

Enhancing Aqueous Carbonation via Co-milled Serpentine and Wollastonite: Effects of Mechanochemical Activation

Hang Zhai,^{a,b,*} Qiyuan Chen,^b Bin Liu,^c and Bu Wang^{b,*}

^aCollege of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China;

^bDepartment of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States;

^cNational Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China

*To whom correspondence should be addressed.

Hang Zhai

College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; orcid.org/0000-0002-8161-448X;

Email: hzhai2024@swu.edu.cn

Bu Wang

Department of Civil and Environmental Engineering, University of Wisconsin-Madison,
Madison, Wisconsin 53706, United States;

orcid.org/0000-0002-9294-0918;

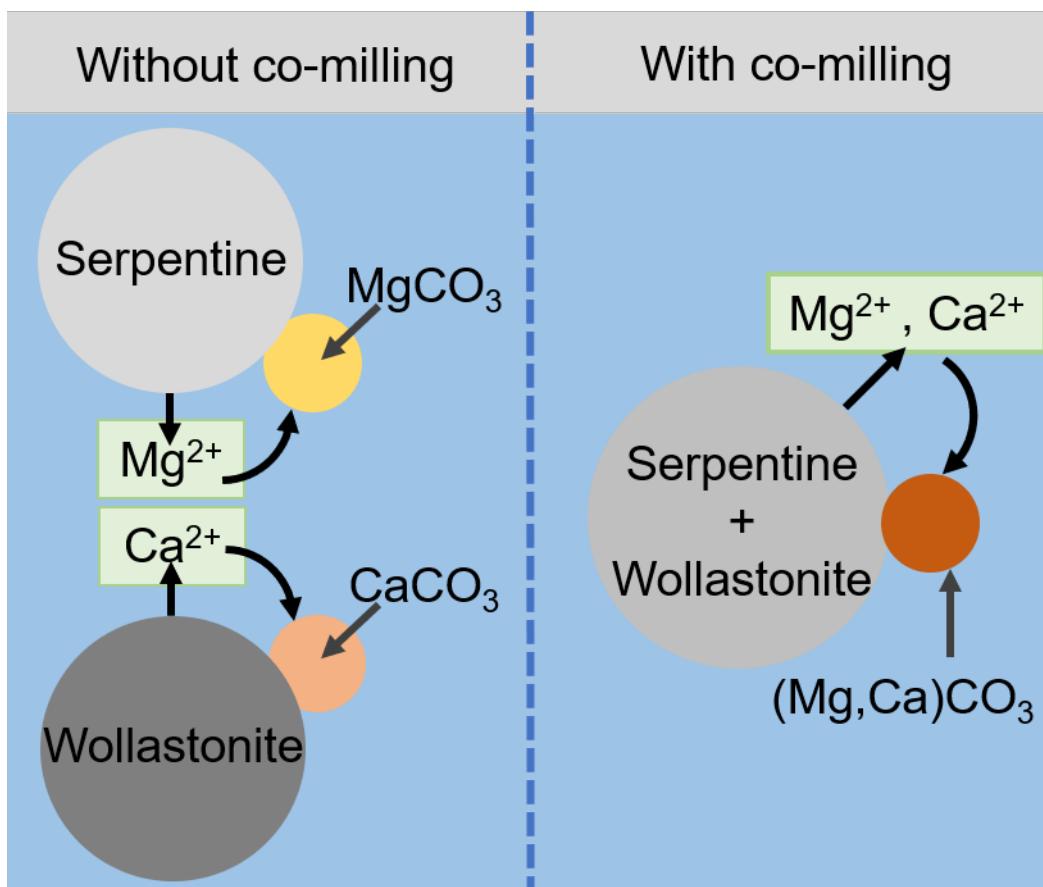
Email: bu.wang@wisc.edu

29 Highlights:

30 • Co-milled serpentine and wollastonite enhanced aqueous carbonation.

31 • Without ball milling, the carbonation of serpentine and wollastonite mixtures proceed via

32 forming the combination of MgCO_3 and CaCO_3 .


33 • The co-milling merged Ca-rich wollastonite with Mg-rich serpentine, leading to the

34 formation of $(\text{Mg}, \text{Ca})\text{CO}_3$ after carbonation.

35 • The aqueous carbonation occurred at the mineral-water interface rather than in the

36 carbonating solutions.

37

38

39 **Graphical abstract**

40

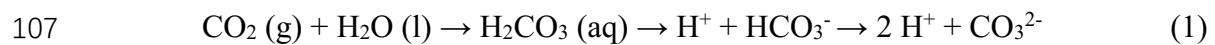
41

42 **Abstract**

43 Carbon dioxide (CO₂) storage through aqueous mineral carbonation is recognized as a
44 promising technology for geochemical carbon removal. Previous studies predominantly
45 focused on individual alkaline earth silicates, such as wollastonite or serpentine,
46 overlooking their interactive effects on carbonation processes. To address this
47 knowledge gap, we conducted aqueous carbonation tests using individually ball-milled
48 serpentine (m-serpentine), wollastonite (m-wollastonite), mixtures of ball-milled
49 serpentine and wollastonite (m-serpentine + m-wollastonite), and the co-milled
50 serpentine and wollastonite (m-(serpentine + wollastonite)). The carbonation of (m-
51 serpentine + m-wollastonite) involved the formation of a combination of calcite (CaCO₃)
52 and magnesite (MgCO₃), suggesting that no significantly interactive effect between the
53 serpentine and wollastonite. In contrast, carbonating m-(serpentine + wollastonite)
54 results in the precipitation of Mg-bearing calcite ((Mg, Ca)CO₃). Upon quantification,
55 the carbonation degrees of m-(serpentine + wollastonite) is relatively higher than that
56 of (m-serpentine + m-wollastonite). During the carbonation of m-(serpentine +
57 wollastonite), the combination of serpentine and wollastonite facilitates mutual
58 dissolution, leading to the release of more cations. However, these released ions do not
59 diffuse into the bulk carbonating solution; instead, carbonation occurs exclusively at
60 the mineral-water interface. Consequently, the co-milling process, merging Ca-rich
61 wollastonite into Mg-rich serpentine, induces the formation of (Mg, Ca)SiO₃. These
62 novel insights into aqueous carbonation using a combination of Mg-containing and Ca-
63 containing minerals underscore the significant role of mineral-mineral reactions in CO₂
64 mineralization.

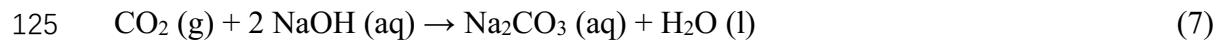
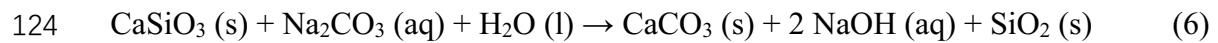
65

66 **Keywords:** aqueous mineral carbonation; wollastonite; serpentine; interfacial coupled
67 dissolution-reprecipitation; ball mill



68

69 **1. Introduction**

70 The rapid increase in atmospheric carbon dioxide (CO₂), primarily driven by
71 the industrial revolution and extensive fossil fuel usage, has led to the critical issue of
72 global warming (Rosa and Ribeiro, 2001; Smith et al., 2013; Conejo et al., 2020; Yoro
73 and Daramola, 2020). To counteract the rising levels of CO₂ in the atmosphere, mineral
74 carbonation (also known as CO₂ mineralization) stands out as an appealing method.
75 This technology offers advantages such as low financial costs, enhanced reaction
76 kinetics, and secure long-term storage (Romanov et al., 2015; Naraharisetti et al., 2019;
77 Kelemen et al., 2020). In essence, CO₂ mineralization involves chemical reactions
78 between CO₂ and minerals containing elements like Ca, Mg, and Fe, resulting in the
79 formation of thermodynamically stable carbonates like calcite (CaCO₃) (Zhai et al.,
80 2023), magnesite (MgCO₃) (Santos et al., 2023), and siderite (FeCO₃) (Neerup et al.,
81 2023); respectively. Due to the limited availability of natural Ca/Mg/Fe hydroxide and
82 oxide minerals, silicates rich in these elements emerge as promising candidates for CO₂
83 mineralization (Scott et al., 2021). Wollastonite (Wol, CaSiO₃), a representative of Ca-
84 rich silicate minerals, has been extensively studied for its potential in CO₂ long-term
85 storage (Kashim et al., 2020; Feng and Hicks, 2023). In parallel, Mg-rich silicates,
86 particularly serpentine (Ser, Mg₃Si₂O₅(OH)₄), have garnered attention due to their
87 abundant deposits and significant capacity for CO₂ storage (Maroto-Valer et al., 2005;
88 Kwon et al., 2011; Eikeland et al., 2015). Additionally, other Ca/Mg-rich silicate
89 minerals, such as plagioclase (Munz et al., 2012; Gudbrandsson et al., 2014), pyroxene



90 (Monasterio-Guillot et al., 2021), olivine (Wang et al., 2024), and volcanic glasses
91 (Clark et al., 2018), have also been widely utilized for long-term CO₂ storage.

