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Ab initio thermal conductivity of GexSn1−xO2 alloys
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Rutile GeO2 is an emerging ultra-wide band gap semiconductor (UWBG) that has demonstrated excellent
potential for applications in power electronic devices. Alloys of rutile SnO2, a well-established UWBG semi-
conducting oxide, with GeO2 are promising for tuning the material properties for applications. The thermal
conductivity, in particular, is a key property, which is significantly impacted by alloy disorder, but which is also
essential in assessing the operation and degradation of materials in high-power electronic applications. Here,
we present first-principles calculations of the thermal conductivity of rutile GeO2, SnO2, and their alloys, and
quantify the effects of scattering by alloy disorder, temperature, and isotope mass distribution. We show that the
relatively high thermal conductivity of the binary compounds is reduced by alloying and isotope disorder. We
further assess grain boundary effects via quantifying the impact of phonon mean free path. However, we also
find that the room-temperature thermal conductivity of the alloys is still comparable to or surpasses the values
for β-Ga2O3, an established UWBG semiconducting oxide. Our findings provide a roadmap for the co-design of
the thermal properties of rutile GexSn1−xO2 alloys for electronic device applications.

DOI: 10.1103/cgkf-djns

I. INTRODUCTION

SnO2 is a well-established ultra-wide band gap (UWBG)
semiconductor. With a band gap of approximately 3.7 eV and
excellent carrier transport capability [1–4], the material has
been widely studied for many applications, such as sensors
[5,6] and transparent conductors [7–11]. Additionally, GeO2,
which under ambient conditions adopts the same rutile crystal
structure as SnO2, is an emerging UWBG semiconductor that,
in recent years, has gained significant attention for power elec-
tronics applications [12–14]. It has been predicted to have a
potential ambipolar dopability [15,16], high carrier mobilities
for both electrons and holes [17], and a high breakdown field
due to its ultra-wide electronic band gap [16]. Experimental
realizations of high-quality r-GeO2 have been demonstrated
via several different routes [13,18–23]. Possible doping tech-
niques have been explored [24,25] and efficient n-type doping
of bulk crystals with Sb5+ has been successfully demonstrated
above 1020 cm−3 [26]. Alloying GeO2 with SnO2 introduces
the possibility of tuning the material properties [27–29], pro-
viding an opportunity to develop alloys optimized for specific
application needs. The experimental growth of GexSn1−xO2

alloys has been reported using pulsed laser deposition (PLD)
[28,29], chemical vapor deposition (CVD) [27], and molec-
ular beam epitaxy (MBE) [30] methods across a range of
alloy compositions. Interestingly, it has been demonstrated
that the alloys exhibit carrier mobilities that are not very
sensitive to composition up to x ∼0.57 [27,29]. This insensi-
tivity indicates that GexSn1−xO2 alloys can maintain favorable
electronic transport properties even with significant changes
in composition, which is advantageous for device design and
manufacturability.

*Contact author: kioup@umich.edu

While the electronic properties of GexSn1−xO2 alloys are
promising, their thermal conductivities must also be carefully
evaluated to ensure their effectiveness in high-power applica-
tions. In power electronics, devices must dissipate substantial
amounts of heat to maintain stability and prevent degrada-
tion over time. A high thermal conductivity enables efficient
heat dissipation, which is particularly important for materi-
als expected to function in compact or high-power-density
configurations. While both SnO2 and GeO2 are known for
their high thermal conductivities [31,32], the presence of alloy
disorder often leads to significant phonon scatterings and,
thus, a corresponding reduction in the thermal conductivity,
a phenomenon observed in many other alloy systems [33–37].
Therefore, to assess the potential of GexSn1−xO2 alloys for
power electronic applications, it is essential to quantify the
effect of alloy disorders on their thermal conductivities.

In this study, we employ first-principles calculations to
consistently investigate the lattice thermal conductivity of
GeO2, SnO2, and GexSn1−xO2 alloys as a function of
composition and temperature. Subsequently, we provide a
compact model, fitted to ab initio data, to describe the
temperature- and composition-dependent thermal conductiv-
ity of the GexSn1−xO2 alloy. Our findings show that alloying
significantly reduces the thermal conductivity compared to
the binary compounds. However, even the lowest conduc-
tivity value remains similar to β-Ga2O3, another UWBG
semiconducting oxide. Furthermore, by analyzing the impact
of phonon mean free path (MFP) and isotope scattering on
thermal properties, we provide insights into the fundamental
factors that limit the thermal conductivity of these alloys.

