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1. INTRODUCTION

In the face of the escalating global climate crisis, there is a press-
ing need for energy solutions that are both environmentally
sustainable and economically viable. Projections indicate that
within the next three decades, the United States is anticipated
to double its capacity for renewable energy production, consti-
tuting 42% of the nation’s total power generation (Holtberg
et al. (2011)). Fulfilling the demand for sustainable energy ne-
cessitates the development of economically feasible renewable
energy systems. Wind energy emerges prominently as a sub-
stantial renewable resource worldwide. Remarkable advance-
ments in wind energy technology over the past decade have en-
abled it to provide power at costs comparable to (or even lower
than) fossil fuels in numerous regions. Wind energy installa-
tions have accounted for 28% of the United States’ capacity ex-
pansions in the preceding decade (Wiser and Bolinger (2019)).

While the prevalence of wind power has increased drastically
over the last decade, economic optimization of these systems
(and renewable energy systems as a whole) is made particularly
challenging for at least two reasons. First, the optimal plant
and controller parameters depend strongly on both the environ-
mental energy resource and each other as described in Pao et al.
(2023). To deal with this uncertainty, several works such as
Pao et al. (2023), Bayat et al. (2023), and Naik and Vermillion
(2024) have presented co-design methodologies for considering
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this coupling in tandem with a stochastic energy resource.
Secondly, as indicated in Roberto Lacal-Aránteguia (2018),
the development of renewable energy systems is subject to long
design cycles with design freeze dates that often come before
either the device’s dynamical behavior or the environmental re-
source (ascertained via site studies) have been fully quantified.

One mechanism for improving the performance of an energy
system in the presence of modeling and environmental uncer-
tainty is to incorporate real-time controller and plant adaptabil-
ity. Physical adaptability of energy-harvesting kites has been
studied in the context of both chord and span morphing in Fine
et al. (2022) and Fine et al. (2023). Additionally, a large body of
literature has demonstrated that significant performance gains
can be realized through real-time controller adaptation (e.g.
Rotea (2017)). If a system is designed with adaptive plant and
controller parameters, the system can be reconfigured after the
plant and controller freeze dates. However, adaptability comes
at a cost, either in the form of a more complex physical design
or additional software development. While these benefits and
challenges with adaptability are generally well-understood,
no co-design formulation to-date has provided a quantitative
framework for optimizing adaptability.

We present a formal co-design formulation that treats the
levels of plant and controller adaptability as decision variables.
Central to the work is the concept of an “adaptability set”. The
size of a system’s adaptability set dictates how much plant and
controller parameters can be varied during operation. To opti-
mize the dimensions of this set, it is necessary to quantitatively
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understand the expected costs and benefits of adaptability
in the presence of a stochastic environment and evolving
(decreasing in time) modeling uncertainty. To accomplish this,
the proposed co-design formulation relies on several ingredients
to maximize the expected lifetime profit of an energy device in
the presence of adaptability. Those components include (i) a
low-complexity surrogate model of the system’s performance,
(ii) a statistical model of the environment, (iii) a statistical
characterization of how modeling uncertainty diminishes over
the design cycle, and (iv) cost models that quantify the price
of adaptability (in terms of additional mechanical hardware
and/or software development). To realize real-time plant and
controller adaptation, we rely on a combination of a wind-
driven lookup table coupled with a simple feedback controller.

To demonstrate the efficacy of this framework, we performed
a case study on the Segmented Ultralight Morphing Rotor
(SUMR). The SUMR was analyzed in this work because
the system is both well-characterized (dynamically and
economically) and capable of real-time plant adaptation (see
Noyes et al. (2020), Zalkind et al. (2017), Kianbakht et al.
(2022), and Ananda et al. (2018)). Like a palm tree in the
wind, the SUMR turbine can increase the coning angle of
the blades (folding the blades inwards) in response to high
wind speeds, reducing structural loading on the blade roots
significantly, providing an efficient mechanism for curtailment
to a structural limitation and allowing the turbine to operate
at high wind speeds. A system model of the SUMR wind
turbine (from Zalkind et al. (2017)) is shown in Fig. 1. Our
results show a 6.5% projected increase in lifetime profitability
based on our surrogate model for optimization. Furthermore,
24-hour simulations on a higher-fidelity dynamic model show
less than 1% difference from the surrogate model.

Fig. 1. System Model of the SUMR from Zalkind et al. (2017)
(used with permission). In this diagram, ω represents the
turbine’s angular velocity, β represents the blade coning
angle, and θ represents the blade pitch angle.

