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Artificial Intelligence (AI), through deep learning, has brought automation and predictive capabilities to cardiac 
imaging. However, despite considerable investment, tangible health-care cost reductions remain unproven. Although 
AI holds promise, there has been insufficient time for both methodological development and prospective clinical 
trials to establish its advantage over human interpretations in terms of its effect on patient outcomes. Challenges 
such as data scarcity, privacy issues, and ethical concerns impede optimal AI training. Furthermore, the absence of a 
unified model for the complex structure and function of the heart and evolving domain knowledge can introduce 
heuristic biases and influence underlying assumptions in model development. Integrating AI into diverse institutional 
picture archiving and communication systems and devices also presents a clinical hurdle. This hurdle is further 
compounded by an absence of high-quality labelled data, difficulty sharing data between institutions, and non-
uniform and inadequate gold standards for external validations and comparisons of model performance in real-world 
settings. Nevertheless, there is a strong push in industry and academia for AI solutions in medical imaging. This 
Series paper reviews key studies and identifies challenges that require a pragmatic change in the approach for using 
AI for cardiac imaging, whereby AI is viewed as augmented intelligence to complement, not replace, human 
judgement. The focus should shift from isolated measurements to integrating non-linear and complex data towards 
identifying disease phenotypes—emphasising pattern recognition where AI excels. Algorithms should enhance 
imaging reports, enriching patients’ understanding, communication between patients and clinicians, and shared 
decision making. The emergence of professional standards and guidelines is essential to address these developments 
and ensure the safe and effective integration of AI in cardiac imaging. 

Introduction
Cardiovascular diseases are a leading cause of death 
globally and the use of cardiac imaging for accurate 
assessment of cardiac structure and function is crucial for 
diagnosis, treatment planning, and prognosis. Artificial 
intelligence (AI) has rapidly permeated the field of cardiac 
imaging. Its burgeoning influence, however, is not devoid 
of complexities. In 2022, a National Heart, Lung, and 
Blood Institute workshop highlighted that even as AI 
applications in cardiac imaging continue to expand, there 
is not yet substantial proof that these developments can 
meaningfully reduce health-care costs.1 Furthermore, 
beyond automation, there is not enough evidence from 
prospective, blinded, randomised clinical trials to 
illustrate that these technologies are superior to human 
interpretation or substantially affect patient outcomes. 
Nevertheless, there is a competitive race within the 
academic and industrial sectors to create superior 
technological solutions for cardiovascular disease using 
AI. In this Series paper, however, we take a more 
pragmatic approach. Although AI might support 
clinicians in specific tasks, it cannot replace the nuanced 
clinical judgement acquired through years of experience. 
The American Medical Association defines AI as aug
mented intelligence to reflect its perspective that AI-based 
tools and services support, rather than explicitly replace, 
human decision making.2 Adopting this perspective is 
crucial for setting realistic expectations and ensuring AI’s 
safe and practical application in cardiac imaging.

Evolution of AI in cardiac imaging
There is strong clinical rationale for the introduction of AI 
techniques to automate cumbersome measurements in 
cardiac imaging, and thereby improve workflow efficiency. 
Regarding the techniques themselves, for imaging data, 
deep learning supersedes more conventional machine 
learning as it automatically finds the appropriate features 
in the images while solving the targeted problem (figure). 
Deep neural networks are universal function estimators,3 
meaning that they can find the complex relationship (often 
non-linear) between the input data (eg, image and clinical 
patient characteristics) and the output (eg, segmented 
regions and diagnosis). In addition to their predictive 
performance, neural networks are fast at inference 
(ie, predicting the output for new cases not used during 
training) and are robust (ie, they generalise well) if given 
enough data. Examples include cardiac image 
segmentation4 or the approximation of complex differential 
equations used in biophysical simulations.5–7