II. COMPUTATIONAL METHODS

First-principles calculations are performed with density
functional theory [38,39] and related approaches. Structural
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FIG. 1. Primitive unit cell of SnO2 and GeO2. Both materials
adopt the rutile structure containing two formula units per unit cell
with crystalline direction a = b and a shorter c direction.

relaxations are performed with the Quantum Espresso (QE)
[40,41] package, using norm-conserving pseudopotentials
[42] and the local density approximation for the exchange-
correlation functional [43,44]. The structure of rutile GeO2

and rutile SnO2 is shown in Fig. 1. For Ge and Sn, the 3d
and 4d electrons are included in the valence, respectively, to
ensure accurate phonon frequencies. Plane-wave energy cut-
offs of 140 Ry are used to ensure the convergence of the total
energy within 1 meV/atom. The unit cells are relaxed until the
forces on the atoms are less than 5 × 10−5 Ry/Bohr, and the
total stresses on the unit cells are less than 5 × 10−6 Ry/Bohr3.
The relaxed lattice constants are a = b = 4.788 Å and c =
3.248 Å for SnO2; a = b = 4.390 Å and c = 2.876 Å for
GeO2, both in excellent agreement with previous theoreti-
cal calculations [1,32]. Density functional perturbation theory
[45] is used to evaluate vibrational properties within the har-
monic approximation to obtain the second-order (harmonic)
force constants, implemented in the QE package. Phonon
frequencies are evaluated on a Brillouin zone (BZ) sampling
grid of 6 × 6 × 9, therefore producing the second-order force
constants corresponding to a 6 × 6 × 9 supercell.

The key theory and ingredients to evaluate the lattice
thermal conductivity are shown in Appendix A 1. To evalu-
ate the lattice thermal conductivity, third-order anharmonic
force constants are required, which are obtained through
finite-difference approach with atomic displacements using
4 × 4 × 4 supercells of the primitive unit cell. Interactions
up to fifth-nearest neighbors are considered. The structures,
force constants, and Born effective charges are supplied to the
almaBTE [46] code to solve the phonon Boltzmann transport
equation (BTE) in order to evaluate the thermal conductivity
of GeO2 and SnO2. To evaluate thermal conductivities of
the alloys, the virtual crystal approximation is used, which
takes the arithmetic averages [46]: φVC = ∑

i xiφi, where
φVC, φi, and i are the physical properties (lattice constants,
atomic coordinates, force constants) of the virtual crystal,
the end compound, and the mole fraction of the end com-
pound, respectively. While in principle, accurate modeling
of alloy systems require consideration of the evolution of
bonding, local structures, etc, which is better represented by,
e.g., special quasi-random structures [47], the very large cell
size and the lack of symmetry make it practically unfeasible

FIG. 2. Phonon dispersion of (a) SnO2 and (b) GeO2 along
the X − � (⊥ c) and � − Z (‖ c) high-symmetry path of the first
Brillouin zone. Our results are in good agreement with theoretical
calculations from Ref. [1] for SnO2 and Ref. [32] for GeO2. Good
agreement is also seen compared to experimental measurements for
SnO2 (Ref. [50]) and GeO2. (Circles: Ref. [51]; Triangles: Ref. [52].)

to evaluate particularly third-order force constants in these
structures. Therefore, in our work, we investigate the effect
of alloying by considering random mass disorders through-
out the calculations in this article. The average atomic mass
with the natural isotope distribution [48] of Ge (72.64 amu)
and Sn (118.71 amu) are used. The effect of isotope mass
disorder is examined separately for the binary compounds
using ShengBTE [49]. The isotopes considered according to
natural isotope distribution [48,49] are for Ge: Ge70 (20.5%),
Ge72 (27.4%), Ge73 (7.8%), Ge74 (36.5%), and Ge76 (7.8%).
For Sn: Sn112 (0.97%), Sn114 (0.65%), Sn115 (0.36%), Sn116

(14.7%), Sn117 (7.7%), Sn118 (24.3%), Sn119 (8.6%), Sn120

(32.4%), Sn122 (4.6%), and Sn124 (5.6%). A BZ sampling grid
of 16 × 16 × 24 is used consistently to evaluate the thermal
conductivities of SnO2, GeO2, and the alloys. The thermal
conductivity is converged with 5% and a set of convergence
tests with respect to various computational parameters can be
found in Appendix A 2.

