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Abstract 
We hypothesize that online movement videos have untapped po-
tential for teaching physical skills, and we developed a platform 
that automatically generates practice plans from raw TikTok dance 
videos. The practice plans teach one segment at a time using fad-
ing guidance and part-learning principles and are presented using 
a web-based interface featuring concurrent visual aids. Two user 
studies (n=54, n=38) were conducted. The �rst showed signi�cant 
improvements in learning outcomes compared to standard tutori-
als, underscoring the importance of well-structured practice plans 
and o�ering nuanced insights into the design and e�ectiveness of 
visual aids. The second study found that segmentation and emoji-
based dual-coding only bene�t learning when integrated into a 
well-designed lesson structure. We provide a set of practical recom-
mendations for enhancing online movement learning, focusing on 
the need for substantive part-learning activities and careful use of 
visual aids to prevent cognitive overload. 
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1 Introduction 
Expressive movement, from dance to �tness routines, is a core 
aspect of the human experience. Movement is showcased in a 
wide range of online videos, but despite the abundance of inspir-
ing content the educational utility of these videos often remains 
under-explored in their standard format. TikTok dance challenges, 
a cultural phenomenon that blends skill acquisition with social 
engagement, serve as an ideal model for examining e�ective online 
learning environments within the domain of physical skill learning. 

Our research is twofold. First, we develop a system designed to 
enhance the educational delivery of movement videos and conduct 
a study to evaluate the learning outcomes and gather user feedback. 
Second, by analyzing how the features of user-created dance tutorial 
videos contribute to learning outcomes, we use this platform as a 
case study to understand broader principles impacting the creation 
and presentation of educational movement content. 

In study 1, we develop a web platform for dance learning driven 
by lesson plans that are automatically constructed from in-the-wild 
dance videos. Our vision is to expand access to quality motion in-
struction for those who may not be able to a�ord a human coach. 
Existing dance teaching systems typically require complex equip-
ment and manual content creation, thus limiting scalability and 
adaptability to social trends (see Section 2.2). To enable maximum 
access, our o�ering minimizes equipment requirements, supporting 
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devices that are common in people homes (e.g. laptops or tablets 
with webcams), and generates learning experiences automatically 
from raw motion videos. 

Our application embeds a software pipeline that takes dance 
videos as input, extracts human pose representations, derives mean-
ingful features such as key frames and 8-count segmentations, and 
�nally compiles a practice plan. These auto-generated practice 
plans are presented in a sca�olded web interface to enable accessi-
ble guided learning, implementing features such as incremental part 
learning, which breaks down complex movement sequences into 
smaller, manageable segments for step-by-step mastery, and fading 
guidance, which gradually reduces instructional support as learners 
gain pro�ciency[11, 37]. The web app guides users through the 
lesson plans step-by-step and employs visual aids such as motion 
overlays. 

In our �rst user study, we evaluate the visual aids and the system 
as a whole, collecting quantitative and qualitative data to validate 
the theoretical predictions underpinning our design, understand 
the outcomes resulting from our speci�c feature implementations, 
and formulate a generalizable set of recommendations for future 
creators of motion training systems. 

Study 2 was inspired by qualitative user feedback collected un-
der study 1, which suggested that emoji-segment labels present 
in the creator-authored videos of the control condition could be 
bene�cial to learning—a proposition subject to mixed theoretical 
predictions. On the TikTok platform some creators o�er dance 
challenge tutorials, which are typically formatted with rectangles 
overlaid on the video containing emoji and text labels of the dance 
moves. These label overlays are time-synced to the video, changing 
background color when the corresponding dance move is being per-
formed (Fig. 1). The dance tutorial videos are popular – for example, 
as of July 2023, videos with the #dancetutorial hashtag have 18.7B 
views as compared to 53.8B for #dancechallenge. This emergent 
style of dance learning suggests user interface features that hold 
promise for use in automatically generated learning experiences, 
but which have not been empirically tested. Using our system as 
a technical probe, we analyze how the segmentation and emoji-
segment label features in�uence learning outcomes and generate 
insights on how speci�c elements could be applied in automatically 
generated learning scenarios. 

Contributions 
This work makes the following contributions to the �eld of online 
movement learning systems: 

• Artifact Contribution: We present a novel system that 
automatically generates practice lesson plans based on motor 
learning theory using online, “in the wild” video content. 

• Theoretical Contribution: We validate core motor learning 
techniques such as segmentation, incremental part-learning, 
and fading guidance in the context of online video-based 
dance learning. We provide insights into how emoji segment 
labels function as dual-coding tools in dance instruction. 

• Empirical Contribution: Based on quantitative and qual-
itative results from two user studies, we o�er actionable 

design insights, including recommendations on e�ective seg-
mentation, the use of visual aids, and strategies for managing 
cognitive load. 

2 Related Work 
This section provides an overview of prior work in two main areas: 
(1) theoretical foundations from motor learning theory that inform 
the design of our system and (2) dance teaching systems developed 
within the Human-Computer Interaction (HCI) community. We 
compare our approach to prior technological systems for dance 
instruction and outline key insights from motor learning literature 
that guide the development of our automatically generated practice 
plans. 

2.1 Motor Learning Theory 
Motor learning theory describes how learners progress through 
di�erent stages of motor skill learning, from cognitive to associative 
to autonomous ([10, 20] - although other models have been pro-
posed; see [32]). Our system focuses on the consolidation process 
of moving from the cognitive stage to the associative stage. 

Motor learning theory highlights the importance of feedback 
during skill acquisition, which can be explicit (system-provided 
performance evaluations) or implicit (helping learners recognize 
their own errors). Augmented visual and multimodal feedback is 
especially e�ective in early learning stages but may impede knowl-
edge transfer later on due to the guidance hypothesis, which sug-
gests that excessive reliance on augmented feedback can prevent 
learners from developing intrinsic error-detection and correction 
mechanisms, ultimately reducing their ability to perform the skill 
independently [36, 37]. In TikTok dance challenges, music provides 
an essential source of implicit & concurrent auditory feedback. In 
the visual modality, overlaying the target and realized motion via 
a skeletal illustration has been shown to be particularly e�ective 
[1, 21, 40]. 

Motor learning literature supports the use of part learning for 
complex skills like dance routines [11]. Incremental part learning, 
where components are mastered one by one, aligns with profes-
sional dancers’ practice routines and forms the basis of our system’s 
approach to lesson design [28] 

Wulf and Lewthwaite [45] propose the OPTIMAL framework for 
optimizing motor learning, which emphasizes autonomy support, 
encouraging positive performance expectations, and adopting an 
external focus of attention. Self-controlled practice has been shown 
to result in better learning than externally-imposed practice [46]. 
In general, learners tend to perform and learn better when they are 
o�ered choice and encouraged to exhibit agency in their learning 
process [45]. Our system incorporates motor learning optimization 
principles by supporting user autonomy and o�ering choices in 
practice routines, both of which have been shown to enhance skill 
acquisition [45]. 

2.2 Dance Teaching Systems 
Zhou et al. [48] surveys some of the substantial HCI work in dance, 
examining empirical studies, choreographic tools, motion analysis 
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Figure 1: TikTok dance tutorial video format. The videos are overlaid with boxes representing a segmentation of the dance, 
which contain emoji labels of the dance moves. The boxes change background color in as the dance progresses. 

techniques, dance performance augmentation, and dataset contri-
butions. Raheb et al. [25] survey dance learning systems speci�cally. 
We summarize a selection of proposed systems in Table 1. 

Several dance teaching systems have been proposed, with vari-
ous designs related to instructional guidance, required equipment, 
content source, and feedback. With YouMove, Anderson et al. [1] 
propose a generalized motion teaching system using an augmented 
reality mirror. Their system is both an authoring tool for dance 
experts to record & annotate instructional motions and a teaching 
tool that guides learners through �ve stages of learning - demon-
stration, posture guide, movement guide, mirror guide, and on your 
own. While YouMove uses expert-authored content and proprietary 
hardware, our system automates content generation from existing 
videos and is designed to scale using widely available devices. 

The salsa VR and and Greek dance applications by [15, 35] of-
fer specialized dance learning experiences but are limited by their 
reliance on speci�c hardware setups and a lack of broader applicabil-
ity to other dance styles. In contrast, our system is domain-general 
and designed for scalable, minimalist hardware. 

