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Challenges for augmenting intelligence in cardiac imaging
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Artificial Intelligence (AI), through deep learning, has brought automation and predictive capabilities to cardiac
imaging. However, despite considerable investment, tangible health-care cost reductions remain unproven. Although
Al holds promise, there has been insufficient time for both methodological development and prospective clinical
trials to establish its advantage over human interpretations in terms of its effect on patient outcomes. Challenges
such as data scarcity, privacy issues, and ethical concerns impede optimal Al training. Furthermore, the absence of a
unified model for the complex structure and function of the heart and evolving domain knowledge can introduce
heuristic biases and influence underlying assumptions in model development. Integrating Al into diverse institutional
picture archiving and communication systems and devices also presents a clinical hurdle. This hurdle is further
compounded by an absence of high-quality labelled data, difficulty sharing data between institutions, and non-
uniform and inadequate gold standards for external validations and comparisons of model performance in real-world
settings. Nevertheless, there is a strong push in industry and academia for Al solutions in medical imaging. This
Series paper reviews key studies and identifies challenges that require a pragmatic change in the approach for using
Al for cardiac imaging, whereby AI is viewed as augmented intelligence to complement, not replace, human
judgement. The focus should shift from isolated measurements to integrating non-linear and complex data towards
identifying disease phenotypes—emphasising pattern recognition where AI excels. Algorithms should enhance
imaging reports, enriching patients’ understanding, communication between patients and clinicians, and shared
decision making. The emergence of professional standards and guidelines is essential to address these developments

and ensure the safe and effective integration of Al in cardiac imaging.

Introduction

Cardiovascular diseases are a leading cause of death
globally and the use of cardiac imaging for accurate
assessment of cardiac structure and function is crucial for
diagnosis, treatment planning, and prognosis. Artificial
intelligence (AI) has rapidly permeated the field of cardiac
imaging. Its burgeoning influence, however, is not devoid
of complexities. In 2022, a National Heart, Lung, and
Blood Institute workshop highlighted that even as Al
applications in cardiac imaging continue to expand, there
is not yet substantial proof that these developments can
meaningfully reduce health-care costs.! Furthermore,
beyond automation, there is not enough evidence from
prospective, blinded, randomised clinical trials to
illustrate that these technologies are superior to human
interpretation or substantially affect patient outcomes.
Nevertheless, there is a competitive race within the
academic and industrial sectors to create superior
technological solutions for cardiovascular disease using
Al In this Series paper, however, we take a more
pragmatic approach. Although Al might support
clinicians in specific tasks, it cannot replace the nuanced
clinical judgement acquired through years of experience.
The American Medical Association defines AI as aug-
mented intelligence to reflect its perspective that Al-based
tools and services support, rather than explicitly replace,
human decision making.? Adopting this perspective is
crucial for setting realistic expectations and ensuring AI’s
safe and practical application in cardiac imaging.
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Evolution of Al in cardiac imaging

There is strong clinical rationale for the introduction of Al
techniques to automate cumbersome measurements in
cardiac imaging, and thereby improve workflow efficiency.
Regarding the techniques themselves, for imaging data,
deep learning supersedes more conventional machine
learning as it automatically finds the appropriate features
in the images while solving the targeted problem (figure).
Deep neural networks are universal function estimators,’
meaning that they can find the complex relationship (often
non-linear) between the input data (eg, image and clinical
patient characteristics) and the output (eg, segmented
regions and diagnosis). In addition to their predictive
performance, neural networks are fast at inference
(ie, predicting the output for new cases not used during
training) and are robust (ie, they generalise well) if given
enough data. Examples include cardiac image
segmentation* or the approximation of complex differential
equations used in biophysical simulations.””

