings,
volume 1327 of Lecture Notes in Computer Science, pages 763—768. Springer, 1997.

E. Biyik. Learning preferences for interactive autonomy. CoRR, abs/2210.10899, 2022.

E. Biyik and D. Sadigh. Batch active preference-based learning of reward functions. In 2nd
Annual Conference on Robot Learning, CoRL 2018, Ziirich, Switzerland, 29-31 October 2018,
Proceedings, volume 87 of Proceedings of Machine Learning Research, pages 519-528. PMLR,
2018.

R. I. Brafman and M. Tennenholtz. R-MAX - A general polynomial time algorithm for near-
optimal reinforcement learning. J. Mach. Learn. Res., 3:213-231, 2002.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. E. Reed, R. Jeong, K. Zolna,
Y. Aytar, D. Budden, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. de Freitas, and
Z. Wang. Scaling data-driven robotics with reward sketching and batch reinforcement learning.
In M. Toussaint, A. Bicchi, and T. Hermans, editors, Robotics: Science and Systems XVI, Virtual
Event / Corvalis, Oregon, USA, July 12-16, 2020, 2020.

T. Cederborg, I. Grover, C. L. I. Jr., and A. L. Thomaz. Policy shaping with human teachers. In
Q. Yang and M. J. Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 3366-3372. AAAI Press, 2015.

E. Chen, Z.-W. Hong, J. Pajarinen, and P. Agrawal. Redeeming intrinsic rewards via constrained
optimization. Advances in Neural Information Processing Systems, 35:4996-5008, 2022.

T. Chen, S. Gupta, and A. Gupta. Learning exploration policies for navigation. arXiv preprint
arXiv:1903.01959, 2019.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. CoRR, abs/2002.05709, 2020.

P. Christiano, J. Leike, T. B. Brown, M. Matrtic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences, 2017.

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. In GitHub Repository, pages 5026-5033, 2016.

12

[18] Y. Cui, P. Koppol, H. Admoni, S. Niekum, R. G. Simmons, A. Steinfeld, and T. Fitzgerald. Un-
derstanding the relationship between interactions and outcomes in human-in-the-loop machine
learning. In Z. Zhou, editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages
4382-4391. ijcai.org, 2021.

[19] T. Davchev, O. O. Sushkov, J. Regli, S. Schaal, Y. Aytar, M. Wulfmeier, and J. Scholz. Wish
you were here: Hindsight goal selection for long-horizon dexterous manipulation. In The Tenth

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

[20] R. Devidze, P. Kamalaruban, and A. Singla. Exploration-guided reward shaping for reinforce-
ment learning under sparse rewards. Advances in Neural Information Processing Systems,
35:5829-5842, 2022.

[21] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. Go-explore: a new approach
for hard-exploration problems. CoRR, abs/1901.10995, 2019.

[22] B. Eysenbach, R. Salakhutdinov, and S. Levine. Search on the replay buffer: Bridging planning
and reinforcement learning. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 15220-15231, 2019.

[23] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. CoRR, abs/1802.09477, 2018.

[24] D. Ghosh, A. Gupta, J. Fu, A. Reddy, C. Devin, B. Eysenbach, and S. Levine. Learning to reach
goals without reinforcement learning. CoRR, abs/1912.06088, 2019.

[25] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. In L. P. Kaelbling, D. Kragic, and
K. Sugiura, editors, 3rd Annual Conference on Robot Learning, CoRL 2019, Osaka, Japan,
October 30 - November 1, 2019, Proceedings, volume 100 of Proceedings of Machine Learning
Research, pages 1025-1037. PMLR, 2019.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018.

[27] K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for unsuper-
vised and semi-supervised skill discovery. CoRR, abs/1907.08225, 2019.

[28] L. P. Kaelbling. Learning to achieve goals. Citeseer, 2013.

[29] W. B. Knox and P. Stone. TAMER: Training an Agent Manually via Evaluative Reinforcement.
In IEEE 7th International Conference on Development and Learning, August 2008.

[30] K. Lee, L. Smith, and P. Abbeel. Pebble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training. In International Conference on
Machine Learning, 2021.

[31] K. Lee, L. M. Smith, and P. Abbeel. PEBBLE: feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 6152-6163. PMLR, 2021.

[32] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. CoRR, abs/2005.01643, 2020.

[33] A. Levy, G. D. Konidaris, R. P. Jr., and K. Saenko. Learning multi-level hierarchies with
hindsight. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[34] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. In L. D. Raedt, editor, Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 5502-5511.
ijcai.org, 2022.

13

[35] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual
Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,
Proceedings, volume 100 of Proceedings of Machine Learning Research, pages 1113-1132.
PMLR, 2019.

[36] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive language: Talking to robots in real time. CoRR, abs/2210.06407, 2022.

[37] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 24379-24391, 2021.

[38] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Py-
robot: An open-source robotics framework for research and benchmarking. arXiv preprint
arXiv:1906.08236, 2019.

[39] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Systems, pages 3303-3313, 2018.

[40] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining
self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE

International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May
29 - June 3, 2017, pages 2146-2153. IEEE, 2017.

[41] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining
self-supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE
international conference on robotics and automation (ICRA), pages 2146-2153. IEEE, 2017.

[42] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with
imagined goals. In S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 9209-9220, 2018.

[43] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped DQN. In
D.D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4026—4034, 2016.

[44] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for autonomous mental
development. IEEE transactions on evolutionary computation, 11(2):265-286, 2007.

[45] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback, 2022.

[46] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-

supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 16—17, 2017.

[47] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu, E. Shelhamer, J. Malik,
A. A. Efros, and T. Darrell. Zero-shot visual imitation. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 2050-2053, 2018.

[48] V. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering self-
supervised reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 7783-7792. PMLR, 2020.

[49] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
arXiv preprint arXiv:1709.10087, 2017.

[50] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by playing solving sparse reward tasks from scratch. In
International conference on machine learning, pages 4344-4353. PMLR, 2018.