92 Strategies for CO₂ mineralization utilizing Ca/Mg-rich silicate minerals
93 primarily fall into two categories: *in situ* mineral carbonation processes, involving the
94 direct injection of CO₂ into porous rocks underground (Matter and Kelemen, 2009;
95 Stubbs et al., 2023), and *ex situ* mineral carbonation processes, occurring above ground
96 with pretreatments like rock mining and comminution (Ghoorah et al., 2014;
97 Monasterio-Guillot et al., 2019). When comparing these technologies, *ex situ* mineral
98 carbonation, particularly through the aqueous mineral carbonation route aided by
99 pretreatments, is regarded as the preferred choice to expedite carbonation rates and
100 enhance overall efficiencies (Zhai et al., 2023). Carbonation occurs within an aqueous
101 solution containing dissolved carbonate species through gas-liquid-solid reactions.
102 These reactions accelerate the dissolution of minerals and the precipitation of
103 carbonates (Ragipani et al., 2022). The aqueous carbonation process comprises the
104 dissolution of CO₂ in water (eq. 1), the release of cations (Ca²⁺ or Mg²⁺) from the
105 mineral matrix (eq. 2 and 3), and the precipitation of carbonates (eq. 4 and 5) (Huijgen
106 et al., 2006; Hövelmann et al., 2011).

112 To augment the degree of aqueous carbonation, strategies primarily concentrate

113 on promoting the dissolution of carbonating minerals (eq. 2 and 3) and/or the
114 precipitation of stable carbonates (eq. 4 and 5) (Sanna et al., 2014). A common method
115 to accelerate mineral dissolution involves acidifying the solutions, occasionally
116 adjusting salinity and temperature (Orlando et al., 2011; Khan et al., 2023). However,
117 acidic conditions, while aiding dissolution, are unfavorable for carbonates precipitation.
118 Moreover, acidification inhibits the dissolution of CO₂ (eq. 1), leading to the release of
119 CO₂ from aqueous phases. To overcome these challenges, a costly pH swing step is
120 often necessary, involving the addition of bases such as sodium hydroxide (NaOH) or
121 ammonia (NH₃) (Sanna et al., 2013; Azdarpour et al., 2014, 2015). Recently, an
122 alternative approach has been proposed using calcium silicates through an autocatalytic
123 basification process (eq. 6 and 7) (Ragipani et al., 2022; Zhai et al., 2023).

126 In the carbonation step (eq. 6), the reaction involves soluble carbonates (such as
127 Na₂CO₃) and yields NaOH. Following carbonation, the resulting basic solution can be
128 utilized for CO₂ capture (eq. 7), allowing the regeneration of Na₂CO₃ for reuse in the
129 carbonation process. This approach enables CO₂ mineralization without the need for
130 large pH swings between acidic and basic conditions. All strategies discussed here to
131 enhance mineral carbonation degree primarily revolve around regulating mineral-
132 solution reactions through varying solution conditions. However, an often-overlooked
133 aspect is the role of mineral-mineral reactions during carbonation processes. Recent
134 study has indicated that mixing Ca-bearing and Mg-bearing minerals holds promise for
135 direct atmospheric CO₂ sequestration (Chen et al., 2023). Building on these findings,
136 we infer that the interactive effect between these two minerals could further influence

137 aqueous carbonation processes. On the one hand, the dissolution of serpentine provides
138 Mg^{2+} ions, which have been shown to inhibit the formation of calcium carbonate nuclei
139 (Zhang and Dawe, 2000; Zhang et al., 2017). Consequently, the addition of serpentine
140 may reduce the carbonation degree of wollastonite. On the other hand, dissolved Mg^{2+}
141 can substitute for Ca^{2+} in calcium silicates (Lothenbach et al., 2015), potentially leading
142 to more Ca^{2+} converting into $CaCO_3$. The net effect of whether wollastonite and
143 serpentine facilitate or inhibit the carbonation of each other remains unknown and
144 warrants further investigation.

145 While extensive research has been conducted on individual aqueous
146 carbonation processes involving serpentine or wollastonite (McKelvy et al., 2004;
147 Power et al., 2013; Min et al., 2017; Min and Jun, 2018), the interactive effect between
148 these two minerals still remains undisclosed. To address this knowledge gap, we
149 conducted aqueous mineral carbonation experiments under basic conditions, utilizing
150 individually ball-milled serpentine (m-serpentine in manuscript, Ser_m in figures),
151 wollastonite (m-wollastonite in manuscript, Wol_m in figures), mixture of Ser_m and Wol_m
152 (m-serpentine + m-wollastonite in manuscript, $Ser_m + Wol_m$ in figures), co-milled
153 serpentine and wollastonite (m-(serpentine + wollastonite) in manuscript, $(Ser + Wol)_m$
154 in figures). To our knowledge, previous studies have not explored the role of reactions
155 between carbonating minerals in carbon capture and storage. In this study, we
156 demonstrated that carbonating a mixture of m-(serpentine + wollastonite) led to the
157 formation of Mg-bearing calcite ($(Mg, Ca)CO_3$), distinct from carbonating m-
158 serpentine + m-wollastonite. This highlights the importance of mechanochemical
159 activation in mineral carbonation processes. Our findings shed light on the interactive
160 mechanism between magnesium silicate and calcium silicate minerals under basic
161 carbonation conditions, introducing a novel concept. This approach offers an alternative

162 method to activate magnesium silicates, with significant implications for improving
163 process efficiency and cost-effectiveness in CO₂ mineralization.

164 **2. Material and methods**

165 *2.1 Materials*

166 Natural serpentine (identified as chrysotile) was sourced from California and
167 wollastonite procured from Natural Pigments LLC (CA, USA). X-ray fluorescence
168 (XRF) analyses revealed the composition of the materials (Table S1). Reagent-grade
169 anhydrous sodium carbonate (Na₂CO₃), serving as the CO₂ source, was obtained from
170 Fisher Science. Solutions were prepared using deionized water.

171 *2.2 Ball milling*

172 The high-energy ball milling process was conducted using an 8000M SPEC Certiprep
173 Mixer/Mill (CertiPrep Inc., USA). The particle sizes were measured using a laser
174 diffraction particle size analyzer (~10 µm, Figure S1, LS320, Beckman Coulter, Miami,
175 FL, USA) (*details seen in Supplementary Data*). All samples were characterized using
176 X-ray diffraction (XRD, D8 Discovery, Bruker, Germany) equipped with Cu K α
177 radiation ($\lambda = 1.54 \text{ \AA}$) and operated in the single-axis mode. The divergence, receiving,
178 and anti-scattering slits were set to 0.2 mm, 0.3 mm, and 2 mm, respectively. Data
179 acquisition was performed in four scanning steps from 20° to 60° at a rate of 120 s/step.
180 X-ray photoelectron spectroscopy (XPS) was used to analyze the elemental
181 composition under ultra-high vacuum conditions (5×10^{-10} Torr) with a K-Alpha X-ray
182 photoelectron spectrometer (Thermo Scientific, USA) equipped with a monochromatic
183 Al K α X-ray source ($h\nu = 1486.6 \text{ eV}$) at 75 W and a detection pass energy of 20-80 eV.
184 The XPS data were processed using Thermal Advantage software (Thermo Scientific,
185 USA) with smart background correction methods and Gaussian functions for peak

186 fitting (Zhai et al., 2024).

187

188 *2.3 Aqueous mineral carbonation*

189 Aqueous mineral carbonation was carried out under ambient conditions (25 °C and 0.1
190 MPa). The mineral carbonation reactions took place in 15 mL polypropylene testing
191 tubes under ambient conditions with vibration, facilitated by a vortex mixer (Fisher
192 Scientific). As the CO₂ source, a 1 M Na₂CO₃ solution (pH = 11, adjusted using 0.1 M
193 NaOH and HCl) was chosen, maintaining a constant liquid-to-solid ratio of 10 mL/g.
194 The reactions were allowed to proceed for 1 hours, and the process was concluded by
195 separating minerals from solutions through 5 minutes of centrifugation (Allegra 25R
196 Centrifuge, Beckman Coulter, USA) at 9000g (Zhai et al., 2024).

197 *2.4 Characterization of carbonated minerals*

198 Carbonated minerals underwent three washes with deionized water to eliminate residual
199 solutions (Zhai et al., 2024). The washed samples were subsequently dried in an
200 Isotemp Oven (model 655F, Fisher Scientific) at 98 °C for 24 hours. Prior to scanning
201 electron microscopy-energy dispersive X-ray (SEM-EDX) analysis, samples were
202 mounted onto Al stubs with Cu tapes and coated with a thin layer of Au (~8 nm, Prep-
203 LeicaACE600 Deposition, Leica, Germany) to enhance electrical conductivity. SEM
204 images were taken under an ultra-high vacuum condition (~10⁻⁵ Pa) with an
205 acceleration voltage of 10 kV using a secondary electron detector. For nanoscale
206 characterization, high-resolution transmission electron microscope (HRTEM) was
207 employed to directly observe crystallographic phases using FEI Tecnai TF30 TEM
208 (Thermo Fisher Scientific, USA) at a high accelerating voltage of 300 kV (*details seen*
209 *in Supplementary Data*).