Al methods are often criticised for being uninterpretable
black boxes, which can restrict clinical acceptance.
However, the route towards a prediction does not always
need to Dbe explicitly interpretable (eg, myocardial
segmentation when the wall is visible in the images).
Besides, many researchers have now gained an
understanding of how specific features of complex deep
learning architectures work in cardiac imaging (eg,
convolutions, residual blocks*" and, at a broader scale,
encoding and decoding mechanisms). The effects of
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Key messages

sub-blocks in Al architectures (eg, convolutional or
residual blocks) and their combinations (eg, contracting
and expanding paths in a U-net to operate at multiple
scales) on model performance are now well understood by
data scientists. More interpretable solutions are being
explored, either within the model itself or for post hoc
analysis (eg, Gradient-weighted class activation mapping
[Grad-CAM], feature importance scores, Shapley additive
explanations, and local interpretable model-agnostic

« Deep learning techniques are being increasingly applied to cardiac imaging for
automating measurements and improving workflow efficiency

+ Despite the growth of artificial intelligence (Al) in cardiac imaging, there is not
enough evidence showing its cost-effectiveness, superiority compared with human
interpretation, or improvements to patient outcomes

« Challenges include data scarcity, lack of data diversity, evaluation difficulties,
misalignment with stakeholders, and issues with regulatory approval, data

stewardship, and data privacy; professional standards are emerging to address these
constraints
It is essential to recognise the limitations of Al and understand that, at present, it can

support imagers to reduce repetitive low-calibre activities, but not replace their
nuanced clinical interpretation

« Aframework shift in cardiac imaging should move the focus away from isolated
measurements and leveraging Al's pattern recognition capabilities to integrating
complex, non-linear data for precise disease phenotype identification

«  Future innovative algorithms, such as large language and vision transformer models,
could play a pivotal role in enhancing imaging reports, facilitating patient
understanding, improving communication between patients and clinicians, and
supporting collaborative decision making
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explanations), although some of these methods are
currently undergoing development and evaluation.”

There is growing interest in using the next generation
of AI models inspired by natural language processing,
such as vision transformers, which can handle complex
structures in the data both for the input and the output,
as shown for medical image segmentation and
classification.” Transformer architecture, one of the most
popular technological advances in deep learning** is
inspired by natural language processing, is able to
assimilate a structured group of words to produce realistic
texts or images, and is already capable of succeeding in
postgraduate cardiology examinations.® The generative
pre-trained transformer models are at the spearhead of
these advances. At the core of these methods are attention
mechanisms that weigh the importance of different
inputs and reinforcement learning mechanisms, which
enable improved learning performance from human-
expert feedback.

Landmark developments in using Al for cardiac
imaging

The table presents a numerical estimate of Al and machine
learning applications in cardiac imaging that have received
regulatory approval and are currently available in the USA,
as reported by the US Food and Drug Administration
(FDA) in October, 2023.”

Echocardiography

Deep learning algorithms have been applied to view
recognition, segmentation, and assessment of echocardio-
graphic volumetric measurements, including indices such

Automated image acquisition

Automated image measurements

Reporting and diagnostic decision making

Workflow efficiency and throughput
optimisation

Procedure and therapy planning

Improved risk stratification and clinical
outcomes

Patient engagement

Novel patterns leading to phenotypes
and new disease taxonomies

Clinical versus data science knowledge gap

Shifting domain knowledge and training
gold standards

Scarcity of high-quality imaging data and
sharing provisions

Heterogeneity in patients, protocols, and
utilisation patterns

Evaluation challenges in real-world
datasets

Human factors in Al integration

Ethics, trust, and regulatory challenges

Utilisation and implementation challenges

Figure: Exploring the benefits and challenges for applying Al in cardiac imaging
Al=artificial intelligence.
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as left ventricular ejection fraction (LVEF). A video-based
deep learning network has been implemented for fully
automated beat-to-beat evaluation of LVEF, even in the
presence of arrhythmias.® In a blinded, randomised
clinical trial of initial Al and sonographer assessment for
patients undergoing echocardiographic quantification of
cardiac function, initial evaluation of LVEF by Al was non-
inferior to assessment by sonographers, with a smaller
proportion of the Al group requiring correction for the
final cardiologist assessment.” Al algorithms have also
been applied in resource-constrained settings. In a
multicentre study, a deep learning algorithm was
developed to guide novice users without experience in
cardiac ultrasound to acquire diagnostic-quality trans-
thoracic echocardiographic images.”” Similarly, another
multicentre study introduced a deep learning-based
method for quantifying LVEF, focusing on limited views
obtained during point-of-care ultrasound imaging.”