14

[51] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pages 222-227, 1991.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[53] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. Andreas, and
D. Fox. Correcting robot plans with natural language feedback. CoRR, abs/2204.05186, 2022.

[54] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2072
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033, 2012.

[55] G. Warnell, N. R. Waytowich, V. Lawhern, and P. Stone. Deep TAMER: interactive agent
shaping in high-dimensional state spaces. In AAAI, 2018.

[56] G. Yang, A. Ajay, and P. Agrawal. Overcoming the spectral bias of neural value approximation.
In International Conference on Learning Representations, 2022.

[57] A.Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. Conference on Robot Learning (CoRL), 2020.

15

Next, we provide additional details of our work. More concretely:

» Appendix A Real-Robot experiments: provides more details on the real-robot experiments
and on HuGE working from images.

» Appendix B Real-Human experiments: shows all the details of the real human experiments
presenting results for both the crowdsourcing experiment as well as experiments on more
benchmarks with fewer annotators.

» Appendix C Simulated Benchmarks: we provide further details on the simulated bench-
marks used in this work.

» Appendix D Baselines: we provide details about the baselines together with more detailed
learning curves of the baselines on the simulated benchmarks.

» Appendix E Further Analysis and Ablations: we provide more insights on where the
benefits of HuGE come from, as well as provide some ablations on the method.

» Appendix F Implementation Details: we provide further implementation details, hyperpa-
rameters and resources used.

The code is available at github.com/Improbable-AI/human-guided-exploration

A Real-Robot Experiments

HuGE’s qualities make it suitable to learn policies directly in the real world. However, we adapted the
method with respect to the simulated experiments in Fig 5. The main change consisted in changing
the state space to image space instead of point space. Next, we show HuGE works from image space
in two of the simulated environments, four rooms and block stacking.

A.1 HuGE from images

Adapting HuGE to work from image space was a trivial process, the goal selector and policy networks
were modified introducing a first encoding network consisting of 3 convolutional layers (with stride 2
and kernel size 5) to map the input image to a lower dimension space and then we passed it through
an MLP to predict the score and action respectively.

Learning stopping criteria: When using the point state space, we could easily detect whether
the policy stopped, indicating it reached the target goal, or that it got stuck, to then start random
exploration from there. This could be done by computing the Euclidean distance and setting a small
enough threshold. This is more difficult when working from image state space. What we did was
train an image classifier ¢(s1, s2) that predicts whether the two images correspond to states close
in space (i.e. the state corresponding to image sy can be reached from the state corresponding to
image s; within s timesteps). We trained ¢ by using contrastive learning [15]. In particular, we
sampled images from our replay buffer and assigned the corresponding label based on their distance
in timesteps: 1(s;, ;) = 1if | — j| < tciose and 0if [— j| > ¢, Based on the premise that, in most
cases, images obtained far away in time, will probably correspond to states that take longer than #jose
timesteps to reach, if we were to act optimally.

Four Rooms Block staking

w

o

o
N
o

Distance to goal
o o
N (>}
o [N)

-

o

N
e
o

=Qracle
=Qurs

0 0.2M 0.4M 0.6M 0.8M 1M 50k 100k 150k 200k 250k 300k 350k 400k
Number of steps Number of steps

Number of stacked blocks

o
(=]

o

Figure A.1: Success rate for the four rooms (left) and block stacking (right) using images as input
space for both the policy and goal selector.

16

A.2 Results in the real-world

Pick & place in the real world

> O steps 2500 steps 5000 steps 7500 steps 10000 steps
8k 10K Training steps

s\y: gﬁ FEP #
\V
{

5 s P g p P O steps 1000 steps .Z0.00 steps 3000 steps 4000 steps
Number of steps Trainina steps

Tasks Accomplished
coo o =
RES 8 aNib

b i

‘ §

k 6l
Number of steps

Drawing in the real world

3

®

Human Alignment Score

Figure A.2: Accomplished goals at the end of 5 different evaluation episodes along training on the real world
to pick and place, and draw the letter U in the real world.

For the real robot experiment, we used a LoCoBot with a WX-200 arm.

Pick and place in the real world: The state space consisted of RGB images of 64 x 64 pixels, and
the action space was continuous with dimension 2, representing an absolute position in the space
(x,y) from which to predict a grasping point in even timesteps, or a dropping point in odd timesteps.
For the experiment to be succeed in a reasonable amount of time, we pretrained the policy and the
goal selector by using 5, sub-optimal demonstrations. The robot was trained for around 30h, during
which, 130 labels were provided via the interface shown in B.4 by one annotator. Finally, we used a
reset mechanism to pull the socks to the same corners, though, it had some stochasticity.

Drawing in the real world: The state space consisted of RGB images of 64 x 64 pixels, and the
action space was discrete, encoding a total of 5 actions: no movement and moving across the two
axis on the plane in polar coordinates (i.e. increasing r, decreasing r and moving a fixed amount
clockwise or counterclockwise), to move the end effector with the brush. An episode consisted of
12 timesteps. For the experiment to be ran in a reasonable amount of time, we pretrained the policy
and the goal selector by using 5, sub-optimal demonstrations. The robot was trained for around 6h,
during which, 150 labels were provided via the interface shown in B.4 by one annotator. Finally,
the reset was done by using the erase mechanism in this drawing boards and moving it with the arm
by using a script. As a final note, in this environment we had to perform few exploration steps and
slowly increase the frontier. This is because in this environment there is only one optimal solution
(the actions taken must be exactly the optimal ones, due to the fact that all past actions within the
episode will affect the current state of the board), in particular, any non-optimal action will leave a
trace, making that trajectory not that useful for the policy to learn from it.

Human Alignment evaluation for drawing in the real world: Designing a reward function for
drawing is a hard and tedious labor. HuGE does not need a reward function and we can fully leverage
human feedback to learn this behavior as shown in A.2. Without a reward function evaluation cannot
be performed either. For this reason, we defined this "Human Alignment Score" that basically consists
in querying humans and asking them for a score between 0 and 10 of how well the robot draw the
target picture. In the case of the drawing experiments, we asked 2 annotators to label the performance
of the robot drawing the letter U with a score from 0 to 10. This score was only used for evaluation
and is the metric used to plot the drawing plot in A.2.