210 2.5 Quantification of carbonation degrees

211 The carbonation degree was defined as the conversion of Mg and Ca elements into their
212 corresponding carbonates (MgCO_3 and CaCO_3). Approximately 15 mg of dry sample
213 was subjected to thermogravimetric analysis (TGA 5500, TA Instruments, USA) under
214 N_2 atmosphere with a gas flow rate of 100 mL/min and a heating rate of 10 $^{\circ}\text{C}/\text{min}$ over
215 a temperature range from 30 to 950 $^{\circ}\text{C}$. TGA curves for all samples exhibited three
216 distinct regions: (1) evaporable water loss (w_1 , 30-100 $^{\circ}\text{C}$), (2) bound water loss (w_2 ,
217 100-200 $^{\circ}\text{C}$), and (3) CO_2 release (w_3 , 300-800 $^{\circ}\text{C}$). The stored CO_2 content within the
218 minerals was calculated based on TGA data using the following equation (Zhai et al.,
219 2024):

220
$$w_{\text{CO}_2} = \frac{w_3}{100\% - (w_1 + w_2)} \times 100\% \quad (8)$$

221 The weight content of converted MgO/CaO ($w_{\text{MgO}}/w_{\text{CaO}}$) can be calculated with

222
$$w_{\text{MgO}} = \frac{w_{\text{CO}_2}}{M(\text{CO}_2)} \times M(\text{MgO}) \times 100\% \text{ or } w_{\text{CaO}} = \frac{w_{\text{CO}_2}}{M(\text{CO}_2)} \times M(\text{CaO}) \times 100\% \quad (9)$$

223 in which $M(\text{CO}_2)$, $M(\text{MgO})$, and $M(\text{CaO})$ are the molecular weight of CO_2 (44.01
224 g/mol), MgO (40.30 g/mol), and CaO (55.08 g/mol).

225 Finally, the conversion of Mg/Ca ($C_{\text{Mg}}/C_{\text{Ca}}$) can be calculated by

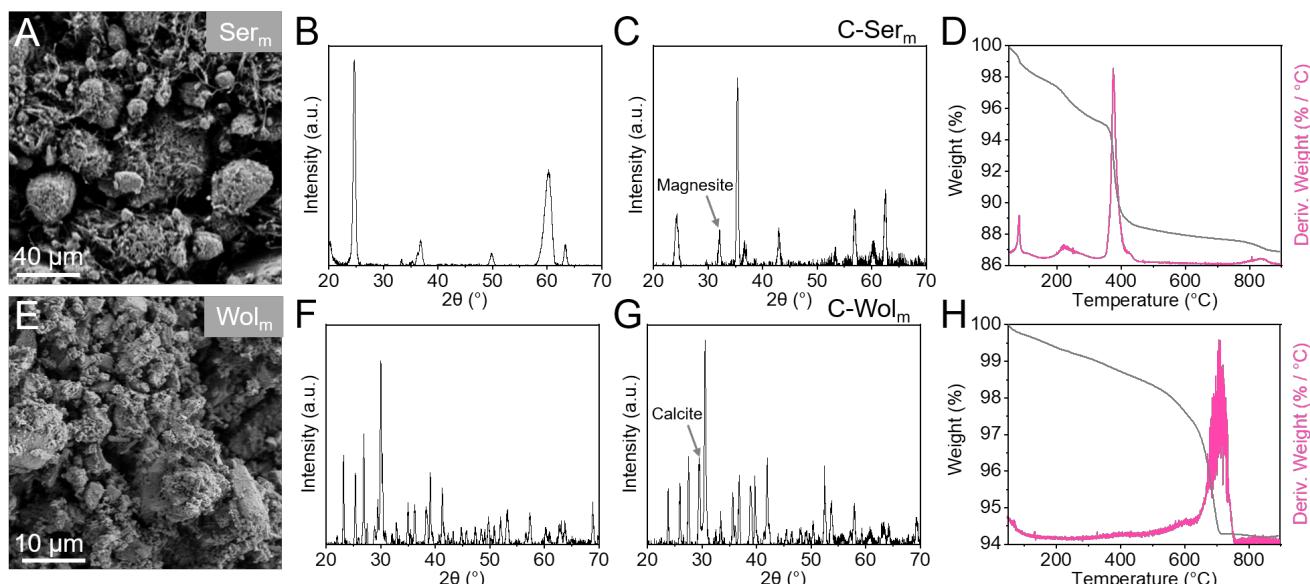
226
$$C_{\text{Mg}} = \frac{w_{\text{MgO}}}{[1 - (w_{\text{CO}_2} + w_{\text{MgO}})] \times \eta_{\text{MgO}} + w_{\text{MgO}}} \text{ or } C_{\text{Ca}} = \frac{w_{\text{CaO}}}{[1 - (w_{\text{CO}_2} + w_{\text{CaO}})] \times \eta_{\text{CaO}} + w_{\text{CaO}}} \quad (10)$$

227 in which η_{MgO} and η_{CaO} are the weight percent of MgO (40.35%) and CaO (49.27%)
228 within the serpentine and wollastonite.

229 2.6 Analyses of solution chemistry

230 The pH of both mineral and mineral-free solutions was measured using an Orion Versa

231 Star Pro pH/EC meter (Thermo Fischer Scientific, Waltham, Massachusetts, USA). The
232 concentrations of elements within the solutions were determined through inductively
233 coupled plasma optical emission spectrometry (ICP-OES, CCD Simultaneous ICP-
234 OES, VISTA-MPX, Varian, USA) using external standards for calibration.
235 Subsequently, the obtained solutions were acidified and diluted up to 10 times using 0.5
236 M HNO₃ for dissolved elemental analyses using ICP-OES. All concentrations reported
237 represent the averages of three independent measurements (*details seen in*
238 *Supplementary Data*).

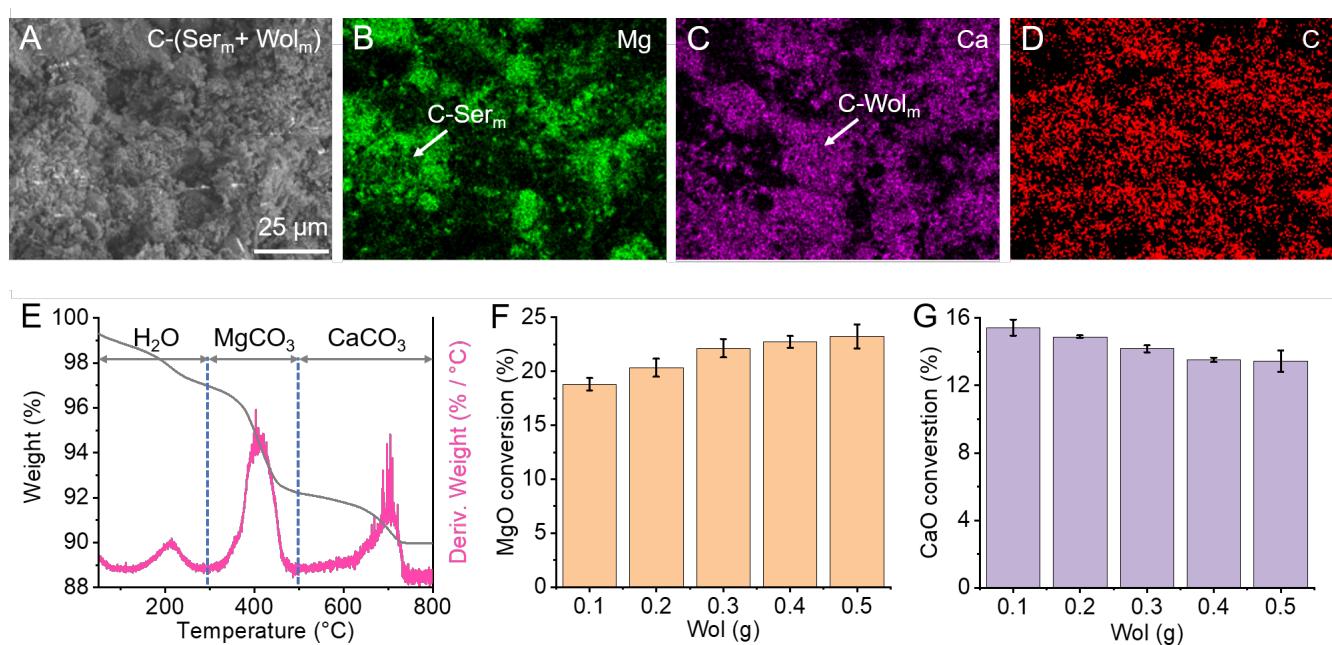

239

240 **3. Results**

241 *3.1 Mineral carbonation using individually ball-milled serpentine and wollastonite*

242 Spherical serpentine powders (identified as chrysotile, m-serpentine, Ser_m) were
243 obtained by ball milling (Figures 1A and B). The main components of the natural
244 serpentine are 11.71% Fe₂O₃, 40.35% MgO, and 45.89% SiO₂, with a molecular ratio
245 of Fe:Mg:Si at 0.15:1.01:0.76, indicating MgO and SiO₂ as the primary constituents.
246 After reaction, the XRD spectra of carbonated serpentine (c-m-serpentine, C-Ser_m)
247 display a distinctive peak at 32.08°, corresponding to the characteristic peaks of
248 magnesite (MgCO₃, Figure 1C). The thermal breakdown of c-m-serpentine occurs at
249 temperatures ranging from 350 to 460 °C (Figure 1D), aligning with the thermal
250 decomposition of MgCO₃. Quantifying the weight loss from the TGA curve, it is
251 determined that 8.17 wt% of CO₂ is sequestered within c-m-serpentine and the
252 carbonation degree is calculated to be 18.01% after the 1-hour reaction. For individually
253 ball-milled wollastonite powders (m-wollastonite, Figures 1E and F), they comprise
254 49.27% CaO and 49.67% SiO₂, yielding a Ca/Si mole ratio of 1:1. Acting as a reservoir