Although the majority of data are derived from studies
of adults, Al-enabled studies have also been reported
based on fetal and neonatal cardiac imaging. For
example, an ensemble of deep learning algorithms has
shown expert-level prenatal detection of complex
congenital heart disease from screening echocardio-
graphic images.”

Unfortunately, no single echocardiographic parameter
adequately captures the complexity of cardiac systolic or
diastolic function. As a result, echocardiography
interpretation often includes semiquantitative statements
regarding complex assessments, which can be subjective
and dependent on the expertise of the interpreting
clinician. Moreover, Al algorithms might struggle to
replicate interpretations from experienced cardiologists
who often integrate multiple measurements while
discounting any deficits that might result from
suboptimal image quality. However, unsupervised
clustering algorithms have been applied to reduce
heuristic biases related to methods for integrating
complex echocardiographic measurements, which
improves the classification of patient subgroups who
have a similar risk of future adverse events, such as all-
cause and cardiac mortality.”* The application of such
Al algorithms has been shown to be superior to existing
guideline-based classifications in diagnostic and
prognostic value, and might potentially enhance patient
care.

Cardiac CT

Al algorithms can improve workflow efficiency in cardiac
CT interpretation. For example, a multicentre study
observed a 22% reduction in chest CT interpretation
times.” Deep learning has been used to automate the
quantification of cardiac CT-based imaging biomarkers
for enhanced cardiovascular outcome prediction. For
example, automated Al-enabled coronary artery calcium
scoring—a marker of total coronary atherosclerosis and a
strong predictor of future cardiovascular events—using
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Applications (n) Companies*

(n)

Echocardiography 36 13
Cardiac CT 24 15
Cardiac MRI 7 6
Multimodal imaging 3 2

Applications had the purposes of scanning device, reconstruction, image
enhancement, viewer, automatic quantification, analysis tools, or intervention
planning. Data were extracted through a manual review of the US FDA report and
should be viewed as relative estimates within the limits of the provided
information.” Ten of 71 applications were tagged as cardiovascular-concerned
imaging (the other applications represented echocardiographic analysis or
biosensor-based monitoring), and 60 of 531 applications were tagged as
radiology-concerned cardiac imaging. Applications that were not specific to
cardiac imaging (eg, MRI or CT scanning devices, and generic acquisition-related
processing) were excluded. FDA=Food and Drug Administration. *Number of
companies with approved applications.

Table: US FDA-approved artificial intelligence applications for cardiac
imaging

both echocardiography-gated cardiac CT and ungated
thoracic CT has recently been introduced in clinical
practice. Deep learning can extract quantitative biomarkers
from epicardial adipose tissue, a metabolically active fat
depot for enhanced prediction of adverse cardiovascular
events.”

Deep learning has been used to assess the severity of
coronary artery stenosis on coronary CT angiography, a
first-line modality for evaluating chest pain. This method
has the potential to reduce inter-reader variability and
interpretative error.” An international multicentre study
revealed excellent agreement of deep learning with expert
readers for total plaque volume in intravascular ultrasound
images, at a fraction of the time taken by experts (5-6 s vs
25-7 min by experts).” Deep learning-based complete-
plaque volume assessment showed an increased risk of
myocardial infarction in the prospective SCOT-HEART
multicentre trial.” Deep learning has also been applied for
evaluating the functional assessment of coronary stenoses
from CT angiography with non-invasive CT angiographic-
derived fractional flow reserve (CT-FFR), with comparable
accuracy and significantly shorter execution times than
computational fluid dynamics-based CT-FFR, which can
potentially facilitate CT-FFR calculation at a standard
workstation at point of care.” A 2023 randomised trial has
shown that onsite CT-FFR with deep learning reduced the
trial-specified primary endpoint (proportion of patients
undergoing invasive coronary angiography without
obstructive coronary artery disease and patients under-
going invasive coronary angiography with obstructive
coronary artery disease who did not undergo early inter-
vention) when compared with standard of care; however,
there was no significant difference in 1-year adverse
cardiovascular events.”