17

B Real-Human experiments

Kitchen (Human Experiment) Four Rooms (Human Experiment) Pusher (Human Experiment)

w

~
&

o
.
°
©

o
>
o
>

S
=
S
=

Success Ratio
- o N
Success Ratio
Success Ratio
o

~Ours (human + 5 demos)
~Ours (crowdsource + 5 demos)
—Ours (synthetic + 5 demos)

=Ours (human)
~Human Preferences (human)
—Ours (synthetic)

)
N

°
5

0 0.5M M 2.5M 0 20k 40k 60k 80k 100k 120k 140k 0 02M 04M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M

M 1.5M
Number of steps Number of steps Number of steps

Figure B.3: Learning Progress with Human-in-the-Loop Feedback for the kitchen (left), four rooms navigation
(middle) and pusher walls (right) for which we collected 1600, 660 and 2780 labels respectively.

In this section, we give more details on how we ran the human experiment. We designed a simple
interface shown in Figure B.4. We can see the two states to be compared in blue and red and the goal
we aim to achieve in green. Then the annotator has to decide which one of the two states is closer
to the given goal and provide feedback by clicking either on the blue or red button. In the case in
which the annotator is undecided, they can click on the gray button that simply skips the current case.
Finally, if the annotator does not provide any feedback after 30 seconds of being presented with the
scenario, we skip the current batch of labeling and continue with training the policy. With this, we
can take advantage of the properties of our method and continue training the policy even when no
labels are given.

In Figure B.3 we share again the results obtained with the human experiment on a larger scale. We ran
both experiments using the same frequency of labeling and number of labels per batch. In particular,
We labeled every 50 rollout trajectories and queried the annotators for 20 labels. These parameters
were identified through empirical experiments.

Human Guided Exploration (HUGE)

Breadcrumbs to the Goal: Goal-Conditioned Exploration from
Human-in-the-loop Feedback
Kitchen

Please fill in the form

You will be prompted with 0/30 images

LEFT DON'T KNOW RIGHT

Figure B.4: Screenshot of the interface from our proposed crowdsourcing platform. It shows a
comparison of two image states of the kitchen environment, and the user needs to click one of the
three buttons below depending on their answer of which one is best: Left/I don’t know/right

B.1 Details about the crowdsourcing experiment

Subject 109 subjects participated in this pilot crowdsourcing study. Subjects were recruited from
the acquaintances of the collaborators. The average time to complete the study was about 2 minutes.
The subjects participated voluntarily without financial remuneration. The participants age ranged
from 18 to 65+ years old. Gender Male=58.7%, Female=39.4%, Non-binary=1.8%. The participants
were from 21 nationalities and participated from 13 distinct countries. More detailed information is
presented in tables B.1 and B.2. There is no reason to believe that subjects experienced any physical
or mental risks in the course of these studies.

18

Procedure This study was approved by the Institutional Review Board of the Massachusetts Institute
of Technology protocol E-4967.

We provide the participants with the following detailed instructions:

Thank you very much for participating in this study. It should not take you
more than a couple of minutes to complete. First of all click on the link
we sent you to get directed to the main page (B.4), you can either use your
phone or your computer. Please, start by filling out the form for us to get an
overview of the participants’ demographic. The task consists of controlling
arobot to do different things in the kitchen: 1) open the slider on the right,
2) open the microwave on the right 3) open the hinge cabinet on the left.
[We show a video of a successful trajectory]. To help us, we will present
you two images and you need to tell us which one of the two images is
closer to achieving the task. Click on the left/right button depending on
whether the left/right image is better. If at some point you don’t know which
one is best please click the "I don’t know" button. [We present a couple of
examples demonstrating this]. We will show 30 pairs of images and after
that, you will receive a message saying you completed the task. You can
stop at any moment before that if you want.

2
w »

- Go%
5-30%
<5%
No data

Figure B.5: Heatmap on the country representation during our crowdsourcing experiment.

19

Metric Percentage
Current country of Residence
USA 41.3% (45)
Spain 30.3% (33)
India 8.3% (9)
Germany 6.4% (7)
Canada 2.8% (3)
France 2.8% (3)
Singapore 1.8% (2)
China 1.8% (2)
Andorra 0.9% (1)
Austria 0.9% (1)
Ireland 0.9% (1)
Switzerland 0.9% (1)
United Kingdom 0.9% (1)
Prefer not to say 0% (0)
Gender
Male 58.7% (64)
Female 39.4% (43)
Non-binary 1.8% (2)
Prefer not to answer 0% (0)
Age group
18-24 48.6% (53)
25-34 24.8% (27)
35-44 7.3% (8)
45-54 11.0% (12)
55-64 7.3% (8)
65+ 0.9% (1)
Prefer not to answer 0% (0)
Education
Graduate or professional degree 39.4% (43)
College degree 33.9% (37)
High school or some college 20.2% (22)
Other 12.8% (14))
Prefer not to say 2.8% (3)

Table B.1: Demographics on the participants of the crowdsourced data collection experiment

20

Metric Percentage

Nationality
Spain 26.6% (29)
USA 20.2% (22)
India 9.2% (10)
Germany 8.3% (9)
China 7.3% (8)
France 4.6% (5)
Mexico 3.7% (4)
Colombia 2.8% (3)
Switzerland 1.8% (2)
Hong Kong 1.8% (2)
Canada 1.8% (2)
Uruguay 0.9% (1)
Singapore 0.9% (1)
Russia 0.9% (1)
Ireland 0.9% (1)
Lebanon 0.9% (1)
South Korea 0.9% (1)
Sweden 0.9% (1)
Andorra 0.9% (1)
Puerto rico 0.9% (1)
Israel 0.9% (1)
Prefer not to say 0.9% (1)

Ethnicity
Hispanic, Latino or Spanish 38.5% (42)
Asian 28.4% (31)
White or Caucasian 24.5% (27)
Middle Eastern or North African 3.7% (4)
South-east Asian 2.8% (3)
Black or African American 0.9% (1)
Perfer not to say 0.9% (1)

Table B.2: Demographics on the participants of the crowdsourced data collection experiment

21

C Simulated Benchmarks

-

Start Configuration Red piece is place Red and blue pieces Places green piece on Places final piece and
of Pieces and picks blue piece placed, picks green piece top of blue and red pieces reaches goal configuration
Block
Stacking
Start Block Stacking Picks red block Drops req on target S[GCK.S green and Three blocks stacked
and picks green picks blue
Kitchen
Start Kitchen Reaches slider Opens slider Opens microwave Opens cabinet
Pushers
with walls
Moves puck around Moves puck around
Start Pusher Walls Reaches puck P! P Puck reaches goal
first obstacle second obstacle

Figure C.6: Results of our method on four of the hardest benchmarks. From left to right, the timestep
in the trajectory increases.