With SyncUp, Zhou et al. [50] describe a tool to support the prac-
tice of synchronized dance groups, assisting them by automatically 
detecting and highlighting periods of unsynchronized movement 
on video recordings, enabling faster iterative practice sessions. This 
approach does not o�er support for beginners in the process of 
initially learning the dance. E-Ballet [41] experiments with feed-
back for a set of ballet movements in an e-learning setting, using a 
Kinnect sensor. Trajkova and Cafaro [42] take a similar approach 
for comparing visual vs auditory and corrective vs value forms 
of feedback. The authors make use of emojis to represent visual 
value (e.g. performance score) feedback, though this is substantially 
di�erent from our user study 2 investigation of emojis as symbolic 
representations of dance moves. 

There are some commercial digital products that provide a dance 
learning experience, generally falling into one of two categories: 
games designed for entertainment, such as Just Dance, and products 
designed for dance learning, such as STEEZY Studio and learnto-
dance.com. These products operate on manually-created content, 

adding to their expense and restricting their ability to scale to the 
expansive array of dance styles and skills that exist. 

Imitation of dance movements seen in a video is a basic case of 
using technology to learn motor skills by example. This experience 
can be augmented with additional visual or multimodal e�ects to 
support the learning experience, as discussed in Motor Learning 
Theory. In their tool for synchronized dance practice support, Zhou 
et al. [50] describe two visual interfaces for communicating the 
synchrony of dance moves: a heatmap overlay that highlights dis-
crepancy in poses, and a color-coded timeline that communicates 
periods of temporal misalignment. Beyond the AR mirror hardware, 
Anderson et al. [1] has two more visual aids: posture guide, which 
presents a skeleton overlay for static poses, and movement guide, 
which presents a moving skeleton overlay alongside “ribbon" that 
cue upcoming movements. Hu et al. [13] summarize four existing 
visualizations for human motion data (2D motion map, action syn-
opsis, motion belts, and representative video clips) and propose a 
5th, “Motion Track", which embeds keyframes into a 2D space and 
draws a curve along that space (“motion track") to represent the 
motion. This method is e�ective for summarizing and di�erentiat-
ing motion sequences, but may not be suitable for learning as the 
representation lacks temporal information. 

Clarke et al. [8] describe a system for video-based motion learn-
ing whereby playback of a demonstration video is slowed, paused, 
sped-up, or rewound in order to synchronize the video with the 
user’s current pose, with a skeleton overlay and hand travel-
direction cues. Tsuchida et al. [43] use deepfake technology to 
synthesize videos of the learner performing the source dance but 
found that it had a neutral to slightly-negative impact on learn-
ing outcomes. This exempli�es the importance of considering and 
validating pedagogical intent when applying new technologies to 
digital learning platforms. Finally, Singh et al. [38] propose a web-
based system that allows users to add time-attached text, ink, and 
video notes to recorded videos. 

While many existing dance teaching systems focus on aug-
mented feedback mechanisms such as motion overlays, heatmaps, 

https://dance.com
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Figure 2: The Practice Plan Compilation Pipeline 

and video playback controls, few integrate structured motor learn-
ing techniques such as incremental part learning and fading guid-
ance. Our system di�ers in that it explicitly structures learning 
experiences using segmentation, guided progression, and adap-
tive sca�olding, aligning with well-established principles of motor 
skill acquisition rather than relying solely on real-time feedback or 
self-guided video-based learning. 

3 System Engineering 
Our system is composed of two components: a practice plan com-
piler, which accepts a dance video from the Internet and generates 
a lesson plan, and a user interface, which presents the instructions, 
content, and visual aids embedded in the lesson to the learner, 
guiding them through the dance. 

Practice Plan Compiler. The practice plan compilation pipeline 
consists of multiple stages of data processing where the last stage 
produces practice plans that are later consumed by the learning 
interface (see Fig. 2). First, we use the MediaPipe framework [19] 
to extract a skeletal pose of the dancer in each frame. The resulting 
time sequence data contains normalized x and y positions of 33 
skeletal landmarks within the video frame, as well as estimated 3D 
coordinates of those landmarks in the world frame. 

In the motion analysis stage, multiple aspects of the dance are 
analyzed to produce a higher-level representation of the motion. 
First, landmark data is re-referenced to the torso center and nor-
malized by the torso length. This allows subsequent analysis to be 
scale, distance, and frame-position independent. We compute: (a) 
the speed minima of a subset of joints in 3D space, (b) tempo of 
the accompanying music, and (c) simpli�ed motion trails of the 
hands. The decomposition algorithm then chooses a decomposition 
strategy for the dance based on these features, preferring to use 
a tempo-based segmentation of 4-beat bars but falling back to a 
speed-minima segmentation in the case of an undetectable tempo – 

though the tempo was detectable for all videos used for this paper’s 
user studies. 

Finally, the practice-plan assembly stage generates a sequence of 
learning activities–i.e. a ‘practice plan’–using a structured method-
ology based on prede�ned instructional design principles. Each of 
these activities consists of one or more learning steps, with the 
structure of the practice plan tailored to the speci�c research ob-
jectives. The details of this methodology, including the speci�c 
sequencing of instructional activities, are described in Study 1 and 
Study 2, where we outline how the practice plans were designed 
for each study. In study 1, we tailored the practice plan to optimize 
learning outcomes, thereby establishing a benchmark for evalu-
ating our system against the instructional capabilities of TikTok 
tutorial videos. For study 2, the practice plan was stripped down, re-
moving potentially confounding features of our system in order to 
compare the e�ects of segmentation and emoji-labeling on learning 
outcomes in a setting comparable to virtual learning from video. 

The most computationally intensive step in the compilation 
process is skeletal pose inference from video, which takes approxi-
mately 38.5 seconds for a 15-second video on an M2 MacBook Air. 
Tempo analysis of the audio track is a separate step, adding around 
2 seconds per video. The remaining processing steps, including 
segmentation and practice plan assembly, are lightweight and com-
plete in under 1 second, ensuring that most of the computational 
overhead is concentrated in the initial video analysis stages. 

User Interface. The second component of our system is the learn-
ing interface, a web application that guides the user through the 
automatically generated lessons. Designed with insights from Motor 
Learning Theory, the interface follows Nielsen’s 10 UI design prin-
ciples [24], which are widely recognized in the HCI community as 
foundational heuristics for evaluating and guiding the development 
of intuitive, e�cient, and user-friendly interfaces, emphasizing us-
ability, error prevention, and clear system communication. Upon 
visiting the site, users are greeted with a lesson menu screen (Fig. 3a) 
that visualizes the learning path ahead of them, allows the user 
to navigate the learning process, and shows the user’s progress 
in accordance with Nielsen’s visibility of system status principle. 
Although learning activities are presented in the intended order, 
users are free to select activities in any order, permitting user con-
trol and freedom as suggested by Sigrist et al. [37] and re�ected 
in Nielsen’s user control and freedom principle. According to the 
experimental needs, these activities can be labeled with generic 
titles (such as Fig. 3a for study 1) or with richer semantic titles (such 
as the segmented-emoji conditions in study 2, Fig. 3b). 

Our practice plan provides structure, and the user is free to 
practice di�erent segments of the dance with whatever degree of 
feedback they desire. Our instructions empower users to decide 
when they feel con�dent enough to progress, encouraging them to 
repeat an activity until they personally feel pro�cient. The availabil-
ity of these choices o�ers users agency over their learning process, 
�tting within the OPTIMAL framework [45] – a theory emphasizing 
autonomy, enhanced expectancies, and external focus of attention 
as key factors in optimizing motor learning, which aligns with our 
goal of designing instructional experiences that foster engagement 
and e�ective skill acquisition. 



Enhancing the Educational Potential of Online Movement Videos CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

(a) Practice Plan Menu (Study 1, System with Skele-
ton Overlay Condition) 

(b) Practice Plan Menu (Study 2, Emoji-Segment 
Condition) 

(c) Learning Activity: Demo Video (d) Learning Activity: Virtual Mirror 

(e) Learning Activity: Skeleton Overlay (f) Learning Activity: Sheet Motion 

(g) Learning Activity: Record (h) Learning Activity: Review 

Figure 3: User Interface. The functionalities shown here can be incorporated into practice plans as needed according to learning 
or experimental needs. Behavior of these screens is described in the User Interface. 
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Table 1: Attributes of dance teaching systems in the literature. 

System Instructional 
Guidance 

Equipment Setup Content Feedback Evaluation 

YouMove [1] Guided Activ-
ity Sequence 

Kinect sensor & AR 
Mirror 

User-authored, 
motion-general 

Visual, explicit & 
implicit 

n=8 comparing system with 
traditional video instruction 

Syncup [50] No speci�c 
guidance. 