Cardiac CT has been increasingly used for diagnosis and
pre-procedural planning in structural heart interventions.
In a multicentre setting, researchers have investigated the
use of computational modelling to optimise planning for
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transcatheter structural interventions, such as left atrial
appendage closure” and transcatheter aortic valve therapy.”
The cardiac CT-based computer simulations used in these
studies improved procedural outcomes by providing
enhanced insights on the potential risks associated with
challenging autonomies.

The greatest clinical impact of Al application in cardiac
CT imaging has been for segmentation and quantification.
But despite reported success with a marked reduction of
time required for processing images, variations in images
due to differences in acquisition protocols, image quality,
and heterogeneity in patient anatomy require the final step
to be approved by readers with advanced training in cardiac
CT. Moreover, biological variations in diseases result in
challenges. For example, atherosclerotic cardiovascular
disease presents differently in men and women.* Similarly,
in addition to absolute measurements of coronary plaque,
age-based risk thresholds for coronary calcium concen-
trations are not fully incorporated into Al models, but
doing so could improve personalised risk stratification.

MRI

One of the biggest impacts of Al in cardiac imaging has
been in automating image segmentation in cardiac MRI,
particularly for the measurement of LVEF.® Similar
algorithms have enabled large-scale automated analysis
of population cohorts such as the UK Biobank and the
Multi-Ethnic Study of Atherosclerosis, providing new
insights into disease progression and healthy ageing.*® Al
has also allowed full automation of other MRI-derived
imaging biomarkers, facilitating routine use in clinical
practice. For example, myocardial perfusion reserve,
measured at a pixel level using Al, was shown to be
associated with death and adverse cardiovascular events
on follow-up.” Despite the enthusiasm for Al-supported
clinical cardiovascular MRI, there are few multi-
institutional prospective studies across different clinical
teams and vendors that show the clinical benefit that
such AT applications could potentially accomplish.

Cardiac nuclear imaging

Deep learning algorithms have been applied to large
multicentre registries for automated analyses of nuclear
myocardial perfusion imaging to predict substantial
coronary artery disease and prognostic outcomes. For
example, in a registry of more than 20000 patients
undergoing myocardial perfusion imaging by single
photon emission CT (REFINE-SPECT), an Al-based
model was shown to outperform conventional perfusion
imaging for both time-specific and event-specific
predictions of adverse cardiovascular outcomes, with a
display of explainable Al probability that could help to
identify and modify individual risk factors.*® For PET
myocardial perfusion imaging, an Al model trained
directly on myocardial polar maps has been shown to
improve patient risk stratification for all-cause mortality
in comparison with the current clinical standard for PET

flow or perfusion assessments, with attention maps
displayed on the polar maps to highlight regions of
decreased myocardial perfusion.” As with MRI, there
are no prospective studies and clinical trials that show
the benefit of Al-based predictions for clinical diagnosis
and patient outcomes.

Limitations of current Al approaches and
barriers to clinical implementation

Clinical versus data science knowledge gap

Despite the huge boom in publications and public
communication around Al, clinical translation remains
scarce. In other words, many Al algorithms and variants
are being developed for cardiac imaging, but few are
used in clinical practice. Although there has been
extensive research in Al for cardiac imaging, integrating
these innovations into clinical practice remains a
substantial challenge (see figure, right-hand side). A
potential reason for this gap could be the lack of
cooperation between data scientists and imaging
cardiologists, resulting in clinicians who do not
understand data science methods and data scientists who
do not understand the nature of clinical application. For
example, Al research in cardiac imaging has embraced
attention maps to help interpret decisions made by deep
learning models.*