In this section, we give more details on the benchmarks used to compare our method with the
baselines. All of these benchmarks are variations of benchmarks presented in previous work. In
general, we have made them harder to showcase the benefits of our method. More concretely, for each
method, we will give an overview of the difficulties it has and we will present the reward function we
designed to provide synthetic labels in our experiments.

1. Four rooms (small 2D Navigation): We consider goal-reaching problems in a 2-D nav-
igation problem in a four rooms environment, shown in Fig C.7. The challenge in this
environment is navigation through obstacles, which are unknown without exploration. The
agent is initialized in the bottom right room and the goal is sampled from the top right room.
The state observation of this environment is the absolute position of the agent in the world,
i.e. a vector (z,y), and the action space is discrete with 9 possible actions, encoding 8
directions of movement (parallel to the axis and diagonally), plus a non-move action. To
solve this benchmark the agent needs to traverse the two intermediate rooms to get to the
target room, traversing a total of four rooms.

The reward function in this case is the shaped distance between the state and the goal. This
benchmark is a modification of the benchmarks proposed by [24].

2. Maze (large 2D Maze Navigation): We consider a second 2-D navigation problem in a
maze environment. The additional challenge in this environment compared to the previous
one relies upon having a longer horizon (see Figure F.4). The agent is initialized in the green
dot and has to reach the red dot. The state space is the absolute position of the agent in the
maze, i.e. a vector (z,y), and the action space is the same as in the Four rooms one, i.e.
discrete with dimension 9.

The reward function in this case is the shaped distance between the state and the goal.

22

Bandu Block stacking Kitchen

Pusher two walls Maze Four Rooms

Figure C.7: Results of our method on four of the hardest benchmarks. From left to right, the timestep
in the trajectory increases.

3. Pusher two walls: This is a robotic manipulation problem, where a Sawyer robotic arm

pushes an obstacle in an environment with multiple obstacles. The puck and arm start in the
configuration seen in Fig C.7. The task is considered successful if the robotic manipulator
brings the puck to the goal area, marked with a red dot.
The state space of this environment consists of the position of the puck and the position
of the arm. The action space is the control of the position of the robotic arm. It is also a
9-dimensional discrete action space where each one corresponds to a delta change in the
position in 2D. This benchmark is a modification of the benchmarks proposed by [24]. The
reward function designed for this environment is the following:

r = max(distance_puck_finger,0.05) 4+ distance_puck_goal

N

. Sequential Kitchen Manipulation: This benchmark is a harder robotic manipulation task
where apart from being long horizon the agent needs to show three different skills to solve
the task. We operate a 7 DoF Franka robot arm in a simulated kitchen, manipulating different
cabinets, sliding doors, and other elements of the scene. The observation space consists of
the position of the end effector and its rotation together with the joint states of the target
objects. The action space consists in controlling the end effector position in 3D, we discretize
it so the dimension is 27, and the control of the gripper and rotation of the arm. In our
evaluation, we consider tasks where the goal is to sequentially manipulate three elements in
the kitchen environment - the sliding cabinet, the microwave and the hinge cabinet to target
configurations. The reward function we use is the following:

—distance(arm, hinge cabinet) — |hinge cabinet target joint - hinge cabinet current joint| , if slide cabinet and microwave opened

r = < —distance(arm, microwave hinge) — |microwave target joint - microwave current joint| — bonus , if slide cabinet opened
—distance(arm, slide cabinet hinge) — |slide cabinet target joint - slide cabinet current joint| — 2bonus , otherwise
)

5. Block Stacking: This domain is another long horizon robotic manipulation task, we operate
a 6 DoF URS5 robot arm with a suction gripper as an end effector in a simulated tabletop
configuration, stacking blocks. The observation space consists of the position of the end
effector and the position of each block in 2D, and a bit indicating whether the hand is holding
a block. This is a continuous action space domain with dimension 2, where the agent will
predict a grasp position if it does not hold an object and a drop position if it is holding an

23

object. We consider the goal to be accomplished if the three blocs are stacked in the correct
order (red, green, blue) on the correct fixed place on the table. Our code was inspired from
the Ravens benchmark [57]. The reward function is the following:

—distance(arm, blue block) - distance(blue block, target goal) , if red and green block at position
r = ¢ —distance(arm, green block) - distance(green block, target goal) — bonus , if red block at position
—distance(arm, red block) - distance(red block, target goal) — 2bonus , otherwise
(6)

6. Bandu: This domain is very similar to the block stacking. We operate a 6 DoF URS robot
arm with a suction gripper as an end effector in a simulated tabletop configuration. The
observation space consists of the position of the end effector and the position of each block
in 2D, and a bit indicating whether the hand is holding a block. This is a continuous action
space domain with dimension 2, where the agent will predict a grasp position if it does not
hold an object and a drop position if it is holding an object. We consider the goal to be
accomplished if the four blocs are stacked in the target configuration building the castle like
structure seen in Figure C.7. Our code was inspired from the Ravens benchmark [57]. The
reward function is the following:

—distance(arm, yellow star) - distance(yellow star, target yellow star) , if all except star at position

—distance(arm, green block) - distance(blue green block, target green block) — bonus , if red and blue blocks at position
—distance(arm, blue triangle) - distance(blue triangle, target blue triangle) — 2bonus , if red cylinder at position
—distance(arm, red cylinder) - distance(red cylinder, target red cylinder) — 3bonus , otherwise

N

More details about how these benchmarks were run, such as the number of episodes we ran the
benchmarks for, are presented in Section F

24

D Baselines

We compare HuGE to relevant baselines from prior work.