RGB Webcam & 
Monitor 

User-authored, Syn-
chronized troupe 
dances 

Visual, explicit & 
implicit 

n=9 user study, evaluating 
dance groups’ impressions of 
the system. 

Salsa dance learn-
ing [35] 

Guided HTC Vive with ex-
tra trackers 

Manually-created, 
2 speci�c salsa 
partner-dances 

Visual, Explicit 
(score) 

n=40 comparing dancers vs 
non-dancers use of the system 

A Game-like 
Application for 
Dance Learning 
[15] 

Guided Kinect Sensor(s) & 
Monitor 

Manually Created Visual, explicit n=18 user study, examining 
participants’ score changes af-
ter using the system. 

E-Ballet [41] Guided Kinect sensor & 
Monitor 

Manually created Visual & verbal, 
explicit & cor-
rective feedback, 
using ‘Wizard of oz’ 
approach 

n=16 user study, gathering 
user impressions of feedback 
through interviews. 

Super Mirror [21] No speci�c 
guidance 

Kinect sensor & 
Monitor 

Manually Created, 
Static Ballet Poses 

Visual, Implicit n=5, interview-style, gauging 
user impressions of the system 

WhoLoDancE 
Tools [26, 31] 

Not Guided Optical motion cap-
ture, Monitor or Mi-
crosoft Hololens 

Manually Created, 4 
styles of dance 

Visual, Audible, 
Text; Implicit, Ex-
plicit 

Delay Mirror[23] Not Guided RGB Webcam & Pro-
jector 

User-authored, De-
layed video stream 

No augmented feed-
back 

n=8 participants, evaluating 
utility in the context of a 
dance class 

MoveOn [29] Guided RGB Webcam & 
Monitor 

User-authored, 
motion-general 

No augmented feed-
back 

Series of 3 workshops (n=4, 
n=6, n=6) examining decom-
position strategies 

HereAndNow 
[49] 

Not Guided Kinect Sensor & AR 
Mirror, Logitech 
Presentation Re-
mote 

User-authored, 
motion-general 

Visual, Implicit Series of 3 workshops + Sur-
vey (n=13); Interviews with 
expert dancer, choreographer, 
and digital media artist (n=3) 

LearnThatDance 
(Present work) 
[2–4] 

Guided Activ-
ity Sequence 
with User 
Choice 

RGB Webcam & 
Monitor 

Automatically 
generated, motion-
general 

Visual, implicit Two studies: n=54 comparing 
system to TikTok video tuto-
rials, n=38 examining TikTok 
tutorial video format 

Figures 3c to 3f show the learning activity interface, which ap-
pears after a user clicks on one of the activities on the lesson menu 
screen. Users can interact with the lesson’s steps—play, repeat, 
and navigate—using buttons located at the bottom of the interface. 
A progress bar above the controls visually segments and color-
codes dance movements, aligning with choreography segments for 
straightforward tracking. The central area displays content such 
as a demonstration video (Fig. 3c); a webcam feed with a skeleton 
overlay (Fig. 3e); a sheet motion presentation of key frames (Fig. 3f); 
or a review/record display, o�ering the users the ability to record 
and review their performances, thereby supporting a learning tech-
nique common among professional dancers [28] – see Fig. 3g and 
Fig. 3h. 

Two of the above forms of content are visual aids that go beyond 
what is available in typical learning-from-video scenarios: skeleton 
overlay and sheet motion. Skeleton overlay mode (Fig. 3e) displays a 
2D stick �gure over the user’s webcam feed. The stick �gure re�ects 
the demonstrator’s pose, guiding users to mimic these positions 
with their bodies. This visual aid provides implicit, concurrent feed-
back [37] that delivers a portion of the choreographic information 
available in the reference video, thus sca�olding the progression 
from mimicking the reference video to performing the dance from 
memory. Variants of this approach has been implemented in prior 
work [1, 14, 21, 34] and have been shown to be e�ective in support-
ing movement learning. 
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Sheet motion mode (Fig. 3f) arranges still images from each beat’s 
onset, organizing them in rows that match the music’s rhythm. Im-
ages align with musical bars, with four per row to match the 44 time 
signature of the dances used in this study. As the dance progresses, 
the still images corresponding to the current time are highlighted. 
To cue learners as to the motion that occurs between the still im-
ages, arrows indicating the path of motion of the hands are drawn 
atop the still images. This presentation mode is a combination of 
the motion belt and motion cues movement summarizing techniques 
described in Li et al. [18], and, similar to skeleton overlay, is intended 
as a sca�old between presenting the full information of the refer-
ence video and having learners perform the dance entirely from 
memory. 

The system supports the ability for text cues to appear at speci�c 
times in the video, which was used in the emoji conditions of study 2, 
as visible in Fig. 3g. The interface also implements a performance 
upload functionality, enabling users to record and upload a video of 
themselves performing the dance while accompanied by the music. 

4 Methods 
We conducted two studies of our system using a similar methodol-
ogy but with di�erent foci of inquiry. Our research process started 
with a focus on operationalizing and testing insights from motor 
learning literature in the context of an automated system for motion 
skill teaching. 

Study 1 (Evaluation of Interactive Dance Teaching System). Evalu-
ates the performance of two variants of our dance teaching system 
compared to self-guided learning from TikTok tutorial videos, with 
the goals of determining whether our system enhances learning-
from-video and uncovering how di�erent features of our system 
a�ect the learning process. The study used a 3-condition design per 
Table 4. 

Intrigued by the qualitative results of this �rst study, we then 
conducted a second study to investigate the educational potential 
of design features found in TikTok dance video tutorials. 

Study 2 (Investigation of Features of TikTok Dance Tutorials). 
Leverages our system as an experimental tool to examine the emoji 
segment labels and dance segmentation features that commonly 
present in TikTok dance-challenge tutorial videos and determine 
their e�ect on learning outcomes. 

Evaluation of learning outcomes and qualitative feedback are 
discussed later in this section. 

Approval. The study procedure was approved by the Commit-
tee for the Protection of Human Subject at Dartmouth College. 
Informed consent was obtained from all participants prior to their 
participation. 

Participants. Both studies were conducted online with partici-
pants recruited from our local community. 54 participants were 
recruited for study 1, (36 female, mean age = 18.67 years) and 38 
were recruited for study 2 (20 female, mean age 22.26 years). Across 
both studies, the majority of participants (66.7% in study 1, 68.4% 
in study 2) reported no prior dance training, and the experience 
of those who did ranged from “a few lessons” to 15 years of dance 

experience. To control for participants’ varied levels of dance expe-
rience, we employed a within-subject procedure (described below) 
and included a participant random intercept in our linear mixed 
model analysis (as described in each of the study result sections). 
After each experiment, no participants reported that they had ever 
previously encountered the speci�c TikTok challenges used in the 
study. No participants from study 1 also participated in study 2. 

Procedure. Participants learned di�erent dances in three (study 1) 
or four (study 2) lesson conditions, presented in a randomized order 
with counterbalanced dance-condition assignments. Each dance 
video features a single dancer and lasts between 13.97 and 18.15 
seconds—see Table 2 to for the list of dances that were used. The 
dance videos used in this study were selected by manually reviewing 
videos under the #dancetutorial tag on TikTok. Selection criteria 
included (1) featuring a single dancer, (2) ensuring the entire body 
was visible in the frame to allow for accurate pose extraction, and 
(3) having an approximate 15-second duration. 

In each lesson, participants interacted with our system under a 
practice plan to according to the assigned experimental condition, 
as described in Section 5: Practice Plan and Section 6: Practice Plan. 
Participants were free to navigate the app and engage in practice 
as they saw �t within a �xed amount of practice time (20 minutes 
total for study 1 and 12 minutes for study 2). After each lesson, 
participants used the platform to record a video of themselves per-
forming the dance they just learned. Participants then rated dance 
di�culty and system helpfulness, and answered open-ended ques-
tions regarding what was helpful and what could be changed or 
improved in the lesson. Additionally, after the �nal lesson, partici-
pants completed a longer questionnaire which gave them a chance 
to comment about the system as a whole and included the system 
usability scale (SUS) assessment [5]. We analyze both performance 
videos and the post-lesson questionnaire responses to compare the 
conditions in each study. The SUS results are not considered here, 
as the participants completed this assessment only once at the end 
of the study and it was unclear which conditions their assessment 
results would be applicable to. 