The most popular approach is saliency maps, which
identify the input features that most influence a model’s
decision-making process,” but concentrating on a few
features of a complex model only permits a narrow
understanding of model behaviour and can lead to a focus
on the wrong features."* The input features might not
equate to the presence of an abnormality and the
relationship between the imaging features that Al and
humans use to classify disease does not always translate
linearly. Furthermore, saliency maps are often interpreted
visually, which is subjective, and complex patterns can be
challenging to interpret and even misleading.” For
example, a 2022 study revealed that Grad-CAM, a popular
method for generating saliency maps, underperforms at
accurately localising ten specific pathologies on chest
x-rays, particularly when these pathologies exhibit multiple
instances, are small, or have complex shapes.” These
observations further indicate that the reliability of saliency
maps increase with the model's confidence in its
predictions, suggesting that caution should be applied
when using these maps as decision aids in clinical
settings.* Additionally, over-reliance on data sourced from
public competitions and challenges,” although valuable
for benchmarking, might inadequately capture the
complex and multifaceted nature of real-world clinical
scenarios. Clinicians are crucial for providing insights into
real-world complexities that public datasets might
overlook, which is essential for improving the relevance
and accuracy of Al tools for clinical implementation.

In addition to these substantial issues, the unbridled
hype around Al is associated with the excessive use or
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misuse of certain terms (eg, Al for simple machine
learning and explainable for simple ways to represent the
data). Al is not only deep learning; it also includes many
other methods, particularly knowledge-based algorithms
and reinforcement learning, which could be relevant to
clinical data. The application of deep learning is not
universally suitable for every health-care problem. The
inherent level of complexity of a problem might not
always justify the adoption of intricate, deep learning
architectures. Although deep learning methods often
capture the spotlight, simpler machine learning
approaches, such as the XGBoost algorithm for tabular
data,* can often outperform their more complex
counterparts with fewer computational resources.
Therefore, it is crucial to embrace the versatility of AI
and acknowledge the potential of straightforward
methods in delivering robust solutions to complex
clinical challenges.

To bridge the gap between AI research and clinical
imaging, multidisciplinary collaboration between data
scientists and clinicians is key and could be fostered
through initiatives that embed data scientists in the
clinical field. Clinicians could also benefit from Al
training and lessons in data science could be incorporated
into medical school curricula. Most importantly, Al
applications should be targeted at clinical needs and
research funding could be directed towards these areas.
For example, developing high-level, easy-to-use machine
learning libraries written explicitly for medical imaging
(eg, Medical Open Network for Al) can speed up the
adoption of AI among clinicians and reduce dependence
on specialist AT skills.

Shifting domain knowledge

Al models for cardiac imaging are often built without truly
understanding the underlying cardiovascular system.
Although data are only one facet of the targeted clinical
problems, the incorporation of physiological knowledge
could be desirable in many applications. In our pursuit of
applying Al techniques to comprehend cardiac structure
and function, we encountered one key challenge: the
absence of a unified model that fully captures the heart’s
complex structure and function. Until the early
21st century, more than eight models proposed various
arrangements of the heart’s muscle fibres, with substantial
debates surrounding how the helical structures contributed
to cardiac deformations.” Despite the insights gained from
imaging technologies, a comprehensive model that
encompasses all aspects of cardiac function remains
elusive. Clinicians perceive the heart in different ways
depending upon their field of clinical work (invasive
catheter-based approach, imaging, clinical trials addressing
neurohumoural pathways, etc). Contemporary views range
from viewing the heart as a hydrodynamic pressure pump
(with measurements supported by invasive catheters), a
squeezing chamber (assessed through ejection fraction
and related parameters), or a muscle pump (analysed
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using strain and complex twisting deformation).”® These
diverse perspectives have influenced clinical guideline
recommendations, clinical decisions, and the development
of Al algorithms. For example, the continued emphasis on
ejection fraction in cardiac imaging and guidelines has led
Al-based investigations to focus primarily on this metric.
However, the drawbacks of ejection fraction in
characterising cardiac function and heart failure
syndromes are well recognised.” Beyond experts arbitrarily
defining heart failure as preserved ejection fraction,
midrange ejection fraction, and reduced ejection fraction,
societal and clinical trial cutoffs for normal LVEF are not
uniform. Recent investigations have shown the restrictions
of using ejection fraction categories to define individual
patient phenotypes.® There is a growing recognition that
cardiac function or dysfunction are latent or hidden
behaviour of the myocardium that isolated parameters
cannot measure. Future work should guide AI models
with physics-based knowledge (eg, differential equations
governing cardiac biophysical models, flow computations,
etc) or even physiological models of cardiac function to aid
the synergistic integration of scientific knowledge and data
into the Al framework.”