2. CO-DESIGN FORMULATION

Our ultimate objective is to maximize the expected
lifetime profit. Accounting for modeling and environmental
uncertainty, the expected power generated is given by:

P̂avg=

∫ zmdl,max

zmdl,min

∫ zenv,max

zenv,min

ρmdl(zmdl|tp,tc)ρenv(zenv)

P̂∗(zenv,Ap,Ac,zmdl)dzenvdzmdl

(1)

where

P̂∗(zenv,Ap,Ac,zmdl)= max
xp∈Ap,xc∈Ac

P̂(zenv,xp,xc,zmdl) (2)

Here, P̂avg is the estimated average power generated by
the candidate system design, ρenv is the probability density
function (PDF) of the environmental energy resource zenv
(evaluated between zenv,min and zenv,max), ρmdl is the PDF of
uncertain model parameters zmdl (evaluated between zmdl,min

and zmdl,max), P̂ is the predicted power generation, P̂∗ is the
predicted maximal achievable power generation at a single
environmental condition and level of model uncertainty for any
plant and controller design contained within the “adaptability
sets” Ap and Ac. These sets, which are hypervolumes within
the space of admissible plant and controller designs (xp and
xc), define the amount of real-time adaptation in plant and
control variables (respectively) that is built into the design.
When certain plant and control parameters are fixed (non-
adaptive), Ap and Ac degenerate into lower-dimensional sets.
Thus, without loss of generality, the full design, regardless of
the amount (or existence) of adaptability, can be specified
based on Ap and Ac. The variables tp and tc are design
freeze dates for the plant and controller, respectively. Because
modeling uncertainty decays with time, the uncertainty present
at the time of design finalization depends on these freeze dates;
hence, the dependency in the PDF.

Given the objective of maximizing expected lifetime profit,
it is necessary to model the system cost as a function of
these same parameters. The overall cost of a system (Ksys)
is calculated in Eqn. 3 and is composed of four components:
Kinit (the cost of the baseline design), Kadapt (the cost of
incorporating a specified level of adaptability into the design),
Ktime (the cost of pushing back design freeze dates), and
KO&M (the cumulative cost of operation and maintenance).

Ksys=Kinit(Ap,Ac)+Kadapt(Ap,Ac)+Ktime(tp,tc)

+KO&M(Ap,Ac,Lsys(Ap,Ac),zenv)
(3)

Given an economic value for energy (Eval) and an estimate
of the system’s expected lifetime (Lsys), the expected lifetime
profit of an energy system can be expressed as:

J(Ap,Ac,tp,tc)=P̂avgLsysEval−Ksys (4)

This expression, which has units of monetary currency, can also
be divided by P̂avgLsys to obtain a metric that is equivalent to
Eval minus the inverse of the familiar levelized cost of energy
(LCOE). Thus, given a fixed value of Eval, the economic prof-
itability metric in this work varies monotonically with LCOE.

While the co-design formulation is predicated on the three
seemingly simple equations referenced in this section, the
calculation of the constituent quantities requires significant
effort. To ground this effort in an established application, we
turn to the SUMR wind turbine in the following section.

3. THE SUMR TURBINE: AN IDEAL CASE STUDY

3.1 Background on the SUMR Turbine

The SUMR wind turbine is a two-bladed downwind turbine
platform designed to enable the use of ultra-long blades
through active coning (see Noyes et al. (2020) and Ananda
et al. (2018)). By coning at high wind speeds, the SUMR
reduces blade bending loads. Furthermore, variable coning
functionality can be used to maximize power output in
low-wind conditions, demonstrated in Noyes et al. (2020).
Combined, these attributes enable the SUMR platform to
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operate in a wider range of conditions and at rated power
output more often than traditional turbines.

In this case study, the blade length (rb) represents a non-
adaptable plant decision variable, whereas the coning angle
(β) is treated as adaptable, with a (to-be-optimized) margin
of adaptability given by ∆β. Thus, the plant adaptability
set Ap is a line of length ∆β. For the controller, we consider
the possibility of having either a fixed or adaptive tip speed
ratio (TSR) setpoint (where the adaptive TSR setpoint
can be utilized to reduce loading in real time). This binary
control-strategy decision variable is given by Ktype. Thus, the
controller adaptability set Ac is either a line spanning the
full range of candidate TSR setpoints (when Ktype =1) or
a point (when Ktype =0). Finally, the plant and controller
freeze dates are given by tp and tc, respectively.