Analysis: Performance Accuracy Score. Similarity between the 
participant’s video and the reference TikTok video was chosen as 
the main criterion for performance accuracy. Based on the pose 
similarity analysis algorithm proposed by [50], we utilize the skele-
ton information extracted from MediaPipe [19] to automatically 
score the accuracy of each learners’ uploaded performances. Our 
target dances emphasize upper body movements; therefore, we 
chose 8 key points from the upper body and compute 8 key vectors, 
as illustrated in Fig. 5, which capture the upper-body movement of 
the dancers. Although Mediapipe computes landmarks in the lower 
body, dancers’ lower bodies are frequently out of the video frame 
in TikTok dances; therefore, we omitted lower-body vectors from 
our accuracy scoring. 

Comparison of joint vectors between the learner and expert is 
a�ected by the variance in body proportions and camera recording 
distances. To address this issue, we normalize the key vectors into 
unit vectors which provide directional information for each body 
part that is invariant to the above factors. Our method assumes 
that the user and reference dancers are performing at a similar 
orientation relative to the camera. Given the nature of TikTok dance 
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Table 2: The dances used in our study. Likes are as of 2023-07-04. 

Id Date Creator Choreographer VideoId Likes Learned in 

A 2020-12-20 @helenpenggg @ruby.bauer 6908526401658391813 179.9k Studies 1 and 2 
B 2020-10-18 @phoebe.mulyana @leilanigreen 6884913446505254145 402.5k Studies 1 and 2 
C 2021-01-24 @helenpenggg @joitie04 6921519498767928581 23.1k Studies 1 and 2 
D 2021-05-04 @koristutorials061 @sauxyyjay 6958501156406578438 223.5k Study 2 only 
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Figure 4: User Study Flow. The participants attempted three 
(study 1) or four (study 2) trials, one dance for each condition. 

challenges, this assumption is met in practice, as dancers mostly 
face their recording device throughout TikTok dance, including the 
ones we used for our user studies. 

In each frame, we compute the absolute di�erence between the 
corresponding unit vectors of the learner and the expert (range: 
[0, 2], with 0 indicating perfect alignment), and then sum them up 
as the per-frame error. The overall error is calculated as the average 
of all frames of the dance. Finally, we rescale the score into the 
range of [0, 5], where 0 denotes the poorest performance and 5 
represents the best performance. This normalized score serves as 
the �nal performance accuracy. 

We tested our automatic scoring system by comparing its output 
to human rated scores. For each study, three human raters were 
instructed to rate how similar the given participant’s dance was to 
the teacher’s dance. The human raters were recruited from our local 
university. Among the six human raters, two had no dance training, 
while the other four had varying levels of experience ranging from 
a few months in 2nd grade to seven years in elementary school. 
For each study, segment pairs (participant video segment, reference 
video segment) were shown to three raters who then scored the 
dance segments on a scale of 1 (least similar) to 3 (very similar). 
The scores for each performance were calculated by taking the 
arithmetic mean among all segments and then again among all 

raters. In both study 1 and 2, the three raters demonstrated high 
inter-rater reliability with a Krippendor�’s alpha of U = .745 and 
U = 0.601 respectively. 

In order to compare the human and automatic scores, the human 
scores were rescaled to align with the [0, 5] range of the automatic 
score system. There was a high correlation between human and 
automatic scores (Pearson’s ' = .93, = = 128, ? < .001) as well as in 
their rank orders (Spearman’s A B = .90, = = 128, ? < .001 — Fig. 5a) 
in study 1. This was the case in study 2 as well (Pearson’s A = .93, 
= = 147, ? < .001, Spearman’s AB = .90, = = 147, ? < .001 — Fig. 5b). 
In addition to this robust correlation, the human ratings displayed a 
ceiling e�ect, suggesting that automatic scores measure more vari-
ance than human ratings. Despite this observation, the substantial 
correlation implies that our automatic scoring approach mimics 
human similarity ratings, indicating its usefulness in gauging the 
similarity of dance performances. 

Analysis: Dance Complexity & Di�culty. Dances vary in speed, 
complexity, and performance di�culty. These factors could modu-
late the e�ectiveness of di�erent learning features. To measure this, 
we asked participants to rate the level of di�culty they experienced 
learning each dance after completing the corresponding lesson. 
Three dances were used in study 1 (dances A, B, and C) and all four 
dances were used in study 2. 

While self-reports can capture individual variation in perceived 
di�culty, we also developed the motion complexity metric to pro-
vide a more objective basis for comparison and analysis across 
the selected dances. The metric is calculated by taking the mean 
velocity, acceleration, and distance across all skeletal joints, and 
then z-scoring these motion parameters as well as the tempo (in 
beats-per-minute) relative to the full dataset of dances. Finally, we 
combine the motion parameter z-scores to form a scalar complexity 
value for each dance. From the composite of these metrics, dances 
B and C were assessed as the most complex dances, and dance A as 
the least complicated, as shown in Table 3. 

De�ning a metric that attempts to capture the di�culty of per-
forming a motion is challenging, due to factors such as the highly 
individualized nature of physical abilities and learning rates, the 
multidimensional aspects of motion including coordination, bal-
ance, and �exibility, and the subjective perception of di�culty 
which varies greatly among individuals. For this reason, we de-
signed our metric not as a de�nitive measure of di�culty but as a 
comparative tool to objectively assess movement complexity across 
dances, adding nuance to our analysis of learning aids’ e�ective-
ness. Our approach is relatively simple, taking into account the 
amount of movement but not the signi�cance or relative challenge 
of movements; more sophisticated approaches exist [39, 47]. 

https://www.tiktok.com/@helenpenggg/video/6908526401658391813
https://www.tiktok.com/@phoebe.mulyana/video/6884913446505254145
https://www.tiktok.com/@helenpenggg/video/6921519498767928581
https://www.tiktok.com/@koristutorials061/video/6958501156406578438
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Figure 5: Automatic perfor-
mance rating. Our method fo-
cuses on upper body vectors. 
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Figure 6: Correlation of Automatic and Human scores 

Table 3: Dance Di�culty Metrics 

Id Duration Complexity 
(Z-Score) 

Complexity 
per Second 

Mean Di�culty 
Rating (Study 1) 
(out of 5) 

Mean Di�culty 
Rating (Study 2) 
(out of 10) 

A 15.1B �1.163 �0.07 2.49 4.34 
B 18.2B 0.551 0.03 3.29 5.68 
C 14.0B 0.832 0.06 3.56 6.16 
D 14.9B �0.220 �0.01 N/A 6.00 

Analysis: Qualitative Feedback Synthesis. After each trial in both 
studies, participants were asked two open-ended questions: “What 
did you �nd helpful about this learning experience?” and “What 
would you change/improve about this learning experience?” This 
allowed us to gather insights into user perceptions of di�erent sys-
tem conditions and elicit suggestions for future improvements in a 
semi-structured manner. Three of the authors performed a thematic 
analysis of the user responses in two stages, using the taguette tool 
[27]. First, each author independently coded the responses, devel-
oping codebooks that grouped key sentiments or ideas re�ected in 
the participants’ feedback. After this initial coding, the coders met 
to collaboratively reconcile their codebooks, resolving discrepan-
cies and producing a �nal, uni�ed codebook. Finally, one author 
recoded all the responses using the reconciled codebook, and the 
frequency of each code within each lesson type was tabulated to 
identify patterns across conditions. 

5 Study 1: Evaluation of Dance Teaching System 
In this section, we present the �ndings from Study 1, in which we 
evaluate the e�ectiveness of our interactive dance teaching sys-
tem in comparison to TikTok tutorials. The goal was to determine 
whether our system enhances learning outcomes and to investigate 
how di�erent system features in�uence the learning process. 

5.1 Practice Plan 
The practice plan for study 1 was designed to optimize learning out-
comes. The plan starts with a learning phase, to introduce a dance 
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Figure 7: Practice Plan for Study 1 (non-control conditions). 
The structure of the practice plan incorporates two tech-
niques drawn from motor learning literature: fading guid-
ance and incremental part-learning. 

to a user who has never seen it before. The �rst activity is a preview 
of the dance, in accordance with Mayer [22]’s pre-training principle, 
which states that activities performed prior to a challenging main 
task can assist the user in managing essential processing, lowering 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Jules Brooks Blanchet, Megan E. Hillis, Yeongji Lee, Qijia Shao, Xia Zhou, Devin Balkcom, and David J. M. Kraemer 

Table 4: Study 1 Conditions: Two system variants compared with a control condition. 