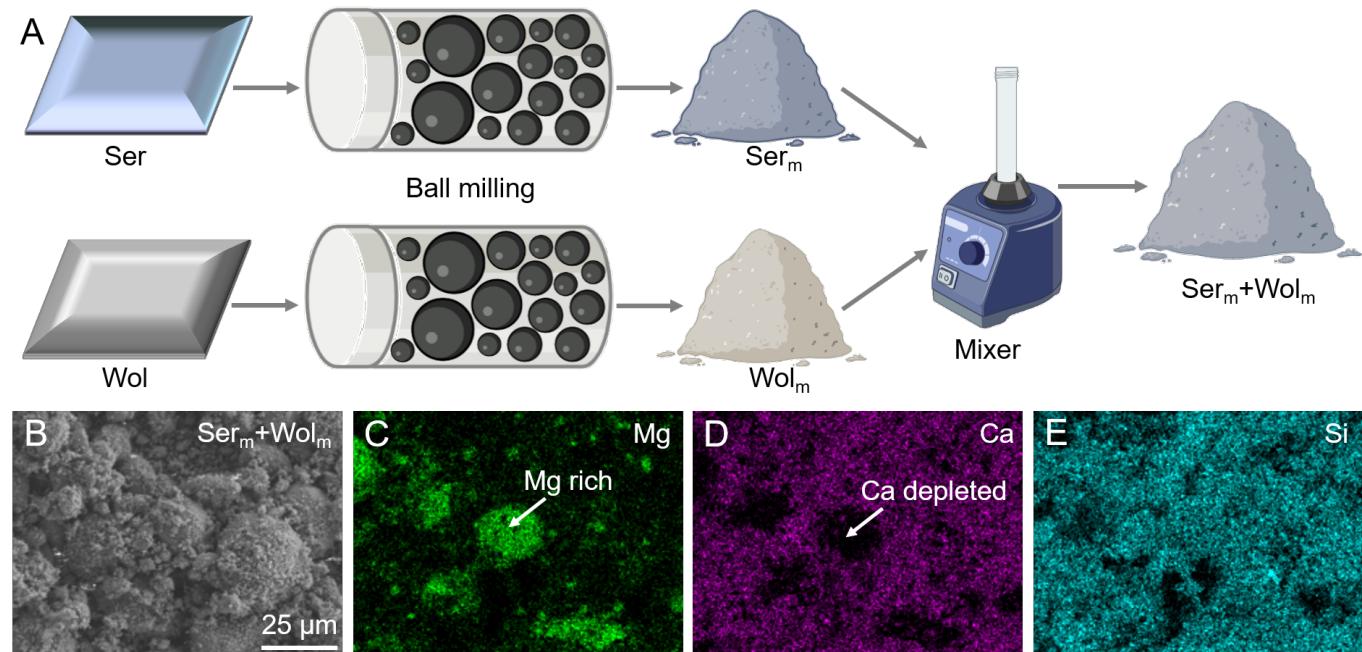
255 for CO_2 , wollastonite led to the formation of calcite. The emergence of a new XRD
 256 peak, such as the one at 29.49° corresponding to calcite (104) plane (Figure 1G)
 257 confirms the transformation of CaSiO_3 to CaCO_3 . The weight loss of carbonated m-
 258 wollastonite (c-m-wollastonite, C-wol_m) is prominently observed in the TGA analyses
 259 within the temperature range of 500 to 750 °C (Figure 1H). This aligns with the thermal
 260 decomposition of CaCO_3 , setting it apart from the carbonation of m-serpentine.
 261 According to TGA curves, approximately 4.1 wt% of CO_2 is sequestered within c-m-
 262 wollastonite, resulting in a carbonation degree of 12.89%. This result indicated that the
 263 m-wollastonite we used in this study has relatively lower CO_2 storage capacity than that
 264 of m-serpentine.


265 **Figure 1.** Aqueous mineral carbonation using individually ball-milled (A-D) serpentine
 266 (Ser_m) and (E-H) wollastonite (Wol_m). SEM images of individually ball-milled (A)
 267 serpentine and (E) wollastonite. XRD spectra of (B and F) serpentine and (C and G)
 268 wollastonite before and after carbonation, respectively. TGA curves collected from
 269 carbonated (D) serpentine and (H) wollastonite.

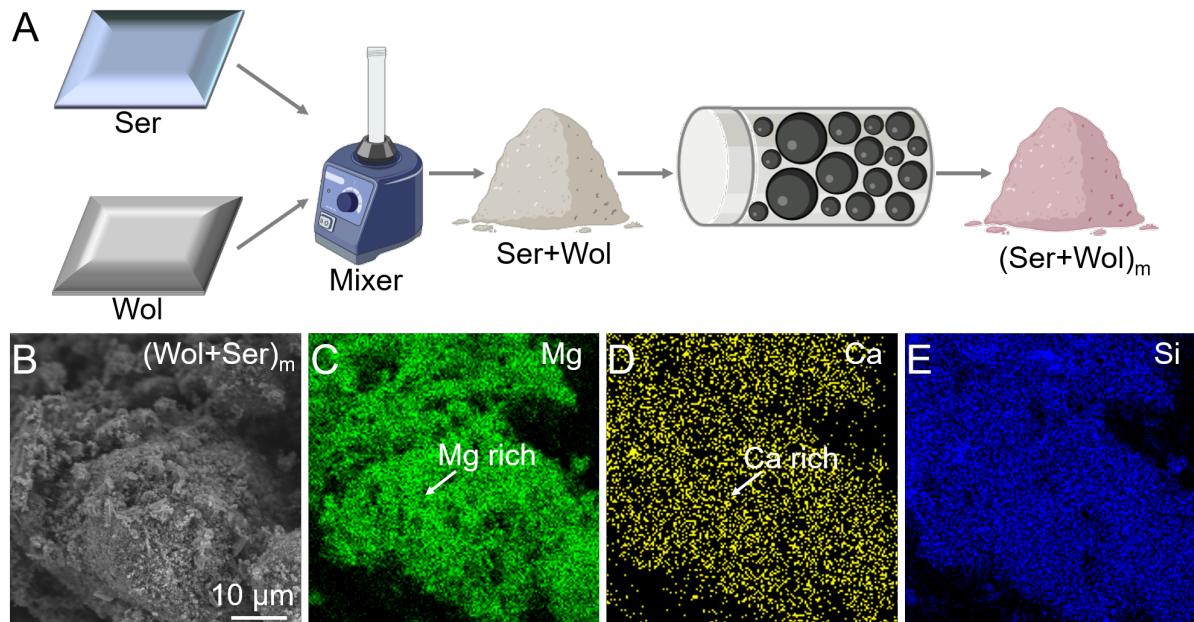
270

271 *3.2 Mineral carbonation using the mixture of individually ball-milled serpentine and*
 272 *wollastonite*

273 To investigate the interactive effect of serpentine and wollastonite on aqueous
274 mineral carbonation, we crafted carbonating materials by directly combining
275 individually ball-milled serpentine and wollastonite (m-serpentine + m-wollastonite,
276 $\text{Ser}_m + \text{Wol}_m$) powders (Figure 2A). The particle size analyses indicate that the average
277 size of the mixture is approximately 10 μm (Figure S1). Within the mixture, distinct
278 Ca-rich and Mg-rich regions formed with spatial separation (Figures 2C and D), while
279 the Si was the uniformly distributed (Figure 2E). Even after carbonation, c-m-
280 wollastonite and c-m-serpentine remain distinguishable in SEM images (Figure 3A).
281 Carbonated m-serpentine + m-wollastonite (c-(m-serpentine + m-wollastonite), C-
282 ($\text{Ser}_m + \text{Wol}_m$)), exhibits the presence of Ca (Figure 3B), Mg (Figure 3C), and C (Figure
283 3D). Interestingly, despite reacting in solutions for 1 hour, the Ca and Mg elements do
284 not merge into one phase, still maintaining spatial separation (Figures 3B and C). This
285 result suggested that the carbonation of m-serpentine + m-wollastonite proceeded via
286 the formation of the combination of MgCO_3 and CaCO_3 rather than $(\text{Mg, Ca})\text{CO}_3$.


287 To quantify the carbonation degree of the m-serpentine + m-wollastonite
288 mixture, we conducted TGA experiments and the representative weight-temperature
289 curve displayed three distinct weight loss events within temperature ranges of 50-200,
290 350-460, and 605-710 °C (Figure 3E). These events correspond to the evaporation of
291 H_2O , decomposition of MgCO_3 , and CaCO_3 , respectively. After separating the
292 decomposition of MgCO_3 and CaCO_3 , we quantified the conversion degree of MgO
293 into MgCO_3 and the values increased from 18.87% to 23.12% (Figure 3F). In contrast
294 with the m-serpentine, the carbonation degree of m-wollastonite within the mixture got
295 reduced with increasing the content of m-wollastonite (Figure 3G). Here, the increase
296 or decrease in MgO or CaO conversion degree were influenced by the ration of Na_2CO_3
297 to serpentine or wollastonite, we will make analyses in the discussion section.