AI methods are often criticised for being uninterpretable 
black boxes, which can restrict clinical acceptance. 
However, the route towards a prediction does not always 
need to be explicitly interpretable (eg, myocardial 
segmentation when the wall is visible in the images). 
Besides, many researchers have now gained an 
understanding of how specific features of complex deep 
learning architectures work in cardiac imaging (eg, 
convolutions, residual blocks8–11 and, at a broader scale, 
encoding and decoding mechanisms). The effects of 
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sub-blocks in AI architectures (eg, convolutional or 
residual blocks) and their combinations (eg, contracting 
and expanding paths in a U-net to operate at multiple 
scales) on model performance are now well understood by 
data scientists. More interpretable solutions are being 
explored, either within the model itself or for post hoc 
analysis (eg, Gradient-weighted class activation mapping 
[Grad-CAM], feature importance scores, Shapley additive 
explanations, and local interpretable model-agnostic 

explanations), although some of these methods are 
currently undergoing development and evaluation.12

There is growing interest in using the next generation 
of AI models inspired by natural language processing, 
such as vision transformers, which can handle complex 
structures in the data both for the input and the output, 
as shown for medical image segmentation and 
classification.13 Transformer architecture, one of the most 
popular technological advances in deep learning,14,15 is 
inspired by natural language processing, is able to 
assimilate a structured group of words to produce realistic 
texts or images, and is already capable of succeeding in 
postgraduate cardiology examinations.16 The generative 
pre-trained transformer models are at the spearhead of 
these advances. At the core of these methods are attention 
mechanisms that weigh the importance of different 
inputs and reinforcement learning mechanisms, which 
enable improved learning performance from human-
expert feedback.

Landmark developments in using AI for cardiac 
imaging
The table presents a numerical estimate of AI and machine 
learning applications in cardiac imaging that have received 
regulatory approval and are currently available in the USA, 
as reported by the US Food and Drug Administration 
(FDA) in October, 2023.17

Echocardiography
Deep learning algorithms have been applied to view 
recognition, segmentation, and assessment of echocardio
graphic volumetric measurements, including indices such 

Figure: Exploring the benefits and challenges for applying AI in cardiac imaging
AI=artificial intelligence.
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Key messages

•	 Deep learning techniques are being increasingly applied to cardiac imaging for 
automating measurements and improving workflow efficiency

•	 Despite the growth of artificial intelligence (AI) in cardiac imaging, there is not 
enough evidence showing its cost-effectiveness, superiority compared with human 
interpretation, or improvements to patient outcomes

•	 Challenges include data scarcity, lack of data diversity, evaluation difficulties, 
misalignment with stakeholders, and issues with regulatory approval, data 
stewardship, and data privacy; professional standards are emerging to address these 
constraints

•	 It is essential to recognise the limitations of AI and understand that, at present, it can 
support imagers to reduce repetitive low-calibre activities, but not replace their 
nuanced clinical interpretation

•	 A framework shift in cardiac imaging should move the focus away from isolated 
measurements and leveraging AI’s pattern recognition capabilities to integrating 
complex, non-linear data for precise disease phenotype identification

•	 Future innovative algorithms, such as large language and vision transformer models, 
could play a pivotal role in enhancing imaging reports, facilitating patient 
understanding, improving communication between patients and clinicians, and 
supporting collaborative decision making
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as left ventricular ejection fraction (LVEF). A video-based 
deep learning network has been implemented for fully 
automated beat-to-beat evaluation of LVEF, even in the 
presence of arrhythmias.18 In a blinded, randomised 
clinical trial of initial AI and sonographer assessment for 
patients undergoing echocardiographic quantification of 
cardiac function, initial evaluation of LVEF by AI was non-
inferior to assessment by sonographers, with a smaller 
proportion of the AI group requiring correction for the 
final cardiologist assessment.19 AI algorithms have also 
been applied in resource-constrained settings. In a 
multicentre study, a deep learning algorithm was 
developed to guide novice users without experience in 
cardiac ultrasound to acquire diagnostic-quality trans
thoracic echocardiographic images.20 Similarly, another 
multicentre study introduced a deep learning-based 
method for quantifying LVEF, focusing on limited views 
obtained during point-of-care ultrasound imaging.21

Although the majority of data are derived from studies 
of adults, AI-enabled studies have also been reported 
based on fetal and neonatal cardiac imaging. For 
example, an ensemble of deep learning algorithms has 
shown expert-level prenatal detection of complex 
congenital heart disease from screening echocardio
graphic images.22