Condition Lesson Format Visual Aid 

Control: Tutorial Video Single Activity with Video Controls Creator-embedded Emojis 
System: Sheet Motion Autogenerated Lesson Sheet Motion Display 
System: Skeleton Overlay Autogenerated Lesson Overlaid Skeleton 

the cognitive load of the main task to a more suitable level. All if the 
remaining activities in the learning phase occur at half speed. The 
preview is followed by a sequence of activities that incrementally 
teach the dance segment-by-segment in accordance with Mayer’s 
segmentation principle, following a part-learning approach [11] as 
shown in Fig. 7. As described in Practice Plan Compiler, this segmen-
tation is generated automatically by the practice plan compiler. For 
each of these activities, the user performs a set of steps with pro-
gressively reduced guidance, as follows: (1) a video demonstration 
of the segment (Fig. 3c), (2) a practice step with either a skeletal 
overlay (Fig. 3e) or sheet motion (Fig. 3f) learning aids, (3) a test step, 
in which the user sees their webcam feed and performs the segment 
from memory (akin to a ‘Virtual Mirror’, Fig. 3d), (4) an integration 
step, in which the user performs the entire dance up until the end of 
the newly learned segment. Visual aids are provided in this step to 
support the user in recalling previously learned segments. This pro-
gressive increase in task di�culty and removal of feedback support 
is informed by studies on motor learning which have found that 
concurrent visual feedback is helpful while initially learning a task 
(the cognitive stage, [10]), but that supports should be removed as 
the user becomes familiar with the motion (the associative stage) 
[37]. 

By the end of the learning phase, the entire dance has been 
incrementally introduced to the user. The compiler then adds a 
mastery stage, consisting of a series of activities that prompt the 
learner to practice the entire dance at increasing speeds (0.5x, 0.75x, 
and 1x). Each of these mastery activities follows the same demo-
practice-perform sequence as in the learning phase. Practice plans 
are stored in a JSON format for use in the learning interface. 

The TikTok videos we chose had time-synchronized symbolic 
emojis embedded by the creator, which were left visible in the con-
trol condition (as in Fig. 3c) but were obscured in the experimental 
conditions. In the experimental conditions, users were provided 
auto-generated practice plans as previously described. In control 
condition we used a manually-created practice plan with a single 
‘free practice’ activity which played the demonstration video, with 
native video controls enabled (such as pause, play, seek, change 
playback speed). See Table 4 for a breakdown of the experimental 
conditions. 

Thus, each participant gave feedback on each of the three exper-
imental conditions, learning a di�erent dance each time. 

5.2 Results 
We �tted a linear mixed e�ect model (LMM) to test the e�ect of 
lesson type on participants’ performance accuracy, as evaluated by 
the automatic system. The model included lesson type and dance 
as �xed e�ects, along with their interaction, with participants as a 
random intercept. The three di�erent lessons (traditional C tutorial, 

auto-generated lesson with skeleton aid, auto-generated lesson 
with sheet motion aid) were dummy-coded as a three-level factor, 
and the three di�erent dances (dance A, B, and C) were coded 
using deviation coding [44]. This structure allows us to evaluate 
the mean of each lesson directly compared to the mean across 
all dances. The Levene test and visual inspection of residual plots 
revealed that the assumption of normality and homogeneity of 
variance was not violated (�8,121 = 1.231, ? = 0.237). A conditional 
explanatory power of ' 2 = .681 indicated that approximately 68.1% 
of the variance in automatic score was explained by this model. 
Estimated marginal means of participants’ performance accuracy 
by lesson type, lesson type within each dance, and dance—see 
Fig. 8. The �xed e�ects analysis showed a signi�cant main e�ect 
for lesson type (- 2 (2, N = 130) = 7.922, ? = 0.019) and a signi�cant 
interaction between lesson type and dance (- 2 (4, # = 130) = 
11.779, ? = 0.019). This indicates that participants’ performance 
di�ers by lesson type and that this e�ect may depend on which 
dance they are learning. 

Post-hoc Tukey HSD tests identi�ed signi�cant performance dif-
ferences between lesson types following the LMM analysis. Results 
showed participants performed better in the auto-generated lessons 
with skeleton aid compared to those in the control condition using 
C tutorial videos (C = �2.597, ? = 0.030). However, no signi�cant 
di�erence was observed between auto-generated lessons with sheet 
motion aid and the C tutorials (C = �0.360, ? = 0.931; see Fig. 8 
left). Despite the varying complexity of the dances, no signi�cant 
main e�ect of dance was found, (- 2 (2, N = 130) = 1.474, ? = 0.478) 
suggesting participants performed equally across the three dances 
(see Fig. 8 right). 

Additionally, we compared performance between the lesson 
types within each dance to assess how the dances in�uence the 
e�ect of lesson type. This analysis revealed that in dance A (the 
least complex of the dances, see Table 3), users performed better 
with auto-generated lesson with sheet motion aid as compared 
to Tiktok tutorial (C = �2.546, ? = 0.033), see Fig. 8 center. Con-
versely, in dance C (the most complex dance), users performed 
better with auto-generated lesson with skeleton aid than Tiktok 
tutorial (C = �3.050, ? = 0.008). Moreover, comparisons within 
auto-generated lessons revealed a superior performance with skele-
ton aid over sheet motion aid (C = �2.704, ? = 0.022). For dance 
B, there was no signi�cant di�erence in users’ performance across 
lesson types. These �ndings indicate that users either outperformed 
or matched their performance with auto-generated lessons relative 
to the TikTok tutorials across the majority of dances. 

We also conducted an additional LMM analysis to assess how 
users’ perception on helpfulness and di�culty of a lesson is di�erent 
between the lesson types. 
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Figure 8: Study 1 Results: Mean of Performance Accuracy by Visual Aid (left), Mean of Performance Accuracy by Visual Aid in 
Each Dance (center), and Mean of Performance Accuracy by Dance (right) 

Figure 9: Study 1 Results: User-rated Lesson Helpfulness (left) 
and Dance Di�culty (right) estimated marginal means by 
Visual Aid 

Helpfulness. To assess the e�ects of lesson type and dance on 
users’ ratings of lesson helpfulness, we modeled treating lesson 
type and dance as �xed e�ects and including random e�ects for 
individual subject intercepts. The assumptions of homoscedastic-
ity and normality were con�rmed via Levene’s test and residual 
plot inspection (�8,121 = 1.163, ? = 0.330). The model’s condi-
tional ' 2 was 0.171, with an AIC of 400.428, indicating moderate 
explanatory power and prediction accuracy. Estimated marginal 
means, illustrated in Fig. 9 (left), showed auto-generated lessons 
with skeleton aid were rated signi�cantly more helpful than TikTok 
tutorials (Estimate = 0.65, ? = 0.009), approximately 0.65 points 
higher on a �ve-point Likert scale. No signi�cant di�erence was 
found between sheet motion aid lessons and TikTok tutorials, nor 
any signi�cant e�ects of dance or interaction between dance and 
lesson type. Skeleton-overlay lessons were perceived as more help-
ful, while sheet motion aid lessons did not di�er signi�cantly from 
TikTok tutorials. 

Di�culty. To assess the e�ects of lesson type and dance on per-
ceived dance di�culty, we again modeled dance and lesson type 
as �xed e�ects and intercepts for each individual subject as ran-
dom e�ects. Homoscedasticity and normality assumptions were 
con�rmed by Levene’s test and residual analysis (�8,121 = 0.735, 

? = 0.661). The model demonstrated substantial explanatory power 
(' 2 = 0.431) and prediction accuracy (AIC=399.099). As shown in 
Fig. 9 (right), there was no signi�cant main e�ect of lesson type 
on di�culty ratings, con�rming that the counterbalanced design 
e�ectively separated perceived lesson helpfulness from perceived 
dance di�culty. Di�culty ratings did vary across dances, however, 
the only statistically signi�cant comparison was dance C rated 
more di�cult than dance A (Estimate=0.85, ? = 0.033), which is 
convergent with our complexity metrics (Table 3). No interaction 
between dance and lesson type was detected, indicating that no 
dance was rated more di�cult when paired with a given lesson 
type compared to the others. 