III. PHONON PROPERTIES

The calculated phonon dispersion relations for rutile SnO2

and GeO2 along the⊥ c and ‖ c directions are shown in Fig. 2.
The calculated phonon frequencies are in good agreement
with previous calculations [1,32] and experimental measure-
ments [50–52]. Overall, the phonon frequencies of GeO2 are
higher than SnO2, which is attributed to the lighter atomic
mass of Ge. We further evaluate the sound velocity based on
the slope of the acoustic phonon branches near the �-point,
as shown in Table I. Our calculated sound velocities agree
well with the reported values in the literature [17,53,54].
We find the sound velocity to be generally larger in GeO2

by a factor from 1.22 ∼ 1.38. The ratio is consistent with
the inverse square root of the atomic mass of Ge and Sn
((mGe/mSn)−1/2 = 1.28). The consistency is expected as the
acoustic phonons are dominated by the heavy atoms, whose
group velocity is inversely dependent on the square root of
their atomic mass [55]. The higher speed of sound in GeO2
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TABLE I. Sound velocities (in km/s) for the LA (vLA) and TA (vTA) modes along the ⊥ c and ‖ c directions, and directional averages in
SnO2 and GeO2. Our calculated values agree well with theoretical study in Ref. [17], as well as experimental characterizations listed in the
Table from Ref. [53] for SnO2 (directionally averaged) and Ref. [54] for GeO2.

Sound velocity vTA, ⊥ c vTA, ‖ c vLA, ⊥ c vLA, ‖ c vave
TA vave

LA vTA, ⊥ c (Expt.) vTA, ‖ c (Expt.) vLA, ⊥ c (Expt.) vLA, ‖ c (Expt.)

SnO2 4.41 3.50 5.78 7.75 4.10 6.44 3.79 6.75
GeO2 5.65 4.86 7.09 9.48 5.39 7.89 5.072 6.415 7.328 9.770

contributes to its higher thermal conductivity, as confirmed by
our subsequent calculations in Sec. IV.

We further analyze the relaxation times of the phonons as
a function of phonon frequencies, as shown in Fig. 3. For
both SnO2 and GeO2, the relaxation times of the acoustic
phonons decrease over three orders of magnitude from 10−9s
to 10−12s with increasing phonon frequency from 0 to 400
cm−1, while the relaxation times for the optical phonons are
approximately on the order of 10−12s, in general. Therefore,
the low-frequency acoustic modes are expected to play a sig-
nificant role in enabling high thermal conductivity for both
binary compounds. However, alloying significantly increases
the phonon scattering in GexSn1−xO2, resulting in a much
steeper decrease of the phonon relaxation times with increas-
ing frequency. This effect is particularly pronounced in the
frequency range below 400 cm−1, where phonons in the al-
loy exhibit significantly lower relaxation times compared to
the binary compounds. The substantial decrease in phonon
relaxation times for the alloy suggests a notably lower thermal
conductivity, which we demonstrate in the following section.

IV. THERMAL CONDUCTIVITY

A. Thermal conductivity with respect to temperature and alloy
composition

The calculated temperature-dependent thermal conductiv-
ity of binary SnO2 and GeO2 (Fig. 4) is in good agree-
ment with experimental measurements for both materials
[31,32]. For both materials, the dependence of their thermal

FIG. 3. Phonon lifetimes due to a combination of three-phonon
scattering and alloy/isotope mass-scattering processes for SnO2,
GeO2, and Ge0.5Sn0.5O2. Phonon lifetimes generally decrease with
increasing phonon frequencies and are similar for the two binary
compounds. A much steeper decrease is observed for the alloy, par-
ticularly for the low-frequency acoustic phonons due to alloy mass
disorder.

conductivity can be described by the following equation:

κ (T ) =
[
1

κ1
e−T1/T + 1

κ2
e−T2/T

]−1

. (1)

In this equation, κ1 and κ2 are in units of thermal conductiv-
ities, and T1 and T2 are in units of temperatures. The model
assumes a similar two-mode model illustrated in Ref. [17]
for electron mobility with the two κ’s and T ’s representing
the contribution to thermal conductivity of the two different
modes. The values of these parameters fitted from a full set
of temperature- and composition-dependent models can be
found in Table II. Figure 4 shows that the fit well describes
the temperature dependence of the thermal conductivity for

FIG. 4. Temperature-dependent thermal conductivities of
(a) SnO2 and (b) GeO2, reported both along the ‖ c and ⊥ c
directions, as well as a directional average for comparison to
polycrystalline samples. Fitted curves according to a two-mode
model [Eq. (1)] and parameters from Table II are shown as dashed
and solid lines for ⊥ c and ‖ c directions. Good agreement is
achieved compared to experimental measurements, both for SnO2