Unfortunately, no single echocardiographic parameter 
adequately captures the complexity of cardiac systolic or 
diastolic function. As a result, echocardiography 
interpretation often includes semiquantitative statements 
regarding complex assessments, which can be subjective 
and dependent on the expertise of the interpreting 
clinician. Moreover, AI algorithms might struggle to 
replicate interpretations from experienced cardiologists 
who often integrate multiple measurements while 
discounting any deficits that might result from 
suboptimal image quality. However, unsupervised 
clustering algorithms have been applied to reduce 
heuristic biases related to methods for integrating 
complex echocardiographic measurements, which  
improves the classification of patient subgroups who 
have a similar risk of future adverse events, such as all-
cause and cardiac mortality.23–25 The application of such 
AI algorithms has been shown to be superior to existing 
guideline-based classifications in diagnostic and 
prognostic value, and might potentially enhance patient 
care.

Cardiac CT
AI algorithms can improve workflow efficiency in cardiac 
CT interpretation. For example, a multicentre study 
observed a 22% reduction in chest CT interpretation 
times.26 Deep learning has been used to automate the 
quantification of cardiac CT-based imaging biomarkers 
for enhanced cardiovascular outcome prediction. For 
example, automated AI-enabled coronary artery calcium 
scoring—a marker of total coronary atherosclerosis and a 
strong predictor of future cardiovascular events—using 

both echocardiography-gated cardiac CT and ungated 
thoracic CT has recently been introduced in clinical 
practice. Deep learning can extract quantitative biomarkers 
from epicardial adipose tissue, a metabolically active fat 
depot for enhanced prediction of adverse cardiovascular 
events.27

Deep learning has been used to assess the severity of 
coronary artery stenosis on coronary CT angiography, a 
first-line modality for evaluating chest pain. This method 
has the potential to reduce inter-reader variability and 
interpretative error.28 An international multicentre study 
revealed excellent agreement of deep learning with expert 
readers for total plaque volume in intravascular ultrasound 
images, at a fraction of the time taken by experts (5·6 s vs 
25·7 min by experts).29 Deep learning-based complete-
plaque volume assessment showed an increased risk of 
myocardial infarction in the prospective SCOT-HEART 
multicentre trial.29 Deep learning has also been applied for 
evaluating the functional assessment of coronary stenoses 
from CT angiography with non-invasive CT angiographic-
derived fractional flow reserve (CT-FFR), with comparable 
accuracy and significantly shorter execution times than 
computational fluid dynamics-based CT-FFR, which can 
potentially facilitate CT-FFR calculation at a standard 
workstation at point of care.30 A 2023 randomised trial has 
shown that onsite CT-FFR with deep learning reduced the 
trial-specified primary endpoint (proportion of patients 
undergoing invasive coronary angiography without 
obstructive coronary artery disease and patients under
going invasive coronary angiography with obstructive 
coronary artery disease who did not undergo early inter
vention) when compared with standard of care; however, 
there was no significant difference in 1-year adverse 
cardiovascular events.31

Cardiac CT has been increasingly used for diagnosis and 
pre-procedural planning in structural heart interventions. 
In a multicentre setting, researchers have investigated the 
use of computational modelling to optimise planning for 

Applications (n) Companies* 
(n)

Echocardiography 36 13

Cardiac CT 24 15

Cardiac MRI 7 6

Multimodal imaging 3 2

Applications had the purposes of scanning device, reconstruction, image 
enhancement, viewer, automatic quantification, analysis tools, or intervention 
planning. Data were extracted through a manual review of the US FDA report and 
should be viewed as relative estimates within the limits of the provided 
information.17 Ten of 71 applications were tagged as cardiovascular-concerned 
imaging (the other applications represented echocardiographic analysis or 
biosensor-based monitoring), and 60 of 531 applications were tagged as 
radiology-concerned cardiac imaging. Applications that were not specific to 
cardiac imaging (eg, MRI or CT scanning devices, and generic acquisition-related 
processing) were excluded. FDA=Food and Drug Administration. *Number of 
companies with approved applications.