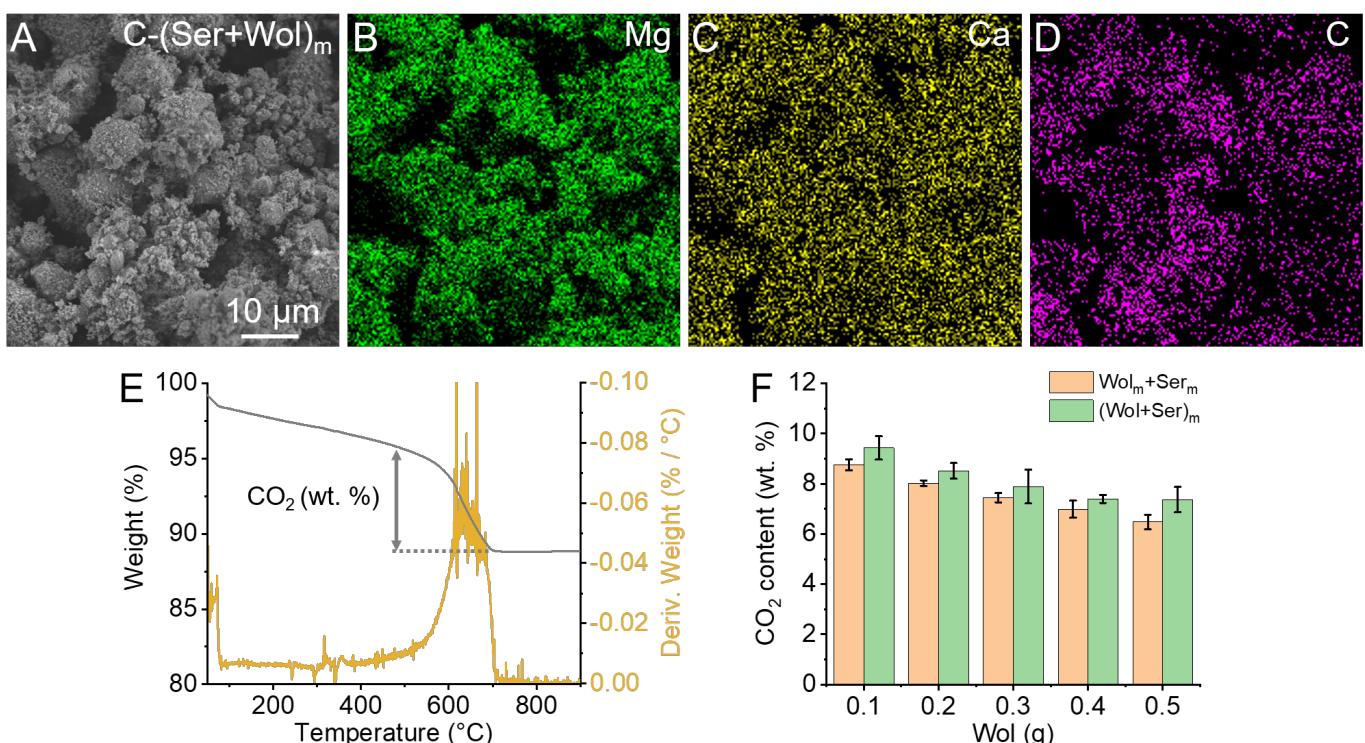
298 **Figure 2.** Preparing and characterizing the mixture of individually ball-milled
299 serpentine and wollastonite (Ser_m + Wol_m). (A) A schematic diagram of preparing
300 sample. (B) A SEM images with corresponding (C) Mg, (D) Ca, and (E) Si distributions.


301

302

303 **Figure 3.** Aqueous carbonation of the mixture of individually ball-milled serpentine
304 and wollastonite (Ser_m + Wol_m). (A) SEM images and corresponding (B-D) element
305 distributions of C-(Ser_m + Wol_m). (E) A presentative TGA curve indicating the presence
306 of H₂O, MgCO₃, and CaCO₃ within C-(Ser_m + Wol_m) samples. Quantifications of (F)
307 MgO and (G) CaO within the mixture converting into MgCO₃ and CaCO₃.

308

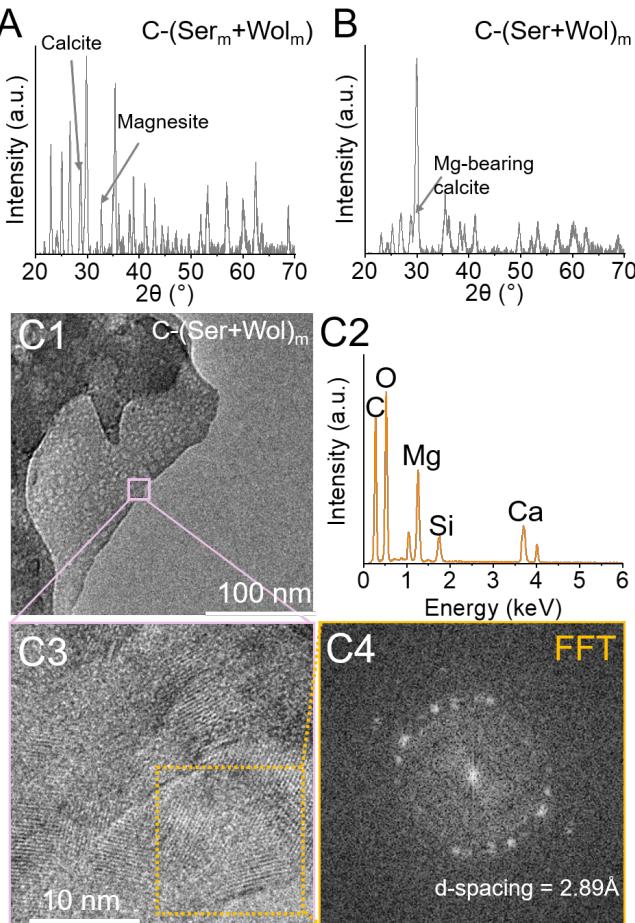


310 **Figure 4.** Preparing co-milled serpentine and wollastonite. (A) A schematic diagram of
 311 preparing sample. (B) A SEM image with corresponding (C) Mg, (D) Ca, and (E) Si
 312 distributions. SEM-EDX results showing serpentine and wollastonite merging into one
 313 phase.

314
 315 Furthermore, we subjected the serpentine and wollastonite mixture to ball
 316 milling (Figure 4A). Post co-milling, the original serpentine and wollastonite cannot be
 317 discerned through SEM (Figure 4B), and elements (e.g., Mg, Ca, and Si) merge into a
 318 single phase (Figures 4C, D, and E). This newly formed phase is referred to as m-
 319 (serpentine + wollastonite). Carbonated m-(serpentine + wollastonite), c-m-(serpentine
 320 + wollastonite), contains Mg, Ca, Si, and C elements, as revealed by SEM-EDX
 321 mapping, showcasing the incorporation of $MgCO_3$ into $CaCO_3$ (Figures 5A, B, C, and
 322 D). TGA was employed to quantify the carbonation degree, revealing a single main
 323 weight loss event (Figure 5E), distinct from the results of c-(m-serpentine + c-
 324 wollastonite). The primary weight loss occurs in the temperature range of 500-700 °C,
 325 much higher than that of $MgCO_3$ (Figure 1H) and relatively lower than that of $CaCO_3$
 326 (Figure 1D). As it is challenging to distinguish Ca- or Mg-contributed carbonation, the

327 CO₂ content is utilized here to represent the carbonation degree. With increasing
 328 amounts of wollastonite added into the (m-serpentine + m-wollastonite) mixture, fewer
 329 CO₂ molecules were stored within the mixtures (Figure 5F). Since the added
 330 wollastonite with low CO₂ storage capacity, the decrease of CO₂ content within the
 331 carbonated mixture did not mean that wollastonite inhibited the carbonation of
 332 serpentine. Additionally, increasing the amount of wollastonite decreased the specific
 333 surface area, resulting in less CO₂ reacting with the minerals (Figure S2). In comparison
 334 with (m-serpentine + m-wollastonite), the co-milled samples stored more CO₂,
 335 indicating that co-milling enhances the aqueous mineral carbonation of serpentine and
 336 wollastonite (Figure 5F).

337

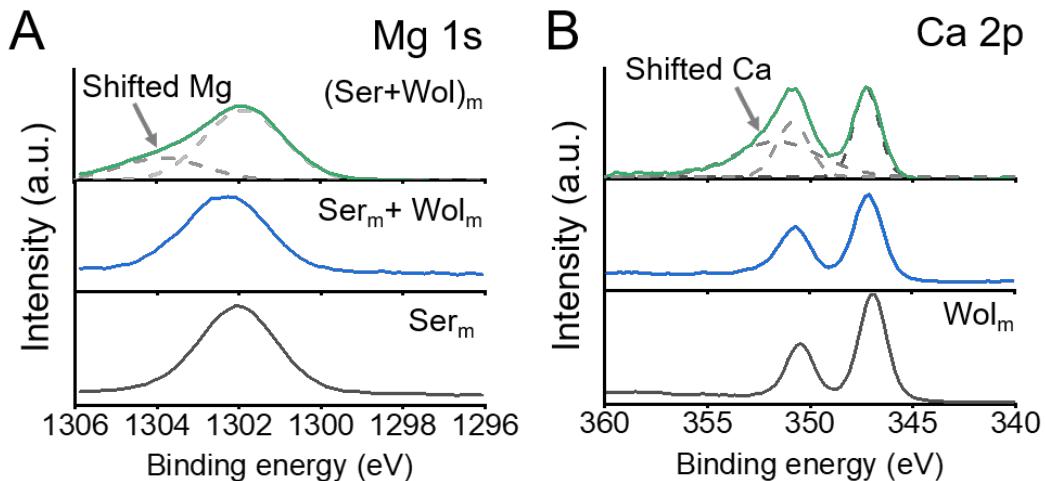


338 **Figure 5.** Characterization of carbonated co-milled serpentine and wollastonite (C-(Ser
 339 + Wol)_m). (A) A representative SEM image of C-(Ser + Wol)_m samples with
 340 corresponding (B) Mg, (C) Ca, and (D) C distributions. (E) A representative TGA curve
 341 showing only one main weight loss step. (F) CO₂ content stored within carbonated
 342 (Ser_m + Wol_m) (orange bar), and (Ser + Wol)_m (green bar); suggesting that co-milled
 343 sample contributes to high carbonation degree than that using the mixed sample.