Qualitative Feedback. The frequency of the codes in the users’ 
responses in each condition highlighted several bene�cial features 
of our auto-generated lessons, as shown in Fig. 10. For the question 
“What did you �nd helpful about this learning experience?”, users 
particularly valued the slow-speed practice and repetition feature, 
which was available in all lesson types. Positive feedback on slow-
motion practice appeared the most frequently across the lesson 
types. Some users explicitly highlighted the bene�t of gradual speed 
increases during their practice sessions, saying, “The �rst time when 
it went from 50 to 100, I was surprised at how fast the song was. 
The 50, 75, and then 100 was extremely helpful in bringing the 
moves up to speed.” 

In the auto-generated lessons, the segmentation feature received 
praise from more than 16 users in both versions. One user com-
mented, “I found that it was broken down into very small incre-
ments, which was very helpful in learning the faster-paced dance.” 
Another participant appreciated the integration of segment learn-
ing into whole-dance learning, saying “The segments and slow 
speed while learning were helpful since they built up the dance in a 
digestible way.” Feedback on the two types of visual aids—skeleton 
overlay and sheet motion—sharply di�ered. Eighteen users valued 
the skeleton feature as a clear tool for understanding dance move-
ments. One user emphasized, “I enjoyed the stick �gures because 
they took out the distractions from the video and I can see myself.” 
However, sheet motion did not receive any positive feedback from 
users. 

When users were asked what could be improved in the control 
lesson, eighteen participants expressed the need for segmentation 
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Figure 10: Study 1 Qualitative Results 

in their learning as shown by the code segmentation.liked. By 
referring to “modules”, “components”, “chunking”, “sections”, and 
“step-by-step”, users communicated a preference for segment learn-
ing in the auto-generated lessons over the TikTok tutorial lesson. 
In the sheet motion aid lesson, a majority of users (16 participants) 
suggested removing the sheet motion aid. Users reported di�culty 
understanding the motion from sequences of static images and 
found the hand-motion trails distracting. One user compared the 
sheet motion aid with the skeleton aid, saying, “I thought that the 
practice with images was for the most part unhelpful because they 
were static and hard to reference. I much preferred the stick �gure 
aid from the �rst dance.” Although the majority of users found the 
skeleton aid useful, six users expressed negative feelings about the 
skeleton aid when asked what could be improved in the lesson. 
One user explained, “The skeletons were useful, but they made 
it di�cult to perceive depth, particularly when hip motions went 
forwards or backwards, so I felt like I didn’t learn that part very 
well.” 

Twelve users found the emoji labels in the control lesson helpful. 
One commented, “I like the emojis for the dance. That helped me 
remember what to do next while learning it.” A similar positive 
perception emerged when the emojis were unavailable in the auto-
generated lessons, with �ve users reporting that they wished emoji 
labels were included in the other two conditions. 

5.3 Interpretation 
In study 1, we designed and implemented a literature-informed 
dance learning system and examined its e�ectiveness with 52 users. 
Participants’ performance, evaluated by our automatic rating sys-
tem, showed that the auto-generated lessons signi�cantly enhanced 
learning outcomes compared to unaltered TikTok tutorials. Notably, 
in dances A and C, performance ratings were signi�cantly higher 
with auto-generated lessons, indicating improved accuracy and 
retention even with a short learning period. These �ndings high-
light the system’s ability to enhance motor skill acquisition through 
segmentation, adaptive guidance, and visual cues, as supported by 
prior research [1, 11, 17, 34]. The system’s automatic generation 
and presentation of practice plans further demonstrate its potential 
to scale the educational value of dance videos. Additionally, the 
system’s techniques for segmentation, lesson compilation, and pre-
sentation are adaptable to other types of motion videos, broadening 
its applicability. 

We also sought to investigate user’s perception of learning expe-
rience in auto-generated lessons and Tiktok tutorial videos. Users’ 
responses to the open-ended questions revealed that they identi�ed 
slow speed and repetition as the main features they found most ben-
e�cial in across the control and auto-generated lessons–see Fig. 10, 
inline with prior multimedia learning [22] and motor learning [11] 
�ndings. Comparing the two types of auto-generated lessons, users 
achieved higher similarity scores and rated the learning experience 
as more helpful with the skeleton aid compared to Tiktok tutorial 
videos, but not so with the sheet motion aid. 

Responses to open-ended questions revealed that users perceived 
the skeleton visual aid to be helpful whereas the sheet motion aid 
was perceived as confusing and distracting. 

Our results indicate that the e�ect of visual aids in auto-
generated lesson on performance rating was impacted by the dance 
being learned. For dance A, users performed better with auto-
generated lesson with sheet motion aid than with the Tiktok tuto-
rial, while for dance C, they performed better with auto-generated 
lesson with skeleton aid than sheet motion aid and Tiktok tutorial. 
This suggests that these two types of visual aid provide distinct 
forms of support whose helpfulness varies depending on the dance. 
Skeleton overlay is a form of implicit-concurrent feedback that is 
intended to help during the initial stages of learning a dance. It 
provides an intermediary sca�olding between following a demo 
video and dancing without an aid–providing less information that 
the full video while still cuing the moves and timing–and seems to 
be e�ective in this role with our current implementation especially 
with dance C, the one which was perceived as the most di�cult, and 
the one with the highest complexity (Table 3). This aligns with [37], 
which showed that concurrent feedback can be especially useful 
for complex tasks. We theorize that the skeleton overlay may help 
users by making the essential information more accessible, thus 
decreasing cognitive overload in a complex task and providing a 
stepping stone towards automaticity. 

In contrast, sheet motion presents keyframes with motion trail 
cues, showing all keyframes simultaneously. In this way, compared 
to a skeleton-overlay or simple demonstration video, sheet motion 
simultaneously shows less information about the current target 
pose while showing more information overall. We think that this 
was likely an overwhelming visual display for a learner to follow 
along to. This is supported by users’ comments in the open-ended 
questions, where they referred to sheet motion as ‘static,’ ‘frozen,’ 
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Table 5: Study 2 Conditions: A 2x2 Factorial Design 

Segmentation 

No Yes 

Labeling No Control Segmentation-Only 
Yes Emoji-Only Segmentation-Emoji 

and causing ‘sensory overload.’ Given dance A’s slower and less 
complicated nature (Table 3), users may have been able to follow 
along to the sheet motion despite the visual overload, thus pro-
ductively attempting the dance with increased challenge. This is 
particularly interesting as users achieved signi�cantly better per-
formance with sheet motion in dance A despite perceiving the aid 
as unhelpful. Such a discrepancy is reported in other studies [6, 16], 
especially among inexperienced learners [30]. Overall, the evidence 
does not support the helpfulness of sheet motion as used by our 
current system. 

Emoji labels in the control tutorial videos emerged as a key 
theme in the qualitative feedback. While these labels were retained 
to create an ecologically valid control condition, study 1 did not 
investigate whether users’ positive perceptions of emoji-labels cor-
responded to measurable learning bene�ts. This raises an impor-
tant question: how do emoji segment-labels in�uence learning, and 
are they linked to improved outcomes? Answering this question is 
particularly relevant for automatic teaching systems, as evidence 
supporting the e�ectiveness of symbolic segment labels could jus-
tify developing methods to automatically generate and incorporate 
such labels from motion data. 

6 Study 2: Investigation of Features of TikTok 
Dance Tutorials 

Inspired by the unaddressed questions arising from participants’ 
qualitative responses in study 1, study 2 shifts focus to exploring 
speci�c features of TikTok dance tutorials—namely, emoji segment 
labels and dance segmentation—and their e�ect on learning out-
comes. As such, we use a customized practice plan intended to 
mimic the experience of learning from these tutorial videos. 

Motor learning theory suggests that segmenting complex tasks 
into smaller, manageable units can signi�cantly enhance the learn-
ing process by allowing learners to focus on mastering one segment 
at a time before progressing [11]. In the context of TikTok dance 
challenge tutorial videos, the segmentation implied by overlaid 
emoji labels naturally supports this theory by dividing dances into 
smaller units, providing clear, focused intervals for practice and 
repetition. Such segmentation is predicted to aid in the gradual 
acquisition of complex movements, allowing learners to build pro-
�ciency incrementally and with greater precision. While segmen-
tation in TikTok tutorial videos potentially enhances learning by 
breaking down complex dance moves into manageable units, it’s 
unclear if their inclusion of time-synchronized, color-coded emoji 
labels supports this learning process e�ectively. 