Table: US FDA-approved artificial intelligence applications for cardiac 
imaging
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transcatheter structural interventions, such as left atrial 
appendage closure32 and transcatheter aortic valve therapy.33 

The cardiac CT-based computer simulations used in these 
studies improved procedural outcomes by providing 
enhanced insights on the potential risks associated with 
challenging autonomies.

The greatest clinical impact of AI application in cardiac 
CT imaging has been for segmentation and quantification. 
But despite reported success with a marked reduction of 
time required for processing images, variations in images 
due to differences in acquisition protocols, image quality, 
and heterogeneity in patient anatomy require the final step 
to be approved by readers with advanced training in cardiac 
CT. Moreover, biological variations in diseases result in 
challenges. For example, atherosclerotic cardiovascular 
disease presents differently in men and women.34 Similarly, 
in addition to absolute measurements of coronary plaque, 
age-based risk thresholds for coronary calcium concen
trations are not fully incorporated into AI models, but 
doing so could improve personalised risk stratification.

MRI
One of the biggest impacts of AI in cardiac imaging has 
been in automating image segmentation in cardiac MRI, 
particularly for the measurement of LVEF.35 Similar 
algorithms have enabled large-scale automated analysis 
of population cohorts such as the UK Biobank and the 
Multi-Ethnic Study of Atherosclerosis, providing new 
insights into disease progression and healthy ageing.36 AI 
has also allowed full automation of other MRI-derived 
imaging biomarkers, facilitating routine use in clinical 
practice. For example, myocardial perfusion reserve, 
measured at a pixel level using AI, was shown to be 
associated with death and adverse cardiovascular events 
on follow-up.37 Despite the enthusiasm for AI-supported 
clinical cardiovascular MRI, there are few multi-
institutional prospective studies across different clinical 
teams and vendors that show the clinical benefit that 
such AI applications could potentially accomplish.

Cardiac nuclear imaging
Deep learning algorithms have been applied to large 
multicentre registries for automated analyses of nuclear 
myocardial perfusion imaging to predict substantial 
coronary artery disease and prognostic outcomes. For 
example, in a registry of more than 20 000 patients 
undergoing myocardial perfusion imaging by single 
photon emission CT (REFINE–SPECT), an AI-based 
model was shown to outperform conventional perfusion 
imaging for both time-specific and event-specific 
predictions of adverse cardiovascular outcomes, with a 
display of explainable AI probability that could help to 
identify and modify individual risk factors.38 For PET 
myocardial perfusion imaging, an AI model trained 
directly on myocardial polar maps has been shown to 
improve patient risk stratification for all-cause mortality 
in comparison with the current clinical standard for PET 

flow or perfusion assessments, with attention maps 
displayed on the polar maps to highlight regions of 
decreased myocardial perfusion.39 As with MRI, there  
are no prospective studies and clinical trials that show 
the benefit of AI-based predictions for clinical diagnosis 
and patient outcomes.

Limitations of current AI approaches and 
barriers to clinical implementation
Clinical versus data science knowledge gap
Despite the huge boom in publications and public 
communication around AI, clinical translation remains 
scarce. In other words, many AI algorithms and variants 
are being developed for cardiac imaging, but few are 
used in clinical practice. Although there has been 
extensive research in AI for cardiac imaging, integrating 
these innovations into clinical practice remains a 
substantial challenge (see figure, right-hand side). A 
potential reason for this gap could be the lack of 
cooperation between data scientists and imaging 
cardiologists, resulting in clinicians who do not 
understand data science methods and data scientists who 
do not understand the nature of clinical application. For 
example, AI research in cardiac imaging has embraced 
attention maps to help interpret decisions made by deep 
learning models.40