1.

Inverse Models: We compare with the iterative supervised learning algorithm for goal-
reaching introduced in [24], consisting of hindsight relabeling without additional exploration
(GCSL).

. Learning from Human Preferences: We consider the technique introduced in [16], which

learns a goal-agnostic reward model using binary cross-entropy. This learned reward is then
combined with an on-policy RL algorithm [52] to learn the policy.

. DDL: Dynamical Distance Learning [27] proposes a method to learn a goal-conditioned

reward function by regressing on the time distance between states achieved in the same
trajectory. A human synchronously provides preferences on which state brings the agent
closest to the goal, note that no goal selector is being learned. The policy is then trained to
maximize the learned reward to get to this selected state.

. Go-Explore/LEXA: We compared with a version of goal-reaching with indiscriminate

exploration. In particular, we perform frontier goal selection by identifying goals with the
lowest densities. The policy returns to these states and perform random exploration from
there. This is equivalent to performing indiscriminate exploration.

. Proximal Policy Optimization: We compare with an on-policy algorithm [52] with both a

standard sparse and dense reward to directly optimize the goal-reaching objective.

. Behavior Cloning: Supervised learning on a batch of expert trajectories. In our experiments

we use 5 expert trajectories.

. Behavior Cloning + Ours: We pretrain the policy using imitation learning and we warm

start our goal selector by training it from the expert trajectories. Given two random states in
the same expert trajectory we add them into the training data for the goal selector, setting
the state further in time as closest to the goal.

These baselines are chosen to compare HuGE with methods that perform pure exploration, hindsight
relabeling, and human preferences without being goal conditioned to highlight the benefits of
combining goal-driven self-supervision with human-in-the-loop exploration guidance.

Inverse
Models

(GCsL)

Collapse

Uniform
Frontier

Expansion
(LEXA,
Go-Explore)

Directed
Frontier

Expansion
(ours)

o

“....- Goal

N _.-- Start

Figure D.8: Failure modes of exploration algorithms for goal-reaching. Inverse models (top) col-

lapses and does not discover the target room (second room at the top). Uniform frontier expansion
(middle) does reach the target room, but to get there it visits all possible rooms, since exploration is
indiscriminate. Directed frontier expansion (bottom, ours) reaches the target room much faster by
leveraging human signal on direction. Training epochs increase from left to right. Each subfigure is
an aerial view of a floor with 9 rooms, with multiple trajectories, each one in a different color.

25

Four Rooms Pusher with walls Maze

o7 o
e goa\
8 &

=)

Distance to goal
8

Distance to

o

0 100k 200k 300k 400k 500k 0 0.5M ™

1.5M oM 25M 3m
Number of steps Number of steps

Kitchen Block Stacking Bandu

\‘
|
|

3
=
3

w > o

N
Iy

Distance to goal
T
Distance to goal
Distance to goal
~ > ®

vl o

0 M M 10M 0 10k 20k 30k 40k 50k 60k 70k 80k 90k 0 50k 100k 150k 200k 250k

M
Number of steps Number of steps Number of steps
— OUI'S Inverse Models === BC (5demos) = PPO (dense) == Human Preferences
Oracle DDL BC + Ours (5 demos) = PPO (sparse) LEXA-like

Figure D.9: Distance to the goal for each method on different benchmarks. We note that the LEXA-
like exploration strategy was only implemented on the four rooms benchmark.

For the sake of concreteness, we will study two simple schemes from prior work on solving goal-
reaching problems —self-supervision via goal conditioned supervised learning [24] (as described
in Section 3) and reinforcement learning with density based exploration [37]. Exploration in GCSL
relies on generalization of the policy across goals, while density based exploration rewards exploring
the most novel states. We show these algorithms can fail in different ways for a simple maze
environment shown in Fig D.8, where the agent starts in the middle room and must reach goals
commanded in the top middle room.

As shown in Fig D.8, GCSL exploration quickly collapses in the maze environment. This can be
understood by noticing that self-supervised training on goals in the bottom right corner room or even
the bottom left corner room does not extrapolate to the top right corner, where the commanded goals
are. Instead of navigating the agent around the walls, the policy generalization suggests that the agent
simply go into the wall as shown in Fig D.8.

Exploration methods are meant to tackle this kind of degenerate exploration, by encouraging visitation
of less frequently visited goals at the “frontier" of visited states. When applied to the goal-reaching
problem, in Fig D.8, we see that while the exploration is not degenerate, exploration is indiscriminate
in that it explores both sides of the maze even though commanded goals are only down one particular
path. While this will eventually succeed, it incurs a significant cost of redundant exploration by going
down redundant paths.

This suggests that frontier expansion is needed like exploration methods, but should ideally be done
in a directed way towards goals of interest. In Figure D.8 we see how this directed exploration could
be useful and reduce sample complexity, by removing the need for indiscriminate frontier expansion.
We show how a small amount of relatively cheap human feedback can be leveraged to guide this
exploration.

D.1 Detailed training curves

For some of the runs the plot of the success could be misleading, in the sense that, despite not
achieving the goal, the algorithms may still learn how to almost solve the task, or at least gained
some knowledge about how to approach it. Figure D.9 shows for each of the runs, the distance to the
goal, which corresponds to —r where r is the reward of the corresponding benchmark, as described
in Section C.

For example, by looking at Figure D.9, we can see that despite the fact that the Human Preferences
wasn’t able to complete some of the tasks, such as Four Rooms, Pusher with walls or Maze, it still got
some insight on how to approach it, getting much closer to the goal than the other methods that failed.