[31] (single crystal, ‖ c) and GeO2 [32] (polycrystal).
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TABLE II. Fitted values for the temperature- and alloy-composition-dependent thermal conductivity model of Eq. (3). Parameters
κ1,Sn, κ1,Ge, κ2,Sn, κ2,Ge, and κ ′ are reported in units of thermal conductivity (Wm−1K−1), parameters T1,Sn,T1,Ge, T2,Sn, T2,Ge, and T ′ are in
units of temperature (K), while α is a dimensionless parameter. The fitted values are also used to describe temperature dependence for the end
compounds [Eq. (1)], as well as composition dependence at 300 K [Eq. (2)].

α κ1,Sn κ2,Sn T1,Sn T2,Sn κ1,Ge κ2,Ge T1,Ge T2,Ge κ ′ T ′

⊥ c 0.686 16.6 3.59 176 1175 18.6 4.85 231 1123 5.99 58.0
‖ c 0.666 34.3 6.14 129 1091 37.7 7.88 197 1118 7.06 54.9

both materials of the entire temperature range. GeO2 shows
a higher thermal conductivity for both modes. Though the
two-mode model cannot be linked directly to phonon fre-
quencies, they can be understood by representing two phonon
transport channels, where the contribution from low frequency
acoustic phonons are activated at low temperatures, and high-
frequency optical phonons activated at higher temperatures.
While the temperature of the high-energy modes are similar
between the two materials, the temperature of the low-energy
mode is higher in GeO2. This trend is consistent with the
cations dominating the acoustic modes and, because Ge is
lighter than Sn, GeO2 exhibits higher acoustic-mode frequen-
cies. The oxygen anions, meanwhile, contribute primarily to
the optical modes.

We next present the calculated thermal conductivities of
the GexSn1−xO2 alloys at room temperature in Fig. 5. The
thermal conductivity of the alloy decreases significantly as
the composition deviates from the pure compounds. At 10%
Ge or Sn content, the thermal conductivity drops to 53%
and 49% of that of pure SnO2 and GeO2, respectively. The
thermal conductivities across alloy compositions from x =
0.1 to x = 0.9 are reduced within a factor of 0.57 from the
values at x = 0.1 and x = 0.9. The composition-dependent
thermal conductivity at room temperature is described by the

FIG. 5. Calculated thermal conductivity of GexSn1−xO2 alloys at
room temperature (300 K) as a function of alloy composition and
crystallographic orientation, as well as fitted curves (dashed) from
the model described by Eq. (2), and parameters shown in Table II.
The thermal conductivity of the alloy is significantly reduced by alloy
scattering, but even the lowest value remains comparable to that of
Ga2O3 [11–15 Wm−1K−1 (⊥ c), 15–20 Wm−1K−1 (‖ c)] [31].

following equation:

κ300K (x) =
[
(1 − x)α

κ300K
SnO2

+ xα

κ300K
GeO2

+ [x(1 − x)]α

κ ′
300K

]−1

. (2)

In this equation, κ ′
300K is a bowing parameter used to model

the effect of alloy disorder [33,34] and α is a measure of
the decay of the thermal conductivity close to the two binary
compounds. The fitted values of the parameters are α = 0.686
and 0.666 for the ⊥ c and ‖ c directions, while the bowing
at 300 K is obtained as κ ′

300K = 7.27 Wm−1K−1 for the ⊥ c
and κ ′

300K = 8.48 Wm−1K−1 for the ‖ c directions (see Ta-
ble II). Comparing the result of the thermal conductivity of the
Ge0.5Sn0.5O2 alloy to β-Ga2O3, we find that both the in-plane
(⊥ c) and out-of-plane (‖ c) thermal conductivity of the alloy
are comparable to that of the pure Ga2O3 [11–15 Wm−1K−1

(⊥ c), 15–20Wm−1K−1 (‖ c)] [31]. Our findings suggest that,
despite the significant reduction in their thermal conductivity
due to alloying, the heat dissipation in GexSn1−xO2-based
devices is comparable to that of Ga2O3-based devices.