The most popular approach is saliency maps, which 
identify the input features that most influence a model’s 
decision-making process,40 but concentrating on a few 
features of a complex model only permits a narrow 
understanding of model behaviour and can lead to a focus 
on the wrong features.41,42 The input features might not 
equate to the presence of an abnormality and the 
relationship between the imaging features that AI and 
humans use to classify disease does not always translate 
linearly. Furthermore, saliency maps are often interpreted 
visually, which is subjective, and complex patterns can be 
challenging to interpret and even misleading.43 For 
example, a 2022 study revealed that Grad-CAM, a popular 
method for generating saliency maps, underperforms at 
accurately localising ten specific pathologies on chest 
x-rays, particularly when these pathologies exhibit multiple 
instances, are small, or have complex shapes.44 These 
observations further indicate that the reliability of saliency 
maps increase with the model’s confidence in its 
predictions, suggesting that caution should be applied 
when using these maps as decision aids in clinical 
settings.44 Additionally, over-reliance on data sourced from 
public competitions and challenges,45 although valuable 
for benchmarking, might inadequately capture the 
complex and multifaceted nature of real-world clinical 
scenarios. Clinicians are crucial for providing insights into 
real-world complexities that public datasets might 
overlook, which is essential for improving the relevance 
and accuracy of AI tools for clinical implementation.

In addition to these substantial issues, the unbridled 
hype around AI is associated with the excessive use or 
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misuse of certain terms (eg, AI for simple machine 
learning and explainable for simple ways to represent the 
data). AI is not only deep learning; it also includes many 
other methods, particularly knowledge-based algorithms 
and reinforcement learning, which could be relevant to 
clinical data. The application of deep learning is not 
universally suitable for every health-care problem. The 
inherent level of complexity of a problem might not 
always justify the adoption of intricate, deep learning 
architectures. Although deep learning methods often 
capture the spotlight, simpler machine learning 
approaches, such as the XGBoost algorithm for tabular 
data,46 can often outperform their more complex 
counterparts with fewer computational resources. 
Therefore, it is crucial to embrace the versatility of AI 
and acknowledge the potential of straightforward 
methods in delivering robust solutions to complex 
clinical challenges.

To bridge the gap between AI research and clinical 
imaging, multidisciplinary collaboration between data 
scientists and clinicians is key and could be fostered 
through initiatives that embed data scientists in the 
clinical field. Clinicians could also benefit from AI 
training and lessons in data science could be incorporated 
into medical school curricula. Most importantly, AI 
applications should be targeted at clinical needs and 
research funding could be directed towards these areas. 
For example, developing high-level, easy-to-use machine 
learning libraries written explicitly for medical imaging 
(eg, Medical Open Network for AI) can speed up the 
adoption of AI among clinicians and reduce dependence 
on specialist AI skills.

Shifting domain knowledge
AI models for cardiac imaging are often built without truly 
understanding the underlying cardiovascular system. 
Although data are only one facet of the targeted clinical 
problems, the incorporation of physiological knowledge 
could be desirable in many applications. In our pursuit of 
applying AI techniques to comprehend cardiac structure 
and function, we encountered one key challenge: the 
absence of a unified model that fully captures the heart’s 
complex structure and function. Until the early 
21st century, more than eight models proposed various 
arrangements of the heart’s muscle fibres, with substantial 
debates surrounding how the helical structures contributed 
to cardiac deformations.47 Despite the insights gained from 
imaging technologies, a comprehensive model that 
encompasses all aspects of cardiac function remains 
elusive. Clinicians perceive the heart in different ways 
depending upon their field of clinical work (invasive 
catheter-based approach, imaging, clinical trials addressing 
neurohumoural pathways, etc). Contemporary views range 
from viewing the heart as a hydrodynamic pressure pump 
(with measurements supported by invasive catheters), a 
squeezing chamber (assessed through ejection fraction 
and related parameters), or a muscle pump (analysed 

using strain and complex twisting deformation).48 These 
diverse perspectives have influenced clinical guideline 
recommendations, clinical decisions, and the development 
of AI algorithms. For example, the continued emphasis on 
ejection fraction in cardiac imaging and guidelines has led 
AI-based investigations to focus primarily on this metric. 
However, the drawbacks of ejection fraction in 
characterising cardiac function and heart failure 
syndromes are well recognised.49 Beyond experts arbitrarily 
defining heart failure as preserved ejection fraction, 
midrange ejection fraction, and reduced ejection fraction, 
societal and clinical trial cutoffs for normal LVEF are not 
uniform. Recent investigations have shown the restrictions 
of using ejection fraction categories to define individual 
patient phenotypes.50 There is a growing recognition that 
cardiac function or dysfunction are latent or hidden 
behaviour of the myocardium that isolated parameters 
cannot measure. Future work should guide AI models 
with physics-based knowledge (eg, differential equations 
governing cardiac biophysical models, flow computations, 
etc) or even physiological models of cardiac function to aid 
the synergistic integration of scientific knowledge and data 
into the AI framework.51