On one hand, establishing dual codes to motions (through verbal 
cues, visual imagery, or sounds) has been shown improve memo-
rization of motor tasks [7, 33]. Emojis could act as a dual code to 

enable easier acquisition and retention of new moves in a choreog-
raphy. Yet, emojis may be processed di�erently than other forms of 
dual coding studied in the literature – in particular, Homann et al. 
[12] evidence for both visio-spatial and verbal processing of emo-
jis. Theories on multimedia learning describe separate processing 
mechanisms for visual and language-like information, and recom-
mend a learning strategy that doesn’t overload either mechanism 
[22]. Given the visual processing demands of learning from obser-
vation it’s possible that simultaneous presentation of emojis as a 
visual cue could distract from the main learning task and impede 
learning. 
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Figure 11: Practice Plan for Study 2. The structure of the 
practice plan uses fading feedback to support learning of the 
dance as a whole, but does not incorporate fading guidance in 
the segment-by-segment activities. The structure is intended 
to replicate the experience of learning from TikTok video 
tutorials, while experimenting with the segmentation and 
emoji-label features. 

6.1 Practice Plan 
The practice plan for study 2 starts with a preview activity, to give 
participants context as to the dance they’re learning. For segmented 
conditions, this was followed by a practice activity for each of the 
dance segments. The timing and duration of these segments was 
copied from the reference tutorial videos, representing the TikTok 
creators’ chosen segmentation. 

The participants completed the study with the same procedure 
as the user study 1, learning a dance under each of four conditions: 
control condition, emoji-only condition, segmentation-only condi-
tion, and combined condition, per Table 5. In the control condition, 
users were presented with a version of the Tiktok tutorial videos 
with the emoji labels obscured and a single practice activity that 
played the entire dance. In the emoji condition, users were also 
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presented with a single practice activity, but the emoji-labels were 
left visible. In the segmented conditions, users were presented with 
activities for learning each segment individually, an integrative-
practice activity that paused at segment-boundaries, and then the 
same practice activity as the unsegmented conditions. In the emoji-
and-segmentation condition, the segments were labeled with the 
emoji from the tutorial videos, while in the segmentation-only con-
dition, the segments were labeled with ‘Part 1, Part 2, . . . ’ labels. 
Users were given 12 minutes to learn the dances, and all learning 
activities and the recorded uploads were performed at half speed 
of the original dances. After each trial, participants were prompted 
to rate the helpfulness of the system and di�culty of the dance 
on a 10-point scale and answer the same open-ended questions as 
study 1. 

6.2 Results 
We �tted a linear mixed-e�ects model (LMM) to assess whether 
emoji labeling and dance segmentation signi�cantly predicted par-
ticipants’ performance accuracy as judged by the automatic simi-
larity scores. The model included emoji labeling, segmentation, and 
dance as �xed e�ects, along with their interactions, with partici-
pants included as random intercepts. 

Emoji labeling and segmentation were dummy-coded as binary 
factors, while the four dances (A, B, C, and D) employed deviation 
coding. This structure allows us to evaluate the mean accuracy score 
of each lesson directly compared to the mean across all dances. Lev-
ene’s test and residual plot inspection con�rmed the model’s com-
pliance with normality and homogeneity of variance assumptions 
(�15,131 = 0.864, ? = 0.605). The model demonstrated moderate ex-
planatory power (conditional ' 2 = .578). This model was employed 
to calculate estimated marginal means, predicting participant per-
formance accuracy in each of possible combination in the factorial 
design and dances. Fixed e�ects analysis showed a signi�cant main 
e�ect for dance (- 2 (3, N = 147) = 0.9.227, ? = 0.026), suggest-
ing variance in performance across dances—see Fig. 12 (right), yet 
found no signi�cant e�ects for emoji labeling, segmentation, or 
their interactions—see Fig. 12 (left and center). This indicates partic-
ipants’ performance was consistent across emoji and segmentation 
aids, with variations observed only across di�erent dances. A Tukey 
HSD test was conducted to identify performance di�erences be-
tween dances. Findings indicated signi�cantly lower performance 
in dance C versus dance B –see Fig. 12 (right). Considering dance 
C’s complexity and user-rated di�culty, performance di�erences 
highlight its challenging nature. Notably, signi�cant performance 
disparity existed solely between dances C and B. Given similar 
scores for dances B, A, and D, it seems a performance plateau was 
reached, with dance C posing a unique challenge. 

Pairwise comparisons between emoji labeling and segmentation 
within each dance were conducted using a Tukey HSD test to deter-
mine if there were di�erences in users’ performance attributable to 
either factor (see Fig. 12, center). The results showed no signi�cant 
performance di�erences in any of the pairwise comparisons within 
each dance. 

Helpfulness. To assess the impact of lesson type and dance on 
users’ perceptions of helpfulness, we again employed a model with 
these factors as �xed e�ects and individual subjects’ intercepts as 

random e�ects. Levene’s test and a visual check of the residual 
plots con�rmed our model did not violate the assumptions for 
homoscedasticity or normality (�15,131 = 1.001, ? = 0.454). The 
model demonstrated a conditional ' 2 of 0.542 and an AIC value of 
540.346, indicating a moderate �t. Estimated marginal means for 
each lesson type are presented in Fig. 13 (left). No signi�cant main 
e�ects of lesson type or dance, nor interactions between them, were 
found in predicting helpfulness ratings. This result indicates that 
users perceived all types of lessons as equally helpful regardless of 
the presence of emoji visual aids or segmentation. 

Di�culty. To predict user ratings of dance di�culty, dance and 
lesson type were modeled as �xed e�ects, with individual subjects’ 
intercepts as random e�ects. Levene’s test and visual inspection of 
the residual plots did not reveal any violations of the assumptions 
of homoscedasticity or normality (�15,131 = 0.733, ? = 0.746). This 
model exhibited a conditional ' 2 of 0.563 and AIC of 536.515. The 
estimated marginal means of each type of lesson was shown in 
Fig. 13 (right). There was a main e�ect of dance on the di�culty 
ratings, meaning that the dances were not perceived as equally 
di�cult. Consistent with the �ndings of study 1, this e�ect was 
driven by the contrast between dance C and A (Estimate=�1.86, 
? < 0.001). There was no signi�cant main e�ect of lesson type 
observed in this model. In other words, users perceived that the 
dance di�culty was not di�erent across the lesson types. This was 
expected given our counterbalanced design. There was also no 
signi�cant interaction between dance and lesson type, suggesting 
that no particular pairing of lesson type and dance yielded di�erent 
perceived di�culty as compared to other possible combinations. 

Qualitative Feedback. The analysis of users’ responses across the 
four tested conditions (visualized in Fig. 14) revealed important 
insights into how participants perceived the lessons. Interestingly, 
user preferences sometimes con�icted with their actual perfor-
mance outcomes. 

When asked what was helpful in each lesson, users consistently 
appreciated the slow-speed practice across all four lesson types. 
This feature was especially appreciated in the control lesson, with 
18 participants mentioning it. Although there was no signi�cant 
evidence that emojis or segmentation aids directly in�uenced sub-
jective helpfulness ratings, many users described these features as 
bene�cial in their qualitative responses. The emoji feature, in par-
ticular, was frequently praised when included in the lesson. Users 
found emojis helpful for visualizing and remembering dance moves. 
One participant noted, “The varieties of emojis helped me to re-
member the di�cult steps and to perform correctly,” while another 
said, “The emojis helped very much. It gave the direction to take 
the steps. It was very simple and nice.” Additionally, four partic-
ipants expressed a desire for accompanying text instructions to 
further clarify dance movements. Some suggested combining text 
with segmentation, commenting, “Could use extra written/verbal 
instructions about each step,” or “voice instruction on steps.” 

Most users recognized segmentation as advantageous in both the 
segmented and combination lessons. They particularly appreciated 
practicing dances in manageable segments, which helped prevent 
feelings of being overwhelmed. One user noted, “I loved how the 
dance was split up into easy-to-digest parts.” Segmented practice 
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Figure 12: Study 2 Results: Mean of Performance Accuracy by Visual Aid (left), Mean of Performance Accuracy by Visual Aid in 
Each Dance (center), and Mean of Performance Accuracy by Dance (right) 

Figure 13: Study 2 Results: User-rated Lesson Helpfulness 
(left) and Dance Di�culty (right) estimated marginal means 
by Visual Aid 

was also seen as useful to focusing on speci�c movements that re-
quired extra practice. One commented, “I liked how if I had trouble 
with certain parts I could look back at certain steps.” Addition-
ally, many users valued the inclusion of pauses between segments, 
especially when used in conjunction with segmentation. One par-
ticipant emphasized, “I like how the tutorial broke the dance into 
steps and paused between each step because it allowed me to pro-
cess the dance,” highlighting how the pauses helped them connect 
individually learned segments. 