344

345 C-(m-serpentine + m-wollastonite) and c-m-(serpentine + wollastonite) samples
346 exhibit distinct properties, particularly in their thermal decomposition behaviors
347 (Figures 3E and 5E). We attributed the shift in decomposition temperature of c-m-
348 (serpentine + wollastonite) to the formation of Mg-bearing calcium carbonates (Mg,
349 Ca)CO₃. This hypothesis is supported by the presence of Mg, Ca, and C within the
350 single phase (Figures 5A, B, C, and D). To test our hypothesis, we employed XRD to
351 characterize crystalline phases within carbonated samples. In contrast to the XRD
352 spectrum of c-(m-serpentine + m-wollastonite), which contains characteristic peaks of
353 calcite (28.7°) and magnesite (32.8°) (Figure 6A, Figure S3A), the XRD spectrum of
354 c-m-(serpentine + wollastonite) shows no new peaks but an enhanced intensity at 29.8°,
355 corresponding to the Mg-bearing calcite characteristic peak (Figure 6B, Figure S3B).
356 To further identify the newly formed phase at the nanoscale, we imaged the precipitates
357 using TEM (Figure 6D1). The corresponding EDX spectrum demonstrated that the
358 phases consist of C, O, Mg, Si, and Ca elements (Figure 6D2). The high-resolution
359 TEM (HRTEM) image reveals the existence of a crystalline phase (Figure 6D3).
360 Derived from fast Fourier transform (FFT) pattern (Figure 6D4), the measured value of
361 d-spacing is 2.89 Å, close to 3.03 Å for the (104) lattice spacing of calcite. The
362 difference between the measured spacing and the database is attributed to Mg²⁺ (79 pm)
363 substitution for Ca²⁺ (100 pm) in the structure. Combining EDX and HRTEM analyses
364 (Figure 6D), the newly formed phase is identified as Mg-rich calcite, corroborating the
365 XRD and XPS results (Figure 6C1 and C2).

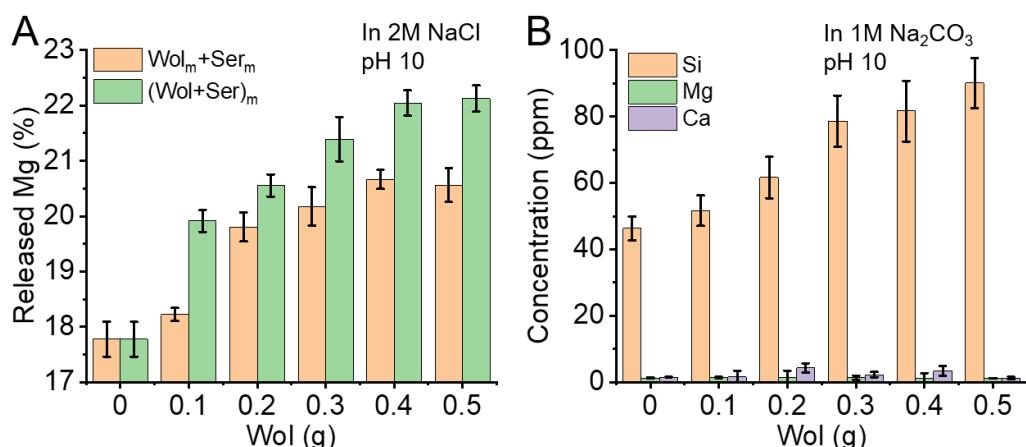
366


367 **Figure 6.** Identifications of new phases within carbonated co-milled serpentinite and
 368 wollastonite. XRD spectra of (A) C-(Ser_m + Wol_m) (as a reference) and (B) C-(Ser +
 369 Wol)_m. (C1) TEM images of C-(Ser + Wol)_m and (C2) corresponding EDX showing it
 370 contains C, O, Mg, Si, and Ca elements. (C3) High resolution TEM (HRTEM) images
 371 and corresponding FFT patterns.

372

373 **4. Discussions**

374 The dissolution of serpentinite and wollastonite in carbonate solutions provided
 375 a reliable source of cations (Mg²⁺ and Ca²⁺), subsequently inducing the nucleation and
 376 growth of MgCO₃ and CaCO₃, respectively. Fe₂(CO₃)₃ was not detected due to the
 377 minimal release of Fe from serpentinite (Figure S4). The relatively high concentrations
 378 of dissolved silicate inhibited the precipitation of dolomite. Instead, dissolved silicates
 379 promoted the incorporation of Mg into Ca-Mg carbonates rather than forming dolomite
 380 (Fang and Xu, 2022). Additionally, the Ca to Mg ratio may play a role, as more Ca²⁺
 381 ions were released than Mg²⁺, which is not thermodynamically favorable for dolomite


382 formation (Brigatti et al., 2013). Our findings showed that leveraging the synergy
383 carbonation of co-milled serpentine and wollastonite can improve the CO₂ storage
384 (Figure 5F). Similar results have been reported in studies of the carbonation using Mg-
385 based and Ca-based materials. Zhang et al. took insights into the carbonation behavior
386 of Mg(OH)₂-Ca(OH)₂ mixtures and showed that the carbonation degree increased with
387 the increase of the Ca(OH)₂ content (Zhang et al., 2023). Chen et al. showed a similar
388 result that calcite facilitated the carbonation of serpentine (Chen et al., 2023). These
389 results indicated the interaction between two mineral phases endowed the minerals with
390 superior reactivity compared to the single phase. However, in the absent of co-milling,
391 the enhancement of carbonation degree (m-serpentine + m-wollastonite) in this study
392 can be attributed to the different ratios of provided solutions to solid specimens. The
393 increase of wollastonite contents led to a rise in the amount of provided Na₂CO₃
394 solution, thus promoting the carbonation of both serpentine and wollastonite. Further,
395 we testified the effect of L/S on mineral carbonation, as shown in Figure S4. The
396 carbonation degree of serpentine increased from 18.01% to 23.64% with the rise of the
397 L/S ratio from 10 to 20 mL/g (Figure S5A), demonstrating that increasing water content
398 promoted mineral carbonation. A similar trend was observed in the case of wollastonite
399 (Figure S5B). Therefore, as for the (m-serpentine + m-wollastonite) mixture, the water
400 content provided was higher than that of individually carbonating m-serpentine or m-
401 wollastonite, resulting an increase in carbonation degree.

402 **Figure 7.** XPS spectra of (A) Mg 1s and (B) Ca 2p and collected from m-serpentine
 403 (Ser_m) or m-wollastonite (Wol_m) (black), m-serpentine + m-wollastonite (Ser_m + Wol_m)
 404 (blue), and m-(serpentine + wollastonite) (Ser + Wol)_m (green), respectively.

405
 406 The carbonation degree could be further enhanced with co-milling serpentine
 407 and wollastonite. The mixture of serpentine and wollastonite is subjected to high-energy
 408 ball-milling operation, inducing various effects, such as solid diffusion, rearrangement
 409 of ions/atoms, and atomic intermixing, and subsequently leading to the formation of
 410 intermediate phases on the original mineral surface (Maslyk et al., 2022). To explore
 411 these effects, we utilized XPS to characterize the states of Mg and Ca elements (Figures
 412 7A and B). Using m-serpentine, m-wollastonite, and m-serpentine + m-wollastonite as
 413 references, where Ca 2p1/2 and Ca 2p3/2 are located at 347.1 and 350.7 eV, a new peak
 414 at 351.6 eV was identified in the XPS spectrum of m-(serpentine + wollastonite) (Figure
 415 7B). Similar findings were observed in the XPS spectra of Mg 1s (Figure 7A). The
 416 simultaneous shifting of Mg 1s and Ca 2p peaks can be explained by the electron
 417 attraction between Mg and Ca atoms. Based on our comparative XPS characterizations,
 418 we can conclude that the co-milling of serpentine and wollastonite induced a solid-state
 419 interfacial reaction with the replacement of ion constituents (e.g. Mg²⁺ and Ca²⁺)
 420 between two mineral surfaces. This interfacial reaction led to the formation of Ca-

421 containing serpentine and Mg-containing wollastonite phases, which was analogous to
 422 the case of co-milled calcite and serpentine. The dissolution of m-(serpentine +
 423 wollastonite) released Mg^{2+} and Ca^{2+} ions simultaneously at the mineral-solution
 424 interface, contributing to the precipitation of $(Mg, Ca)CO_3$. Interestingly, compared
 425 with (m-serpentine + m-wollastonite), the co-milled minerals released more Mg^{2+} ions
 426 from 0.5 g serpentine (Figure 8A). This phenomenon can be interpreted by the
 427 divalent metal-promoted dissolution. Released Ca^{2+} competed with Mg^{2+} binding to
 428 OH^- or SiO_3^{2-} ions and subsequently limited the reprecipitation of Mg-containing
 429 phases (e.g. $Mg(OH)_2$ or $MgSiO_3$), which benefits the dissolution of serpentine. The
 430 more Mg^{2+} ions serpentine released into the mineral-solution interface, the higher
 431 carbonation degree it got. Here, we still need to note that released Ca^{2+} or Mg^{2+} ions
 432 were confined to the mineral-solution interface without diffusion during the
 433 carbonation using 1 M Na_2CO_3 (Figure 8B). Consequently, carbonating m-(serpentine
 434 + wollastonite) led to the formation of $(Mg, Ca)CO_3$ since co-milling merged serpentine
 435 and wollastonite into a mixture of Ca-containing serpentine and Mg-containing
 436 wollastonite.