Next, we present the temperature- and composition-
dependent thermal conductivity of GexSn1−xO2 alloys in
Fig. 6; see full tabulated data in the Supplemental Material
[56]. The thermal conductivity is fitted with the following
equation, which combines the effects of temperature and com-
position dependence:

κ (x,T ) =
{
(1 − x)α

[
1

κ1,Sn
e−T1,Sn/T + 1

κ2,Sn
e−T2,Sn/T

]

+ xα

[
1

κ1,Ge
e−T1,Ge/T + 1

κ2,Ge
e−T2,Ge/T

]

+ [x(1 − x)]α

κ ′ e−T ′/T
}−1

. (3)

In this equation, the parameters κ1,Sn, κ1,Ge, κ2,Sn, κ2,Ge,
and κ ′ are in units of thermal conductivity, parameters
T1,Sn,T1,Ge,T2,Sn,T2,Ge, and T ′ are in units of temperature,
while α is a dimensionless exponent. For x = 0 and x = 1,
Eq. (3) reduces to Eq. (1), as only the SnO2- or GeO2-related
terms are nonzero. At a specific temperature, Eq. (3) reduces
to Eq. (2), as each term related to temperature reduces to a
constant value in units of thermal conductivity. The values
of the fitted parameters are listed in Table II, and the fitted
equations are plotted as a 2D heat map with isolines, shown
in Fig. 7. In the entire temperature and composition range, the
maximum difference between the fitted values and calculated
values is 7.2% and 6.8% in the ⊥ c and ‖ c directions, respec-
tively. In the case of a nearly equimolar alloy (x = 0.5), the
significant reduction of the thermal conductivity due to strong
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FIG. 6. Thermal conductivity of SnO2 and GeO2 alloys as a
function of alloy composition and temperature, along the (a) ⊥ c and
(b) ‖ c directions. The significant reduction of thermal conductivity
in the alloys suggests strong alloy scattering across the entire temper-
ature range investigated. (See full tabulated data in the Supplemental
Material [56].)

alloy disorder renders a weak dependence when temperature
is further considered. For example, the thermal conductivity
along ⊥ c for the equimolar alloy reduces from 22 Wm−1K−1

to 5.9 Wm−1K−1 from 100 K to 1000 K, while for pure
GeO2, a reduction over an order of magnitude is seen from
187 Wm−1K−1 to 8.7 Wm−1K−1. This trend of strong alloy
disorder dominating over the temperature dependence is also
observed in III-V alloys, such as AlGaN [35].

B. Impact of phonon mean free path and isotope scattering

We further analyze the dependence of the thermal conduc-
tivity on the mean free path of the phonons to provide insight
on the effect of scattering by grain boundaries in polycrys-
talline samples. In Fig. 8, we show the cumulative thermal
conductivity at room temperature (300 K) evaluated within the
relaxation time approximation, including only those phonons
that have a mean free path up to the specified value. This
analysis offers an evaluation of the fundamental upper limit
of the lattice thermal conductivity for a given average grain
size. We find a sharp increase of the phonon-limited thermal

FIG. 7. Plot of the thermal conductivity as a function of Ge
composition and temperature with Eq. (3) and the fitted parameters
illustrated in Table II, as well as contour lines to demonstrate the
values. The maximum variation of the values from the calculated
ones in Fig. 6 is 7.2% and 6.8% in the ⊥ c and ‖ c directions,
respectively.

conductivity as the phonon mean free path increases from
10 nm to 100 nm, which is consistent with a previous the-
oretical study for GeO2 [32]. In general, it is expected that
high-quality crystals result in reduced scattering by grain
boundaries, therefore benefiting thermal conductivity. In Ta-
ble III, we list the values of the phonon mean free path
required to achieve 80% of the ideal thermal conductivity
for SnO2, GeO2, and the equimolar alloy in the ⊥ c and ‖ c
directions. Our calculations quantify the grain sizes required
to achieve desired theoretical thermal conductivity limits for
efficient thermal management.

Due to the different masses of the various isotopes of a
given atomic species, isotope mass disorder is expected to
affect the thermal conductivity. We quantify the effects of
isotope scatterings in SnO2 and GeO2, and we uncover a
stronger effect of isotope scattering in GeO2. In Fig. 9, we
show the effect of isotope scattering on thermal conductivity
by plotting the ratio of thermal conductivity evaluated with
the average isotope mass, including mass disorder, to that of
the isotope pure material considering the three-most-abundant
species as a function of temperature for both SnO2 and GeO2.
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FIG. 8. Cumulative thermal conductivities of GexSn1−xO2 at
300 K as a function of Ge content and the mean free path of the
phonon projected to the respective directions for the (a) ⊥ c and
(b) ‖ c directions. The thermal conductivity is strongly affected by
the mean free path in the region of 10–100 nm. (See full tabulated
data in the Supplemental Material [56].)