When asked what could be improved in each lesson, participants 
recommended adding segmentation or emojis to lessons that lacked 
these features, demonstrating their perceived value in the learning 
process. In the control lesson, segmentation and emojis were the 
most commonly mentioned areas for improvement, suggesting a 
strong user preference for these aids. One participant explained, “I 
need to learn ONE thing at a time! So I wanted to learn the �rst 
move, then the second, then the third, then... put it all together at 
the end. It was way too hard to learn it all at once and not be able 
to pause the video.” Similarly, participants recommended adding 
emojis or segmentation in conditions where one of these features 
was missing. However, some users expressed mixed feelings about 
segmentation, suggesting improvements for its implementation, as 

re�ected in the counts for the code segmentation.refine. They 
called for adjustments in segment size, with one participant noting, 
“I think some of the moves could be broken down further,” while 
another suggested, “Lesser segmentation.” 

6.3 Interpretation 
The central �nding of user study 2 is that neither the emoji-
annotation nor segmentation features of TikTok dance tutorial 
videos appear to enhance objective measures of dance learning, 
whether incorporated into the teaching system independently or 
together. Neither emojis nor segmentation were predictive of par-
ticipants’ performance or helpfulness ratings. This result seems to 
be inconsistent with predictions of motor learning theory. 

Rather than challenging established research in motor learning, 
we interpret the null �ndings in the second study as evidence that 
segmentation of a dance alone is insu�cient to improve learning 
outcomes–this segmentation must also be meaningfully incorpo-
rated into a practice routine to enable part learning. As implemented 
in the study 2, the segment learning activities only contain a sin-
gle video-following step (see Fig. 11), as opposed to the multi-step 
segment-learning design in study 1 (Fig. 7). This simpli�cation was 
done intentionally in order to match the typical experience of ob-
servational learning from video, in which the aids and progression 
found in the the study 1 practice plan would not be present. The 
null �nding also serves as a cautionary note that illustrates how the 
complexities of a fully-realized system can nullify the theoretical 
intent of an assistive feature. 

While participants found emojis helpful for remembering move-
ments, they also suggested that supplementary textual instructions 
could improve clarity, highlighting the limitations of emojis in rep-
resenting complex motions like dance. Due to their simplicity and 
limited variability, emojis may contribute to extraneous processing, 
particularly when combined with simultaneous activities such as 
sheet motion. These �ndings suggest that emojis might be more 
e�ective in a pretraining step, where learners observe the dance and 
its emoji representation to build a mental model before performing 
it. 
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Figure 14: Study 2 Qualitative Results 

7 Discussion 
The process of designing, implementing, and evaluating this au-
tomatic dance teaching system has led us to insightful takeaways 
regarding the operationalization of learning experience design in 
the context of motor skill learning from video. Study 1 showed 
evidence that our system, with its assistive features, was perceived 
as more helpful and led to better user performances than standard 
video tutorials. However, when we examined two features (seg-
mentation and emoji labels) common to TikTok tutorial videos in 
user study 2, we observed no such increase in performance–despite 
the users’ sentiments that these features were helpful. This sug-
gests that while engaging, these learning aids may require more 
thoughtful integration to meaningfully impact learning outcomes. 

7.1 Design Opportunities 
Our �ndings highlight several actionable design opportunities for 
future movement learning systems. 

Prioritize Part-Learning for Complex Movements. Our results indi-
cate that segmentation and part-learning features are most e�ective 

when integrated into a structured lesson plan that encourages users 
to incrementally master segments of a movement before progress-
ing to the full sequence. This aligns with existing motor learning 
theories, which suggest that incremental part-learning is bene�-
cial for tasks with high complexity. Incorporating substantial part-
learning activities is essential for supporting learners in building 
up their pro�ciency over time. 

Enhance Visual Aids While Managing Cognitive Load. Study 2 
showed that although users found visual aids like emoji labels help-
ful, they did not signi�cantly enhance performance. This suggests 
that these aids must be carefully integrated within a well-structured 
lesson plan to be e�ective. To optimize the e�ectiveness of visual 
aids, designers should consider introducing these aids in stages– 
perhaps as part of pre-rehearsal activities–while ensuring that they 
do not oversaturate learners’ visual input streams during practice. 

O�er User-Controlled Segmentation and Playback Speed. Given 
the variability in learners’ preferences for segmentation granularity 
and playback speed, future systems should allow users to adjust 
these parameters to �t their individual learning styles. 
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Utilize Simpli�ed Visual Cues for Key Movement Phases. Users 
expressed confusion when presented with overly complex visual 
representations, such as sheet motion displays. Simplifying visual 
representations to focus on key poses or movement phases may 
improve learners’ ability to follow along with dynamic movements. 

Include a Pre-Rehearsal Step for Familiarization. We recommend 
incorporating a pre-rehearsal step that familiarizes learners with 
key labels or segments before engaging in live movement practice. 
Qualitative feedback indicated that emoji labels were appreciated, 
but their e�ectiveness was limited without prior exposure. A pre-
rehearsal step could provide an opportunity to introduce these 
semantic cues early on. 

7.2 Limitations & Future Research 
TikTok dances, predominantly short and stylistically narrow, may 
not fully represent the extensive learning curves required for more 
complex dance forms. However, many TikTok dance tutorials share 
common characteristics, such as distinct musical phrasing, seg-
mented choreography, and repetitive movement patterns. For these 
types of dances, our �ndings on segmentation, visual aids, and 
structured practice plans are likely to be applicable. Nonetheless, 
there remains an opportunity to explore longer, more challenging 
dance content. Additionally, considering TikTok’s younger demo-
graphic [9] and our study’s reliance on university students, future 
research should broaden participant diversity to include a wider 
range of ages and backgrounds. 

Future work might consider the following research questions: 
(1) How do di�erent demographics engage with and bene�t from 
video-based motor learning, and what adaptations are necessary to 
meet diverse needs? (2) Can extended, more complex dance sequences 
enhance long-term skill retention and mastery compared to shorter, 
social media-style dances? (3) In what ways can video-based learning 
systems be optimized for other forms of motion, and what are the key 
factors in designing content-speci�c instructional aids? 

The limited scope of Study 2’s �ndings, particularly concern-
ing the speci�c context and application of TikTok dance challenge 
videos, highlights areas for broader investigation. In our experimen-
tal setup, designed to re�ect typical video learning environments, 
neither emoji-labeling nor segmentation features signi�cantly im-
proved performance. However, these features might still o�er bene-
�ts if applied di�erently. Study 1 illustrates this, showing enhanced 
outcomes with practice plans that combine segmentation and visual 
aids. 

Future studies should explore various approaches to implement-
ing labeling and segmentation to determine their impact more pre-
cisely. Worthwhile research questions for future work may include: 
(4) how do people approach learning from social media dance videos 
in naturalistic settings? What technologies and practice strategies are 
adopted? (5) can segment or movement labels enhance motor learning 
when incorporated into a pre-training task? What are the necessary 
conditions for dual-coding of motions to be e�ective? (6) are user de-
�ned segmentations and segment labels preferable to system-assigned 
ones in the learning process? 

7.3 Conclusion 
Broadly, these two studies re�ect the versatility of our system when 
it comes to investigating learning science questions of dance learn-
ing. By tailoring the practice plan to speci�c study objectives, we 
were able to investigate substantially di�erent empirical questions 
with minimal system modi�cations. The system’s automatic perfor-
mance scores, movement complexity quanti�cation, and LLM-based 
feedback summarization facilitated e�cient, scalable comparisons 
across conditions. The high degree of correlation between the au-
tomatic performance rating and human similarity judgments is a 
noteworthy �nding, validating the metric as a reliable alternative 
to laborious manual ratings This real-time computation capability 
provides automated dance practice systems with a validated, prac-
ticable means to quantify the similarity of learners’ performances 
to reference dances. Together, these �ndings emphasize the im-
portance of aligning assistive features with learners’ attentional 
capacities and pedagogical goals, underscoring the potential of our 
system to advance research and practice in dance motor learning. 
By re�ning these tools and expanding their application to other 
movement domains, we can continue to advance both the study of 
motor learning and the design of scalable, video-based educational 
systems for movement. 
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