437 **Figure 8.** The dissolution properties of m-serpentine + m-wollastonite ($Ser_m + Wol_m$)
 438 and m-(serpentine + wollastonite) ($Ser + Wol)_m$. (A) Quantifications of released Mg
 439 from serpentine in the present of 2 M $NaCl$ at pH 10, showing that more Mg^{2+} released
 440 from $(Ser + Wol)_m$ than that from $(Ser_m + Wol_m)$. (B) Distribution of elements in
 441 solutions during the carbonation using $(Ser + Wol)_m$, showing that released Ca^{2+} or
 442 Mg^{2+} ions were confined to the mineral-solution interface without diffusion.

443 **5. Conclusions**

444 In this study, *ex situ* aqueous mineral carbonation was conducted using m-
445 serpentine, m-wollastonite, m-serpentine + m-wollastonite, and m-(serpentine +
446 wollastonite) powders. Through SEM-EDX, TGA-DSC, XRD, XPS, and HRTEM
447 analyses, it was confirmed that carbonation pathways involved the formation of calcite,
448 magnesite, calcite + magnesite, and Mg-bearing calcite for m-serpentine, m-
449 wollastonite, m-serpentine + m-wollastonite, and m-(serpentine + wollastonite),
450 respectively. Quantification revealed that the co-milled sample m-(serpentine +
451 wollastonite) exhibited the highest carbonation degree compared to their equivalent
452 mixture. Our findings underscore the synergistic effect between wollastonite and
453 serpentine on carbonation. These fundamental insights into CO₂-reaction fluid-mineral
454 interactions are crucial for the development of large-scale chemical processes
455 converting CO₂ to carbonates. They also aid in predicting the fate of CO₂ injected into
456 geological formations containing calcium and magnesium silicate minerals and rocks.

457

458 **Declaration of Competing Interest**

459 The authors declare that they have no known competing financial interests or
460 personal relationships that could have appeared to influence the work reported in this
461 paper.

462 **ACKNOWLEDGEMENTS**

463 This material is based upon work supported by the National Science Foundation
464 under grant no. 2132022. The information, data, or work presented herein were funded
465 in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department
466 of Energy, under Award Number DE-AR 0001636. The authors gratefully acknowledge
467 use of facilities and instrumentation supported by NSF through the University of
468 Wisconsin Materials Research Science and Engineering Center (DMR-2309000).

469 **Appendix A. Supplementary data**

470 Supplementary data to this article can be found online.

471

472 **Reference**

473 Azdarpour, A., Asadullah, M., Junin, R., Manan, M., Hamidi, H., Daud, A.R.M., 2014.
474 Carbon dioxide mineral carbonation through ph-swing process: A review. *Energy*
475 Procedia

61, 2783–2786. <https://doi.org/10.1016/j.egypro.2014.12.311>

476 Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., Karaei, M.A.,
477 2015. A review on carbon dioxide mineral carbonation through pH-swing process.
478 *Chem. Eng. J.* 279, 615–630. <https://doi.org/10.1016/j.cej.2015.05.064>

479 Brigatti, M.F., Galán, E., Theng, B.K.G., 2013. Structure and Mineralogy of Clay
480 Minerals, Developments in Clay Science. <https://doi.org/10.1016/B978-0-08-098258-8.00002-X>

482 Chen, M., Zhang, Q., Li, Z., Hu, H., Wang, C., 2023. Insights into the mechanochemical
483 interfacial interaction between calcite and serpentine: Implications for ambient
484 CO₂ capture. *J. Clean. Prod.* 401, 136715.
485 <https://doi.org/10.1016/j.jclepro.2023.136715>

486 Clark, A.C., MacFarlane, J., Vanorio, T., 2018. Permeability Evolution of a Cemented
487 Volcanic Ash During Carbonation and CO₂ Depressurization. *J. Geophys. Res.*
488 Solid Earth

123, 8409–8427. <https://doi.org/10.1029/2018JB015810>

489 Conejo, A.N., Birat, J.P., Dutta, A., 2020. A review of the current environmental
490 challenges of the steel industry and its value chain. *J. Environ. Manage.* 259,
491 109782. <https://doi.org/10.1016/j.jenvman.2019.109782>

492 Eikeland, E., Blichfeld, A.B., Tyrsted, C., Jensen, A., Iversen, B.B., 2015. Optimized
493 carbonation of magnesium silicate mineral for CO₂ storage. *ACS Appl. Mater.*
494 Interfaces

7, 5258–5264. <https://doi.org/10.1021/am508432w>

495 Fang, Y., Xu, H., 2022. Dissolved silica-catalyzed disordered dolomite precipitation.
496 *Am. Mineral.* 107, 443–452. <https://doi.org/10.2138/am-2021-7474>

497 Feng, D., Hicks, A., 2023. Environmental, human health, and CO₂ payback estimation
498 and comparison of enhanced weathering for carbon capture using wollastonite. *J.*
499 *Clean. Prod.* 414, 137625. <https://doi.org/10.1016/j.jclepro.2023.137625>

500 Ghoorah, M., Dlugogorski, B.Z., Balucan, R.D., Kennedy, E.M., 2014. Selection of
501 acid for weak acid processing of wollastonite for mineralisation of CO₂. *Fuel* 122,
502 277–286. <https://doi.org/10.1016/j.fuel.2014.01.015>

503 Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H., 2014.
504 Experimental determination of plagioclase dissolution rates as a function of its
505 composition and pH at 22°C. *Geochim. Cosmochim. Acta* 139, 154–172.
506 <https://doi.org/10.1016/j.gca.2014.04.028>

507 Hövelmann, J., Austrheim, H., Beinlich, A., Anne Munz, I., 2011. Experimental study
508 of the carbonation of partially serpentinized and weathered peridotites. *Geochim.*
509 *Cosmochim. Acta* 75, 6760–6779. <https://doi.org/10.1016/j.gca.2011.08.032>

510 Huijgen, W.J.J., Witkamp, G.J., Comans, R.N.J., 2006. Mechanisms of aqueous
511 wollastonite carbonation as a possible CO₂ sequestration process. *Chem. Eng. Sci.*
512 61, 4242–4251. <https://doi.org/10.1016/j.ces.2006.01.048>

513 Kashim, M.Z., Tsegab, H., Rahmani, O., Abu Bakar, Z.A., Aminpour, S.M., 2020.
514 Reaction Mechanism of Wollastonite in Situ Mineral Carbonation for CO₂
515 Sequestration: Effects of Saline Conditions, Temperature, and Pressure. *ACS*
516 *Omega* 5, 28942–28954. <https://doi.org/10.1021/acsomega.0c02358>

517 Kelemen, P.B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., Vankeuren, A.P.,
518 2020. Engineered carbon mineralization in ultramafic rocks for CO₂ removal from
519 air: Review and new insights. *Chem. Geol.* 550, 119628.
520 <https://doi.org/10.1016/j.chemgeo.2020.119628>

521 Khan, R.I., Intesarul Haque, M., Siddique, S., Landis, E.N., Ashraf, W., 2023. Effects
522 of amino acids on the multiscale properties of carbonated wollastonite composites.
523 *Constr. Build. Mater.* 374, 130816.
524 <https://doi.org/10.1016/j.conbuildmat.2023.130816>

525 Kwon, S., Fan, M., Dacosta, H.F.M., Russell, A.G., Tsouris, C., 2011. Reaction kinetics
526 of CO₂ carbonation with Mg-rich minerals. *J. Phys. Chem. A* 115, 7638–7644.
527 <https://doi.org/10.1021/jp2040899>

528 Lothenbach, B., Nied, D., L'Hôpital, E., Achiedo, G., Dauzères, A., 2015. Magnesium
529 and calcium silicate hydrates. *Cem. Concr. Res.* 77, 60–68.
530 <https://doi.org/10.1016/j.cemconres.2015.06.007>

531 Maroto-Valer, M.M., Fauth, D.J., Kuchta, M.E., Zhang, Y., Andrésen, J.M., 2005.
532 Activation of magnesium rich minerals as carbonation feedstock materials for CO₂
533 sequestration. *Fuel Process. Technol.* 86, 1627–1645.
534 <https://doi.org/10.1016/j.fuproc.2005.01.017>