26

Figure D.10: Average distance and standard deviation across 4 seeds for the different baselines we implemented to
compare against HugRL. We see that HugRL consistently succeeds (in bold) to solve all benchmarks when most
other baselines do not. The oracle would be the upper bound that we could hope to achieve, since in this case labels

are provided all the time, and the goal selector is substituted by a precise distance function.

27

Benchmark || Oracle Ours GCSL Human DDL PPO PPO LEXA style
Preferences (sparse) (dense)
4 rooms 0.02 £0.01] 0.02+0.00] 1.15+0.67 | 0.48+0.39 | 0.454+0.28 | 1.45+0.13 | 0.05+0.02| 0.13+0.18
Maze 04+0.3 0.8+0.3 29.6 + 2.2 18.5£5.6 8.54+10.6 | 30.4+0.7 0.0+0.2 -
Pusher 0.06 £0.00{ 0.11 +£0.04| 0.85£0.11 | 0.26 £0.03 | 0.69+0.06 | 0.72+£0.06 | 0.27 £0.00 | -
Kitchen 1.06 +0.32] 0.67 +0.21] 11.724+0.11 | 3.43 £4.37 | 11.284£0.02 | 7.63 +4.96 | 2.84 +2.72 | -
Stacking 0.1+0.2 0.0+ 0.0 41+23 6.5+ 0.1 6.6 +0.1 6.7+ 0.0 6.6 £0.0 -
Bandu 1.00+0.53 | 0.36 £0.73| 12.874+0.01 | 12.54+0.01 | 12.63£0.21 | 12.754+0.01 | 12.75+0.01 | -
Benchmark || BC (5 de- | BC + Ours
mos) (5 demos)
4 rooms 0.45+0.46 | 0.04 £0.00
Maze 2.25+1.51 | 0.87+1.02
Pusher 0.254+0.09 | 0.08£0.01
Kitchen 11.38 4+ | 0.87+1.02
0.00
Stacking 1.914+1.02 | 0.014+0.00
Bandu 4214547 | 1.87+0.4

E Further Analysis and Ablations

E.1 Analysis on learning from comparisons

There is a tradeoff between the frequency of labelling and the speed for the policy to converge.
In Figure E.11, (left) we observe that if we query more frequently, the policy needs more labels to
succeed, however, we also observe (right) that when querying less frequently it takes more timesteps
to succeed. Meaning that if we provide labels more frequently, the policy is going to converge faster
to the optimal policy, but will come at the cost of needing more human annotations. On the other
hand, if the human annotators provide labels less frequently, it will take longer for the policy to
converge to the optimal policy. The query frequency will hence be an important parameter to look
into depending on what we want to optimize for, number of human labels or timesteps to succeed.
We believe that for simulation experiments, we might want to optimize for using less human labels
since the policy rollouts can be done very fast. However, when working with learning on the real
robot, we might prefer to have humans label more frequently and reduce the number of rollouts in the
real world, which is usually the bottleneck.

Success Ratio
o o o
B (=2 =

o
N

Ablations on frequency of annotations

=1
=15
=100
=500

2k 4k 6k 8k 10k
Number of labels

< o o
S 2 [-

Success Ratio

<
N

0

Ablations on frequency of annotations

o

0

100k 200k 300k 400k 500k 600k
Number of steps

-1
=15

-100
=500

Figure E.11: On the left/right we show the number of labels/timesteps needed to succeed when
varying the query frequency. 1, 15, 100, and 500 are the number of episodes between each period
of querying the human for annotations. We observe a clear tradeoff between needing fewer labels
to succeed against needing more timesteps. Meaning that if we query more frequently, we will
need fewer timesteps to succeed and vice versa. These experiments are done in the Four Rooms
benchmark.

Querying a few samples per batch is enough. In Figure E.12, (left) we observe that providing
more labels every time we query the human leads to needing more labels to have successful policies,
as expected. In right, however, we observe that the number of timesteps needed to have a successful
policy is very similar when querying for 5,20 or 100 annotations, however, when only querying for
1 the performance drops significantly. This means that 5 labels are already enough to learn how to
expand the frontier, and querying more than 5 labels brings useless information.

1

Success Ratio
o o o
s D =

o
N

Ablations on the number of queries per batch

=1
=5
=20
=100

500 1000 1500 2000
Number of labels

2500

Success Ratio
I o o
e (=] (=]

<
N

Ablations on the number of queries per batch

0

100k 200k 300k 400k 500k
Number of steps

-1
-5
-20
-100

Figure E.12: On the right we show the number of steps needed to succeed in the four rooms benchmark
depending on the number of comparisons queried per batch. On the left, we show the number of
labels needed to succeed, again depending on the query batch size. We observe that we can go as low
as 5 queries per batch, and the performance is similar to 20 and 100. Showing that too many queries
bring duplicated information to the goal selector training. Also, we see that providing 1 label is not
enough, degrading the performance significantly. These experiments are done in the Four Rooms
benchmark.

28

HuGE is robust to noisy labels. Increasing the noise in human labels leads to an increase in the
number of timesteps needed to for the policy to learn to achieve the goal, as seen in Figure E.14.
However, this does not decrease the accuracy of the resulting policy. Increased noise in the labels
makes exploration become less directed and closer to the uniform frontier expansion methods.

Having a closer look in Figure E.13 at the shape of the reward function when large noise is added
to the feedback. We observe that the goal selector becomes less accurate compared to the one with
perfect feedback in Fig E.18. However, HuGE still successfully reaches the goal. As we can see,
there are 3 modes in the final step (4th subfigure in E.13). This means, the goals will be sampled
most frequently from these 3 modes, which will result in a less efficient frontier expansion, since
only one of the three modes is the target goal. However, since we are learning a goal-conditioned
policy through self-supervised learning this remains unaffected by this noise and will learn to go to
the three modes, one of which is our target location. This would not be the case for methods that use
this goal selector as a reward function to run model-free RL, due to its convergence to local maxima

without reaching the target goal.
—» —» —» ORACLE

Figure E.13: Evolution of the learned goal selector when the distance for the synthetic human has a
noise of 1. We observe that the goal selector is not accurate, however, our method still successfully
reaches the goal, hence, it is robust to inaccurate goal selectors. This would not be the case for
methods that use this goal selector as a reward function to run model-free RL, due to the noise on it
and multiple local minimas and maximas.