Furthermore, the heterogeneity of cardiovascular
diseases exacerbates Al training, given the fragility of
cardiac disease classification and the abundance of
unlabelled data. Specifically, the taxonomy of cardiac
conditions is limited and has implications for developing
accurate disease labels for AI algorithm training data.***
Similar to genetic studies, where the heterogeneity of
phenotypic definitions in coronary artery disease has
hindered the replication of genetic associations,” the
challenges of heterogeneity in cardiac disease
classification also affects imaging. AI algorithms that
aim to interpret health data, including clinical images,
genetic datasets, and electronic health records, rely on
accurate disease labels to train and optimise performance.
However, the variability in disease classification and the
absence of standardised definitions pose challenges for
Al algorithms in accurately identifying and classifying
cardiac disease, and thereby affecting their performance
and generalisability. Therefore, it is crucial to address the
heterogeneity in cardiac disease taxonomy by establishing
more robust definitions open to human variability to
ensure the development of accurate disease labels for Al
algorithms.

Scarcity of high-quality and standardised data

The availability of curated and high-quality datasets
remains the greatest challenge for Al, and furthermore
increasing dataset diversity with respect to disease
prevalence, racial and gender diversity, comorbidities, and
imaging referral patterns and imaging hardware can
improve the generalisability of Al-enabled algorithms.'
Machine learning methods, such as deep learning,
perform best when trained on a substantial dataset
representing a diverse population. Major Al advances
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scmr.org/page/Registry

have been made in cardiac cine MRI segmentation,
where data have been made freely available for grand
challenges* or released as part of population cohort
studies.” However, openly available data remain scarce
in many domains and the effort required to collect data
is prohibitive, in terms of the high costs and the
resource-intensive and labour-intensive nature of the
data collection process. The scarcity of clinicians able to
annotate training data is a further impedance. Data
protection regulations, such as the General Data
Protection Regulation in Europe, are positive initiatives
that protect patient privacy and personal data security,
but they can raise barriers to obtaining data for AI
development. Data sharing initiatives, such as the
Society for Cardiovascular Magnetic Resonance registry
of cardiac MRIs and associated clinical data, could help
alleviate these issues. The development of federated
and swarm learning can assist institutions in sharing
data within these registries while alleviating privacy
concerns. However, there is currently little incentive to
boost organisational motivation and facilitate
sustainable sharing of cardiac imaging data for Al
development. Additionally, the clinical value of Al in
cardiac imaging could be enhanced by incorporating
multimodal data, such as electronic health records data,
and adopting initiatives, such as trusted research
environments, which could enable data sharing and
processing of clinical data within a secure environment.
Obtaining data that sufficiently represent all patients can
be challenging, but a specific effort to include under-
represented groups is crucial to prevent the perpetuation
of bias and improve both performance and generalisability
of Al models.” Although medical imaging has established
standards (eg, Digital Imaging and Communications in
Medicine), not all imaging data are standardised and
harmonised, and raw data are not permanently stored.
Moreover, technological advances such as harmonic
imaging in echocardiography and steady-state free
procession for cardiac cine MRI have improved data
acquisition in cardiac imaging. Although these innovations
have improved image quality, the underlying data
fundamentally differ from legacy methods, and clinicians
interpret and measure them differently.”® Al interpretation
is also likely to be affected by these advances; therefore,
developers must train different models for altered
acquisition parameters or attempt to harmonise the data.