Furthermore, the heterogeneity of cardiovascular 
diseases exacerbates AI training, given the fragility of 
cardiac disease classification and the abundance of 
unlabelled data. Specifically, the taxonomy of cardiac 
conditions is limited and has implications for developing 
accurate disease labels for AI algorithm training data.24,52 
Similar to genetic studies, where the heterogeneity of 
phenotypic definitions in coronary artery disease has 
hindered the replication of genetic associations,53 the 
challenges of heterogeneity in cardiac disease 
classification also affects imaging. AI algorithms that 
aim to interpret health data, including clinical images, 
genetic datasets, and electronic health records, rely on 
accurate disease labels to train and optimise performance. 
However, the variability in disease classification and the 
absence of standardised definitions pose challenges for 
AI algorithms in accurately identifying and classifying 
cardiac disease, and thereby affecting their performance 
and generalisability. Therefore, it is crucial to address the 
heterogeneity in cardiac disease taxonomy by establishing 
more robust definitions open to human variability to 
ensure the development of accurate disease labels for AI 
algorithms.

Scarcity of high-quality and standardised data
The availability of curated and high-quality datasets 
remains the greatest challenge for AI, and furthermore 
increasing dataset diversity with respect to disease 
prevalence, racial and gender diversity, comorbidities, and 
imaging referral patterns and imaging hardware can 
improve the generalisability of AI-enabled algorithms.1  

Machine learning methods, such as deep learning, 
perform best when trained on a substantial dataset 
representing a diverse population. Major AI advances 
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have been made in cardiac cine MRI segmentation, 
where data have been made freely available for grand 
challenges4 or released as part of population cohort 
studies.54 However, openly available data remain scarce 
in many domains and the effort required to collect data 
is prohibitive, in terms of the high costs and the 
resource-intensive and labour-intensive nature of the 
data collection process. The scarcity of clinicians able to 
annotate training data is a further impedance. Data 
protection regulations, such as the General Data 
Protection Regulation in Europe, are positive initiatives 
that protect patient privacy and personal data security, 
but they can raise barriers to obtaining data for AI 
development. Data sharing initiatives, such as the 
Society for Cardiovascular Magnetic Resonance registry 
of cardiac MRIs and associated clinical data, could help 
alleviate these issues. The development of federated 
and swarm learning can assist institutions in sharing 
data within these registries while alleviating privacy 
concerns. However, there is currently little incentive to 
boost organisational motivation and facilitate 
sustainable sharing of cardiac imaging data for AI 
development. Additionally, the clinical value of AI in 
cardiac imaging could be enhanced by incorporating 
multimodal data, such as electronic health records data, 
and adopting initiatives, such as trusted research 
environments, which could enable data sharing and 
processing of clinical data within a secure environment.

Obtaining data that sufficiently represent all patients can 
be challenging, but a specific effort to include under-
represented groups is crucial to prevent the perpetuation 
of bias and improve both performance and generalisability 
of AI models.55 Although medical imaging has established 
standards (eg, Digital Imaging and Communications in 
Medicine), not all imaging data are standardised and 
harmonised, and raw data are not permanently stored. 
Moreover, technological advances such as harmonic 
imaging in echocardiography and steady-state free 
procession for cardiac cine MRI have improved data 
acquisition in cardiac imaging. Although these innovations 
have improved image quality, the underlying data 
fundamentally differ from legacy methods, and clinicians 
interpret and measure them differently.56 AI interpretation 
is also likely to be affected by these advances; therefore, 
developers must train different models for altered 
acquisition parameters or attempt to harmonise the data.