HuGE is robust to underlying simple reward functions. In Figure E.15 we show the performance
of our method in the Four Rooms environment when dealing with a simplified version of feedback.
In particular, we only return feedback if the given queried states have a distance difference of at
least d with respect to the goal. For context, in this environment 0.5 is approximately the distance
between the center of two consecutive rooms, so using d > 0.5 is roughly similar to using the room
number as a reward function. Therefore, in this experiment, we can see that, even with very simple
reward functions, we can still get some insight on how to solve the task, though at the expense of
clearly slower convergence. In particular, we can see how coarser reward functions lead to worse
performances. This also helps us understand what happens in scenarios in which it is hard for humans
to compare states that are similarly good for the purpose of achieving the required goal.

HuGE can learn when no labels are provided. This property of HuGE is because of the self-
supervised learning used to train the policy but also a result of using a parametric goal selector as
compared to directly selecting goals of interest as done in [27], which will not have this advantage.
From Figure E.18 we observe that a parametric goal selector has the capacity to generalize while, by
definition a non-parametric goal selection [27] will not. Thereafter, using a parametric reward model
that has non-degenerate extrapolation can lead to significantly more frontier expansion. In Figure
E.16 we show how our method succeeds in reaching the final goal room even if the goal selector has
stopped training when the agent enters any of the previous rooms. However, this comes at a cost in
much slower convergence.

29

Time to succes for different injected noise on labels

250k
[}
3
§200k
=]
/2]
‘5 150k Noise
5 0
“g,-)' 100k I 0_05
£ | l 0.1
= 50k 0.3
I 1
0]
Ours
Method

Figure E.14: Show the effect of adding Gaussian noise in the labels provided by the human on the
Four Rooms benchmark. We observe that our method is robust to different amounts of added noise,
however, as noise increases, so will the timesteps needed to succeed. Noise is injected into the
distance function used by the synthetic human to provide labels, which means that with higher noise
the probability of the comparison being wrong will increase. For context, the distance between the
initial state and the goal is around 1.6.

Four Rooms
1
0.8
9
©
»0.6
(7]
(0]
804
(?) ' d>=0
) —d >=0.1
0. d>=0.25
. d>=05
0 50k 100k 150k 200k 250k

Number of steps

Figure E.15: Comparison on the effect of simplified reward functions providing the synthetic human
annotations.

E.2 Goal selector Analysis

Learning a goal selector is more feedback efficient than directly using the human feedback.
In figure E.17 we show a comparison of the number of labels needed to succeed when using a
parametric goal selector (Ours) against directly using the goal selected by the human (DDL). We
show the comparison between different frequencies of human querying. 15, 100, 500 episodes are
the number of episodes we wait before querying the human annotator for more labels. We observe
that when learning a goal selector, we obtain a reduction in the number of labels needed of 40%
when querying every 15 or 100 episodes and a reduction of 59% when querying every 500 episodes.
Furthermore, if we don’t learn this parametric model, with low frequencies we might not learn a
successful policy, as happens for the non-parametric version at 100, 500 episodes of frequency. When
using the non-parametric goal selector (DDL) not all trials succeed, for querying every 100 episodes,
2 seeds out of 4 fail and for 500 episodes between querying 3 out of the 4 fail, which is another
reason why parametric goal selectors are better.

In figure E.18, we show the goal selector will have non-trivial generalization, allowing us to continue
expanding the frontier even when no human is present.

30

Analysis Learning a Policy from an Incomplete Goal Selector

700k

600k

Timestep of success
N w B n
o o o o
o o o o
x x = =

Oracle no stopping final room third room second room first room
Stopping Moment

Figure E.16: Effect of freezing the goal selector at different points in the learning of the policy on
how long it takes to learn a successful policy on the Four Rooms benchmark. We see that an earlier
stop in the training leads to an increase in the timesteps needed to succeed. However, even if we stop
in the second room, our method is still very good at quickly finding a successful policy, which shows
how robust it is against incomplete goal selectors. This would not be the case for methods that run
RL on the learned reward functions (as DDL, and RL from Human Preferences). The policy still
succeeds thanks to the added random exploration, the self-supervised nature of GCSL, and a small
probability of sampling the final goal.

Increased feedback efficiency

500 by learning a goal selector
3400
(O]
Q
S300
[
9
200
[}
G Method
—100 = DDL-like
= Qurs
0
15 episodes 100 episodes 500 episodes
Frequency

Figure E.17: Comparison of the number of labels needed to succeed when using a parametric goal
selector (Ours) against directly using the goal selected by the human (DDL).

> ORACLE

Figure E.18: Progress of goal selector learning in the four rooms environment as learning progresses
it gets closer to the target (oracle on the right). The purple area represents the visited states by the
agent at that point. We observe that the goal selector provides extrapolation which will help the
training with fewer annotations.

Furthermore, in E.19 we explore how accurate the goal selector is, depending on the number of
queries it has been trained with. In particular, we tested it in the Four Rooms environment by training

31

the goal selector using pairs of states sampled uniformly. During evaluation, given two states which
are less than d units apart, we compute the accuracy for which the model is able to pick the closest
state to the goal. This allows us to see that the model is able to, given two states, determine which one
is the closest to the goal, even when the given states are very close together and even when trained
with just a handful of queries. For context, bear in mind that the distance from the initial state to the
goal is 1.6 units.

Four Rooms
1
"_/_
0.8 —
- >
Soel 7~
Chiid |
?; 4
d<2
0.4
< —d <1
-d<05
0.2 d<0.1
. d<0.05
0 20 40 60 80 100

Number of queries

Figure E.19: Accuracy of the goal selector depending on the number of queries
and dependent on the distance d between the states compared in the labels.

Qualitative analysis of the generalization of the goal selector. In this qualitative analysis, we
show visualizations of the learned goal selector as different rooms are discovered during the learning
process in the four-rooms domain Fig E.20. The goal selector model shows nontrivial extrapolation
and can potentially provide guidance even beyond the set of states it is trained on.