3.2 System Modeling

In this subsection, specific models for power generation, model
uncertainty, and cost of the SUMR turbine are introduced.
Specifically, the blade profile of the SUMR-13i, as described in
Ananda et al. (2018), is considered. Additionally, a first-order
dynamic model of the SUMR is introduced.

Aerodynamic Modeling: Using blade-element-momentum
theory as described in P. J. Moriarty (2005), the coefficients
of thrust (Ct) and power (Cp) were identified as functions of
blade length, TSR, coning angle, and blade pitch (θ) based on
the blade profile of the SUMR-13i as described in Ananda et al.
(2018). This analysis also identified the aerodynamic torque
(τaero) as a function of the same variables and wind speed. Us-
ing a control algorithm described in the following subsections,
the blade pitch angle is modulated to curtail performance at
high wind speeds to reduce the structural loading.

Quasi-static Performance Model: To reduce the computa-
tional complexity in computing Pavg (which already requires
integration over a joint distribution of environmental and
model uncertainty), a quasi-static expression for the average
power generated by the SUMR turbine was defined as follows:

Pavg=

∫ ∆Cp,max

∆Cp,min

∫ vw,max

vw,min

ρmdl(∆Cp)ρenv(vw)
1

2
ρairπ(rbcosβ)

2

∆CpCp(rb,TSR,β,θ)v3wdvwd∆Cp

(5)

Here, vw is the wind speed, ρair is the air density, and ∆Cp

represents a multiplicative uncertainty on the power coefficient.
Furthermore, ∆Cp,min, ∆Cp,max, vw,min, and vw,max describe
the minimum and maximum values of ∆Cp and vw respectively.
We seek to maximize this average power, subject to the
allowable range of inputs, a structural constraint on the
maximum allowable moment acting on the blade root, and a
limit on the power generated by the turbine (the system’s rated
power). This results in the following optimization problem:

max
TSR,β,θ

Pavg(vw,rb,∆Cp) (6)

subject to:

TSR

{
=TSRnom Ktype=0

∈ [TSRmin,TSRmax] Ktype=1
(7)

max(βmin,βnom−∆β)≤β≤min(βmax,βnom+∆β) (8)

θmin≤θ≤θmax (9)

Mroot(vw,rb,TSR,β,θ,∆Cp)≤Mmax (10)

P≤Prated (11)

where TSRmin and TSRmax refer to the minimum and
maximum allowable tip-speed-ratio, TSRnom refers to the
nominal TSR setpoint if a non-adaptive controller is selected
(Ktype = 0), βmin and βmax refer to the minimum and
maximum allowable cone angle, βnom refers to the nominal
cone angle of the system, θmin and θmax refer to the minimum
and maximum allowable blade pitch angle, Mroot refers to the
root bending moment, Mmax refers to the maximum allowable
bending moment, and Prated refers to the turbine’s rated power.
Finally, the root bending moment was calculated as follows:

Mroot=
1

4
ρairπ(rbcosβ)

2(1+a∆Cp−a)

Ct(rb,TSR,β,θ)v2wyac

(12)

where yac is the spanwise location of the aerodynamic center

of the blade, defined as yac=rb
22/3

2 based on a quadratic lift
distribution, and a is the turbine’s axial induction factor. The
baseline design parameters of this system are listed in Table 1.
Using this model, the average power generated by the SUMR
is calculated as a function of the co-design decision variables.

Table 1. SUMR turbine baseline design
parameters and constraints

Variable Description Value Units

βnom Nominal cone angle 12.5 ◦

βmin Minimum cone angle 0 ◦

βmax Maximum cone angle 45 ◦

θmin Minimum pitch angle 0 ◦

θmax Maximum pitch angle 14 ◦

TSRmin Minimum TSR 6 (-)

TSRmax Maximum TSR 10 (-)

Prated Rated power 13.2 MW

Mmax Maximum root bending moment 50 MNm

ρair Air Density 1.225 kg
m3

a Axial induction factor 0.333 (-)

Model Uncertainty: To perform the co-design optimization
of the SUMR, it is necessary to understand how model
uncertainty will evolve with time. The modeling uncertainty
PDF is defined as:

ρmdl(∆CP
|tp,tc)=N(1,u(tp,tc)) (13)

where u is the standard deviation in model uncertainty, which
changes as a function of the plant and controller freeze dates.
The specific profile for the evolution of uncertainty in this
case study is shown in Fig. 2, reflecting an order of magnitude
reduction in uncertainty over six months.