Evaluation challenges
Evaluating AI algorithms in diverse real-world datasets is 
crucial to ensure their effectiveness across clinical 
settings,57 but obtaining sufficient data before the model’s 
release can be challenging. In such cases, post-market 
surveillance is essential to monitor the algorithm’s 
performance once used, ensuring that the AI system 
performs adequately and meets the desired standards.58 
Each AI prediction would ideally be accompanied by its 
confidence in specific predictions so that this can be 

factored into clinical decision making, but quantifying 
uncertainty can be challenging.59 For example, several 
factors, including the complexity of the models, 
variability in real-world data compared with training 
data, and the difficulty in modelling all potential sources 
of error or ambiguity, can make it difficult to accurately 
estimate the confidence levels of predictions.

Choosing appropriate evaluation metrics are essential 
when evaluating AI for clinical use. Evaluation is often 
performed by comparing machine learning and deep 
learning predictions to those made by a clinician. The 
DICE coefficient, for example, is often used to measure 
the overlap between AI and clinician image segmentation. 
However, clinicians’ interpretations are subjective and 
inconsistent, and might not be suitable as gold standards. 
A shift in focus towards more clinically meaningful 
evaluation metrics is needed, with the aim of improving 
clinical outcomes.

The quality of data used for evaluation is dynamic and 
subject to shifts caused by changes in imaging 
technology, imaging protocols, or use patterns. These 
shifts can affect the performance of AI algorithms, 
highlighting the need for continuous monitoring and 
adaptation to ensure reliability and effectiveness.60 
Various approaches could be adopted to address these 
evaluation barriers. Prospective controlled clinical trials 
and registry studies can be conducted to evaluate the 
effectiveness of externally validated algorithms in 
clinical practice and build user trust. These studies can 
provide insights into the performance and effect of AI 
algorithms in real-world settings. Additionally, efforts 
can be made to enhance AI explainability,61 fostering 
trust in the algorithms for automated quantification 
and interpretative tasks.

Human factors
The introduction of an AI system into clinical practice 
can affect many people. Health-care workers, patients, 
and the public often misapprehend AI and view it as a 
hindrance rather than an aid.62 Substantial investment is 
needed to engage stakeholders and ensure alignment 
with the application of AI. AI integration into practice is 
not just about the computer programme but how it fits 
into clinical workflows, which might require optimisation 
of human–system interaction and experience.63 A 
human-in-the-loop approach can potentially mitigate 
risks associated with recommendations made by AI and  
can help address questions about accountability.64 This 
approach requires the system to be interpretable, but this 
can be difficult to achieve with the complex models of 
modern AI and can lead to outcomes that are not fully 
understandable.65

Regulatory challenges
Clinical translation of AI tools can be a time-consuming 
process, sometimes without academic recognition or 
benefits (eg, publications or career advancement), 

For more on the Society for 
Cardiovascular Magnetic 

Resonance registry see https://
scmr.org/page/Registry

https://scmr.org/page/Registry
https://scmr.org/page/Registry
https://scmr.org/page/Registry
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particularly when obtaining regulatory approval from a 
certifying body (eg, the US FDA; table) or obtaining a CE 
mark is needed. Pathways to help traverse this landscape 
could lower barriers to the clinical translation of AI tools 
and encourage more academic teams or smaller 
companies to translate their tools into clinical use. Data 
stewardship, which involves the responsible management 
and oversight of data, can also present challenges for AI 
algorithm uptake, as can the need to secure ethical 
approval and data sharing agreements. Finally, data 
ownership should be clear66 and privacy concerns should 
be addressed.67

Several professional standards for medical AI, such as 
Decide-AI,68 STARD-AI,69 PRIME,70 TRIPOD-AI, and 
PROBOST-AI,71 are shaping the landscape to address 
limitations in current AI tools and potentially streamline 
clinical implementation by ensuring quality and 
reliability in the AI tools being developed and assessed. 
Decide-AI enhances transparency and interpretability, 
which fosters trust among clinicians; STARD-AI provides 
standardised reporting guidelines for diagnostic AI 
studies, which aids clinicians in assessing reliability; 
PRIME focuses on robust validation and evaluation of 
pretrained AI models, particularly in cardiac imaging; 
and TRIPOD-AI and PROBOST-AI offer further 
guidance on enhancing the transparency, quality, and 
accuracy of AI-powered prediction models and risk of 
bias evaluation. These standards, along with regulatory 
and ethical considerations72–74 by the European 
Commission and US FDA, collectively promote AI’s safe 
and effective integration in health care.