535 Maslyk, M., Gäb, T., Matveeva, G., Opitz, P., Mondeshki, M., Krysiak, Y., Kolb, U.,
536 Tremel, W., 2022. Multistep Crystallization Pathways in the Ambient-
537 Temperature Synthesis of a New Alkali-Activated Binder. *Adv. Funct. Mater.* 32.
538 <https://doi.org/10.1002/adfm.202108126>

539 Matter, J.M., Kelemen, P.B., 2009. Permanent storage of carbon dioxide in geological
540 reservoirs by mineral carbonation. *Nat. Geosci.* 2, 837–841.
541 <https://doi.org/10.1038/ngeo683>

542 McKelvy, M.J., Chizmeshya, A.V.G., Diefenbacher, J., Béarat, H., Wolf, G., 2004.
543 Exploration of the role of heat activation in enhancing serpentine carbon
544 sequestration reactions. *Environ. Sci. Technol.* 38, 6897–6903.
545 <https://doi.org/10.1021/es049473m>

546 Min, Y., Jun, Y.S., 2018. Wollastonite carbonation in water-bearing supercritical CO₂:
547 Effects of water saturation conditions, temperature, and pressure. *Chem. Geol.* 483,
548 239–246. <https://doi.org/10.1016/j.chemgeo.2018.01.012>

549 Min, Y., Li, Q., Voltolini, M., Kneafsey, T., Jun, Y.S., 2017. Wollastonite Carbonation

550 in Water-Bearing Supercritical CO₂: Effects of Particle Size. *Environ. Sci.*
551 *Technol.* 51, 13044–13053. <https://doi.org/10.1021/acs.est.7b04475>

552 Monasterio-Guillot, L., Di Lorenzo, F., Ruiz-Agudo, E., Rodriguez-Navarro, C., 2019.
553 Reaction of pseudowollastonite with carbonate-bearing fluids: Implications for
554 CO₂ mineral sequestration. *Chem. Geol.* 524, 158–173.
555 <https://doi.org/10.1016/j.chemgeo.2019.06.011>

556 Monasterio-Guillot, L., Fernandez-Martinez, A., Ruiz-Agudo, E., Rodriguez-Navarro,
557 C., 2021. Carbonation of calcium-magnesium pyroxenes: Physical-chemical
558 controls and effects of reaction-driven fracturing. *Geochim. Cosmochim. Acta* 304,
559 258–280. <https://doi.org/10.1016/j.gca.2021.02.016>

560 Munz, I.A., Brandvoll, Haug, T.A., Iden, K., Smeets, R., Kihle, J., Johansen, H., 2012.
561 Mechanisms and rates of plagioclase carbonation reactions. *Geochim. Cosmochim.
562 Acta* 77, 27–51. <https://doi.org/10.1016/j.gca.2011.10.036>

563 Naraharisetti, P.K., Yeo, T.Y., Bu, J., 2019. New classification of CO₂ mineralization
564 processes and economic evaluation. *Renew. Sustain. Energy Rev.* 99, 220–233.
565 <https://doi.org/10.1016/j.rser.2018.10.008>

566 Neerup, R., Løge, I.A., Kontogeorgis, G.M., Thomsen, K., Fosbøl, P.L., 2023.
567 Measurements and modelling of FeCO₃ solubility in water relevant to corrosion
568 and CO₂ mineralization. *Chem. Eng. Sci.* 270, 118549.
569 <https://doi.org/10.1016/j.ces.2023.118549>

570 Orlando, A., Borrini, D., Marini, L., 2011. Dissolution and carbonation of a serpentinite:
571 Inferences from acid attack and high P-T experiments performed in aqueous
572 solutions at variable salinity. *Appl. Geochemistry* 26, 1569–1583.
573 <https://doi.org/10.1016/j.apgeochem.2011.06.023>

574 Power, I.M., Wilson, S.A., Dipple, G.M., 2013. Serpentinite carbonation for CO₂
575 sequestration. *Elements* 9, 115–121. <https://doi.org/10.2113/gselements.9.2.115>

576 Ragipani, R., Sreenivasan, K., Anex, R.P., Zhai, H., Wang, B., 2022. Direct Air Capture
577 and Sequestration of CO₂ by Accelerated Indirect Aqueous Mineral Carbonation
578 under Ambient Conditions. *ACS Sustain. Chem. Eng.* 10, 7852–7861.
579 <https://doi.org/10.1021/acssuschemeng.1c07867>

580 Romanov, V., Soong, Y., Carney, C., Rush, G.E., Nielsen, B., O'Connor, W., 2015.
581 Mineralization of Carbon Dioxide: A Literature Review. *ChemBioEng Rev.* 2,
582 231–256. <https://doi.org/10.1002/cben.201500002>

583 Rosa, L.P., Ribeiro, S.K., 2001. The present, past, and future contributions to global
584 warming of CO₂ emissions from fuels a key for negotiation in the climate
585 convention. *Clim. Change* 48, 289–307.
586 <https://doi.org/10.1023/A:1010720931557>

587 Sanna, A., Dri, M., Maroto-Valer, M., 2013. Carbon dioxide capture and storage by pH
588 swing aqueous mineralisation using a mixture of ammonium salts and antigorite
589 source. *Fuel* 114, 153–161. <https://doi.org/10.1016/j.fuel.2012.08.014>

590 Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., Maroto-Valer, M.M., 2014. A review
591 of mineral carbonation technologies to sequester CO₂. *Chem. Soc. Rev.* 43, 8049–
592 8080. <https://doi.org/10.1039/c4cs00035h>

593 Santos, H.S., Nguyen, H., Venâncio, F., Ramteke, D., Zevenhoven, R., Kinnunen, P.,
594 2023. Mechanisms of Mg carbonates precipitation and implications for CO₂
595 capture and utilization/storage. *Inorg. Chem. Front.* 10.
596 <https://doi.org/10.1039/d2qi02482a>

597 Scott, A., Oze, C., Shah, V., Yang, N., Shanks, B., Cheeseman, C., Marshall, A.,
598 Watson, M., 2021. Transformation of abundant magnesium silicate minerals for
599 enhanced CO₂ sequestration. *Commun. Earth Environ.* 2, 1–6.
600 <https://doi.org/10.1038/s43247-021-00099-6>

601 Smith, K.R., Desai, M.A., Rogers, J. V., Houghton, R.A., 2013. Joint CO₂ and CH₄
602 accountability for global warming. *Proc. Natl. Acad. Sci. U. S. A.* 110.
603 <https://doi.org/10.1073/pnas.1308004110>

604 Stubbs, A.R., Power, I.M., Paulo, C., Wang, B., Zeyen, N., Wilson, S., Mervine, E.,
605 Gunning, C., 2023. Impact of wet-dry cycles on enhanced rock weathering of
606 brucite, wollastonite, serpentine and kimberlite: Implications for carbon
607 verification. *Chem. Geol.* 637, 121674.
608 <https://doi.org/10.1016/j.chemgeo.2023.121674>

609 Wang, Y., Li, Y., Li, M., Jiao, N., Zheng, Q., Yu, R., Zhang, E., Liu, D., 2024. Influence
610 of alkaline earth metal ions upon the dissolution and carbon storage of olivine
611 containing associated kaolinite. *Appl. Clay Sci.* 255, 107394.
612 <https://doi.org/10.1016/j.clay.2024.107394>

613 Yoro, K.O., Daramola, M.O., 2020. CO₂ emission sources, greenhouse gases, and the
614 global warming effect, *Advances in Carbon Capture: Methods, Technologies and*
615 *Applications*. Elsevier Inc. <https://doi.org/10.1016/B978-0-12-819657-1.00001-3>

616 Zhai, H., Chen, Q., Duan, Y., Liu, B., Wang, B., 2024. Silica Polymerization Driving
617 Opposite Effects of pH on Aqueous Carbonation Using Crystalline and
618 Amorphous Calcium Silicates. *Inorg. Chem.* 63, 4574–4582.
619 <https://doi.org/10.1021/acs.inorgchem.3c04005>

620 Zhai, H., Chen, Q., Yilmaz, M., Wang, B., 2023. Enhancing Aqueous Carbonation of
621 Calcium Silicate through Acid and Base Pretreatments with Implications for
622 Efficient Carbon Mineralization. *Environ. Sci. Technol.* 57, 13808–13817.
623 <https://doi.org/10.1021/acs.est.3c03942>

624 Zhang, J., Sun, Y., Yu, J., 2017. Qualitative discussion of prenucleation cluster role in
625 crystallization of calcium carbonate under high concentration of magnesium based
626 on experimental phenomena. *J. Cryst. Growth* 478, 77–84.
627 <https://doi.org/10.1016/j.jcrysgr.2017.07.012>

628 Zhang, Y., Dawe, R.A., 2000. Influence of Mg²⁺ on the kinetics of calcite precipitation
629 and calcite crystal morphology. *Chem. Geol.* 163, 129–138.
630 [https://doi.org/10.1016/S0009-2541\(99\)00097-2](https://doi.org/10.1016/S0009-2541(99)00097-2)

631 Zhang, Z., Liu, Z., Wang, F., Hu, S., 2023. Elucidating the Interaction Mechanism of
632 Mg(OH)₂ and Ca(OH)₂ under Enforced Carbonation. *ACS Sustain. Chem. Eng.*
633 11, 9442–9454. <https://doi.org/10.1021/acssuschemeng.3c01549>

634