—» —» —» | ORACLE

Figure E.20: The goal selector learns and converges to a result close to the oracle (rightmost) as
epochs increase (left to right). We observe how this goal selector gets updated iteratively as the
frontier expands. Colder colors mean a lower reward for that state, whereas warmer colors mean a
higher reward for that state, in this case, this is equivalent to the distance to the goal.

E.3 Compatibility of HuGE with Learning from Trajectory Demonstrations

As we mention in Section 4.3, HuGE is compatible with learning from trajectory demonstrations. In
Figure E.21, we show how HuGE can improve the performance of simple imitation learning starting
from different amounts of demonstrations. Given the number of demonstrations, imitation learning
fails on less than 10 demonstrations, and with HuGE we can improve the policy to succeed in all
cases.

32

Four Rooms

1.4

_12

@

S 1

ie]

0.8

0.6

o BC O

004 -BC 2

0.2 BC5

. e — BC 10
0 20k 40k 60k 80k 100k

Number of steps

Figure E.21: The figure depicts the distance to the goal in the Four Rooms
environment when using a policy pre-trained via Behaviour Cloning with 0, 2,
5, and 10 demonstrations, respectively. We see that using BC on a small number
of demonstrations helps to boost the performance of our method. Also, notice
that BC wouldn’t achieve success (distance < 0.05) in any of the cases due to
compounding errors which leads to covariant shift. However, HugRL solves
these compounding errors within a small number of steps.

33

F Implementation Details

F.1 Algorithm: stopping before exploration

One important detail of the algorithm is knowing when to stop rolling out the policy and start
exploration. The idea is that since the policy is learned in a self-supervised manner, we do not want
to have too many redundant steps in a single state. If this happens then because of an imbalance of
redundant actions going over this single state, in the training set, will bias the policy to get stuck and
not transition to other areas. For it not to happen, we need to stop rolling out the policy at the right
moment and launch the next step in the algorithm, the exploration. We propose three different cases
where we should stop the rollout, first, once the breadcrumb state gy, is reached, second, once the
time-horizon for the episode is reached, third, once the policy is not making any progress and gets
stuck in some place. Detecting this can be trivially done looking at the euclidean distance between
last states when the state space is in point space, however, it can also be done in image space and we
explain it further in Appendix A.1.

F.2 Hardware

For training the models and running the experiments, we had access to several workstations with one
GeForce RTX 2080 Ti or one GeForce RTX 3090. It took on average 8 hours on these machines to
run 4 seeds for each one of the baselines and our method. We account the total amount of compute
hours would be around 1440 hours for the whole project, taking into account, experimentation and
testing the algorithms.

F.3 Networks with Fourier Features

Seeing the complexity of our benchmarks, where we can have non-smooth reward landscapes for
the goal selector. For example, in the four rooms environment, between one side and the other of
the right rooms, the reward changes significantly and abruptly. Adding Fourier Features has been
shown to work well for fitting these landscapes [56]. For this reason, we used them in some of our
experiments, as detailed in Section F. More precisely, when used, we added an additional layer with
Fourier features of size 40 times the input dimension.

F.4 Training details

The details of the parameters with which the results have been obtained will be disclosed in this
section. In particular, Table F.4 depicts the parameters used for the different benchmarks, while Table
F.3 contains the hyperparameter configuration used for the different algorithms.

34

Parameter | Value

Shared (to those that apply)

Optimize Adam
Discount factor () 0.99
Reward model architecture MLP(256, 256)
Use Fourier in the reward model True
Buffer size reward model 1000
Steps per reward model update 1000
GCSL, Oracle and Ours
Learning rate 5-1074
Batch size 100
Policy architecture MLP (400, 600, 600, 300)
Steps per policy update 5000
Use Fourier in the policy model True
Buffer size rollout 1000
Max gradient norm)
Last trajectories to be labeled 1000

Human preferences Same parameters as

[52] plus/except

Learning rate 5-1074
Batch size 100
Policy architecture MLP (256, 64)
Steps per policy update 5000
Use Fourier in the policy model False
Buffer size rollout 1000
Max gradient norm 5)
Last trajectories to be labeled 1000
DDL
Learning rate 5-1074
Batch size 256
Buffer Size 2-10*
Policy architecture MLP (256, 256)
Steps per update 1000
PPO Same parameters as [52] plus
Buffer size 8192
Policy architecture MLP (400, 600, 600, 300)

Table F.3: Hyperparameters setting for the algorithms

Environment Four rooms Maze Pushing around Obstacles Kitchen Block Stacking Bandu
Steps per trajectory 50 250 100 100 10 12
Label from last k steps 10 50 10 20 10 12

Table F.4: Benchmark-related parameters

35

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Why is exploration in goal-conditioned reinforcement learning challenging?

	HuGE: Guiding Exploration in Goal-Conditioned RL with Human Feedback
	Decoupling Human Feedback from Policy Learning for Goal Reaching Problems
	Guiding Exploration from Human Comparative Feedback by Learning Goal Selectors
	Self-Supervised Policy Learning: Hindsight Relabeled Learning for Goal-Conditioned Policies

	Experimental Evaluation
	Learning Goal-Conditioned Policies with Synthetic Human-in-the-Loop Feedback in Simulation
	Learning Goal-Conditioned Policies with large-scale crowdsourced data collection
	Learning Goal-Conditioned Policies in the real world
	Ablation Analysis

	Discussion
	Acknowledgements
	Contributions
	Real-Robot Experiments
	HuGE from images
	Results in the real-world

	Real-Human experiments
	Details about the crowdsourcing experiment

	Simulated Benchmarks
	Baselines
	Detailed training curves

	Further Analysis and Ablations
	Analysis on learning from comparisons
	Goal selector Analysis
	Compatibility of HuGE with Learning from Trajectory Demonstrations

	Implementation Details
	Algorithm: stopping before exploration
	Hardware
	Networks with Fourier Features
	Training details