The EU and US FDA have made strides in establishing 
regulatory frameworks and action plans for AI-based 
software as a medical device, which focus on evaluation 
methods, image noise, failure modes, trustworthiness, 
and generalisability.75 However, current regulatory 
standards for AI often struggle to keep pace with rapid 
technological advancements. Additionally, the absence of 
standardised evaluation methods for AI technologies 
complicates regulatory assessments. Furthermore, 
substantial differences persist in regulatory mechanisms 
between countries. There is a need for regulatory agencies 
to collaborate internationally, incorporating bioethical 
considerations while ensuring comprehensive training 
for health-care professionals, and active involvement of 
patients and providers in the development, imple
mentation, and assessment of regulatory frameworks for 
AI-based and machine learning-based software as a 
medical device.

Integration and implementation challenges
The scarcity of data on cost-effectiveness and return on 
investment of AI models, the absence of clear 
reimbursement models for AI-enabled services, and 
outdated IT infrastructure hinder the seamless integration 
of AI applications with existing systems such as picture 
archiving and communications and electronic health 

records.76 Legacy systems are often missing the necessary 
interfaces and standards for seamless integration, 
communication, and data exchange, complicating deploy
ment and scalability. Addressing these challenges 
requires collaborative efforts from policy makers, payers, 
and technology providers to establish clear reimbursement 
pathways, invest in infrastructure modernisation, and 
develop interoperability standards, ultimately unlocking 
the transformative potential of AI in health-care delivery.77

Conclusions
The discussions presented in this Series paper on current 
AI architectures and the barriers to application for cardiac 
imaging reinforce that at present, AI is not a panacea to 
achieving high-value cardiac imaging, given the evolving 
knowledge of cardiac diseases and unresolved complexities 
of real-world settings. To make any impact beyond 
automation, AI tools need to influence and improve 
clinical decision making and patient outcomes, which will 
necessitate assessing their efficacy and cost-effectiveness 
through multicentric registries and pragmatic trials, 
focusing on multiple measurements in a clinical—not 
just isolated—context. One strength of AI techniques is 
that they provide multiparametric integration of complex 
imaging data for disease patterning in an individual 
patient. Yet, their potential for precision phenotyping in 
cardiac imaging remains underused. The shift towards 
multiparametric phenotypic assessment and integration 
into physicians’ decision-making processes represents a 
departure from the current landscape of AI tools in cardiac 
imaging. Overcoming these drawbacks will also require a 
framework shift from clinical cardiology’s traditional 
norms, which are still dominated by measurements such 
as ejection fraction towards a framework where cardiac 
imaging tests open pathways to accurate disease 
classifications and individualised predictions. We must 
continue research and development, focusing on 
overcoming the barriers and carefully integrating AI into 
existing workflows rather than seeing it as a panacea. 
While we await new clinical frameworks, AI can be used 
to reduce the number of low-calibre, less risky, repetitive 
tasks for physicians (eg, measurements and report 

Search strategy and selection criteria

In this Series paper, references for articles written in English 
were identified through searches of PubMed from Jan 1, 2018 
to Dec 31, 2023, with the search terms including “deep 
learning” or “artificial intelligence” in conjunction with terms 
related to cardiac imaging techniques: “echocardiography,” 
“cardiac ultrasound,” “cardiac computed tomography,” 
“cardiac magnetic resonance,” or “nuclear cardiology;” and 
terms related to clinical trials: “randomized clinical trial,” 
“multicenter prospective,” or “prospective multicenter.” 
Articles were also identified through searches of the authors’ 
personal archives.
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generations), acting as a form of intellect augmentation, 
enabling more time to be spent by cardiac imagers and 
the multidisciplinary teams working with them in 
conducting crucial inquiries and using creativity in clinical 
problem-solving. This strategy holds the potential to usher 
in an era of augmented intelligence, and, in turn, will lay 
the foundation for efficient and empathetic health-care 
delivery.
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