Evaluation challenges

Evaluating Al algorithms in diverse real-world datasets is
crucial to ensure their effectiveness across clinical
settings,” but obtaining sufficient data before the model’s
release can be challenging. In such cases, post-market
surveillance is essential to monitor the algorithm’s
performance once used, ensuring that the Al system
performs adequately and meets the desired standards.”
Each AI prediction would ideally be accompanied by its
confidence in specific predictions so that this can be

factored into clinical decision making, but quantifying
uncertainty can be challenging.” For example, several
factors, including the complexity of the models,
variability in real-world data compared with training
data, and the difficulty in modelling all potential sources
of error or ambiguity, can make it difficult to accurately
estimate the confidence levels of predictions.

Choosing appropriate evaluation metrics are essential
when evaluating Al for clinical use. Evaluation is often
performed by comparing machine learning and deep
learning predictions to those made by a clinician. The
DICE coefficient, for example, is often used to measure
the overlap between Al and clinician image segmentation.
However, clinicians’ interpretations are subjective and
inconsistent, and might not be suitable as gold standards.
A shift in focus towards more clinically meaningful
evaluation metrics is needed, with the aim of improving
clinical outcomes.

The quality of data used for evaluation is dynamic and
subject to shifts caused by changes in imaging
technology, imaging protocols, or use patterns. These
shifts can affect the performance of Al algorithms,
highlighting the need for continuous monitoring and
adaptation to ensure reliability and effectiveness.®
Various approaches could be adopted to address these
evaluation barriers. Prospective controlled clinical trials
and registry studies can be conducted to evaluate the
effectiveness of externally validated algorithms in
clinical practice and build user trust. These studies can
provide insights into the performance and effect of Al
algorithms in real-world settings. Additionally, efforts
can be made to enhance Al explainability,” fostering
trust in the algorithms for automated quantification
and interpretative tasks.

Human factors

The introduction of an Al system into clinical practice
can affect many people. Health-care workers, patients,
and the public often misapprehend Al and view it as a
hindrance rather than an aid.® Substantial investment is
needed to engage stakeholders and ensure alignment
with the application of Al. Al integration into practice is
not just about the computer programme but how it fits
into clinical workflows, which might require optimisation
of human-system interaction and experience.”® A
human-in-the-loop approach can potentially mitigate
risks associated with recommendations made by AI and
can help address questions about accountability.” This
approach requires the system to be interpretable, but this
can be difficult to achieve with the complex models of
modern Al and can lead to outcomes that are not fully
understandable.®

Regulatory challenges

Clinical translation of Al tools can be a time-consuming
process, sometimes without academic recognition or
benefits (eg, publications or career advancement),
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particularly when obtaining regulatory approval from a
certifying body (eg, the US FDA; table) or obtaining a CE
mark is needed. Pathways to help traverse this landscape
could lower barriers to the clinical translation of Al tools
and encourage more academic teams or smaller
companies to translate their tools into clinical use. Data
stewardship, which involves the responsible management
and oversight of data, can also present challenges for Al
algorithm uptake, as can the need to secure ethical
approval and data sharing agreements. Finally, data
ownership should be clear® and privacy concerns should
be addressed.”

Several professional standards for medical Al such as
Decide-AL* STARD-AL® PRIME,” TRIPOD-AI, and
PROBOST-AL” are shaping the landscape to address
limitations in current Al tools and potentially streamline
clinical implementation by ensuring quality and
reliability in the AI tools being developed and assessed.
Decide-Al enhances transparency and interpretability,
which fosters trust among clinicians; STARD-AI provides
standardised reporting guidelines for diagnostic Al
studies, which aids clinicians in assessing reliability;
PRIME focuses on robust validation and evaluation of
pretrained AI models, particularly in cardiac imaging;
and TRIPOD-AI and PROBOST-AI offer further
guidance on enhancing the transparency, quality, and
accuracy of Al-powered prediction models and risk of
bias evaluation. These standards, along with regulatory
and ethical considerations™™ by the European
Commission and US FDA, collectively promote AI’s safe
and effective integration in health care.