Environmental Model: Lansing, Michigan was identified as a
candidate installation site. Here, surface wind speed measure-
ments were available at 10-minute intervals via the National
Solar Radiance Database (Sengupta et al. (2018)). A Weibull
distribution was fit to this data at this site over a month to
serve as the energy resource PDF (ρPDF), as shown in Fig. 3.
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Fig. 2. The model uncertainty PDF at multiple freeze dates.

Fig. 3. Wind speed Weibull distribution and histogram.

System Cost Model: To maximize the lifetime profit of the
SUMR turbine, it was first necessary to model system cost
as a function of the co-design decision variables. The cost of
the baseline design (Kinit) was defined as a function of the
blade mass. The approximate cost per unit of blade mass
was defined in L. Fingersh and Laxson (2006). Leveraging
the analysis described in Noyes et al. (2020), blade mass was
obtained as a function of blade length. Using this, along with
the knowledge that the blades comprise roughly 8% of the
total cost of the SUMR (Noyes et al. (2020)), an approximate
model of the total cost of the SUMR as a function of blade
length was constructed as follows:

Kinit=fm,b(rb)15.62
$

kg
(14)

where fm,b is an interpolation of the turbine mass as a
function of length from the values provided in Noyes et al.
(2020). Note that the TSR setpoint, which only needs to be
selected at the design freeze date if a non-adaptive controller
is selected (Ktype=0), does not impact the baseline cost of
the system, as it is simply a parameter in the software.

To characterize the cost of the adaptive parameters (Kadapt),
the hardware cost of integrating blade coning was estimated
based on existing hardware cost models for adjustable blade
pitch as described in L. Fingersh and Laxson (2006). To model
the software development cost of real-time TSR adaptation
(corresponding toKtype=1), it was assumed that development
of this controller would require one month of work from ten
engineers (each compensated $100/hour, including overhead).
The net cost of adaptive parameters is described as follows:

Kadapt=fm,θ(∆β,fm,b(rb))15.62
$

kg
+$250,000Ktype (15)

where fm,θ is the mass of the blade pitch mechanism as
described in L. Fingersh and Laxson (2006).

Additionally, the cost of the delaying freeze dates (Ktime)
needed to be characterized. For this case study, the cost of
delaying the plant and controller freeze dates is calculated
as follows under the practical assumption that the controller
freeze date must occur on or after the plant freeze date.

Ktime=20000
$

month2
(3t2p+t2c) (16)

Operation and maintenance costs were defined as a function
of system capacity as described in Lantz et al. (2016) as:

KO&M=LsysPrated35
$

kWyear
(17)

3.3 SUMR Turbine Adaptive Co-Design Results:

Combining the aforementioned models of performance, the
environment, uncertainty, and cost, only two components
remain unaccounted for in the objective described in Eqn.
4: the economic value of energy generated (Eval) and the
expected lifetime of the system (Lsys). Assuming a saturated
energy market and a relatively short system lifespan, these
values were selected to be 0.10 $

kWh and 30 years, respectively.
Using these values, the objective surface in the absence of
modeling uncertainty and adaption was plotted in Fig. 4. Note
that, in the absence of plant and controller adaptability and
with a perfect model of the system, the maximal achievable
lifetime profit for the system was $13.94MM.

Fig. 4. True objective surface without adaptation.

The outlined co-design optimization was implemented in a
nested formulation, wherein the optimal fixed design parame-
ters were computed for every candidate combination of adapt-
ability set size, plant freeze date, and controller freeze date.
The expected lifetime system profit is plotted as a function of
freeze dates, for multiple levels of adaptability, in Fig. 5. In this
figure, the optimal freeze date for each level of adaptability
(indicated by mesh color) is marked with an X on each surface.
Systems designed with less adaptability tended to have later
optimal freeze dates than those with more adaptability. This
result can be attributed to the fact that design freezes are most
consequential when no further adjustment is available after the
freeze. The optimal values of the decision variables identified
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through the co-design optimization are shown in Table 2.
Even when considering model uncertainty, by adding plant
and controller adaptability, the expected value of the system’s
net profit increases by over $1.1MM as compared to a system
optimized based on a perfect model (negating time costs) with
zero adaptability and by over $1.7MM as compared to a system
optimized based on an uncertain model with zero adaptability.