This ratio provides a measure of how the scattering induced
by isotope mass disorder affects thermal transport across dif-
ferent temperatures. SnO2 shows a more modest reduction
across all temperatures compared to GeO2. At low tempera-
tures (e.g., 100 K), isotope scattering significantly reduces the
thermal conductivity of GeO2 by 26% in the ⊥ c and 36%
in the ‖ c directions, compared to a more-moderate reduction

TABLE III. Phonon mean free path (in nm) required for the
thermal conductivity to reach 80% of the ideal value for SnO2, GeO2

and Ge0.5Sn0.5O2 at 300 K. For all cases, achieving 80% of the ideal
value of thermal conductivity requires grain sizes above 100 nm.

Compound SnO2 GeO2 Ge0.5Sn0.5O2

⊥ c 176 125 354
‖ c 110 160 369

FIG. 9. Ratio of the thermal conductivity of (a) SnO2 and
(b) GeO2 evaluated with the average atomic mass considering isotope
mass disorder (κave) as compared to that with a pure isotope (κpure).
The three-most-abundant isotopes are considered for each material.
For both materials, isotope scattering has a stronger impact on the
thermal conductivity at low temperatures and along the ‖ c direction.

in SnO2 of 16% in the ⊥ c and 22% in the ‖ c. At higher
temperature, such as room temperature (300 K), the impacts
of isotope scattering are less significant: Isotope mass disorder
is responsible for a reduction of thermal conductivity by 6%
in the ⊥ c and 8% in the ‖ c directions for GeO2, and by
4% in the ⊥ c and 6% in the ‖ c directions for SnO2. As
temperature further increases, the relative impact of isotope
mass disorder on phonon transports decreases as the ratio
gradually approaches unity. These findings provide insight
into the fundamental limitations on thermal conductivity in
GeO2-based materials, particularly at lower temperatures.

V. CONCLUSION

In this study, we provide a comprehensive analysis of the
thermal conductivity of GeO2, SnO2, and their alloys uti-
lizing first-principles calculations. Our findings reveal that
alloying significantly reduces thermal conductivity due to en-
hanced phonon scattering, particularly for the acoustic phonon
modes. Despite this reduction, the thermal conductivity of the
alloys remains comparable with β-Ga2O3. We also produced
a complete analytical model that fits the first-principles ther-
mal conductivity data of GexSn1−xO2 alloys across various
compositions and temperatures. We found a two-mode model
to well-describe the temperature- and composition-dependent
thermal conductivity of the alloy, offering valuable predictive
power for optimizing alloy design.

Our analysis further shows that polycrystalline samples
with grain sizes less than 100 nm reduce the phonon mean
free path and, therefore, reduce the thermal conductivity. The
influence of Ge and Sn isotopes scattering is found to be
considerable at low temperatures, and becomes less dominant
as temperature increases. We find isotope mass disorder to
reduce the thermal conductivity of the binaries by 5–8% at
room temperature, providing insights into the fundamental
limitations of thermal conductivity in GeO2-based materials.

Our findings provide a fundamental understanding of the
alloy-, phonon-, and isotope-disorder-limited thermal conduc-
tivity in GexSn1−xO2 alloys as a function of composition and
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temperature, and offer guidance for the co-design of these
materials for high-power electronic applications, where both
tunable electronic properties and efficient heat dissipation are
essential.
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APPENDIX

1. Theoretical approach for evaluating thermal conductivity

In this section, we briefly lay out the theoretical frame-
work of evaluating thermal conductivity. We show the key

equations and concepts, and refer to Ref. [57], Ref. [49],
and Ref. [46] for a full description of the theory. The lattice
thermal conductivity of a material can be expressed by an
integral over the Brillouin zone for phonons involving their
lifetimes [57]:

κ = 1

kBT 2

∑
α

∫
nλ(nλ + 1)(h̄ωλ)

2v2
λτλ

dq
(2π )3

. (A1)