The EU and US FDA have made strides in establishing
regulatory frameworks and action plans for Al-based
software as a medical device, which focus on evaluation
methods, image noise, failure modes, trustworthiness,
and generalisability” However, current regulatory
standards for Al often struggle to keep pace with rapid
technological advancements. Additionally, the absence of
standardised evaluation methods for Al technologies
complicates  regulatory assessments. Furthermore,
substantial differences persist in regulatory mechanisms
between countries. There is a need for regulatory agencies
to collaborate internationally, incorporating bioethical
considerations while ensuring comprehensive training
for health-care professionals, and active involvement of
patients and providers in the development, imple-
mentation, and assessment of regulatory frameworks for
Al-based and machine learning-based software as a
medical device.

Integration and implementation challenges

The scarcity of data on cost-effectiveness and return on
investment of Al models, the absence of clear
reimbursement models for Al-enabled services, and
outdated IT infrastructure hinder the seamless integration
of Al applications with existing systems such as picture
archiving and communications and electronic health
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records.” Legacy systems are often missing the necessary
interfaces and standards for seamless integration,
communication, and data exchange, complicating deploy-
ment and scalability. Addressing these challenges
requires collaborative efforts from policy makers, payers,
and technology providers to establish clear reimbursement
pathways, invest in infrastructure modernisation, and
develop interoperability standards, ultimately unlocking
the transformative potential of Al in health-care delivery.”

Conclusions

The discussions presented in this Series paper on current
Al architectures and the barriers to application for cardiac
imaging reinforce that at present, Al is not a panacea to
achieving high-value cardiac imaging, given the evolving
knowledge of cardiac diseases and unresolved complexities
of real-world settings. To make any impact beyond
automation, Al tools need to influence and improve
clinical decision making and patient outcomes, which will
necessitate assessing their efficacy and cost-effectiveness
through multicentric registries and pragmatic trials,
focusing on multiple measurements in a clinical—not
just isolated—context. One strength of Al techniques is
that they provide multiparametric integration of complex
imaging data for disease patterning in an individual
patient. Yet, their potential for precision phenotyping in
cardiac imaging remains underused. The shift towards
multiparametric phenotypic assessment and integration
into physicians’ decision-making processes represents a
departure from the current landscape of Al tools in cardiac
imaging. Overcoming these drawbacks will also require a
framework shift from clinical cardiology’s traditional
norms, which are still dominated by measurements such
as ejection fraction towards a framework where cardiac
imaging tests open pathways to accurate disease
classifications and individualised predictions. We must
continue research and development, focusing on
overcoming the barriers and carefully integrating Al into
existing workflows rather than seeing it as a panacea.
While we await new clinical frameworks, Al can be used
to reduce the number of low-calibre, less risky, repetitive
tasks for physicians (eg, measurements and report

Search strategy and selection criteria

In this Series paper, references for articles written in English
were identified through searches of PubMed from Jan 1, 2018
to Dec 31, 2023, with the search terms including “deep
learning” or “artificial intelligence” in conjunction with terms
related to cardiac imaging techniques: “echocardiography,”
“cardiac ultrasound,” “cardiac computed tomography,”
“cardiac magnetic resonance,” or “nuclear cardiology;” and
terms related to clinical trials: “randomized clinical trial,”
“multicenter prospective,” or “prospective multicenter.”
Articles were also identified through searches of the authors’
personal archives.
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generations), acting as a form of intellect augmentation,
enabling more time to be spent by cardiac imagers and
the multidisciplinary teams working with them in
conducting crucial inquiries and using creativity in clinical
problem-solving. This strategy holds the potential to usher
in an era of augmented intelligence, and, in turn, will lay
the foundation for efficient and empathetic health-care
delivery.
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