Table 2. Optimal co-design parameters

Variable Description Value Units

r∗b Optimal blade length 116.3 m

TSR∗ Optimal TSR setpoint 8.20 (−)

∆∗
β Optimal coning range 20 ◦

K∗
type Optimal control strategy 1 (−)

t∗p Optimal plant freeze date 3 months

t∗c Optimal controller freeze date 3 months

Fig. 5. Expected lifetime profit of SUMR systems with
multiple levels of plant and controller adaptability vs
freeze date. The profit-optimal freeze date for each
design is indicated with an X on each surface.

4. REAL-TIME ADAPTIVE DESIGN REALIZATION

This section describes the underlying adaptive controller
that realizes the adaptation made possible through the
aforementioned co-design process.

4.1 Dynamic Model

The dynamic model used for analysis and control design has
been adopted from P. J. Moriarty (2005) and is given by:

ω̇=
τaero−τgen

Ibasecos2(β)
(18)

where ω is the rotor speed, Ibase is the turbine’s unconed
moment of inertia, and τgen is the applied generator torque.
The plant model has three control input channels, τgen, β, and
θ. Here, τgen directly influences the system dynamics in Eqn.
18, while β and θ impact the system dynamics through their
effects on the moment of inertia and aerodynamic torque.

4.2 Real-Time Control Implementation

Feedback Controller: By solving the optimization problem
described in Sec. 3.2.2 in the absence of uncertainty (reflecting
model knowledge at the time of deployment) offline, lookup

tables were generated that recorded the power-optimal,
constraint-satisfying TSR, coning angle, and blade pitch
for a given wind speed. A constant-gain PI controller was
applied to the error between the current TSR and the lookup
table’s optimal TSR setpoint to compute the generator
torque necessary to achieve the desired TSR setpoint. This
PI controller was formulated as:

τgen=kP,τ (TSR−TSRSP)+kI,τ

∫ t

0

(TSR−TSRSP)d̄t (19)

where kP,τ is a proportional gain, kI,τ is an integral gain,
and TSRSP is the tip-speed-ratio setpoint retrieved from the
lookup table. Further, Eqn. 19 can be simplified by defining the
TSR wind speed lookup table as TSRSP=f(vw). Substituting
this expression into Eqn. 19, the torque control law becomes
dependent only on the TSR and wind speed.

The gain-scheduled PI pitch controller described in Zalkind
et al. (2017) ensured constraint satisfaction in the event of
model mismatch between the quasi-static and dynamic models.

4.3 Dynamic Simulation

Dynamic simulations were conducted using the dynamic
model described in Sec. 4.1 to demonstrate the practical
implementation of a real-time control strategy developed using
this co-design approach. The performance of a SUMR turbine
utilizing the feedback control strategy from Sec. 4.2.1 was
simulated over 24 hours. The wind speed profile was based on
time series data at the installation site as plotted in Fig. 6.

As shown in Figs. 7 and 8, the proposed strategy (that fully
leverages the system’s capacity for adaptation) enabled the
system to operate at high wind speeds without violating the
constraints of maximum mechanical power generation or max-
imal allowable bending load. In Fig. 7, energy and power gen-
eration predicted by the quasi-static model (described in 3.2.2)
are shown to exceed the power generation calculated by the
dynamic simulation model by less than 0.5%, demonstrating
that the impact of transient tracking behavior in the proposed
control strategy is very small. The controller enabled the
turbine to maintain loading at the structural constraint over
a wide range of wind speeds by increasing generator torque,
reducing the coning angle, and increasing the blade pitch angle
as shown by the control trajectories plotted in Fig. 6.

5. CONCLUSIONS

In this work, an adaptability-aware control co-design frame-
work was presented. This framework was then applied to the
SUMR using quasi-static models for performance, which were
later validated via dynamic simulation. Through this co-design
process, the lifetime-profit-optimal blade length, tip-speed-
ratio setpoint, range of cone angle adjustment, control strategy,
and freeze dates were selected. The design optimized while con-
sidering adaptation was projected to have a lifetime profit 6.5%
greater than a system developed without considering real-time
adaptation. A simple feedback control strategy was developed
to leverage the system’s adaptability, which was validated in a
dynamic simulation framework. This work serves as an initial
validation of the proposed co-design framework that has the
potential to increase the profitability of renewable energy sys-
tems, incentivizing widespread adoption of sustainable energy.
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Fig. 6. Wind speed, generator torque, cone angle, and blade
pitch vs time over 24-hour simulation.

Fig. 7. Power and energy generation vs time over 24-hour simu-
lation and a quasi-static prediction under perfect tracking.

Fig. 8. Root bending moment vs time over 24-hour simulation.
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