In Eq. (A1), kB is the Boltzmann constant, T is the tem-
perature, λ is the phonon mode, and nλ is the Bose-Einstein
occupation factor for the phonons. h̄ωλ and vλ are the ener-
gies and group velocities of the phonons, respectively. The
phonon properties within the harmonic approximation (sec-
ond order) are well-established with the density functional
perturbation theory [45]. τλ represents the relaxation time
of the phonons due to scattering events, which is obtained
through solving the phonon Boltzmann’s transport equa-
tion by considering several different scattering mechanisms
including three phonon scattering (τ3ph), scattering due to
alloy mass disorder, and isotope mass disorder (τm.d.). The
former is obtained via evaluating the third order anharmonic
force constants. The third-order force constants characterize
the phonon-phonon scattering processes beyond the harmonic
approximation, and are obtained through specifically displac-
ing atoms in a supercell and evaluating the force acting on
the atoms with the displacement present, as illustrated by
Ref. [49]:

�
αβγ

i jk = ∂3E

∂rα
i ∂rβ

j ∂rγ

k

� 1

2h

[
∂2E

∂rβ
j ∂rγ

k

∣∣∣∣
rα
i =h

− ∂2E

∂rβ
j ∂rγ

k

∣∣∣∣
rα
i =−h

]
� 1

4h2
[ − F γ

k

(
rα
i = h, rβ

j = h
) + F γ

k

(
rα
i = h, rβ

j = −h
)

+ F γ

k

(
rα
i = −h, rβ

j = h
) − F γ

k

(
rα
i = −h, rβ

j = −h
)]

. (A2)

In the equation, �
αβγ

i jk is the third-order force constant,
where i jk are indices for atoms and αβγ are indices for
Cartesian directions. The equation relates the third-order force
constants to the forces acting on single atoms via a finite dif-
ference framework, with F being the forces on a specific atom
in the presence of a small displacement h of two other atoms.
To prevent the extensive computational resources needed to
evaluate thousands of supercells, symmetry and a cutoff of
nearest neighbor are often applied. In our case, we show
a convergence of the nearest neighbor included in the next
section, and the production calculations require a total number
of 220 384-atom supercells to be evaluated in order to obtain
the third-order force constants.

The third-order force constants are used to evaluate three-
phonon scattering rates by considering three phonons by 1)
satisfying momentum conservation: q′′ = q′ + q + Q, where
q′s are phonon wave vectors and Q being a reciprocal lattice
vector, and 2) satisfying energy conservation ωλ + ωλ′ = ωλ′′ .
The scattering matrix element of a three-phonon scattering
process is given by

Vλλ′λ′′ =
∑
i∈u.c.

∑
j,k

�i jk
eλ(i)e±λ′ ( j)e−λ′′ (k)√

MiMjMk
, (A3)

where the plus and minus signs represent the phonon emission
and absorption process, and e’s represent the phonon eigen-
functions of state λ. With the matrix elements, the scattering
rate for a three-phonon scattering process is given by

�+
λλ′λ′′ = h̄π

4

(n′ − n′′)δ(ω + ω′ − ω′′)
ωω′ω′′ |V+

λλ′λ′′ |2, (A4)

�−
λλ′λ′′ = h̄π

4

(n′ + n′′ + 1)δ(ω − ω′ − ω′′)
ωω′ω′′ |V−

λλ′λ′′ |2. (A5)

Summing over all allowed processes for each phonon λ by the
other two (λ′, λ′′) yields the total scattering rate, whose inverse
gives the relaxation time τλ,3ph. To further include the effect
of alloying and isotopes, a mass disorder term is present to
capture the scattering between phonons and random masses
in the alloy (or isotopically mixed) system, as illustrated in
Ref. [46]:

τ−1
λ,m.d. =

πω2
λ

2

∑
λ′,i

σ 2(mi )

〈mi〉2
∣∣∣∣ ∑

α

[
eα
λ (i)

]∗
eα
λ′ (i)

∣∣∣∣
2

δ(ωλ − ωλ′ ).

(A6)
The equation considers the harmonic phonons, but ac-

counts for their scattering due to mass disorder characterized
by the mean (〈mi〉2) and standard deviation (σ 2(mi )) of the
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FIG. 10. Calculated phonon properties of GeO2 with 4 × 4 × 6 (solid black) and 6 × 6 × 9 (dashed red) BZ sampling. (a) shows the
phonon dispersion relationship and (b) shows the phonon density of states. No sizable difference is seen between the two sampling grids.

masses on a particular atomic site i, caused by the mass
difference from alloying and isotopes. The total phonon relax-
ation times are, therefore, obtained following the Matthiessen
rule, i.e., τ−1

λ = τ−1
λ,3ph + τ−1

λ,m.d.
. Subsequently, the relaxation

times allow an iterative solution of the phonon Boltzmann’s
transport equation, and compute the thermal conductivity in
Eq. (A1).

2. Convergence of the thermal conductivity

In this section, we show the convergence test of the
calculated thermal conductivity with respect to several com-
putational parameters. Due to the similarity of the two binaries
in their structure, we performed the convergence test only with
GeO2. The main convergence parameters we investigated is
the grid of the second-order force constant calculations, the
supercell size for the third-order force constants, the number
of nearest neighbor considered in the supercell, and the sam-
pling grid of the Brillouin zone for solving the Boltzmann’s
transport equations.

We first show that the phonon properties remain consistent
when changing from a Brillouin zone sampling of 4 × 4 × 6
and then increased to a sampling of 6 × 6 × 9. The maximum
difference of the phonon frequencies is 1.3%, and the resulting
difference in the thermal conductivity evaluated by solving
the Boltzmann’s transport equation on a 16 × 16 × 24 grid
remains within 0.3%. Therefore, we conclude that further con-
vergence of the second-order force constant is not necessary,
and we show the results obtained with the more converged
6 × 6 × 9 grid in the main text. Figure 10 shows that the
calculated phonon dispersion relationship and the phonon
density of states do not show any sizable differences between
a sampling of 4 × 4 × 6 and a sampling of 6 × 6 × 9.

In addition, we tested the convergence of the thermal con-
ductivity evaluated with different supercell sizes. Including up
to the third nearest neighbor, the calculated thermal conductiv-
ity of GeO2 at 300 K changes by 1% along both the ⊥ c and
‖ c directions when increasing from 3 × 3 × 3 to 4 × 4 × 4
supercell, and further by 0.2% when increased to 5 × 5 × 5

supercell. Due to the large change in the computational cost
when increasing supercell size, we evaluate the third-order
force constant using 4 × 4 × 4 supercell.

FIG. 11. Convergence of the calculated thermal conductivity in
the (a) ⊥ c direction and (b) ‖ c direction of GeO2 at 300 K with re-
spect to the number of nearest neighbors included for the generation
of third-order force constants. The changes in thermal conductiv-
ity evaluated beyond the inclusion of the 5th nearest neighbor is
within 2%.
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FIG. 12. Convergence of the calculated thermal conductivity in
the (a) ⊥ c direction and (b) ‖ c direction of GeO2 at 300 K
with respect to the grid for solving the phonon BTE. With a sam-
pling of 16 × 16 × 24, the calculated thermal conductivity converges
within 3%.

The thermal conductivity is found to be more sensitive to
the number of nearest neighbors included. Due to the large

increase in the amount of supercells required when increasing
the number of nearest neighbors, we performed the test only
for GeO2 at 300 K with 3 × 3 × 3 supercell, considering up
to the 9th nearest neighbor. For the test, the Ge 3d electrons
are excluded to reduce the computational cost, as the conver-
gence behavior is not expected to be affected. We show the
calculated thermal conductivity as a function of the nearest
neighbors included in Fig. 11. It can be seen that the nearest
neighbor included has a strong effect on the thermal conduc-
tivity until the 5th nearest neighbor, but does not further vary
by more than 2% when more nearest neighbors are included.
Therefore, the 5th nearest neighbor is included to evaluate the
third-order force constant in the production calculations in the
main text.

Lastly, we test the convergence of the calculated ther-
mal conductivity with respect to the Brillouin zone sampling
grid to solve the Boltzmann transport equation. We show the
changes in the thermal conductivity in Fig. 12. The calculated
thermal conductivity converges quickly beyond a sampling
of 12 × 12 × 18, and after reaching 16 × 16 × 24, further
increasing the sampling result in changes of the thermal con-
ductivity within 3%. Therefore, we conclude that a grid of
16 × 16 × 24 is sufficient.

Overall, the convergence tests suggest that the parameters
we chose in the main text resulted in the calculated thermal
conductivity converging within 5%, with the most sensitive
parameters being the number of nearest neighbors included
and the grid for solving the phonon BTE. This difference is
lower than that of the difference compared to experimental
measurements, as shown in Fig 4, and also lower than the
difference of the calculated data points and the fitted model
from Eq. (3). A similar combination of parameters is used in
the previous study on GeO2 [32], and results in a very close
value of thermal conductivity at room temperature (⊥ c: 37
Wm−1K−1, ‖ c: 58 Wm−1K−1) compared to our prediction
(⊥ c: 34 Wm−1K−1, ‖ c: 58 Wm−1K−1).
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